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Abstract. We introduce an elliptic regularization of the PDE system representing the isomet-
ric immersion of a surface in R3. The regularization is geometric, and has a natural variational
interpretation.

1. Introduction

In this short note, we introduce an elliptic regularization of the equations for isometric immersion
of a surface in R3 (or more generally any ambient 3-manifold). Thus we exhibit a smooth curve Dε,
ε ≥ 0, of differential operators which are elliptic for ε > 0 for which D0 is the operator describing
isometric immersions. The existence of such a regularization is somewhat surprising, since the
system of 1st order equations for isometric immersions is characteristic in all directions and thus
seemingly far from elliptic. The regularization Dε depends only on geometric data of the immersion.

To begin, we recall the global formulation of the problem. Let Σ be a closed, orientable 2-
dimensional surface, thus a surface of genus g ∈ Z≥0. Any such surface embeds in R3 and a general
immersion

(1.1) F : Σ→ R3.

induces a metric γ on Σ by pulling back (or restricting) the Euclidean metric gEucl to Σ via F :

(1.2) γ = F ∗(gEucl).

The isometric immersion problem is the converse; given an (abstract) Riemannian metric γ on Σ,
is there an immersion F as in (1.1) for which (1.2) holds? Thus, one is asking which metrics on Σ
can be “pictured” as immersed surfaces in R3. A local version of this problem, where Σ is replaced
by a disc, may be formulated in the same way.

There is a very large literature on this classical problem. This short note is not the place to
summarize this in any detail; we refer instead to [5], [4], [9] for background and further references.
We only recall that it is a well-known and basic open question whether any smooth metric γ on a
disc has a neighborhood of 0 realized by an immersion F , i.e. whether any smooth metric locally has
a smooth isometric immersion into R3. Much less is known in general about the global isometric
immersion problem for compact surfaces.

In local coordinates xi, i = 1, 2, on Σ, the equation (1.2) has the form

(1.3)
∑

∂xiF
µ · ∂xjFµ = γij = γ(∂xi , ∂xj ).

This is a determined system of three 1st order differential equations 1 ≤ i ≤ j ≤ 2 for three unknown
functions F = {Fµ}, µ = 1, 2, 3. A simple symbol calculation shows that (1.3) is not an elliptic
system; in fact all directions on the surface are characteristic, cf. [4]. As recalled in Section 2, the
failure of ellipticity is also easily seen to be a consequence of Gauss’ Theorema Egregium.

It is well-known that locally, the isometric immersion system can be reduced to a single scalar
equation, the Darboux equation

detD2
γu = Kdetγ(1− |∇γu|2),
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for an unknown function u = u(x, y), |∇u|2γ < 1. Here K = Kγ is the Gauss curvature of the

immersion F , and ∇γ , D2
γ are the gradient and Hessian with respect to γ. The function u is given

locally by u = F · e, where e is a unit vector in R3. This Monge-Ampere equation changes type
from elliptic when K > 0 to hyperbolic when K < 0 and is degenerate at the locus K = 0. The
Darboux equation has been the main tool used in understanding the local isometric embedding
problem, but is not particularly useful for the global isometric embedding or immersion problem.

To describe the elliptic regularization, given a metric γ on a surface Σ, let [γ] be the pointwise
conformal class of γ. The full metric γ may then be decomposed into a pair

(1.4) γ ∼ ([γ], λ2),

where λ2 represents the conformal factor with respect to a fixed background metric γ0 (for instance
of constant curvature) in the conformal class γ. Thus, γ = λ2γ0. Given an immersion F : Σ→ R3,
let γ = F ∗(gEucl) and let H = HF denote its mean curvature.

Theorem 1.1. For any ε > 0, the data

(1.5) Dε(F ) = ([γ], (1− ε)λ2 + εH),

form a determined elliptic system for an immersion F : Σ→ R3.

