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1. Introduction. Our intention is to treat some classical theorems con-
cerning harmonic functions in a setting in which the theorems can serve as an
analytical tool for dealing with semisimple Lie groups.

A wide class of harmonic functions in the unit disc is obtained by means of

the Poisson integral formula h(re™) =f P(re™, y)du(y), where du(y) is a
signed measure on the circle and where P(re™ y) is the kernel

1 =72
1 —2rcos(x—y)+r2 *

P(ré®,y) =

For a given harmonic function h, such a measure dyu exists if and only if the
functions h, defined by h,(e™) = h(re™) satisfy sup |h,[; <co. In addi-
0<r<1

tion, the measure du is of the form f(x)%dx with f(x) a function of class

I?, p>1, if and only if sup|

h|,<oo.

When the condition sup || h, ||, < oo is satisfied for some p = 1, the measure
du is assumed as boundary value in several senses: There are senses involving
norm or weak-# convergence that follow directly from the fact that the Poisson
kernel is an approximate identity. A deeper result is Fatou’s theorem, which
asserts convergence of h, to a boundary function pointwise along almost -~ “ery

radius, or even almost everywhere non-tangentially.
Similar considerations apply to harmonic functions in the upper half-plane
which we can identify with the disc by means of a linear fractional transforma-
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tion. The integral formula in the disc transforms to a formula in the half-
plane with kernel

. ¥y
Plx +1i ) i e—————ry

( ys1) (x—1)2 + y?
provided we absorb a constant multiple of 1 + t? into the image of the measure.
This time we let hy(x) = h(x + iy), and the question that decides whether £
is represented by a boundary function or measure is the question whether

sup | h,|, < co. If so, then there are senses (similar to those in the disc)
O<y<m

in which the h, converge to the boundary values. Fatou’s theorem in this case
concerns convergence to the real axis along verticals or non-tangentially.

The connection between the above situations and semisimple Lie groups
is as follows: The semisimple group G = SL(2, R) of 2-by-2 real matrices of
determinant one operates transitively on the disc or half-plane by linear frac-
tional transformations, and the isotropy subgroup is a maximal compact
subgroup K. The harmonic functions in the disc or half-plane are exactly
those functions on G/K that are annihilated by every G-invariant (linear)
differential operator on G/K without constant term. The unit circle, the real
line, the Poisson kernels, and the coordinate systems that we have used (polar
in the disc, Cartesian in the half-plane) can all be given similar interpretations
in terms of G. We can therefore ask whether the theorems that hold for
SL(2, R) remain valid for all semisimple groups.

The theorems about existence of functions or measures on the boundary
we shall settle completely. These results are fairly simple consequences of a
theorem of Furstenberg [2] concerning the representation of bounded harmonic
functions as Poisson integrals. All that is needed is an appropriate passage
to the limit.

Our main result, Theorem 4.1, is a generalization of Fatou’s theorem.
It is concerned with the analog of almost-everywhere convergence in the
upper half-plane, and in order to distinguish it from some related theorems
(see [97], [10], [15] and references listed in those papers), we shall mention
what the result is for G = SL(2, R)® SL(2, R). In this case, G/K is the product
of two half-planes, and the Poisson kernel is the product of the kernels that
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go with each half-plane. Poisson integrals are thus defined for points
(%y +iyy,x; +iy,) in G/K, where y; >0 and y, > 0. The mode of con-
vergence in [10] for this group is that y, and y, tend to O in such a way that
one of them is a fixed power of the other. Our present theorem will deal with
bounded functions and will allow y, and y, to tend to 0 without any further
restriction on them. As will be evident in §4, the present theorem for this
group G is closely related to strong differentiation of double integrals in R?,
in the sense of Jessen, Marcinkiewicz, and Zygmund [8].

In connection with the theorem of §4, we are very much indebted to A.
Koranyi for showing us the results of [10] before their publication.

2. Boundaries, Poisson kernels, and norm convergence.

We collect in this section a number of simple facts about harmonic func-
tions that will be used in §3 and §4. Some of these were implicit in [7].

Our notation is as follows. We let G = KAN be an Iwasawa decomposition
of the connected semisimple Lie group G; since none of our results will depend
on the center of G, we shall assume that the center of G is finite and hence
that K is compact. If g = kan, we write k(g) for k and we write H(g) for the
logarithm of a in the Lie algebra of A. Let # be the corresponding Cartan
involution of G, or of the Lie algebra of G. A typical restricted root is denoted
2, and the corresponding restricted-root space in the Lie algebra of G is
@, 2p is the sum of the positive restricted roots. If n denotes the Lie algebra
of N, we have

n= Xg, and = Xg_;.

