POISSON INTEGRALS AND SEMISIMPLE GROUPS*

A. W. KNAPP AND R. E. WILLIAMSON in Ithaca, N.Y., U.S.A. in Hanover, N.H., U.S.A.

1. Introduction. Our intention is to treat some classical theorems concerning harmonic functions in a setting in which the theorems can serve as an analytical tool for dealing with semisimple Lie groups.

A wide class of harmonic functions in the unit disc is obtained by means of the Poisson integral formula $h(re^{ix}) = \int P(re^{ix}, y) d\mu(y)$, where $d\mu(y)$ is a signed measure on the circle and where $P(re^{ix}, y)$ is the kernel

$$P(re^{ix}, y) = \frac{1 - r^2}{1 - 2r\cos(x - y) + r^2}.$$

For a given harmonic function h, such a measure $d\mu$ exists if and only if the functions h_r defined by $h_r(e^{ix}) = h(re^{ix})$ satisfy $\sup_{0 < r < 1} \|h_r\|_1 < \infty$. In additional contents of the function h_r defined by $h_r(e^{ix}) = h(re^{ix})$ satisfy $\sup_{0 < r < 1} \|h_r\|_1 < \infty$.

tion, the measure $d\mu$ is of the form $f(x)\frac{1}{2\pi}dx$ with f(x) a function of class L^p , p>1, if and only if $\sup \|h_r\|_p < \infty$.

When the condition $\sup \|h_r\|_p < \infty$ is satisfied for some $p \ge 1$, the measure $d\mu$ is assumed as boundary value in several senses: There are senses involving norm or weak-* convergence that follow directly from the fact that the Poisson kernel is an approximate identity. A deeper result is Fatou's theorem, which asserts convergence of h_r to a boundary function pointwise along almost very radius, or even almost everywhere non-tangentially.

Similar considerations apply to harmonic functions in the upper half-plane which we can identify with the disc by means of a linear fractional transforma-

^{*} Research supported in part by N.S.F. Grants GP-7478 and GP-5368.

tion. The integral formula in the disc transforms to a formula in the halfplane with kernel

$$P(x+iy,t) = \frac{y}{(x-t)^2 + y^2},$$

provided we absorb a constant multiple of $1+t^2$ into the image of the measure. This time we let $h_y(x)=h(x+iy)$, and the question that decides whether h is represented by a boundary function or measure is the question whether $\sup_{0< y<\infty} \|h_y\|_p <\infty$. If so, then there are senses (similar to those in the disc) in which the h_y converge to the boundary values. Fatou's theorem in this case concerns convergence to the real axis along verticals or non-tangentially.

The connection between the above situations and semisimple Lie groups is as follows: The semisimple group $G = SL(2,\mathbb{R})$ of 2-by-2 real matrices of determinant one operates transitively on the disc or half-plane by linear fractional transformations, and the isotropy subgroup is a maximal compact subgroup K. The harmonic functions in the disc or half-plane are exactly those functions on G/K that are annihilated by every G-invariant (linear) differential operator on G/K without constant term. The unit circle, the real line, the Poisson kernels, and the coordinate systems that we have used (polar in the disc, Cartesian in the half-plane) can all be given similar interpretations in terms of G. We can therefore ask whether the theorems that hold for $SL(2,\mathbb{R})$ remain valid for all semisimple groups.

The theorems about existence of functions or measures on the boundary we shall settle completely. These results are fairly simple consequences of a theorem of Furstenberg [2] concerning the representation of bounded harmonic functions as Poisson integrals. All that is needed is an appropriate passage to the limit.

Our main result, Theorem 4.1, is a generalization of Fatou's theorem. It is concerned with the analog of almost-everywhere convergence in the upper half-plane, and in order to distinguish it from some related theorems (see [9], [10], [15] and references listed in those papers), we shall mention what the result is for $G = SL(2, \mathbb{R}) \oplus SL(2, \mathbb{R})$. In this case, G/K is the product of two half-planes, and the Poisson kernel is the product of the kernels that

go with each half-plane. Poisson integrals are thus defined for points (x_1+iy_1,x_2+iy_2) in G/K, where $y_1>0$ and $y_2>0$. The mode of convergence in [10] for this group is that y_1 and y_2 tend to 0 in such a way that one of them is a fixed power of the other. Our present theorem will deal with bounded functions and will allow y_1 and y_2 to tend to 0 without any further restriction on them. As will be evident in §4, the present theorem for this group G is closely related to strong differentiation of double integrals in \mathbb{R}^2 , in the sense of Jessen, Marcinkiewicz, and Zygmund [8].

In connection with the theorem of §4, we are very much indebted to A. Korányi for showing us the results of [10] before their publication.

2. Boundaries, Poisson kernels, and norm convergence.

We collect in this section a number of simple facts about harmonic functions that will be used in §3 and §4. Some of these were implicit in [7].

Our notation is as follows. We let G = KAN be an Iwasawa decomposition of the connected semisimple Lie group G; since none of our results will depend on the center of G, we shall assume that the center of G is finite and hence that K is compact. If g = kan, we write k(g) for k and we write H(g) for the logarithm of a in the Lie algebra of A. Let θ be the corresponding Cartan involution of G, or of the Lie algebra of G. A typical restricted root is denoted λ , and the corresponding restricted-root space in the Lie algebra of G is g_{λ} ; 2ρ is the sum of the positive restricted roots. If n denotes the Lie algebra of N, we have

$$\pi = \sum_{\lambda > 0} g_{\lambda} \text{ and } \theta \pi = \sum_{\lambda > 0} g_{-\lambda}.$$

We write M for the centralizer of A in K. Typical elements of K, A, and θN will be denoted k, a, and \bar{n} ; dk will be normalized Haar measure on K. Let D(G) be the set of left G-invariant differential operators on G, and let D(G/K) be the set of left-invariant differential operators on G/K.

Lemma 2.1. Let h be a C^{∞} function on G, let dµ be a signed measure of compact support on G, and put

$$d\mu * h(g_0) = \int_G h(g^{-1}g_0)d\mu(g).$$

Then h is in C^{∞} and $D(d\mu * h) = d\mu * Dh$ for every $D \in D(G)$.

By [6, pp. 98, 391], it suffices to prove that $X(d\mu * h) = d\mu * Xh$ for every left-invariant vector field X. The proof of the lemma thereby becomes a straightforward real-variables problem.

A C^{∞} function h on G/K is said to be harmonic if Dh=0 for every $D\in D(G/K)$ satisfying D1=0. In dealing with harmonic functions, we shall consider two spaces as boundaries for G/K, namely θN and K/M. If we think of G/K as a generalization of the upper half-plane or unit disc, we can think of θN and K/M as generalizations of the real line and unit circle, respectively. There is a map between these boundaries that generalizes the Cayley transform. It is the map $\gamma:\theta N\to K/M$ given by $\gamma(\bar{n})=k(\bar{n})M$. Harish-Chandra [5, pp. 284–287] showed that γ is a diffeomorphism of θN onto an open set in K/M whose complement is of lower dimension (and consequently of dk-measure 0). Moreover, he showed that the corresponding charge of variables formula is

(1)
$$\int_{\partial N} f(\vec{n})e^{-2\rho H(\vec{n})}d\vec{n} = \int_{K/M} f(\gamma^{-1}(kM))dk$$

for a suitable normalization of Haar measure $d\bar{n}$. We shall assume from now on that $d\bar{n}$ is so normalized.