When ε = 0, as in (1.4) the data ([γ], λ2) are equivalent to the data γ, i.e. (1.5) gives the
equations for an isometric immersion (1.3) when ε = 0. Thus one has a smooth path of differential
operators Dε, elliptic for ε > 0, with D0(F ) = γ giving the operator for isometric immersions. The
local version of Theorem 1.1 is equally valid.

In Section 3, we prove that the Fredholm index of Dε is zero, for Σ = S2. This remains
unknown for surfaces of higher genus, but some partial results on the Fredholm index are discussed
in Section 3. We also exhibit a variational (or Lagrangian) formulation of the data D0, D1 and for
data essentially equivalent to Dε, ε ∈ (0, 1).

It would be interesting to approach the isometric immersion problem by studying the behavior
of the operators Dε as ε→ 0. For instance, the fact that Dε is Fredholm implies that its image is a
variety of finite codimension in the target space, for all ε > 0. It would be of interest to understand
the behavior of the kernel (and cokernel) of the linearizations DDε as ε → 0, as an approach
toward understanding the infinitesimal rigidity of isometric immersions - another well-known open
problem. We hope to pursue these issues elsewhere.

2. Elliptic regularization

As in the Introduction, let Σ be a compact orientable surface. With minor modifications, the
discussion below applies equally well to the local situation where Σ is a disc.

Let Immm+1,α(Σ) be the space of Cm+1,α immersions F : Σ → R3, where Cm+1,α is the usual
Hölder space and m ≥ 1. Let Metm,α(Σ) be the space of Cm,α Riemannian metrics on Σ. Both of
these spaces are Banach manifolds and one has a natural map

(2.1) ΦD : Immm+1,α(Σ)→Metm,α(Σ),

ΦD(F ) = γ = F ∗(gEucl).

This is a smooth map of Banach manifolds, since gEucl is C∞ smooth; cf. the expression (1.3) in
local coordinates. The isometric embedding problem concerns the description or characterization
of the image of ΦD.

Remark 2.1. We recall that Gauss’ Theorema Egregium is an obstruction to the map ΦD being
Fredholm, (when m ≥ 2). (A smooth map χ is Fredholm if its linearization Dχ at any point is a
linear Fredholm map, i.e. Dχ has finite dimensional kernel and cokernel, and is of closed range).
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Namely, if γ = ΠD(F ), for F ∈ Immm+1,α(Σ), then the 2nd fundamental form A of Σ is in
Cm−1,α(Σ). Let K denote the Gauss curvature of γ. Gauss’ theorem gives

K = detA,

so that K ∈ Cm−1,α(Σ). However the set of metrics γ ∈ Metm,α(Σ) such that K ∈ Cm−1,α(Σ) is
of infinite codimension. This contradicts the Fredholm property.

Given an immersion F ∈ Immm+1,α(Σ), let [γ] be the pointwise conformal class of the induced
metric γ and let H be the mean curvature of F . Let Cm,α(Σ) be the space of pointwise conformal
classes of Cm,α metrics on Σ and Cm−1,α(Σ) the space of Cm−1,α functions f : Σ→ R. Define

(2.2) ΦH : Immm+1,α(Σ)→ Cm,α(Σ)× Cm−1,α(Σ),

ΦH(F ) = ([γ], H).

This is a smooth map of Banach manifolds, of mixed Dirichlet-Neumann type (or of mixed intrinsic-
extrinsic type). Note that [γ] is of first order in F , while H is of second order. It is proved in [3]
that the data ([γ], H) form an elliptic system for F in the sense of [1]. It is worthwhile to include
the short proof here.

Proposition 2.2. The data ([γ], H) form an elliptic system for F . In particular, the map ΦH in
(2.2) is Fredholm.

