MAT 310 FALL 09 HOMEWORK 6

Due Wednesday, October 28

1. Find all eigenvalues and eigenvectors of the linear map

$$
\begin{gathered}
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \\
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}, x_{1}\right) .
\end{gathered}
$$

2. Suppose $T: V \rightarrow V$ is a linear operator on V, with V a finite dimensional vector space over \mathbb{F}. Prove that every vector in the null space of T is an eigenvector, with eigenvalue 0 and conversely, every such eigenvector is in the nullspace of T. Conclude that $\operatorname{null}(T)$ equals the span of the 0 -eigenvectors.
3. Suppose $T: V \rightarrow V$ is a linear operator on V, with V a finite dimensional vector space over \mathbb{F}. If $\operatorname{dim}(\operatorname{range} T)=1$, show that T can have at most 2 distinct eigenvalues. (Hint: Use (2)).
4. Suppose λ is an eigenvalue of $T: V \rightarrow V$. Prove then that λ^{2} is an eigenvalue of $T^{2}=T \circ T$: $V \rightarrow V$, and similarly, λ^{k} is an eigenvalue of $T^{k}: V \rightarrow V$.

Is the converse true? So if μ is an eigenvalue of T^{2}, is $\sqrt{\mu}$ an eigenvalue of T ? If yes, prove it, if no, give an example.
5. Consider the 4×4 matrix

$$
A=\left(\begin{array}{cccc}
3 & 1 & 2 & 4 \\
0 & -1 & 8 & 5 \\
0 & 0 & 6 & -4 \\
0 & 0 & 0 & 7
\end{array}\right)
$$

This gives a linear map $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Show that the standard "horizontal" subspaces $\mathbb{R}^{k}=$ $\left\{x_{k+1}=\cdots=x_{4}=0\right\}, k=1,2,3$ are invariant subspaces of A.