From (1) we see that $e^{-2\rho H(\bar{n})}$ is integrable (with integral 1). Harish-Chandra [5, p. 287] further showed that $e^{-2\rho H(\bar{n})} \leq 1$ everywhere. (See also Proposition 5.1 below.)

Relative to each of the boundaries θN and K/M, Poisson kernels are defined by

(2)
$$P(gK, \bar{n}) = e^{-2\rho H(g^{-1}\bar{n})}$$
 and $P(gK, kM) = e^{-2\rho H(g^{-1}k)}$.

Notice that $P(K, \tilde{n}) = e^{-2\rho H(\tilde{n})}$

Lemma 2.2. Let $1 \le q \le \infty$ and let $g \in G$. Then $P(gK, \overline{n})$ is in $L'(\theta N)$ and is in $C_0(\theta N)$, the space of continuous functions vanishing at infinity. Moreover,

(3)
$$\int_{\partial N} P(gK, \bar{n})d\bar{n} = \int_{K/M} P(gK, kM)dk = 1.$$

The proof that $P(gK, \bar{n})$ vanishes at infinity is quite technical, and so the proof of Lemma 2.2 is postponed to §5.

From Lemma 2.2 it follows that we can use $P(gK, \bar{n})$ or P(gK, kM) as kernel to define the Poisson integral of any L^p function, $1 \le p \le \infty$, or of any finite signed measure on θN or K/M. For example, the Poisson integral of a function f on θN is the function h on G/K given by

$$h(gK) = \int_{\partial N} P(gK, \tilde{n}) f(\tilde{n}) d\tilde{n}.$$

We shall occasionally write $PI(\cdot)$ for Poisson integrals.

If $f(\bar{n})$ is a function in some L^p class on θN and f_1 is the function on K/M defined to be $f \circ \gamma^{-1}$ on $\gamma(\theta N)$, then formula (1) and the fact that $e^{-2\rho H(\bar{n})} \in L^1 \cap L^{\infty}$ show that f_1 is integrable on K/M. Moreover, (1) shows that the Poisson integrals of f and f_1 are the same. Similar statements apply to signed measures, and therefore every Poisson integral defined relative to θN is a Poisson integral defined relative to K/M.

Godement [4] proved that harmonic functions are characterized by a mean value property: A continuous function h on G/K is harmonic if and only if when h is lifted to a function h' on G (defined by h'(g) = h(gK)), then h' satisfies

$$h'(g) = \int_{K} h'(gkg')dk$$

or all g and g' in G.

Proposition 2.3. Every Poisson integral is harmonic. In particular, $P(gK, \bar{n})$ and P(gK, kM) are harmonic for each fixed \bar{n} and k.

Proof. Since Poisson integrals over θN are Poisson integrals over K/M, it is enough to prove that Poisson integrals over K/M are harmonic. By Lemma 2.2 of [6, p. 390] and by Lemma 2.1 above, it is enough to prove that $P(gK, k_0M)$ is harmonic for fixed k_0 . (See the proof of Lemma 3.1 for a similar argument.) From the identity

$$H(g_1g_2) = H(g_1k(g_2)) + H(g_2)$$

with $g_1 = h^{-1}k^{-1}$ and $g_2 = g^{-1}k_0$, we see that

$$\int\limits_K P(gkhK,k_0M)dk = P(gK,k_0M)\int\limits_K \exp\bigl[-2\rho H(h^{-1}k^{-1}k(g^{-1}k_0))\bigr]dk\,.$$

With a change of variables, the integral on the right reduces to $\int_K P(h,kM)dk$, or to $\int_{K/M} P(h,kM)dk$, which is 1 by Lemma 2.2. Hence the lift of $P(gK,k_0M)$

satisfies the mean value property, and $P(gK, k_0M)$ is harmonic.

The rest of this section will deal with elementary convergence properties of Poisson integrals. The convergence will be as $a \in A$ tends to ∞ out the exponential of the positive Weyl chamber. More specifically, we use the notation $\lim_{a\to\infty}$ to refer to convergence as $a\in A$ tends to ∞ in such a way that $\lambda(H(a))\to +\infty$ for every positive restricted root λ . Limits of the form $\lim_{a\to\infty}h(kaK)$, with $k\in K$, generalize radial limits in the unit disc, and limits of the form $\lim_{a\to\infty}h(\bar{n}aK)$, with $\bar{n}\in \partial N$, generalize vertical limits in the upper half-plane. The next lemma was implicit in [7].

Lemma 2.4. If f is bounded on θN and continuous at \bar{n}_0 and if h is the Poisson integral of f, then $\lim_{n\to\infty} h(\bar{n}_0 aK) = f(\bar{n}_0)$.

Proof. We have

$$\begin{split} h(\bar{n}_0 a K) &= \int\limits_{\theta N} P(a K, \bar{n}) f(\bar{n}_0 \bar{n}) d\bar{n} = \int\limits_{\theta N} e^{-2\rho H(a^{-1} \bar{n} a a^{-1})} f(\bar{n}_0 \bar{n}) d\bar{n} \\ &= \int\limits_{\theta N} e^{-2\rho H(\bar{n}' a^{-1})} f(\bar{n}_0 a \bar{n}' a^{-1}) e^{-2\rho H(a)} d\bar{n}' \end{split}$$

under the change of variables $a^{-1}\bar{n}a = \bar{n}'$ and $d\bar{n} = e^{-2\rho H(a)}d\bar{n}'$. Hence

$$h(\bar{n}_0 a K) = \int_{\theta N} e^{-2\rho H(\bar{n})} f(\bar{n}_0 a \bar{n} a^{-1}) d\bar{n}.$$

As $a \to \infty$, $a\bar{n}a^{-1} \to e$. Hence we have dominated convergence, with the continuity of f at \bar{n}_0 giving

$$\lim_{a\to\infty} h(\bar{n}_0 aK) = f(\bar{n}_0) \int_{\theta N} e^{-2\rho H(\bar{n})} d\bar{n} = f(\bar{n}_0).$$

Proposition 2.5. The Poisson kernel $P(aK, \bar{n})$, for $a \in A$, satisfies

(a) $P(aK, \bar{n}) \ge 0$

(b)
$$\int_{\partial N} P(aK, \tilde{n}) d\tilde{n} = 1$$

(c) If U is any open neighborhood of e in θN , then $\lim_{a\to\infty} \int_{\theta N-U} P(aK, \bar{n})d\bar{n} = 0$.