A>0 A>0

We write M for the centralizer of 4 in K. Typical elements of K, 4, and ON
will be denoted k, a, and 7; dk will be normalized Haar measure on K. Let
D(G) be the set of left G-invariant differential operators on G, and let D(G/K)
be the set of left-invariant differential operators on G/K.

Lemma 2.1. Let h be a C* function on G, let du be a signed measure
of compact support on G, and put
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duxh(g,) = J h(g="'go)du(g).

G

Then h is in C*® and D(dpsh) = dusDh for every DeD(G).

By [6, pp. 98, 391], it suffices to prove that X(du=*h) = du* Xh for every
left-invariant vector field X . The proof of the lemma thereby becomes a
straightforward real-variables problem.

A C® function h on G/K is said to be harmonic if Dh = 0 for every
D e D(G/K) satisfying D1 = 0, In dealing with harmonic functions, we shall
consider two spaces as boundaries for G/K, namely 0N and K/M . If we think
of G/K as a generalization of the upper half-plane or unit disc, we can think
of @N and K/M as generalizations of the real line and unit circle, respectively.
There is a map between these boundaries that generalizes the Cayley transform.
It is the map y:0ON — K/M given by y(i1) = k(7)M . Harish-Chandra [5, pp.,
284-287] showed that y is a diffeomorphism of @N onto an open set in K/M
whose complement is of lower dimension (and consequently of dk-measure 0).
Moreover, he showed that the corresponding charge of variables formula is

(1 [ reremzemmas = [ so-tanya

aN K/M
for a suitable normalization of Haar measure d7i. We shall assume from now
on that dii is so normalized.

From (1) we see that ¢ **"® s integrable (with integral 1). Harish-
Chandra [5, p. 287] further showed that e=>*"™ < 1 everywhere. (See also
Proposition 5.1 below.)

Relative to each of the boundaries ON and K/M , Poisson kernels are defined
by

) P(gK,7) = e~ "¢ and  P(gK,kM) = e~ 2"ET0,

Notice that P(K,71) = e 2"H®

Lemma 2 2, Let 1 <qg <00 and let geG. Then P(gK,ii) is in
LI(ON) and is in Cy(ON), the space of continuous functions vanishing at
infinity. Moreover,
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(3) jP(gK, mdin = J P(gK, kM)dk = 1.

h KiM

The proof that P(gK, ) vanishes at infinity is quite technical, and so the
proof of Lemma 2.2 is postponed to §5.

From Lemma 2.2 it follows that we can use P(gK,7) or P(gK,kM) as
kernel to define the Poisson integral of any LP function, 1 £ p £ o, or of
any finite signed measure on ON or K/M . For example, the Poisson integral
of a function f on @N is the function & on G/K given by

h(gK) = fP(gK, a)f(aydn.
aN

We shall occasionally write PI( -) for Poisson integrals.

If f(#) is a function in some I? class on ON and f; is the function on K/M
defined to be f oy~" on y(ON), then formula (1) and the fact that e~ **"@eL'n L?
show that f; is integrable on K/M. Moreover, (1) shows that the Poisson
integrals of f and f, are the same. Similar statements apply to signed measures,
and therefore every Poisson integral defined relative to ON is a Poisson
integral defined relative to K/M .

Godement [4] proved that harmonic functions are characterized by a mean
value property: A continuous function h on G/K is harmonic if and only if
when h is lifted to a function b’ on G (defined by h'(g) = h(gK)), then h’
satisfies

W@ = | wekie

orall gand g’inG. s

Proposition 2.3. Every Poisson integral is harmonic. In particular,
P(gK, 1) and P(gK, kM) are harmonic for each fixed ii and k.

Proof. Since Poisson integrals over N are Poisson integrals over K/M,
it is enough to prove that Poisson integrals over K/M are harmonic. By
Lemma 2.2 of [6, p. 390] and by Lemma 2.1 above, it is enough to prove
that P(¢K, koM) is harmonic for fixed k,. (See the proof of Lemma 3.1 for
a similar argument.) From the identity
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H(g,g,) = H(g,k(g,) + H(g,)

with g, = h™'k~' and g, = g~'k,, we see that

j P(gkhK, k,M)dk = P(gK, komJ. exp[—2pH(h~'k~k(g~ko))]dk .
K

K

With a change of variables, the integral on the right reduces tof P(h, kM)dik,
K

or to [ P(h, kM)dk, which is 1 by Lemma 2.2. Hence the lift of P(gK, k,M)
K;M
satisfies the mean value property, and P(gK, koM) is harmonic.

