MAT 531 SPRING 16 HOMEWORK 5

Due Tuesday, March 1

1. A manifold M whose tangent bundle $T M$ is trivial (i.e. is equivalent to a trivial bundle), is called parallelizable. M is called stably parallelizable if there is a trivial bundle ε^{k} of rank k over M such that $T M \oplus \varepsilon^{k}$ is trivial. Prove that the tangent bundle $T\left(S^{n}\right)$ is stably trivial.
(Hint: Show that the tangent bundle of $S^{n} \times \mathbb{R}$ is trivial, by considering the standard embedding $\left.S^{n} \subset \mathbb{R}^{n+1}\right)$.

The same argument shows that the tangent bundle of any compact, oriented surface is stably trivial, (since any compact oriented surface can be embedded in \mathbb{R}^{3}.
2. (a) Given two vector bundles $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M$ over M with transition maps $\Phi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{R})$ and $\Phi_{\alpha \beta}^{\prime}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{R})$ over the same cover $\left\{U_{\alpha}\right\}$, prove that the bundle π is equivalent to the bundle π^{\prime} if and only if there are smooth functions $f_{\alpha}: U_{\alpha} \rightarrow G L(n, \mathbb{R})$ such that

$$
\Phi_{\alpha \beta}^{\prime}(x)=f_{\alpha}(x) \Phi_{\alpha \beta}(x) f_{\beta}^{-1}(x),
$$

for $x \in U_{\alpha} \cap U_{\beta}$.
2. (b) Let $\pi: E \rightarrow M$ be a vector bundle of rank n with transitions maps

$$
\Phi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{R}) .
$$

Prove that E is equivalent to a trivial bundle if and only if there exist smooth maps $\lambda_{\alpha}: U_{\alpha} \rightarrow$ $G L(n, \mathbb{R})$ such that

$$
\Phi_{\alpha \beta}(x)=\lambda_{\alpha}(x) \lambda_{\beta}^{-1}(x),
$$

for $x \in U_{\alpha} \cap U_{\beta}$.
3. In the same setting as (3), suppose $s_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{\alpha}$ is a collection of smooth maps such that $s_{\alpha}(x)=\Phi_{\alpha \beta}(x) s_{\beta}(x)$ for any $x \in U_{\alpha} \cap U_{\beta}$. Prove there is a global section $s: M \rightarrow E$ such that $\left.s\right|_{U_{\alpha}}=s_{\alpha}$.
4. A smooth map $F: M \rightarrow N$ between manifolds induces a bundle map $F_{*}=D F: T M \rightarrow T N$. Show that in general there is no corresponding map $F^{*}: T^{*} N \rightarrow T^{*} M$ of cotangent bundles. Describe conditions under which F^{*} exists.
5. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $(x, y) \rightarrow(x+2 y, x-y)=(z, w)$. Let $T=z d z \otimes d w$ and compute $\varphi_{*} T$.
6. Show that the smooth function

$$
\operatorname{det}: G L(n, \mathbb{R}) \rightarrow \mathbb{R}
$$

has differential given by

$$
d(\operatorname{det})_{A}(B)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right),
$$

for $A \in G L(n, \mathbb{R})$ and $B \in T_{A} G L(n, \mathbb{R}) \simeq M_{n}(\mathbb{R})$. Here tr is the trace.
(Hint: Using matrix entries A_{i}^{j} as global coordinates on $G L(n, \mathbb{R})$ show that

$$
\frac{\partial}{\partial A_{i}^{j}} \operatorname{det}(A)=(\operatorname{det} A)\left(A^{-1}\right)_{j}^{i} .
$$

To prove this, expand $\operatorname{det} A$ by minors along the $i^{\text {th }}$ column and use Cramer's Rule.