Proof. (a) is clear from the definition, and (b) is a special case of formula (3). For (c), let f be the characteristic function of $\theta N - U$ and apply Lemma 2.4 with $\bar{n}_0 = e$.

Proposition 2.5'. The Poisson kernel P(aK, kM), for $a \in A$, satisfies

(a) $P(aK, kM) \ge 0$

(b)
$$\int_{K/M} P(aK, kM)dk = 1$$

(c) If U is any open neighborhood of eM in K/M, then $\lim_{a\to\infty}\int\limits_{K/M-U}P(aK,kM)dk=0\,.$

Proof. (a) is clear from the definition, and (b) is a special case of formula (3). Result (c) follows by applying Proposition 2.5 to $\gamma^{-1}(U)$ and then using formula (1) to transform to K/M.

Proposition 2.6. Let $f(\bar{n})$ be a function on θN , let $h(\bar{n}aK)$ be its Poisson integral, and let $h_a(\bar{n}) = h(\bar{n}aK)$.

- (a) If $1 \le p < \infty$ and if f is in L^p , then $\lim_{a \to \infty} h_a = f$ in L^p .
- (b) If f is in L^{∞} , then $\lim_{a\to\infty} h_a = f$ weak-* against L^1 .
- (c) If f is bounded on θN and uniformly continuous on $E\subseteq \theta N$, then $\lim_{a\to\infty}h_a=f$ uniformly on E.
 - (d) If f is replaced by a finite signed measure $d\mu$, then

$$\lim_{a \to \infty} h_a(\bar{n}) d\bar{n} = d\mu(\bar{n}) \text{ weak-* against } C_0(\theta N).$$

Proof. This is a routine consequence of Proposition 2.5.

Proposition 2.6'. Let f(kM) be a function on K/M, let h(kaK) be its Poisson integral, and let $h_a(kM) = h(kaK)$.

- (a) If $1 \le p < \infty$ and if f is in L^p , then $\lim h_a = f$ in L^p .
- (b) If f is in L^{∞} , then $\lim_{a\to\infty} h_a = f$ weak-* against L^1 .
- (c) If f is bounded on K/M and uniformly continuous on $E \subseteq K/M$, then $\lim_{a \to \infty} h_a = f$ uniformly on E.
- (d) If f is replaced by a finite signed measure $d\mu$, then $\lim_{a\to\infty} h_a(kM)dk$ = $d\mu(kM)$ weak-* against C(K/M).

Proof. This is a routine consequence of Proposition 2.5'.

Proposition 2.7. If $e^{-2\rho H(\bar{n})}d\mu(\bar{n})$ and $e^{-2\rho H(\bar{n})}d\nu(\bar{n})$ are distinct finite signed measures on θN , then the Poisson integrals of $d\mu$ and $d\nu$ are distinct. Consequently if $f_1 \in L^{p_1}(\theta N)$ and $f_2 \in L^{p_2}(\theta N)$ are functions with the same Poisson integral, then $f_1 = f_2$ almost everywhere.

Proof. The first statement is a consequence of formula (1) and Proposition 2.7' below. For the second statement, if $f \in L^p(\theta N)$, then $e^{-2\rho H(\bar{n})}f(\bar{n})d\bar{n}$ is a finite signed measure on θN ; this is because it is true for L^1 and L^∞ separately. Therefore the second statement is a special case of the first.

Proposition 2.7'. If $d\mu(kM)$ and $d\nu(kM)$ are distinct finite signed measures on K/M, then their Poisson integrals are distinct.

Proof. Apply Proposition 2.6'd.

3. Existence of boundary values. The symmetric space G/K has a natural Riemannian structure inherited from the Killing form on G, and the corresponding Laplacian operator is in D(G/K) since the metric is G-invariant. We shall say that a C^{∞} function on G/K is weakly harmonic if it is annihilated by this Laplacian.

Lemma 3.1. If h is weakly harmonic on G/K and if ϕ is a continuous function of compact support on θN , then the convolution $\phi *h$ on G/K defined by

$$\phi * h(gK) = \int_{\theta N} \phi(\bar{n})h(\bar{n}^{-1}gK)d\bar{n}$$

is weakly harmonic.

Proof. Lift h to a C^{∞} function h'(g) defined on G, and let

$$\phi * h'(g) = \int_{\partial N} \phi(\bar{n})h'(\bar{n}^{-1}g)d\bar{n}.$$

By Lemma 2.1, $\phi * h'$ is a C^{∞} function and $D(\phi * h') = \phi * D(h')$ for all $D \in D(G)$. By Lemma 2.2 of [6, p. 390], the Laplacian Δ in D(G/K) lifts to an operator Δ' in D(G). Hence $\Delta'(\phi * h') = \phi * \Delta'(h')$. Since $\Delta(h) = 0$, $\Delta'(h') = 0$. Thus $\Delta'(\phi * h') = 0$. But $\phi * h'$ is right K-invariant and equals $(\phi * h)'$. Thus $\Delta(\phi * h) = 0$.

Remarks.

1. Lemma 3.1 is not a special property of the Laplacian, and there are obvious generalizations of the lemma.

- 2. Furstenberg showed in Theorem 4.4 of [2] that every bounded weakly harmonic function on G/K is harmonic, and he showed in Theorem 4.2 of [2] that every bounded harmonic function on G/K is the Poisson integral of an L^{∞} function on a boundary that was later recognized by Moore [11] as K/M. Furstenberg characterized the Poisson kernels as Radon-Nikodym derivatives, and it follows from the decomposition of dg according to the Iwasawa decomposition that P(gK,kM) is the correct formula. The details were given in [7]; see also [10, §1].
- 3. Because of the correspondence between the Poisson integral formula for K/M and the one for θN , we see from Remark 2 that every bounded weakly harmonic function on G/K is the Poisson integral of an L^{∞} function on θN .
- **4.** A general weakly harmonic function defined everywhere on G/K need not be harmonic, as one can see from examples when $G = SL(2, \mathbb{R}) \oplus SL(2, \mathbb{R})$.

Theorem 3.2. Let $1 \le p \le \infty$. If h is weakly harmonic on G/K and if $\sup_{a \in N} \|h(\bar{n}aK)\|_{p,\bar{n}} < \infty$, then h is harmonic and is representable as the Poisson integral of

- (1) a finite signed measure on θN if p=1
- (2) an L^p function on θN if p > 1.

Proof. This theorem in the case $p=\infty$ is due to Furstenberg and Moore (see Remark 3). Thus we may assume $p<\infty$.

