## MAT 530 SPRING 17 HOMEWORK 1

Due Wednesday, Sept 6

Problems in Munkres Text: Section 13: 4, 8(a) Section 16: 8

1. Two metrics  $d_1$  and  $d_2$  on a set X are called *equivalent* if there are constants c, C > 0 such that

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y),$$

for all  $x, y \in X$ . Prove that equivalent metrics induce the same topology on X.

2. Let  $C = C^0([0, 1])$  be the space of continuous real-valued functions on [0, 1]. For  $f, g \in C$ , define

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx, \quad d_{sup}(f,g) = sup_{x \in [0,1]} |f(x) - g(x)|.$$

Show that  $d_1$  and  $d_{sup}$  are metrics on C.

Prove that the topologies on C induced by these metrics are *different*. Is one of them finer than the other?

3. An arithmetic progression is a set of form

$$S(a,b) = \{an+b : n \in \mathbb{Z}\},\$$

with  $a, b \in \mathbb{Z}$ . Define a subset  $U \subset \mathbb{Z}$  to be open if it is either empty, or a union of arithmetic progressions.

(a). Show that this defines a topology on  $\mathbb{Z}$  in which every non-empty open set is infinite.

(b) Prove the identity

$$\mathbb{Z} \setminus \{-1,1\} = \cup_{p \ prime} S(p,0).$$

Prove that each S(p, 0) is a closed set while  $\mathbb{Z} \setminus \{-1, 1\}$  is not closed. Show this leads to a contradiction if there are only finitely many prime numbers. (Hillel Furstenberg proof of Euclid's theorem).