Proof: The linearization DΦH acts on vector fields X along the immersion F . Write X =
XT + νN , where XT is tangent and N is normal to Σ = Im(F ). Then

(2.3) δ∗X = δ∗(XT ) + νA+ dν ·N,

so that (δ∗X)T = δ∗X|TΣ = δ∗(XT ) + νA. The second term here is lower order in X and so does
not contribute to the principal symbol. The principal symbol σ of the first component of DΦH is
thus

(2.4) σ([(δ∗X)T ]0) = σ([(δ∗(XT )]0) = ξiXj −
ξkXk

2
δij ,

where Xi, i = 1, 2 are the components of X tangent to Σ. Setting this to 0 gives

ξ1X2 = ξ2X1 = 0 and ξ1X1 = ξ2X2.

Since (ξ1, ξ2) 6= (0, 0), it is elementary to see that the only solution of these equations is X1 = X2 =
0. Next, for the mean curvature, one has H ′δ∗X = −∆ν−|A|2ν+XT (H), where ∆ is the Laplacian

with respect to the induced metric γ = F ∗(gEucl) and A is the 2nd fundamental form of F . The
leading order symbol acting on ν is thus |ξ|2ν, which vanishes only if ν = 0. Thus, the symbol of
DΠH is elliptic, so that by the regularity theory for elliptic systems, cf. [1], DΠH is Fredholm.

In a given conformal class [γ] of metrics on an oriented surface Σ, consider a metric of constant
scalar curvature γ0. We normalize scalar curvature to −1, 0 or +1. In first case, the metric γ0

is unique. In the second case, γ0 is unique up to a scaling, so we assume that area(γ0) = 1. In
the third case, g0 is unique up to conformal (Möbius) transformations of S2, i.e. the action of the
conformal group Conf(S2). In this spherical case, we fix γ0 to be the standard round metric,
induced by the usual embedding of S2(1) ⊂ R3.

Write then

γ = λ2γ0,

so that, with the assumptions above, λ is uniquely determined by γ. Consider now the data

(2.5) Dε(F ) = ([γ], (1− ε)λ2 + εH),
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for ε > 0. The choice ε = 1 gives the data (2.2) above while ε = 0 gives the “Dirichlet” data,
i.e. the data for an isometric immersion, as in (1.1).

Consider then the curve of maps

(2.6) Φε : Immm+1,α(Σ)→ Cm,α(Σ)× Cm−1,α(Σ),

Φε(F ) = ([γ], (1− ε)λ2 + εH).

This gives a smooth path from conformal/mean curvature data to isometric data.

Proposition 2.3. For all ε > 0, the data (2.5) form an elliptic system for an immersion F : Σ→
R3. The maps Φε in (2.6) are smooth Fredholm maps between Banach manifolds.

Proof: The proof is exactly the same as the proof of Proposition 2.2. Note that the volume
form term λ2 is of lower differentiability order than H. The linearization of the volume form dvγ
is determined by trδ∗X = divX = divXT + νH.

This gives an elliptic regularization of the isometric immersion problem, and so proves Theorem
1.1.

The choice of the regularizing term H in (2.5) is of course not unique; it could be replaced for
instance by a non-vanishing function of H; the crucial point in obtaining an elliptic system is to
have a scalar function depending on the extrinsic geometry of the immersion.

Remark 2.4. Propositions 2.2 and 2.3 holds for immersions F : Σ → (N, g) into any complete
Riemannian 3-manifold, i.e. the ellipticity of the operator Φε, ε > 0, is independent of the ambient
Riemannian manifold.

3. Fredholm index and variational formulation

In this section, we compute the Fredholm index of the operators Dε for ε > 0, at least for Σ = S2

and present initial results for the case of higher genus. We also exhibit a variational interpretation
of the operators Dε, (or more precisely, essentially equivalent operators). First, note that the
Fredholm index of Dε, ε > 0 is independent of ε, since the index is deformation invariant.