Put $\|h\| = \sup_a \|h(\bar{n}aK)\|_{p,\bar{n}}$. Let $\{U_j\}$ be a neighborhood base at the identity of θN such that each U_j is open and has compact closure. Let V_j be an open neighborhood of the identity such that $V_jV_j\subseteq U_j$, and let ψ_j be a continuous function ≥ 0 with support in V_j and with $\int\limits_{\theta N} \psi_j d\bar{n} = 1$. Then

 $\psi_{j}*h$ is weakly harmonic by Lemma 3.1, and it is bounded because, if q is the conjugate index of p, we have

$$|\psi_{j} * h(gK)| \le ||\psi_{j}||_{q} ||h(\tilde{n}^{-1}gK)||_{\tilde{n},p} \le ||\psi_{j}||_{q} ||h||.$$

The case $p = \infty$ therefore shows that

$$\psi_j * h = PI(f_j)$$

for some L^{∞} function f_j on θN . Put $\phi_j = \psi_j * \psi_j$ and convolve ψ_j with the two sides of (4). Since ψ_j is continuous and has compact support (contained in U_i), we obtain

(5)
$$\phi_j * h(gK) = \psi_j * PI(f_j)(gK)$$

for all g. The right side of (5) is

$$\begin{split} &= \int\limits_{\partial N} \psi_{j}(\bar{n}_{0}) PI(f_{j})(\bar{n}_{0}^{-1}gK) d\bar{n}_{0} \\ &= \int\limits_{\partial N} \int\limits_{\partial N} \psi_{j}(\bar{n}_{0}) e^{-2\rho H(g^{-1}\bar{n}_{0}\bar{n})} f_{j}(\bar{n}) d\bar{n} d\bar{n}_{0} \\ &= \int\limits_{\partial N} \int\limits_{\partial N} \psi_{j}(\bar{n}_{0}) e^{-2\rho H(g^{-1}\bar{n})} f_{j}(\bar{n}_{0}^{-1}\bar{n}) d\bar{n} d\bar{n}_{0} \,. \end{split}$$

In the last expression we can interchange the order of integration because the iterated integral is finite when f_j is replaced with $|f_j|$. The result is that

(6)
$$\psi_j * PI(f_j) = PI(\psi_j * f_j).$$

Put $F_j = \psi_j * f_j$. Combining (5) and (6), we see that $\phi_j * h$ is the Poisson integral of the continuous bounded function F_j .

By Lemma 2.4 we have

$$\lim_{a \to \infty} \phi_j * h(\bar{n}aK) = F_j(\bar{n})$$

for all \bar{n} . Thus if we apply Fatou's Lemma to $|\phi_j * h|^p$, we obtain

$$\|F_j\|_p \leq \liminf_{a \to \infty} \|\phi_j * h(\bar{n}aK)\|_{\bar{n},p} \leq \|\phi_j\|_1 \|h\| = \|h\|.$$

Consequently the functions F_j are in L^p and are bounded in norm. Find a weak-* convergent subsequence (and write it as F_j) against the appropriate space: $C_0(\theta N)$ if p=1 or $L^q(\theta N)$ if $1 . The limit is a finite signed measure in the first case, but for uniformity of notation we shall write it as a function <math>F(\bar{n})$ in every case.

By Proposition 2.3 the proof will be complete if we show that h is the Poisson integral of $F(\bar{n})$. For fixed g, Lemma 2.2 shows that the Poisson kernel $P(gK,\bar{n})$ is in $C_0(\theta N)$ and $L^q(\theta N)$ for $1 \le q \le \infty$. Hence

$$\int\limits_{\theta N} P(gK,\bar{n})F(\bar{n})d\bar{n} = \lim\limits_{j} \int\limits_{\theta N} P(gK,\bar{n})F_{j}(\bar{n})d\bar{n} = \lim\limits_{j} \phi_{j}*h(gK) = h(gK),$$

the last step holding because $\{\phi_j\}$ is an approximate identity.

Theorem 3.2'. Let $1 \le p \le \infty$. If h is weakly harmonic on G/K and if $\sup_{a \in A} \|h(kaK)\|_{p,k} < \infty$, then h is harmonic and is representable as the Poisson integral of

- (1) a finite signed measure on K/M if p = 1
- (2) an L^p function on K/M if p > 1.

If h is harmonic and ≥ 0 , then h is representable as the Poisson integral of

(3) a finite positive measure on K/M.

Proof. The proofs of (1) and (2) are similar to those in Theorem 3.2. All that is needed is the definition of convolution

$$\phi * h(gK) = \int_K \phi(k)h(k^{-1}gK)dk$$

and the content of Remark 2. The analog of the first statement of Lemma 2.2 is trivial since K/M is compact.

For (3), we know from [4] that h, when viewed as a function h' on G, satisfies the mean-value property

$$h'(g) = \int_{K} h'(gkg')dk$$

for all g and g' in G. Putting g = e and g' = a, we see that $\sup_a \|h(kaK)\|_{1,k} < \infty$. By (1), h is the Poisson integral of a finite signed measure. This signed measure must be positive, because Proposition 2.6'd shows it is the weak-* limit of positive measures.

4. A Fatou theorem. Following Korányi [10], we say that the function h on G/K converges to the function f on θN at \bar{n}_0 admissibly and unrestrictedly if, for each non-empty compact set $C \subseteq \theta N$,

$$\lim_{a \to \infty} h(\bar{n}_0 a \bar{n} K) = f(\bar{n}_0)$$

uniformly for $\bar{n} \in C$. (The notation $a \to \infty$ is explained just before Lemma 2.4.)

Theorem 4.1. If f is in $L^{\infty}(\Im N)$ and if h is its Poisson integral, then h converges to f admissibly and unrestrictedly almost everywhere.

This theorem is one generalization of the classical theorem of Fatou about non-tangential convergence of Poisson integrals in the upper half-plane. When G is the direct sum of n copies of $SL(2,\mathbb{R})$, Theorem 4.1 is closely related to the results of Jessen, Marcinkiewicz, and Zygmund [8] concerning strong differentiation of multiple integrals in \mathbb{R}^n . In fact, the dependence of the proof of Theorem 4.1 on techniques developed in [8] will be apparent.

Let |E| denote the measure of the set E. Korányi's Proposition 4.3 of [10] shows that our Theorem 4.1 follows from the case $p = \infty$ of

Theorem 4.2. Let V be a bounded open neighborhood of e in θN . If $1 and if <math>f \in L^p(\theta N)$, then

$$\lim_{a \to \infty} |aVa^{-1}|^{-1} \int_{aVa^{-1}} |f(\bar{n}_0\bar{n}) - f(\bar{n}_0)| d\bar{n} = 0$$

for almost every \bar{n}_0 .

With V fixed as in Theorem 4.2, define

$$f^*(\bar{n}_0) = \sup_{a \in A} |aVa^{-1}|^{-1} \int_{aVa^{-1}} |f(\bar{n}_0\bar{n})| d\bar{n}$$

for each measurable function f on θN . Most of the proof of Theorem 4.2 consists in proving Theorem 4.3 below.

Theorem 4.3. If 1 , then there is a constant C (depending on p and V) such that

$$\|f^*\|_p \le C \|f\|_p$$

for all $f \in L^p(\theta N)$.

We precede the proof of Theorem 4.3 with two lemmas. Let Σ^+ be the set of positive restricted roots, and let r be the number of members λ of Σ^+ such that $\frac{1}{2}\lambda$ is not in Σ^+ . The first lemma is due to Gindikin and Karpelevič [3].