The rest of this section will deal with elementary convergence properties
of Poisson integrals. The convergence will be as as A tends to co out the
exponential of the positive Weyl chamber. More specifically, we use the no-
tation lim to refer to convergence as a€ A tends to co in such a way that

a—+w
MH(a)) - + oo for every positive restricted root A. Limits of the form
lim h(kaK), with ke K, generalize radial limits in the unit disc, and limits

X+

of the form lim h(i7aK), with i€ N, generalize vertical limits in the upper

a—+*od

half-plane. The next lemma was implicit in [7].

Lemma 2.4, If f is bounded on ON and continuous at i, and if h is
the Poisson integral of f, then lim h(iy,aK) = f(7,).

a—+om

Proof. We have

Il

h(iigaK) J P(aK, i) f(RoR)dii = J9_2””‘“"“"“"’f(%ﬁ)dﬁ

aN N

- J e—ZpH(i’u"-}f(ﬁaaﬁra—l)e—ZpH(U)dﬁ:

oN

under the change of variables a~'iia = @’ and dii = e~ *""“dji’. Hence
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h(igaK) = j e~ 2™ f(iyafia=)di.
N

1

As a = 0, afia=' - e. Hence we have dominated convergence, with the

continuity of f at 7, giving

lim h(figaK) = f(ﬁo)J- e 215 = f(i,).
oN

a—*ao

Proposition 2.5. The Poisson kernel P(aK,ii), for a€ A, satisfies
(a) P(aK,i) =0

(b) j P(aK,n)di = 1
oN

(¢) IfU isanyopen neighborhood of e in ON , then lim j P(aK,m)dn=0.
b aN=U
Proof. (a)isclear from the definition, and (b) is a special case of formula (3).
For (c), let f be the characteristic function of 6N — U and apply Lemma 2.4
with 77, = e.

Proposition 2.5, The Poisson kernel P(aK,kM), for a€A, satisfies
(a) P(aK,kM) =0

(b) P(aK, kM)dk = 1
KM
() If U is any open neighborhood of eM in K/M, then

lim P(aK,kM)dk = 0.
e E/M-U

Proof. (a)isclear from the definition, and (b) is a special case of formula
(3). Result (c) follows by applying Proposition 2.5 to y~'(U) and then using
formula (1) to transform to K/M.

Proposition 2.6. Let f(ii) be a function on ON , let h(/iaK) be its Poisson
integral, and let h,(ii) = h(71aK).
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(a) If1 <p<ooandif fisin L, then lim h, = fin 7.

a—= o

(b) If fis in L™, then lim h, = f weak-* against L'.

(c) If f is bounded on ON and uniformly continuous on E < ON, then
lim h, = f uniformly on E.

a—+w

(d) Iffis replaced by a finite signed measure du, then

lim h,(A)di = du(i) weak-+ against Cy(ON).

a=+o

Proof. This is a routine consequence of Proposition 2.3.

Proposition 2.6". Let f(kM) be a function on K[M, let h(kaK) be its
Poisson integral, and let h,(kM) = h(kaK).
(a) If 1 £ p<o and if fis in LP, then lim h, = f in 7.

a—+ oo

(b) If fis in L®, then lim h, = f weak-= against L'.

(c) Iffis bounded on K/M and uniformly continuous on E = K[/M , then
lim h, = f uniformly on E.

a—+o

(d) If f is replaced by a finite signed measure dy, then lim h,(kM)dk

a=+w

= du(kM) weak-+ against C(K/M).

Proof. This is a routine consequence of Proposition 2.5'.

Proposition 2.7. If e *"®du(i) and e~**"Pdv(i) are distinct finite
signed measures on ON , then the Poisson integrals of dp and dv are distinct.
Consequently if f,eI’*(ON) and f,eI’*(ON) are functions with the same
Poisson integral, then f, = f, almost everywhere.

Proof. The first statement is a consequence of formula (1) and Propo-
sition 2.7" below. For the second statement, if fe [?(ON), then e~ *""™f(f)d7i
is a finite signed measure on ON; this is because it is true for L' and L

separately. Therefore the second statement is a special case of the first.
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Proposition 2.7'. If du(kM) and dv(kM) are distinct finite signed
measures on K/M, then their Poisson integrals are distinct.

Proof. Apply Proposition 2.6'd.

3. Existence of boundary values. The symmetric space G/K has a
natural Riemannian structure inherited from the Killing form on G, and the
corresponding Laplacian operator is in D(G/K) since the metric is G-invariant.
We shall say that a C* function on G/K is weakly harmonic if it is annihi-
lated by this Laplacian.