To begin, we recall that the space Immm+1,α(Σ) is not connected in general; cf. [11] for example
for results on the number of components of Immm+1,α(Σ). (The number is of course independent
of (m,α), for m ≥ 1). The Fredholm index of D1 is constant on each component of Immm+1,α(Σ)
(since the Fredholm index is deformation invariant), but the index may apriori vary over different
components of Immm+1,α(Σ).

Now recall a famous theorem of Smale [12] which states that the space Immm+1,α(S2) is con-
nected.

Theorem 3.1. The Fredholm index of Dε, ε > 0, on Immm+1,α(S2) equals 6 = dim(Isom(R3)).

Proof: It suffices to compute the index of D1, with data ([γ], H), on the round embedding
S2(1) ⊂ R3.

Note that the isometry group Isom(R3) acts smoothly and freely on the space of immersions
Immm+1,α(Σ) via (F, ι) → ι ◦ F , corresponding to translation, rotation or reflection of F . This
action fixes the target data, i.e. Φ1(ι ◦ F ) = Φ1(F ). To remove this degeneracy, divide the space
Imm by this action, and consider the quotient space Immb of based immersions. There is a global
slice to this action, i.e. an inclusion Immb ⊂ Imm, given by fixing a point p0 ∈ Σ, a unit vector
e ∈ Tp0(Σ) and requiring that F (p0) = (0, 0, 0) ∈ R3, Tp0(Σ) = R2 ⊂ R3 and with F∗(e) = (a, 0, 0)
for some a > 0. Thus, consider the restricted mapping

(3.1) Φ̃H : Immm+1,α
b (Σ)→ Cm,α(Σ)× Cm−1,α(Σ),
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Φ̃H(F ) = ([γ], H).

Theorem 3.1 then follows from the statement that the Fredholm index of Φ̃H equals 0.
A variation X of F is non-zero in TImmm+1,α

b (Σ) only if X is not the restriction of a Killing field

on R3. As in Proposition 2.2, write X = XT +νN . Then the variation induced on the data ([γ], H)
is ([δ∗XT + νA], H ′δ∗X). Since the round embedding is umbilic and of constant mean curvature,

([δ∗XT + νA], H ′δ∗X) = ([δ∗XT ], L(ν)),

where as above L(ν) = −∆ν − |A|2ν is the normal variation of the mean curvature.
The kernel thus consists of non-Killing fields such that δ∗(XT ) = ϕγ, i.e. XT is a conformal

Killing field on S2(1), and functions ν such that L(ν) = 0. The space of conformal Killing fields on
S2(1) is 3-dimensional. Next, since |A|2 = 2, functions ν such that L(ν) = 0 are 1st eigenfunctions
of the Laplacian on S2(1). This also forms a 3-dimensional space, giving a total dimension of 6.
However, a 3-dimensional subspace corresponds to Killing fields (the restriction of infinitesimal

translations in R3 to S2(1)). It follows that dimKerDΦ̃H = 3.

Regarding the cokernel, variations of data in ImΦ̃H are of the form ([δ∗Y ], H ′δ∗Y ) = ([δ∗(Y T )], H ′νA).
Hence the data (B0, f) with B0 trace-free is in the cokernel if and only if∫

Σ
〈δ∗(Y T ), B0〉+ fH ′νA = 0,

for all Y T and ν. Each term must thus vanish separately. Applying the divergence theorem to
the first term gives δB0 = 0 so that B0 is transverse-traceless. On S2 there are no non-zero such
forms (the Teichmüller space of S2 is trivial) so that B0 = 0. Next L(f) = 0 so that f is a 1st

eigenfunction of the Laplacian, with 3-dimensional eigenspace. Thus dimCokerDΦ̃H = 3 and hence

the Fredholm index of Φ̃H is 0.

Remark 3.2. The index of Dε is also independent of the Riemannian metric on R3. Thus it follows
that for any complete Riemannian metric g on R3, dimKerDε ≥ 6. In particular, any immersion
F realizing a given ([γ], H) in (R3, g) is an element of a 6-parameter family of immersions realizing
such data.