Lemma 4.4. The r members λ of Σ^+ such that $\frac{1}{2}\lambda$ is not in Σ^+ can be arranged in an order $\lambda_1, \dots, \lambda_r$ in such a way that if N_j is the analytic subgroup of N with Lie algebra $\mathfrak{g}_{\lambda_j} \oplus \mathfrak{g}_{2\lambda_j}$, then the following things happen:

- (a) The map $N_1 \times \cdots \times N_r \to N$ given by multiplication is a diffeomorphism onto.
- (b) For $2 \le j \le r$, $N_j N_{j+1} \cdots N_r$ is a closed subgroup, and it is a normal subgroup of $N_{j-1} N_j N_{j+1} \cdots N_r$.

We shall use the notation of Lemma 4.4 throughout the rest of this section. The symbols \bar{n}, \bar{n}' , etc., will refer to θN , and corresponding symbols with subscripts j will refer to θN_j , where N_j is defined as in Lemma 4.4.

Lemma 4.5. Let $1 \le j \le r$ and let R_j be a bounded open neighborhood of the identity in θN_j . Then there exists a constant C_j (depending on R_j) such that whenever f is a measurable function on θN_j , then the function f_i^* on θN_j defined by

$$f_j^*(\bar{n}_j) = \sup_{a \in A} |aR_j a^{-1}|^{-1} \int_{aR_j a^{-1}} |f(\bar{n}_j \bar{n}'_j)| d\bar{n}'_j$$

satisfies

$$\left|\left\{\bar{n}_{j}\left|f_{j}^{*}(\bar{n}_{j})>\xi\right\}\right|\leq C_{j}\xi^{-1}\left\|f\right\|_{1,\theta N_{j}}$$

for all $\xi > 0$.

Proof. Let λ be defined by $\theta n_j = g_{-\lambda} \oplus g_{-2\lambda}$, fix a vector H_0 in the positive Weyl chamber, and let $a_t = \exp t H_0$. The crucial observation is that to each $a \in A$ there is associated a real number t such that $aEa^{-1} = a_tEa_t^{-1}$ for every subset E of θN_j . (Namely, take $t = \lambda(\log a)/\lambda(H_0)$.) This means that we can replace the a in the definition of f_j^* by a_t and take the supremum over t.

For an open set $E \subseteq \theta N_j$, let hull(E) be the set of all $xy^{-1}z$ such that $x \in E$ and there is a $t \ge -1$ with y and z in $a_tEa_t^{-1}$. It is easy to check that hull $(a_tR_ja_t^{-1}) = a_t$ hull $(R_j)a_t^{-1}$, and it follows that

$$\sup_{-\infty < t < \infty} \frac{\left| \operatorname{hull}(a_t R_j a_t^{-1}) \right|}{\left| a_t R_j a_t^{-1} \right|} = \frac{\left| \operatorname{hull}(R_j) \right|}{\left| R_j \right|}.$$

By [13] or [1], the left side of this equality will serve as C_j . On the other hand, the right side of the equality is finite since $hull(R_j)$ is bounded. The lemma follows.

Proof of Theorem 4.3. We may assume $p < \infty$. We shall prove the theorem first for the special case that V is an open set $R = R_1 R_2 \cdots R_r$, where R_j is an open neighborhood of the identity in θN_j and $R_1 R_2 \cdots R_r$ denotes the set of products from these sets in the given order. With respect to the decomposition

$$\theta N = (\theta N_1)(\theta N_2) \cdots (\theta N_r) = (\theta N_1)(\theta N_c)$$

of Lemma 4.4, let π be the projection of θN onto θN_1 and let σ be the projection of θN onto θN_c . We write $R=(\pi R)(\sigma R)$ and $\bar{n}'=\bar{n}_1'\bar{n}_c'$, and we decompose \bar{n} in the other order as $\bar{n}=\bar{n}_c\bar{n}_1$. With suitable normalizations of Haar measures, we have $d\bar{n}=d\bar{n}_1d\bar{n}_c=d\bar{n}_cd\bar{n}_1$ by [6, p. 372]. Thus

$$f^*(\bar{n}) = \sup_{a} |aRa^{-1}|^{-1} \int_{aR_{\alpha}^{-1}} |f(\bar{n}_c\bar{n}_1\bar{n}')| d\bar{n}'$$

$$\leq \sup_{a} |a\pi Ra^{-1}|^{-1} \int_{a\pi Ra^{-1}} \left\{ \sup_{a} |a\sigma Ra^{-1}|^{-1} \int_{a\sigma Ra^{-1}} |f(\bar{n}_c\bar{n}_1\bar{n}_1'\bar{n}_c')| d\bar{n}_c' \right\} d\bar{n}_1'.$$

Put

$$f_1(\bar{n}) = \sup_{a} \left| a\sigma Ra^{-1} \right|^{-1} \int_{a\sigma Ra^{-1}} \left| f(\bar{n}\ \bar{n}'_c) \right| d\bar{n}'_c,$$

so that the function in braces above is $f_1(\bar{n}_c\bar{n}_1\bar{n}_1')$. With \bar{n}_1 as the variable, Lemma 4.5 shows that the mapping of $f_1(\bar{n}_c\bar{n}_1)$ to $f^*(\bar{n}_c\bar{n}_1)$ is of weak type (1,1) with bound independent of \bar{n}_c . Clearly the mapping is of type (∞,∞) with bound 1. By the Marcinkiewicz Interpolation Theorem, it is of type (p,p) with bound independent of \bar{n}_c . That is,

(7)
$$||f^*(\bar{n}_c\bar{n}_1)||_{p_{\bar{n}_1}} \le C' ||f_1(\bar{n}_c\bar{n}_1)||_{p_{\bar{n}_1}}.$$

By raising this inequality to the p^{th} power and integrating with respect to n_c , we get

(8)
$$||f^*(\bar{n})||_{p,\bar{n}} \le C' ||f_1(\bar{n})||_{p,\bar{n}}$$
.

Suppose we can prove that

(9)
$$\|f_1(\bar{n}_1\bar{n}_c)\|_{p,\bar{n}_c} \le C'' \|f(\bar{n}_1\bar{n}_c)\|_{p,\bar{n}}$$

with C'' independent of f and \bar{n}_1 . Then

$$||f_1(\bar{n})||_{n,\bar{n}} \leq C'' ||f(\bar{n})||_{n,\bar{n}}.$$

Combining this result with (8), we obtain

(10)
$$||f^*||_p \le C'C'' ||f||_p.$$

This conclusion means that we have reduced the problem of proving (10) to proving inequality (9), in which the variable \bar{n}_1 plays no essential role. That is, we have replaced the problem concerning $f^*(\bar{n})$ and the group θN with a problem concerning the function $f_1(\bar{n}_1\bar{n}_c)$ (with \bar{n}_1 fixed) and the group θN_c , with the variable \bar{n}_1 eliminated. It is clear that by iterating this procedure and using Lemmas 4.4 and 4.5 at each stage, we can split off one variable \bar{n}_j at a time, until we have exhausted them all. The proof of the special case is complete.