Lemma 3.1. If h is weakly harmonic on G/K and if ¢ is a continuous
function of compact support on ON, then the convolution ¢+h on G/K de-
Jined by

dxh(gK) = | ¢(A)h(i~'gK)di

is weakly harmonic.

Proof. Lift hto a C® function h'(g) defined on G, and let
¢xh'(g) = J G(mh'(A~" g)di.
o

By Lemma 2.1, ¢ = h’ is a C® function and D(¢ * h') = ¢=D(h’) for all
DeD(G). By Lemma 2.2 of [6, p. 390], the Laplacian A in D(G/K) lifts to
an operator A’ in D(G). Hence A'(¢p#h’) = ¢p+A'(h’). Since A(h) =0,
A’(h") = 0. Thus A’(¢ = h’) = 0. But ¢ = h’ is right K-invariant and equals
(p*h)'. Thus A(p=h) = 0.

Remarks.

1. Lemma 3.1 is not a special property of the Laplacian, and there are
obvious generalizations of the lemma.
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2. Furstenberg showed in Theorem 4.4 of [2] that every bounded weakly
harmonic function on G/K is harmonic, and he showed in Theorem 4.2 of
[2] that every bounded harmonic function on G/K is the Poisson integral
of an L” function on a boundary that was later recognized by Moore [11]
as K/M. Furstenberg characterized the Poisson kernels as Radon-Nikodym
derivatives, and it follows from the decomposition of dg according to the
Iwasawa decomposition that P(gK,kM) is the correct formula. The details
were given in [7]; see also [10, §1].

3. Because of the correspondence between the Poisson integral formula
for K/M and the one for 0N, we see from Remark 2 that every bounded
weakly harmonic function on G/K is the Poisson integral of an L* function
on ON.

4. A general weakly harmonic function defined everywhere on G/K need
not be harmonic, as one can see from examples when G = SL(2, R) @ SL(2, R).

Theorem 3.2. Let 1 < p < w. If h is weakly harmonic on G/K and if
sup || h(7iaK) |

aeN

integral of
(1) a finite signed measure on ON if p =1
(2) an I function on ON if p>1.

ni < 00, then h is harmonic and is representable as the Poisson

Proof. This theorem in the case p = oo is due to Furstenbergand Moore
(see Remark 3). Thus we may assume p < c0.
Put | k| =sup| h(aK)|,s. Let {U;} be a neighborhood base at the

identity of ON such that each U, is open and has compact closure. Let V;
be an open neighborhood of the identity such that V;V; = U;, and let y; be

a continuous function = 0 with support in ¥; and with f Y;di = 1. Then

N
;# h is weakly harmonic by Lemma 3.1, and it is bounded because, if g is

the conjugate index of p, we have

[y h@K) | < Wy ]| 028K . S | W5 o 1] -
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The case p = co therefore shows that

“@ Y; *h = PI(f))

for some L*® function f; on ON. Put ¢; = y;*y; and convolve ¥; with the
two sides of (4). Since i; is continuous and has compact support (contained
in U;), we obtain

&) ¢;*h(gK) = y; PI(f;) (gK)
for all g. The right side of (5) is

= Y (i) PI(f;) (g 18'K)d50

oN

= j W (fig)e™ 2E 1 M0f ()i i,

ON ON

= J W (fig)e™ 2P ™ Mg L ydii ity

ON 6N

In the last expression we can interchange the order of integration because
the iterated integral is finite when f; is replaced with | f j]. The result is that

(6) Y% PI(f) = PI(Y;+f;).

Put F; = y;*f;. Combining (5) and (6), we see that ¢;«h is the Poisson
integral of the continuous bounded function F;.
By Lemma 2.4 we have

lim ¢;*h(f7aK) = F (i)

a—+wm

for all 7. Thus if we apply Fatou’s Lemma to |¢j*h|" , we obtain

| £, < liminf || 6,8 h(@aK) [, = || ¢« [ 2] = | 2] -
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Consequently the functions F; are in L” and are bounded in norm. Find a
weak-# convergent subsequence (and write it as F;) against the appropriate
space: Cy(ON) if p =1 or IX{ON) if 1 < p<oco. The limit is a finite signed
measure in the first case, but for uniformity of notation we shall write it as a
function F(7i7) in every case.

By Proposition 2.3 the proof will be complete if we show that h is the Poisson
integral of F(i). For fixed g, Lemma 2.2 shows that the Poisson kernel
P(gK,n) is in Cy(ON) and I!(ON) for 1 < q < co. Hence

J P(gK, m)F(i)di = lim j P(gK, W)F (A)di = lim ¢;xh(gK) = h(gK),
f i

oN aN

the last step holding because {¢;} is an approximate identity.