It is more difficult to analyse the kernel and cokernel of DΦ̃H at more general embeddings or for
surfaces of higher genus. In general, the kernel consists of vector fields X such that

δ∗(XT ) + νA = ϕγ and H ′δ∗X = 0,

for some function ϕ : Σ → R. It is not easy to understand the space of solutions of this system.
The cokernel consists of pairs (B0, f) such that∫

Σ
〈Y T , δB0〉+ ν〈A,B0〉+ νL(f) + fY T (H) = 0,

for all Y T , ν. Suppose for instance H = const. It follows that B0 is transverse-traceless and
so represents a tangent vector to the Teichmüller space T (T (Σ)) of Σ. This gives dimCoker ≥
dimT (Σ). The function f satisfies L(f) + 〈A,B0〉 = 0 but again it is difficult to evaluate the
dimension of the space of solutions of this equation.

Next we show that the data (2.2), (2.1) arise as boundary data for a natural variational problem
on the space of metrics on a filling of Σ. This is of independent interest, and gives a new proof and
a partial generalization of Theorem 3.1 to higher genus.

Let F : Σ → R3 be an embedding; then F extends to an embedding of a 3-manifold M with
∂M = Σ: F̄ : M → R3, F̄ |∂M = F , and the pull-back F̄ ∗(gEucl) induces a flat metric on M . (More
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generally one may assume that F is an Alexandrov immersion, in that F extends to an immersion
F̄ : M → R3 with ∂M = Σ). This gives a smooth map

µ : Embm+1,α(Σ)→ Fm,α(M),

where Fm,α(M) is the Banach manifold of flat metrics on M , Cm,α up to ∂M . Let Diffm+1,α
0 (M)

be the group of Cm+1,α diffeomorphisms of M which equal the identity on ∂M = Σ. This acts
freely and smoothly on Fm,α(M) and let Fm,α(M) be the quotient space (the moduli space of flat
metrics on M). The map µ induces a smooth map

µ : Embm+1,α(Σ)→ Fm,α(M).

Now consider the smooth map

ΠH : Fm,α(M)→ Cm,α(Σ)× Cm−1,α(Σ),

(3.2) ΠH(g) = ([γ], H).

Note that ΠH ◦ µ = ΦH (when ΠH is restricted to flat embeddings). Similarly, one has a smooth
map

ΠD : Fm,α(M)→Metm,α(Σ),

(3.3) ΠD(g) = γ,

with ΠD ◦ µ = ΦD.
To describe the variational formulation, let Metm,α(M) be the Banach space of Cm,α metrics on

M . Consider first the well-known Einstein-Hilbert action with Gibbons-Hawking-York boundary
term [7], [15]. Thus let

ID : Metm,α(M)→ R,

(3.4) ID(g) =

∫
M
RgdVg + 2

∫
Σ
Hdvγ ,

where Rg is the scalar curvature of g and H is the mean curvature of g at ∂M = Σ with respect to
the outward normal N . The linearization of the scalar curvature Rg in the direction h is given by
R′(h) = −∆trh+δδh−〈Ric, h〉, while in geodesic normal coordinates near ∂M = Σ, H ′h = 1

2N(trh).
From this, a straightforward computation using the divergence theorem shows that the linearization
of I at g is given by

(3.5) d(ID)g(h) = −
∫
M
〈Eg, h〉dVg −

∫
∂M
〈τ, hT 〉dvγ ,

where Eg = Ricg− Rg

2 g is the Einstein tensor of (M, g), hT = h|∂M and τ = A−Hγ is the conjugate
momentum (with respect to the functional ID); the expression (3.5) is well-known, cf. [7], [15]. In
particular, (3.5) shows that critical points of ID on the space of metrics with fixed boundary metric
γ on ∂M (Dirichlet data on ∂M) are flat metrics.