Now let V be a general bounded open neighborhood of e in θN . Let R be a set of the special kind just considered such that $V \subseteq R$. Then

$$\begin{aligned} \left| \, aVa^{-1}_{ads} \right|^{-1} \int\limits_{aVa^{-1}} \left| f(\bar{n}_0 \bar{n}) \right| d\bar{n} & \leq \frac{\left| \, aRa^{-1} \, \right|}{\left| \, aVa^{-1} \, \right|} \left\{ \left| \, aRa^{-1} \, \right|^{-1} \int\limits_{aRa^{-1}} \left| f(\bar{n}_0 \bar{n}) \, \right| d\bar{n} \right\} \\ & = \frac{\left| \, R \, \right|}{\left| \, V \, \right|} \left\{ \left| \, aRa^{-1} \, \right|^{-1} \int\limits_{aRa^{-1}} \left| f(\bar{n}_0 \bar{n}) \, \right| d\bar{n} \right\}. \end{aligned}$$

Since $|R|/|V| < \infty$, the f^* defined relative to V is dominated by a multiple of the f^* defined relative to R. Thus Theorem 4.3 is proved.

Proof of Theorem 4.2. Let 1 . Let <math>f be in $L^p(\theta N)$, and let $\varepsilon > 0$ be given. Choose a continuous function f_0 of compact support such that $\|f - f_0\|_p \le \varepsilon$, and let $f^a(\bar{n})$ and $f_0^a(\bar{n})$ denote the average values of f and f_0 over $\bar{n}aVa^{-1}$. Then

$$\limsup_{a\to\infty} \left|f^a-f\right| \leq \limsup_{a\to\infty} \left|\left(f-f_0\right)^a\right| + \left|f-f_0\right| + \limsup_{a\to\infty} \left|f_0^a-f_0\right|.$$

The last term is 0 trivially. Therefore

$$\|\limsup_{a\to\infty}\left|f^a-f\right|\,\|_p\le \|(f-f_0)^*\,\|_p+\|f-f_0\,\|_p\le (C+1)\,\|f-f_0\,\|_p\le (C+1)\varepsilon,$$

and it follows that $\lim_{x \to a} f(x) = f(x)$ almost everywhere.

Next, to prove that $\lim f^a = f$ almost everywhere for $f \in L^\infty$, write f as the sum of a function with support in a compact set E and a function vanishing on E. The result for L^2 functions applies to the first function, and the corresponding result for functions continuous at a point (a trivial result) applies to the second function. The result is that f^a converges to f at almost every point of the interior of E. Since E is arbitrary and θN is σ -compact, the theorem follows.

Finally we have seen that $\lim_{p \to \infty} f^p = f$ almost everywhere whenever f is the sum of an L^∞ function and an L^p function for some p > 1. Lebesgue's well known argument [14, p. 65] can therefore be used to complete the proof of Theorem 4.2.

5. **Proof of Lemma 2.2.** Let g, f, g and g denote the Lie algebras of G, G, G, G, and G, respectively. Let G and G are recall the results obtained there. Let G be the dimension of G and G and let G be the dimension of G and G and let G be the dimension of G and G and G and G are recall the results obtained basis for G and G and G are recall the results obtained basis for G and G are recall and whenever a basis for G and G are recall and whenever a basis for G and G are recall and whenever a basis for G and G are G and G and G are recall and G are recall and G and G are recall the results obtained basis for G and G are recall and G are recall and G are recall the results of G and G are recall the call G and G are recall G and G are recall G and G are recall G and G are

(11)
$$P(aK, \bar{n})^{-1} = \det[\{e^{\lambda_i((H)} \operatorname{Ad}(\bar{n}^{-1}) X_i + e^{-\lambda_i(H)} \operatorname{Ad}(\bar{n}^{-1}) \theta X_i\}_{\dagger}],$$

where the subscript \mathfrak{k} indicates the column vector of coordinates of the \mathfrak{k} -component (relative to $g = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$) in the basis $\{X_i + \theta X_i\}$ of \mathfrak{k} .

View the X_i as arranged in order in such a way that the members of m are listed last. For each subset s of the integers $1, \dots, \kappa$, form the determinant of the matrix whose i^{th} column is

(12)
$$\begin{cases} \{e^{\lambda_i(H)} \operatorname{Ad}(\bar{n}^{-1}) X_i\}_{\tilde{t}} & \text{if } i \in s \\ \{e^{-\lambda_i(H)} \operatorname{Ad}(\bar{n}^{-1}) \theta X_i\}_{\tilde{t}} & \text{if } i \notin s. \end{cases}$$

The sum of the resulting 2^{κ} determinants is $P(aK, \vec{n})^{-1}$ by (11). If s and s' are two subsets of $\{1, \dots, \kappa\}$ whose intersections with $\{1, \dots, \nu\}$ are identical, then the corresponding determinants are equal, because $X_i = \theta X_i$ for $i > \nu$. Hence $P(aK, \vec{n})^{-1}$ is $2^{\kappa - \nu}$ times the sum of the determinants (12) corresponding just to subsets s of $\{1 \dots \nu\}$.

Let $\{---\}_{\theta \mathfrak{n} \oplus \mathfrak{m}}$ denote the column vector of coordinates of the $(\theta \mathfrak{n} \oplus \mathfrak{m})$ component of $\{----\}$ (relative to $\mathfrak{g} = \theta \mathfrak{n} \oplus \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$) in the basis $\{\theta X_i\}$ of $\theta \mathfrak{n} \oplus \mathfrak{m}$. For each subset s of $\{1, \dots, \nu\}$ form the determinant of the matrix
whose i^{th} column is

$$\begin{split} & \big\{ e^{\lambda_i(H)} \mathrm{Ad}(\bar{n}^{-1}) X_i \big\}_{\theta \, \mathfrak{n} \oplus \, \mathfrak{m}} & \text{if } i \in s \\ & \big\{ e^{-\lambda_i(H)} \mathrm{Ad}(\bar{n}^{-1}) \theta X_i \big\}_{\theta \, \mathfrak{n} \oplus \, \mathfrak{m}} & \text{if } i \notin s \, . \end{split}$$

Each column of this matrix has an exponential as a common factor, and we let $G_s(a)$ be the product of all the exponentials. The determinant can therefore be written as

$$G_s(a)D_s(\bar{n})$$
,

which we take as a definition of $D_s(\bar{n})$. This definition is slightly different from the one in §2 of [9]; it is a simple matter to check that the connection is that $G_s(a)D_s(\bar{n})$ is $2^{\kappa-\nu}$ times the determinant of (12). It follows that $P(aK,\bar{n})^{-1} = \sum G_s(a)D_s(\bar{n})$ and that, by Theorem 2.2 of [9], $D_s(\bar{n}) \ge 0$ for all s.

By a polynomial on θN , we mean a function that is a polynomial on the vector space θn if we identify θN with θn via the exponential map.