Theorem 3.2'. Let 1 £ p < . If h is weakly harmonic on G|/K and if
sup | h(kaK)|, < oo, then h is harmonic and is representable as the Poisson
asd

integral of
(1) a finite signed measure on K/M if p =1
(2) an I function on KM if p>1.

If h is harmonic and =0, then h is representable as the Poisson integral of
(3) a finite positive measure on K/M.

Proof. The proofs of (1) and (2) are similar to those in Theorem 3.2.
All that is needed is the definition of convolution

$=h(gK) = J P(k)h(k™"gK)dk
K

and the content of Remark 2. The analog of the first statement of Lemma 2.2
is trivial since K/M is compact.

For (3), we know from [4] that h, when viewed as a function h’ on G,
satisfies the mean-value property

h'(g) = Jh’(gr’cg’)dk

K
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for all g and g’ in G. Putting ¢ = e and g’ = a, we see that sup,|| h(kaK) || ,
< 0. By (1), h is the Poisson integral of a finite signed measure. This signed
measure must be positive, because Proposition 2.6'd shows it is the weak-x
limit of positive measures.

4. A Fatou theorem. Following Koranyi [10], we say that the func-
tion h on G/K converges to the function fon ON at /i, admissibly and unrestric-
tedly if, for each non-empty compact set C = 0N,

lim h(figaiiK) = f(ii,)

a=+o

uniformly for 7ie C. (The notation a — co is explained just before Lemma 2.4.)

Theorem 4.1. If f is in L°()N) and if h is its Poisson integral, then
h converges to f admissibly and unrestrictedly almost everywhere.

This theorem is one generalization of the classical theorem of Fatou about
non-tangential convergence of Poisson integrals in the upper half-plane.
When G is the direct sum of n copies of SL(2, R), Theorem 4.1 is closely
related to the results of Jessen, Marcinkiewicz, and Zygmund [8] concerning
strong differentiation of multiple integrals in R". In fact, the dependence of
the proof of Theorem 4.1 on techniques developed in [8] will be apparent.

Let | E[ denote the measure of the set E. Koranyi’s Proposition 4.3 of [10]
shows that our Theorem 4.1 follows from the case p = oo of

Theorem 4.2. Let V be a bounded open neighborhood of e in ON. If
1<p = cw and if fe(ON), then

lim [aVa™'[™ j |/ (gR) — £ (7o) |dii = O
Gl aVa—1

for almost every 7.
With V fixed as in Theorem 4.2, define

J*(ig) = sup |ava™" | . |f (i) | dii
acd

aVa=—1



66 A. W. KNAPP AND R. E. WILLIAMSON

for each measurable function f on ON. Most of the proof of Theorem 4.2
consists in proving Theorem 4.3 below.

Theorem 4.3. If 1 <p = oo, then there is a constant C (depending
on p and V) such that

(WAl Pl PR

for all feI’(ON).

We precede the proof of Theorem 4.3 with two lemmas. Let £¥ be the set
of positive restricted roots, and let » be the number of members A of £+ such
that 44 is not in £+, The first lemma is due to Gindikin and Karpelevi¢ [3].

Lemma 4.4. The r members ) of £% such that 44 is not in £* can be
arranged in an order Ay, A, in such a way that if N; is the analytic sub-
group of N with Lie algebra g,, @ Q,;,, then the following things happen:

(@) The map Ny x - x N, —> N given by multiplication is a diffeo-
morphism onto.

(b) For2=j=r,N;Nju N,isaclosed subgroup, and it is a normal
subgroup of N;_yN;N;y - N,.

We shall use the notation of Lemma 4.4 throughout the rest of this section.
The symbols 7,7’, etc., will refer to 0N, and corresponding symbols with
subscripts j will refer to ON;, where N; is defined as in Lemma 4.4.

Lemma 4.5. Let 1 < j= r and let R; be a bounded open neighborhood
of the identity in ON;. Then there exists a constant C; (depending on R;)
such that whenever f is a measurable function on ON;, then the function
/i on ON; defined by

fi(@@;) = sup |aRja‘1]"' J |f(r':jﬁ})[dfz}
aed aR i

satisfies
Hﬁ,r ‘ff(ﬁj) > §}| S Gt ||f”1.oN,

for all £>0.
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Proof. Let 4 be defined by On; = g_,®g_,,, fix a vector H, in the
positive Weyl chamber, and let @, = exptH,. The crucial observation is that
to each a € A there is associated a real number ¢ such that aEq ~'= g,Eq,~!
for every subset E of ON;. (Namely, take t = A(loga)/A(H,).) This means
that we can replace the a in the definition of f;* by a, and take the supremum
over f.