Essentially the same computation shows that the data ([γ], H) also arise as boundary data of
a natural variational problem, using a slight modification of the Gibbons-Hawking-York boundary
term. Thus as in (3.4), let

IH : Metm,α(M)→ R,

(3.6) IH(g) =

∫
M
RgdVg +

∫
Σ
Hdvγ .

A similar computation as above (cf. [3]) gives

(3.7) d(IH)g(h) = −
∫
M
〈Eg, h〉dVg −

∫
Σ

(〈A0, h0〉+H ′h)dvγ ,

6



where A0, h0 are the trace-free parts of A and hT respectively (with respect to γ). In particular,
writing H ′h as H(logH)′h in (3.7), one sees that (A0, (logH)′) are dual (conjugate) to the data
([γ], H) with respect to IH . As before, critical points of IH on the space of metrics with fixed
conformal class and mean curvature are flat metrics.

The 2nd variation of either of the functionals ID or IH leads to “self-adjoint” properties of the
boundary and bulk terms. Thus, let h, k be a pair of infinitesimal flat deformations of a flat metric
g on M and let gs,t = g + th+ sk. Using the equality of mixed 2nd derivatives

∂2ID
∂s∂t

=
∂2ID
∂t∂s

leads to the relations ∫
∂M
〈τ ′k + aD(k), hT 〉dvγ =

∫
∂M
〈τ ′h + aD(h), kT 〉dvγ ,

where aD(k) = −2τ ◦k+ 1
2(trγk)τ arises from the variation of the metric and volume form. Similarly

the 2nd variation of IH on h, k gives∫
Σ

(〈(A0)′k + aH(k), h0〉+ 1
2H
′
htrk)dvγ =

∫
Σ

(〈(A0)′h + aH(h), k0〉+ 1
2H
′
ktrh)dvγ ,

where aH(k) = −2A0◦k+ 1
2(trγk)A0. (Here we have also used the fact that ∂2H/∂s∂t = ∂2H/∂t∂s).

Similarly, if h and k are any variations of the metric g, so h, k ∈ TgMetm,α(M) with either

(3.8) hT = kT = 0,

at ∂M (for the functional ID) or

(3.9) ([hT ], H ′h) = ([kT ], H ′k) = 0,

at ∂M (for the functional IH) then

(3.10)

∫
M
〈E′h, h〉 =

∫
M
〈h,E′k〉.

This has the following essentially standard consequence.

Theorem 3.3. The map ΠH is Fredholm, of Fredholm index 0.

Proof: Given a (background) flat metric g̃ ∈ Fm,α, we work in the divergence-free gauge with

respect to g̃ for the action of Diffm+1,α
0 (M) on Metm,α(M). Thus consider the divergence-gauged

Einstein operator
Φ(g) = E(g) + δ∗δg̃(g),

and its linearization at g = g̃,
2L(h) = E′(h) + δ∗δh.

This is an elliptic operator and boundary conditions (δh, [h], H ′h) form an elliptic boundary value
problem for L; see [2] for a proof. Moreover, if δh = 0 on ∂M , then L(h) = 0 implies E′(h) = 0
and δh = 0.

Let Sm,α0 (M) ⊂ Sm,α(M) = TMetm,α(M) be the subspace of variations h of g such that

(3.11) δh = 0, [hT ] = 0, H ′h = 0,

at ∂M . It follows from (3.9) and (3.10) that

L : Sm,α0 (M)→ Sm−2,α(M),

is a formally self-adjoint elliptic operator. By the Fredholm alternative,

(3.12) ImL⊕K = Sm−2,α(M),
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where K = KerL ⊂ Sm+1,α
0 (M). This gives a natural identification of the kernel and cokernel of

L and in particular,

dimKerL = dimCokerL.

