PRACTICE FINAL: MAT 310 FALL 09

These problems range from easy to hard. This "exam" is more difficult than the actual final. Some problems from this list will be on the final; how many depends on how many are discussed during the review on Friday.

1. If $S, T: V \rightarrow V$ are linear maps from an inner product space to itself, prove that

$$
(S T)^{*}=T^{*} S^{*}
$$

2. If T is self-adjoint, prove that

$$
\|(T \pm i) x\|^{2}=\|T x\|^{2}+\|x\|^{2} .
$$

3. State the spectral theorem for self-adjoint linear maps $T: V \rightarrow V$. Find an orthonormal basis of eigenvectors for the linear map given by the matrix

$$
\left(\begin{array}{ll}
2 & 4 \\
4 & 3
\end{array}\right)
$$

What is the characteristic polynomial of this linear map.
4. If $T: V \rightarrow V$ is a linear map on an inner product space satisfying $\langle T v, v\rangle>0$ for all v, prove that T is invertible.
5. Let $U \subset \mathbb{C}^{3}$ be the subspace generated by the vectors $v_{1}=(1,1,0), v_{2}=(0,-1,1), v_{3}=(1,0,1)$. Find an orthogonal basis for U with respect to the usual dot product.
Find a subspace $W \subset \mathbb{C}^{3}$ such that $\mathbb{C}^{3}=U \oplus W$.
6. Let \mathcal{F} be the vector space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and let V be the subspace generated by the functions $e^{x}, x e^{x}, x^{2} e^{x}$. Let $T: V \rightarrow V$ be the operator defined by $T(f)=f^{\prime}-f$. Choose a basis for V and write the matrix for T in that basis. Is T invertible?
7. Suppose V is an inner product space. Prove that

$$
\langle S, T\rangle=\operatorname{trace}\left(S T^{*}\right)
$$

defines an inner product on $\mathcal{L}(V)=$ the space of linear maps $V \rightarrow V$.
Show that in this inner product

$$
\|T\|^{2}=\sum\left\|T_{e_{i}}\right\|^{2},
$$

where e_{i} is any orthonormal basis of V.
8. Given an inner product space V and vectors $v, w \in V$, define $T: V \rightarrow V$ by $T(u)=\langle u, v\rangle w$. What is T^{*} ?. Find a formula for $\operatorname{trace} T$.
9 . Is the matrix

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

diagonalizable, i.e. does it have a basis of eigenvectors?
10. Find the eigenvalues and the associated generalized eigenvectors of the linear map associated to the matrix

$$
\left(\begin{array}{lll}
2 & 4 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

