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There are a few plausible ways in which we could think of mathematizing
our learning process at synaptic level,so that we illustrate its dynamics /
plasticity. This section will elaborate two such possible synaptic models,
using basic knowledge of the mechanism of synaptic activation.

Model 1: Recall that one of our main goals is to estimate the quality
factor Q of a learning network. To do this, we fix our atention on the
postsynaptic neuron and its dendritic arbor. We are less interested in the
actual geometry and ramification of its dendrites, so for simplification we will
think of it as a unique dendrite with legth L. Along this dendrite, there are
a considerable number of dendritic spines capable of developing the chemical
material necessary for creating a synaptic site with any presynaptic axon,
if situated in enough proximity. These sites, which we will call from now
silent sites (or potential synapses) are not active, but could develop into an
active synapse almost instantaneously when the request to do so exists. The
request to activate such a site acts like a switch that turns the synapse from
the silent state (off ) to the active state (on).

Say the output cell receives the signal to strenghten the connection with
a prescribed presynaptic axon at a target site A. The activation signal will
trigger (by back-propagation) the release of a messenger (in this case Ca2+)
which in ideal conditions should appear along the dendrite only at the target
site A. Instead, we expect that the messenger is not locally contained and
will spill away from A, down the dendritic spine. A small portion

√
a of it

(a ∼ 10−1) will reach the dendritic “cable” and propagate along it in both
directions, such that its concentration at a distance x from the target spine
follows a function C(x) = e−x/λ (so that the quantity of messenger diffused
within the specified dendritic segment is expected to decrease towards zero
with the distance to the target). This messenger could reach along the
dendrite to some arbitrary silent synaptic site B and some proportion of
it (again

√
a) will travel up the spine, arriving at the silent postsynaptic

density. There, in order to activate the synaptic mechanism and switch the
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site from inactive (state off ) to active (state on), it would have to bind to
a sufficient number h of molecules of enzime (typically h = 4).

A.

B.

D.

C.

Figure 1: The stunted tent map fa, with critical point 1
2 and critical value

plateau at height a.

Mathematically, we express the probability for a Ca2+ ion to get from
the target site A to an arbitrary site B situated at distance x from A along
the dendrite as:

√
a e−x/λ √a dx = a e−x/λ dx

The probability for the site B to be turned from off to on also depends
on the number h of molecules of enzime required to bind the Calcium ions,
so that:

pxdx = ahe−hx/λdx

We can subsequently calculate the probability for a silent synapse to be
turned on anywhere along the dendritic arbor (considered to be linear of
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length L), assuming that the distribution of the silent synapses along the
dendrite is homogeneous, with density function ρ = 1

L :

P =
∫ L

0
pxρdx =

1
L

∫ L

0
ahe

−hx
λ dx =

ahλ

hL
(1− e

−hL
λ )

Suppose now that we know the positions x1, ...xN of the N silent synapses
along the postsynaptic dendrite. Notice that we can break N into simpler
terms as N = nα, where n is the number of inputs and α is the average
number of silent sites that could develop into synapses with a given input
neuron. The probability that exacly positions xj1 , ..., xjk

are turned on with
the activation of the target site A is:

∑

1≤j1<...<jk≤N

p(xj1)...p(xjk
)[1− p(xjk+1

)]...[1− p(xjN )]dxj1dxjN

Hence the probability (over all possible distributions of silent synapses
along the dendrite) to turn on exaclty k silent sites is:

1
LN

∫

[0,L]N

∑

1≤j1<...<jk≤N

p(xj1)...p(xjk
)[1− p(xjk+1

)]...[1− p(xjN )]dx1...dxN =

=
1

LN

∑

1≤j1<...<jk≤N

∫

[0,L]N
p(xj1)...p(xjk

)[1− p(xjk+1
)]...[1− p(xjN )]dx1...dxN =

=
1

LN

∑

1≤j1<...<jk≤N

∫

[0,L]
p(xj1)dxj1 ...

∫

[0,L]
p(xjk

)dxjk

∫

[0,L]
[1− p(xjk+1

)]dxjk+1
...

∫

[0,L]
[1− p(xjN )]dxjN =

= Ck
N

(∫ L

0
p(x)dx

)k (
1−

∫ L

0
p(x)dx

)N−k

= Ck
NP k(1− P )N−k

where Ck
N = N !

k!(N−k)! is the number of all possible combinations to choose
k elements out of a set of N .

If k sites are switched on, it means that k + 1 synapses have been made
active (including the target site at A). In the context of obtaining the
desired strengthening of the connection between the output cell with the
specified presinaptic axon, a normalization process is necesarry at synaptic
level. This corresponds to the Euclidean normalization encompassed in Oja’s
dynamics of the learning process. It is necessary for the output neuron to
decide which one of these k +1 synapses should be kept functional and turn
the other ones back off; otherwise it would obtain an additional change in
synaptic strength, not aquainted for by the learning rule. This process will
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be considered totally random: each of the k + 1 synapses that have been
turned on have equal probability 1

k+1 to be kept on.
With this normalization, the probability of the synapse left on to be the

target synapse is equal to:

1
k + 1

N !
k!(N − k)!

P k(1− P )N−k

We calculate the probability that the system turns and keeps on the
desired target synapse, no matter how many other wrong synapses have
been fickered on and off in the normalization process. This will be the sum
after all values of k (from 0 to N) of the respective probabilities for A to
stay on in each case. It is quite natural to call this probability the quality
Q of the information transfer :

Q =
N∑

k=0

1
k + 1

N !
k!(N − k)!

P k(1− P )N−k =

=
1

P (N + 1)

N∑

k=0

(N + 1)!
(k + 1)!(N − k)!

P k+1(1− P )N−k =

=
1

P (N + 1)

N+1∑

j=1

(N + 1)!
j!(N + 1− j)!

P j(1− P )N+1−j =

=
1

P (N + 1)
[1− (1− P )N+1]

& (1− P )N

Q represents the probability that the syanpse at A is turned on and
remains on at the request of strengthening the connection at A. The prob-
ability for a synapse with an axon of any other “wrong” input neuron will
be 1−Q

n .

Model 2:
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