Now given (arbitrary) boundary data ([hT ], H ′) ∈ T (Cm,α(Σ) × Cm−1,α(Σ)) with δh = 0 at Σ, let
h be a Cm,α(M) extension of the boundary data ([hT ], H ′) to M . Let z = L(h) and via (3.12)

decompose z uniquely as z = L(h̄) + k with k ∈ KerL. Then h̃ = h− h̄ satisfies L(h̃) = k and the

boundary data of h̃ are given by ([hT ], H ′).
This shows that there is subspace of codimension equal to dimK in the space of boundary data

for which there is an extension h̃ such that L(h̃) = 0 and hence E′(h̃) = 0. It follows that the
mapping (3.2) is Fredholm and of Fredholm index 0.

Remark 3.4. By Smale’s theorem [12], Theorem 3.3 implies Theorem 3.1. However, Theorem 3.3
does not give an immediate generalization of Theorem 3.1 to surfaces of genus g ≥ 1 since the
flat metrics in Fm,α may have non-trivial holonomy. The flat deformations h in (3.2) or (3.3) are
locally of the form h = δ∗X for a vector field X, but not necessarily globally of this form. The
quotient space of Fm,α modulo the action of the full group Diffm+1,α(M) of Cm+1,α diffeomorphisms
ϕ : M → M is the representation variety R(M); the space of group homomorphisms π1(M) →
Isom(R3), cf. [10], [14], [8].

Thus, flat deformations of immersions Σ→ R3 typically include a deformation of the holonomy
(from trivial to non-trivial). An explicit example of this behavior for Σ = T 2 is exhibited in [6].

Finally, we show that a modification for the data Dε in (2.5) also have a variational interpretation
for ε ∈ [0, 1]. Consider then the linear combination

Iε(g) = (1− ε)ID + εIH =

∫
M
RdVg + (2− ε)

∫
∂M

Hdvγ .

One has dvγ = λ2dvγ0 , so that trh/2 = (dvγ)′/dvγ = 2λ′/λ. The variational derivative of Iε(h) is
thus given by

d(Iε)g(h) = −
∫
M
〈E, h〉dVg −

∫
Σ

(〈(1− ε)τ + εA0, h〉+ εH ′h)dvγ .

Since τ = A−Hγ, one computes 〈(1− ε)τ + εA0, h〉+ εH ′h = 〈A0, h〉 − (1− ε)H2 〈γ,
trh
2 γ〉+ εH ′h =

〈A0, h〉 − (1− ε)H2 trh+ εH ′h, so that

d(Iε)g(h) = −
∫
M
〈E, h〉dVg −

∫
Σ

(〈A0, h〉 − (1− ε)H2 trh+ εH ′h)dvγ .

Also, (1−ε)H2 trh−εH
′ = H((1−ε)2λ′/λ−εH ′h/H) = H((log λ2(1−ε)H−ε)′. Thus critical points of

Iε on metrics with fixed conformal class (so h0 = 0) and with fixed product λ2(1−ε)H−ε are exactly
the flat metrics. In particular, the data

D̃ε(F ) = ([γ], λ2(1−ε)H−ε),

have a natural variational formulation analogous to that of DD or DH . The same proof as that in
Proposition 2.2 shows that this data is elliptic. Moreover, replacing the definition of Sm,α0 (M) in
(3.11) by the boundary conditions

(δh, [h], (λ2(1−ε)H−ε)′h) = (0, 0, 0),

the same proof as that in Theorem 3.3 shows that the map

Πε : Fm,α(M)→ Cm,α(Σ)× Cm−1,α(Σ),
8



(3.13) Πε(g) = ([γ], λ2(1−ε)H−ε),

is Fredholm, of Fredholm index 0.
With the boundary conditions defining Sm,α0 (M) in (3.11) replaced by the Dirichlet boundary

conditions δh = 0 and hT = 0 at ∂M , the operator L and so E′ is still formally self-adjoint.
However, it is no longer elliptic. It would be interesting to understand the behavior of the kernel
and cokernel of L on these spaces as ε→ 0.
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