For an open set E < 0N, let hull(E) be the set of all xy~'z such that x € E
and there is a t = —1 with y and z in aEa;'. It is easy to check that
hu]J(a,Rja,'l) = g hull (Rj)a,'l, and it follows that

[hull@Ra; ") | _ [hull(R)) |

—m<f<wm |aeraf-ll —IRJ'

By [13] or [1], the left side of this equality will serve as C;. On the other
hand, the right side of the equality is finite since hull(R ;) is bounded. The lemma
follows.

Proof of Theorem 4.3. We may assume p < co. We shall prove the
theorem first for the special case that V is an open set R = R R, - R,, where
R; is an open neighborhood of the identity in N, and R R, --- R, denotes the
set of products from these sets in the given order. With respect to the decom-
position

ON = (ON;)(ON,) - (ON,) = (ON,)(6N,)

of Lemma 4.4, let z be the projection of ON onto N, and let ¢ be the pro-
jection of ON onto ON,. We write R = (nR)(¢R) and 7’ = A, and we
decompose 77 in the other order as /i = Ay . With suitable normalizations
of Haar measures, we have dii = dii,dii, = dii.dii, by [6, p. 372]. Thus

S*(#) = sup [aRa™* | J] [, i) | di’

aRa—1

< sup|anRa=*|~! [sup[aaRa“ =2 |f(ﬁ,,ﬁ1ii{ﬁ,’)[dﬁ;}dﬁ[.

anRa=1 agRa—1
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Put

fi(#)) = sup|acRa="|~! J |f(a ay)|da,

asRa=1

so that the function in braces above is fi(7i./,7;). With 7i; as the variable,
Lemma 4.5 shows that the mapping of fi(7i.1,) to f*(a.i,) is of weak type
(1,1) with bound independent of 7i,. Clearly the mapping is of type (o0, )
with bound 1. By the Marcinkiewicz Interpolation Theorem, it is of type (p, p)
with bound independent of 7i,. That is,

(7) | f*@i) ||, 5 S C || Aieiy) [ .5,

By raising this inequality to the p ™ power and integrating with respect to
n., we get

®) [ £*@) |5 = C || £2(D) || 5-
Suppose we can prove that

©) | £i@s73) [p.0. = C"[| f(@170) || .5

with C” independent of f and 7, . Then

| f1@ ], = €

PIQ) PR

Combining this result with (8), we obtain
(10) L7+l = el f1,-

This conclusion means that we have reduced the problem of proving (10)
to proving inequality (9), in which the variable 71; plays no essential role.
That is, we have replaced the problem concerning f*(7i) and the group ON
with a problem concerning the function f;(77,7,) (with 7, fixed) and the group
ON,, with the variable 77, eliminated. It is clear that by iterating this procedure
and using Lemmas 4.4 and 4.5 at each stage, we can split off one variable 7;
at a time, until we have exhausted them all. The proof of the special case
is complete.
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Now let ¥ be a general bounded open neighborhood of ¢ in ON. Let R
be a set of the special kind just considered such that ¥ < R. Then

1= R = -11-1 =
|avasl[™* I |/ o) |di %"I' {[aRa [ J ]f(ﬁoﬁ)|a‘n}

aVa—1 aRa=1
R
v

IIA

{|¢ch*{_1 |"l J |f(ﬁ°ﬁ)|dﬁ}.

aRa—1

Since |R|/|V| < o0, the f* defined relative to Vis dominated by a multiple
of the f* defined relative to R. Thus Theorem 4.3 is proved.

Proof of Theorem 4.2. ILet 1 <p<oo. Let f be in IP(ON), and let
¢ > 0 be given. Choose a continuous function f, of compact support such that
| f=1o|, = ¢, and let f*(7) and f§(7i) denote the average values of f and f,
over 7iaVa~'. Then

limsup |f* —f| < limsup|(f —fo)°| + |/ =fo| + limsup| & — fo .
The last term is O trivially. Therefore

|timsup|f* =], < | (F=fo)* o + [F = Lol S €+ D[~ Sfo ||, S (C+pe,

and it follows that limf* = f almost everywhere.

Next, to prove that limf* = f almost everywhere for feL®, write f as
the sum of a function with support in a compact set E and a function vanishing
on E. The result for I? functions applies to the first function, and the corre-
sponding result for functions continuous at a point (a trivial result) applies
to the second function. The result is that f* converges to f at almost every
point of the interior of E. Since E is arbitrary and 0N is o-compact, the
theorem follows.

