MAT 310 FALL 09 HOMEWORK 11

Due Wednesday, December 9

1. Let $T: V \rightarrow V$ be a linear map with characteristic polynomial $q(\lambda)=\lambda^{n}$, with $n=\operatorname{dim} V, V$ a complex vector space. Prove that T is nilpotent.

Conversely, if T is nilpotent, prove that its characteristic polynomial is λ^{n}.
2. As above, suppose $T: V \rightarrow V$ is nilpotent. If V has a basis of eigenvectors of T prove that $T=0$, i.e. T is the zero linear map.
3. Suppose $T: V \rightarrow V$ is a linear map with distinct eigenvalues given by $(-5,-3,0,2,4)$ with multiplicities given by $(2,2,1,3,3)$. Suppose the eigenvalues $(-5,-3,2)$ have 2 linearly independent eigenvectors, while the remaining eigenvalues $(0,4)$ have only one eigenvector (up to scalar multiples).

Find the possible Canonical Form I of the linear map T, as in Theorem 8.23. What is the characteristic polynomial of T ?
4. Let S and T be two linear maps of a vector space V to itself. The commutator $[S, T]$ of S and T is defined to be the linear map

$$
[S, T]=S T-T S: V \rightarrow V
$$

Recall the product here means composition of linear maps.
(a). Show that

$$
\operatorname{tr}[S, T]=0
$$

(b). Use (a) to prove that there do not exist any linear operators S, T from V to V as above such that

$$
[S, T]=I d
$$

where $I d$ is the identity map on V.
5.Recall the rank-nullity formula from an earlier chapter:

$$
\text { dimnullT }+ \text { dimrange } T=\operatorname{dim} V,
$$

for $T: V \rightarrow V$ and V finite dimensional. Suppose P is a linear map from V to V satisfying

$$
P^{2}=P
$$

(P is called a projection operator). Use the rank-nullity formula to find a formula relating $\operatorname{tr} P$ and dimrangeT.

