MAT 531 SPRING 16 HOMEWORK 9

Due Tuesday, Apr 12

1. Let $\left(e^{1}, e^{2}, e^{3}\right)$ be the standard dual basis for $\left(\mathbb{R}^{3}\right)^{*}$. Show that $e^{1} \otimes e^{2} \otimes e^{3}$ is not equal to a sum of an alternating tensor and a symmetric tensor.
2. Define a 2 -form Ω on \mathbb{R}^{3} by

$$
\Omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a). Compute Ω in spherical coordinates (ρ, φ, θ) where $(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)$.
(b). Compute $d \Omega$ in both Cartesian and spherical coordinates and check that both expressions give the same 3 -form.
(c) Compute the restriction $\left.\Omega\right|_{S^{2}}=\iota^{*} \Omega$ using coordinates (φ, θ), (on their domain of validity). Here $\iota: S^{2} \rightarrow \mathbb{R}^{3}$ is the standard inclusion of the unit sphere $S^{2}(1)$ into \mathbb{R}^{3}.
(d). Show that $\left.\Omega\right|_{S^{2}}$ is nowhere zero.
3. Spivak, \# 11, Chapter 7
4. Spivak, \# 21, Chapter 7