Proposition 5.1. As s varies through the set of subsets of $\{1, \dots, v\}$, the functions $D_s(\bar{n})$ have the following properties:

(a) Each $D_s(\bar{n})$ is a polynomial ≥ 0 , and

$$G_s(a) = \exp\left(\sum_{j \in s} \lambda_j(H) - \sum_{j \notin s} \lambda_j(H)\right).$$

- (b) $D_{\phi}(\bar{n}) \equiv 1$ for $\bar{n} \in \theta N$, where ϕ is the empty set.
- (c) $P(aK, \bar{n})^{-1} = \sum_{s} G_{s}(a)D_{s}(\bar{n})$.
- (d) $e^{2\rho H(\bar{n})} = \sum_s D_s(\bar{n})$, and $e^{2\rho H(\bar{n})}$ is a polynomial ≥ 1 .

Proof. For (a), write $\bar{n} = \exp X = \exp \sum x_j \theta X_j$. If $\{Z_i\}$ is any basis of g, then it is easy to check that

$$[\operatorname{ad}(-X)]^k Z_l = \sum P_{klm} Z_m,$$

where P_{klm} is a polynomial in the x_j 's with coefficients depending on k, l, m, and the structural constants of g. Since θ n is nilpotent, $\operatorname{Ad}(\bar{n}^{-1})Z_l = \sum P_{lm}Z_m$ with each P_{lm} a polynomial, and it follows readily that each $D_s(\bar{n})$ is a polynomial. Each $D_s(\bar{n})$ is ≥ 0 by Theorem 2.2 of [9], and the formula for $G_s(a)$ is by direct calculation. Result (b) holds because the matrix with determinant $D_{\phi}(\bar{n})$ is triangular with ones on the diagonal, and (c) we know. Result (d) is the special case of (a) through (c) obtained by putting a = e.

For proving Lemma 2.2, we shall need a lower bound on the rate of growth of $e^{2\rho H(\bar{n})}$ for \bar{n} tending to infinity. For this purpose it will be sufficient to consider only some special terms in the sum $\sum_s D_s(\bar{n}) = e^{2\rho H(\bar{n})}$, and these we now describe.

Let M' be the normalizer of A in K, and let w = m'M be an element of the Weyl group M'/M. If λ is a restricted root, we denote by λ^w the restricted root such that

$$g_{\lambda w} = Ad(m')g_{\lambda}$$
.

To w we associate a subset s of the integers $1, \dots, v$ by requiring that i be in s if and only if λ_i^w is negative. (Recall the λ_i for $1 \le i \le v$ are positive, by convention.) Define $D_w(\bar{n})$ to be the associated function $D_s(\bar{n})$. Thus, for example, $D_e(\bar{n}) = D_\phi(\bar{n})$. As in Theorem 2.2 of [9], we can consider the function $D_w(g)$, defined for $g \in G$ by replacing \bar{n} by g in the determinant that defines $D_w(\bar{n})$.

Lemma 5.2. If w is in the Weyl group and m' is a representative in M', then $D_w(g) = D_e(m'g)$ for all $g \in G$.

Proof. Neither side of the equality in the conclusion is changed if we adjust the orthogonal vectors θX_i so that they each have norm one relative to B_{θ} . The determinant for $D_w(g)$ involves $\mathrm{Ad}(g^{-1})$ of vectors in a set that is the union of orthonormal bases for the spaces,

(13)
$$\begin{cases} g_{\lambda} & \text{for those } \lambda \geq 0 \text{ for which } \lambda^{w} < 0 \\ g_{-\lambda} & \text{for those } \lambda \geq 0 \text{ for which } \lambda^{w} \geq 0. \end{cases}$$

The determinant for $D_e(m'g)$ involves $Ad(g^{-1})$ of the vectors $Ad(m'^{-1})\theta X_i$. The set $\{Ad(m'^{-1})\theta X_i\}$ is the union of orthonormal bases for the spaces

$$Ad(m'^{-1})g_{-\mu}$$
 for $\mu \ge 0$.

If we put $\mu = \lambda^w$, we see that these spaces are the same as the spaces

$$g_{-\lambda}$$
 for $\lambda^w \ge 0$,

and the latter spaces are the same as the spaces (13). Hence by first performing an orthogonal transformation in each $g_{-\lambda}$ ($\lambda > 0$) and then applying $\mathrm{Ad}(m'^{-1})$, we get, in some order, the set of vectors that $\mathrm{Ad}(g^{-1})$ operates on in the determinant for $D_w(g)$. Therefore $D_w(g) = \pm D_e(m'g)$ with the sign determined by the determinants of the orthogonal transformations and by the number of transpositions of columns. But the sign must be +, since Theorem 2.2 of [9] shows both sides are ≥ 0 . The lemma is proved.

Lemma 5.3. If w is in the Weyl group and m' is a representative in M', then $D_w(\gamma_1 m'^{-1}\gamma_2) \neq 0$ for all γ_1 and γ_2 in MAN.

Proof. Lemma 5.2 shows that

$$D_w(g) = D_e(m'g) = \det[P_{\mathfrak{m} \oplus \theta \mathfrak{n}} \mathrm{Ad}(g^{-1}m'^{-1}) \, \big| \, \mathfrak{m} \oplus \theta \mathfrak{n}],$$

where $P_{\mathfrak{m}\oplus\theta\mathfrak{n}}$ is the projection of \mathfrak{g} on $\mathfrak{m}\oplus\theta\mathfrak{n}$ along $\mathfrak{a}\oplus\mathfrak{n}$ and where the vertical bar means "restricted to." Hence $D_w(g)=0$ if and only if there is a vector $X\neq 0$ in $\mathfrak{m}\oplus\theta\mathfrak{n}$ such that $\mathrm{Ad}(g^{-1}m'^{-1})X$ is in $\mathfrak{a}\oplus\mathfrak{n}$. The existence of such an X is not affected if g is multiplied on the right by a member of MAN or on the left by a member of MA.

Now $D_w(m'^{-1}) = D_e(e) = 1 \neq 0$. Thus there is a neighborhood U of the identity in N such that $D_w(nm'^{-1}) \neq 0$ for $n \in U$. We can multiply nm'^{-1} on the left and right by members of A and not change the nonzero character of $D_w(nm'^{-1})$, according to the first paragraph. Since M' normalizes A and since every element of N is of the form ana^{-1} with $n \in U$ and $a \in A$, we conclude $D_w(nm'^{-1}) \neq 0$ for all $n \in N$. The conclusion of the lemma then follows from the result of the first paragraph.

The spaces θN and θn have a box norm induced by the basis $\{\theta X_i\}$. If $\bar{n} = \exp(\sum_i c_i \theta X_i)$, we define $|\bar{n}| = \max_i |c_i|$.

