MAT 362 SPRING 09 HOMEWORK 9

Due Thursday, May 7

1. Suppose S is a compact, oriented surface in \mathbb{R}^{3} with Gauss curvature K satisfying $K>0$ everywhere. Prove that S is diffeomorphic to S^{2} - the 2 -sphere. Is the converse true? - thus if S is diffeomorphic to S^{2}, is necessarily $K>0$ everywhere?
2. For S as above, suppose $K(x)<0$ for all $x \in S$. Prove that S cannot be diffeomorphic to the sphere S^{2} or the torus T^{2}.
3. For S any compact oriented surface in \mathbb{R}^{3}, prove there must exist a point x_{0} on S where

$$
K\left(x_{0}\right)>0 .
$$

Hint: Choose the smallest r such that the sphere $S^{2}(r)$ of radius r centered at the origin contains the surface S, and let x_{0} be a point where $S^{2}(r)$ touches S. Then argue that at this point, $K\left(x_{0}\right)>0$.

Note: this result is false for surfaces in \mathbb{R}^{4} for example.
4. Let T be a geodesic triangle on a compact oriented surface S which bounds a disc in S. Thus, the 3 edges of T are geodesics in S and the interior is homeomorphic to a disc. Using the fact that the geodesic curvature of any geodesic curve is 0 , prove:
(a). If $K>0$ everywhere on T, then the sum of the interior angles of T is $>\pi$.
(b). If $K<0$ everywhere on T, then the sum of the interior angles of T is $<\pi$.
(c). If $K=0$ everywhere on T, then the sum of the interior angles of T is π.

Again, all these results are false (in general) if the triangle is not homeomorphic to a disc.
5. Prove there is no compact minimal surface in \mathbb{R}^{3}. A surface is minimal if its mean curvature $H=\kappa_{1}+\kappa_{2}=0$, everywhere, where κ_{i} are the principal curvatures.

