MAT 310 FALL 09 HOMEWORK 8

Due Wednesday, November 11

1. Let $(V,\langle\rangle$,$) be an inner product space and suppose T: V \rightarrow V$ is a linear map. Show that if λ is an eigenvalue of T, then $\bar{\lambda}$ is an eigenvalue of the adjoint operator T^{*}.
2. Let $(V,\langle\rangle$,$) be an inner product space and suppose T: V \rightarrow V$ is self-adjoint. If U is an invariant subspace of T, (so $T(U) \subset U$), show that U^{\perp} is also an invariant subspace of T, so $T\left(U^{\perp}\right) \subset U^{\perp}$.
3. Let v be a given vector in an inner product space and define the linear functional $\ell(w)=\langle w, v\rangle$, so $\ell: V \rightarrow \mathbb{F}$. Find the formula for the adjoint linear map $\ell^{*}: \mathbb{F} \rightarrow V$.
4. Consider the linear operator T on \mathbb{C}^{2} given by $T\left(z_{1}, z_{2}\right)=\left(3 i z_{1}-2 z_{2}, 4 z_{1}+2 i z_{2}\right)$. Find the formula for $T^{*}\left(z_{1}, z_{2}\right)$.
5. Let $C_{0}^{\infty}[0,1]$ be the vector space of C^{∞} real-valued functions f on $[0,1]$ such that $f(0)=f(1)=0$. These are the functions which are differentiable to all orders (infinite order). Define

$$
\begin{gathered}
T: C_{0}^{\infty}[0,1] \rightarrow C^{\infty}[0,1] \\
T(f)=f^{\prime},
\end{gathered}
$$

so T is the derivative operator. Use the L^{2} inner product:

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t .
$$

Find the formula for the adjoint T^{*}. Is T self-adjoint?
6. Suppose $T: V \rightarrow V$, where V is an inner product space and T is self-adjoint. Prove that any two eigenvectors of T which have different eigenvalues are necessarily orthogonal vectors in V.
7. Using Proposition 6.46, prove that

$$
\text { dimrangeT }=\text { dimrange } T^{*}
$$

for $T: V \rightarrow W$ a linear map of finite dimensional vector spaces. Explain why this implies that the row rank of an $m \times n$ matrix equals its column rank. (The row (column) rank is the dimension of the span of the row (column) vectors in the matrix).