Finally we have seen that limf® = f almost everywhere whenever f is the
sum of an L* function and an I¥ function for some p > 1. Lebesgue’s well
known argument [14, p. 65] can therefore be used to complete the proof
of Theorem 4.2.
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5. Proof of Lemma 2.2. Let g, , a and m denote the Lie algebras
of G, K, A, and M, respectively. Let Hea and 7icfN, and put a = expH.
Expressions like the one for P(aK,ii) were examined in §2 of [9], and first
we recall the results obtained there. Let k be the dimension of K and let v
be the dimension of ON . Pick an orthogonal basis {X;} of 1@ m compatible
with the decomposition into root spaces. (The orthogonality is relative to
By(X,Y) = —B(X,0Y), where B is the Killing form.) The basis {X;} will
be fixed once and for all, and whenever a basis for i or i+ m is used, it
will always be taken to be the appropriate 0X;’s. If X; is a member of the basis,
we write A; for the restricted root = 0 such that X;egq;,. By Theorem 2.1
of [9], we have

(11)  P(aK,n)~* = det[{"MAdGE"HX, + e " ™PAdG 10X }],

where the subscript f indicates the column vector of coordinates of the f-com-
ponent (relative to g = F@a@®n) in the basis {X; + 0X;} of f.

View the X, as arranged in order in such a way that the members of m are
listed last. For each subset s of the integers 1,:-,%, form the determinant
of the matrix whose i™ column is

HIAd(A™ X, if i
12) l{e (A7)X}e 1€3

{e " MAd(AY)0X,},  if ig¢s.

The sum of the resulting 2* determinants is P(aK,7)™' by (11). If s and
s’ are two subsets of {1,--+,k} whose intersections with {1,---,v} are identical,
then the corresponding determinants are equal, because X; = 0X; for i > v.
Hence P(aK,#)~" is 2°~" times the sum of the determinants (12) correspond-
ing just to subsets s of {1 == v}.

Let {—)yu@m denote the column vector of coordinates of the (In@m)-
component of {——} (relative to g=0M@m®a®n) in the basis {0X;}
of 0n @ m. For each subset s of {1,---,v} form the determinant of the matrix
whose i column is

{PAIE )X Jonom  if i€
{e HAd(A0X Jonom if i¢s.
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Each column of this matrix has an exponential as a common factor, and we
let G,(a) be the product of all the exponentials, The determinant can therefore
be written as

G,(a)Dy(),

which we take as a definition of Dy(7). This definition is slightly different
from the one in §2 of [9]; it is a simple matter to check that the connection
is that Gy(a)Dy(A) is 27" times the determinant of (12). It follows that
P(aK,ii)"' = X Ga)D(i) and that, by Theorem 2.2 of [9], Dy(7i) = 0 for
all s.

By a polynomial on 8N, we mean a function that is a polynomial on the
vector space On if we identify 0N with On via the exponential map.

Proposition 5.1. As s varies through the set of subsets of {1,-“,'#},
the functions D7) have the following properties:
(a) Each D(a) is a polynomial = 0, and
Gla) = exp( ZAH) - X J{J-(H)).

jes jts

(b) Dy(Ai) =1 for 7€ON, where ¢ is the empty set.
(© P@K,n)™' = ZG(a)Dn).

(d) "™ = ¥ D(A), and "™ is a polynomial =1.

Proof. For (a), write 77 = expX = exp X x;0X;. If {Z;} is any basis
of g, then it is easy to check that

[ad(_X)]kzl = X Pklmzm s

where Py, is a polynomial in the x,’s with coefficients depending on k,/,m,
and the structural constants of g. Since On is nilpotent, Ad(i=1)Z, = X PinZy
with each P, a polynomial, and it follows readily that each Dy(#) is a poly-
nomial. Each D7) is = 0 by Theorem 2.2 of [9], and the formula for G,(a)
is by direct calculation. Result (b) holds because the matrix with determinant
D ,(7) is triangular with ones on the diagonal, and (¢) we know. Result (d)
is the special case of (a) through (c) obtained by putting a = e.
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For proving Lemma 2.2, we shall need a lower bound on the rate of growth
of ™ for ji tending to infinity. For this purpose it will be sufficient to con-
sider only some special terms in the sum X D) = ¢*”"™, and these we
now describe. s

Let M’ be the normalizer of 4 in K, and let w = m'M be an element of
the Weyl group M’'/M . If 1 is a restricted root, we denote by A" the restricted

root such that

Qe = Ad(m")g;.

To w we associate a subset s of the integers 1,--+,v by requiring that i be in s
if and only if A} is negative. (Recall the 4; for 1 < i < v are positive, by
convention.) Define D, (/) to be the associated function D). Thus, for
example, D (/1) = D 4(#). As in Theorem 2.2 of [9], we can consider the func-
tion D,(g), defined for g € G by replacing 7 by g in the determinant that defines
D, (7).