Lemma 5.4.
$$\min_{|\vec{n}|=1} (e^{2\rho H(\vec{n})} - 1) > 0.$$

Proof. By parts (a), (b), and (d) of Proposition 5.1, it is enough to prove that for each $\bar{n} \in \theta N$ other than $\bar{n} = e$, there is some $D_s(\bar{n})$ with $s \neq \emptyset$ for which $D_s(\bar{n}) \neq 0$. In view of Lemma 5.3 and the Bruhat Decomposition

Theorem (i.e., $G = \bigcup MAN \ m' \ MAN$ over a system of Weyl group representatives), it is enough to remark that $\bar{n} \notin MAN$, a fact that is well-known (see [5], p. 284). The proof is complete.

Proposition 5.5. There exist positive constants α and β such that $e^{2\rho H(\bar{n})} \ge \alpha |\bar{n}|^{\beta}$ for $|\bar{n}| \ge 1$.

Proof. Fix H_0 in the positive Weyl chamber of a, let $a_t = \exp t H_0$, and view the additive group of reals as acting on θN by conjugation by a_t^{-1} . By parts (a) to (d) of Proposition 5.1, we have

$$\begin{split} e^{2\rho H(a_t^{-1}\bar{n}a_t)} &= 1 + e^{2\rho H(a_t)} \sum_{s \neq \phi} G_s(a_t) D_s(\bar{n}) \\ &\geq 1 + e^{2\rho H(a_t)} \big[\min_{s \neq \phi} G_s(a_t) \big] \sum_{s \neq \phi} D_s(\bar{n}) \\ &= 1 + e^{2\rho H(a_t)} \big[\min_{s \neq \phi} G_s(a_t) \big] \big(e^{2\rho H(\bar{n})} - 1 \big) \,. \end{split}$$

If j_0 is chosen so that $\lambda_{j_0}(H_0)$ is the smallest value that a positive restricted root assumes on H_0 , then Proposition 5.1a shows that, for $t \ge 0$,

(14)
$$e^{2\rho H(a_t^{-1}\bar{n}a_t)} \ge 1 + \exp(t\lambda_{i_0}(H_0))(e^{2\rho H(\bar{n})} - 1).$$

Inequality (14) shows that $e^{2\rho H(\bar{n})}$ is nondecreasing along orbits. Hence if S_1 and S_2 are two shells about the identity, each intersecting each orbit once, with S_1 inside S_2 , then

(15)
$$\inf_{S_1} e^{2\rho H(\bar{n})} \leq \inf_{S_2} e^{2\rho H(\bar{n})}.$$

Choose k_0 so that $\lambda_{k_0}(H_0)$ is as large as possible. The most general element of θN of norm ≥ 1 is of the form $a_t^{-1}\bar{n}a_t$ with $|\bar{n}| = 1$ and $t \geq 0$, and this element has norm $\leq \exp(t\lambda_{k_0}(H_0))$. Combining (15) and (14), we obtain, for $t \geq 0$,

(16)
$$\min_{|\vec{n}| = \exp(t\lambda_{k_0}(H_0))} e^{2\rho H(\vec{n})} \ge \min_{|\vec{n}| = 1} e^{2\rho H(a_t^{-1}\vec{n}a_t)} \\ \ge \alpha \exp(t\lambda_{j_0}(H_0)),$$

where α is the left-hand side in the statement of Lemma 5.4. Inequality (16) is the statement of the proposition with $\beta = \lambda_{j_0}(H_0)/\lambda_{k_0}(H_0)$.

Corollary 5.6. $e^{-2\rho H(\bar{n})}$ vanishes at infinity.

Proof of Lemma 2.2. For the statements concerning θN , it is sufficient to consider $P(aK, \bar{n})$ for $a \in A$, because any $g \in G$ is of the form $g = \bar{n}_0 a k_0$ and therefore satisfies

$$P(gK, \bar{n}) = e^{-2\rho H(a^{-1}\bar{n}_0\bar{n})}$$
.

We have

$$\int\limits_{\theta N} P(aK,\bar{n})d\bar{n} = \int\limits_{\theta N} e^{-2\rho H(a^{-1}\bar{n}a)} e^{2\rho H(a)} d\bar{n} = \int\limits_{\theta N} e^{-2\rho H(\bar{n}')} d\bar{n}' = 1,$$

the middle equality following from the change of variables $\bar{n}' = a^{-1}\bar{n}a$. Hence $P(aK, \bar{n})$ is in $L^1(\theta N)$. To see that $P(aK, \bar{n})$ vanishes at infinity (and hence is in L^{∞}), we use parts (a), (c), and (d) of Proposition 5.1 to write

$$P(aK, \tilde{n})^{-1} = \sum_{s} G_s(a) D_s(\tilde{n}) \ge \left[\min_{s} G_s(a) \right] \sum_{s} D_s(\tilde{n}) = \left[\min_{s} G_s(a) \right] e^{2\rho H(\tilde{n})} .$$

Thus

$$P(aK, \bar{n}) \leq \left[\min_{s} G_{s}(a)\right]^{-1} e^{-2\rho H(\bar{n})},$$

and the result follows from the vanishing at infinity of $e^{-2\rho H(\bar{n})}$ (see Corollary 5.6). Finally the identity $\int\limits_{K/M}P(gK,kM)dk=1$ follows from formula (1) and the identity $\int\limits_{RN}P(gK,\bar{n})d\bar{n}=1$. The proof is complete.

REFERENCES

- 1. R. E. Edwards and E. Hewitt, Pointwise limits for sequences of convolution operators, *Acta Math.*, 113 (1965), 181-218.
- 2. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math., 77 (1963), 335-386.

- S. G. Gindikin and F. I. Karpelevič, Plancherel measure for Riemann symmetric spaces of nonpositive curvature, Soviet Math., 3 (1962), 962–965.
- 4. R. Godement, Une généralisation du théorème de la moyenne pour les fonctions harmoniques, C. R. Acad. Sci., Paris, 234 (1952), 2137-2139.
- Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. of Math.,
 (1958), 241–310.
- S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
 - 7. ——, Lecture notes, Massachusetts Institute of Technology, fall, 1966.
- 8. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals, *Fund. Math.*, **25** (1935), 217–234.
- A. W. Knapp, Fatou's theorem for symmetric spaces, I, Ann. of Math., 88 (1968), 106-127.
- A. Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc., 140 (1969), 393–409.
- C. C. Moore, Compactifications of symmetric spaces, Amer. J. of Math., 86 (1964), 201–218.
- 12. H. E. Rauch, Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, *Canad. J. Math.*, 8 (1956), 171–183. The author of this paper would like to point out that his Theorem 9 is false.
- 13. E. M. Stein, Maximal functions and Fatou's theorem, C.I.M.E. Summer course on bounded homogeneous domains, Cremonese, Roma, 1967.
 - 14. A. Zygmund, Trigonometric Series, I, Cambridge U. Press, Cambridge, 1959.
- 15. S. Helgason and A. Korányi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc., 74 (1968), 258-263.

CORNELL UNIVERSITY, ITHACA, N. Y., U.S.A.
AND

DARTMOUTH COLLEGE, HANOVER, N.H., U.S.A.

(Received September 9, 1968)