MAT 531 SPRING 16 HOMEWORK 6

Due Tuesday, March 8

1. Let T be a $(2,0)$ tensor on \mathbb{R}^{2} given in global Cartesian coordinates by

$$
T=\sum t_{i j} d x^{i} \otimes d x^{j}
$$

Find the expression for T in polar coordinates.
2.(a) Let again T be a bilinear form (i.e. $(2,0)$ tensor) on a manifold M. Let

$$
\operatorname{det} T=\operatorname{det}\left(t_{i j}\right)
$$

where $t_{i j}$ are the components of T in any local coordinate system x^{i} on M. Is $\operatorname{det} T$ well-defined? (i.e. does it exist as a function on M ?).
(b). Is the property $\operatorname{det} T \neq 0$ well-defined on M ?
3. Find the integral curves in \mathbb{R}^{2} of the vector field $V=x^{2} \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and determine which integral curves are defined for all t.
4. The usual homogeneous charts on $\mathbb{R P}^{2}$ are given by

$$
\begin{aligned}
& {[x, y, z] \rightarrow\left(u_{1}, u_{2}\right)=\left(\frac{x}{z}, \frac{y}{z}\right) \text { on } U_{3}=\{z \neq 0\},} \\
& {[x, y, z] \rightarrow\left(v_{1}, v_{2}\right)=\left(\frac{x}{y}, \frac{z}{y}\right) \text { on } U_{2}=\{y \neq 0\},} \\
& {[x, y, z] \rightarrow\left(w_{1}, w_{2}\right)=\left(\frac{y}{x}, \frac{z}{x}\right) \text { on } U_{1}=\{x \neq 0\} .}
\end{aligned}
$$

Show that there is a vector field on $\mathbb{R} \mathbb{P}^{2}$ which in the U_{1} chart has the form

$$
V=w_{1} \frac{\partial}{\partial w_{1}}-w_{2} \frac{\partial}{\partial w_{2}}
$$

Find the expressions for V in the other two charts.
5. (a) Let

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

be a smooth function with a finite number of isolated critical points q_{i} (where $\nabla f \neq 0$). Let $M_{a}=\left\{x \in \mathbb{R}^{n}: f(x)=a\right.$ (the a-level set of f and similarly for $M_{(a, b)}$. Let

$$
V=\frac{\nabla f}{|\nabla f|^{2}}
$$

Then V is a smooth vector field on $\mathbb{R}^{n} \backslash\left\{\cup q_{i}\right\}$. If φ_{t} denotes the flow of V, show that

$$
f\left(\varphi_{t}(p)\right)=f(p)+t
$$

(b) Let $[a, b] \subset \mathbb{R}$ be an interval containing no critical values of f. Show that

$$
\begin{aligned}
& \Phi: M_{(a, b)} \rightarrow(0, b-a) \times M_{a} \\
& \Phi(p)=\left(f(p)-a, \phi_{a-f(p)}(p)\right)
\end{aligned}
$$

is a diffeomorphism. (It is actually a diffeomorphism of manifolds-with-boundary when closed intervals are used above in place of open intervals). Thus $M_{(a, b)}$ is topologically "simple" - just a product.