Lemma 5.2, If wis in the Weyl group and m' is a representative in
M', then D (g) = D(m'g) for all geG.

Proof. Neither side of the equality in the conclusion is changed if we
adjust the orthogonal vectors 0X, so that they each have norm one relative
to B,. The determinant for D,(g) involves Ad(g™") of vectors in a set that
is the union of orthonormal bases for the spaces ,

[g,1 for those A = 0 for which A* <0

(13)
g, for those A = 0 for which A* = 0.

The determinant for D, (m’g) involves Ad(g~") of the vectors Ad(m’~')0X;.
The set {Ad(m’~")0X,} is the union of orthonormal bases for the spaces

Ad(m'~Y)g_, for p = 0.
If we put g = A%, we see that these spaces are the same as the spaces

g-z for Aw; 0’
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and the latter spaces are the same as the spaces (13). Hence by first performing
an orthogonal transformation in each g_, (A > 0) and then applying Ad(m’~"),
we get, in some order, the set of vectors that Ad(g~") operates on in the deter-
minant for D,(g). Therefore D, (g) = + D, (m’g) with the sign determined
by the determinants of the orthogonal transformations and by the number
of transpositions of columns. But the sign must be +, since Theorem 2.2
of [9] shows both sides are = 0. The lemma is proved.

Lemma 5.3. Ifwisinthe Weyl group and m’ is a representative in M',
then D, (y;m'~'y,) # 0 for all y, and y, in MAN.

Proof. Lemma 5.2 shows that
D,(g) = Dm’'g) = det[ P 50,Ad(g~ m'~")|m@ ],

where P g9, is the projection of g on m@® On along a @n and where the
vertical bar means ‘‘restricted to.”’ Hence D, (g) = 0 if and only if there is
a vector X # 0 in m @ On such that Ad(g~'m’~")X is in a ®n. The existence
of such an X is not affected if g is multiplied on the right by a member of
MAN or on the left by a member of MA.

Now D,(m'~") = D,(e) = 1 # 0. Thus there is a neighborhood U of the
identity in N such that D (nm’~") # 0 for ne U. We can multiply nm’~*
on the left and right by members of 4 and not change the nonzero character
of D, (nm’~"), according to the first paragraph. Since M’ normalizes 4 and
since every element of N is of the form ana~! with ne U and ac 4, we con-
clude D, (nm'~*) # 0 for all ne N. The conclusion of the lemma then follows
from the result of the first paragraph.

The spaces ON and On have a box norm induced by the basis {0X;}. If
ii = exp( 2 ¢,0X;), we define | 7| = max|c;|.

Lemma 5.4. min (e*™ —1)>0.
i =1
Proof. By parts (a), (b), and (d) of Proposition 5.1, it is enough to prove
that for each 7ieON other than 77 = e, there is some Dy(7) with s # & for
which D (7)) # 0. In view of Lemma 5.3 and the Bruhat Decomposition
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Theorem (i.e., G='J MAN m’ MAN over a system of Weyl group represent-
atives), it is enough to remark that i¢ MAN, a fact that is well-known (see
[5], p. 284). The proof is complete.

Proposition 5.5. There exist positive constants o« and [ such that
2P > 1|fi|‘3 for |ﬁ| >,

Proof. Fix H, in the positive Weyl chamber of a, let la, = exptH,,
and view the additive group of reals as acting on ON by conjugation by a,~".
By parts (a) to (d) of Proposition 5.1, we have

eZpH(a;"ﬁa,) - I_i_eZpH(ag) E Gs(ar)Ds(ﬁ)
sEP

v

1 + &M@ [min G(a,)] T D7)
s s#d

= 14 ez"m“‘)[min _Gs(a,)] (9203(51 L 1).
§F

If j, is chosen so that A;(H,) is the smallest value that a positive restricted
root assumes on H,, then Proposition 5.1a shows that, for ¢t = 0,

(14} GZpH{a.“ﬁang 1 i exp(fljo(Ho))(ez’)H(ﬁ) - 1)'

Inequality (14) shows that ¢*™™ is nondecreasing along orbits. Hence if
S, and S, are two shells about the identity, each intersecting each orbit once,
with S, inside S,, then

(15) infe*21® < inf M,
51 E Sz

Choose k, so that A, (H)) is as large as possible. The most general element
of ON of norm =1 is of the form a,"lﬁa, with |ﬁ[ =1 and t = 0, and this
element has norm < exp(t,,(H,)). Combining (15) and (14), we obtain, for
=0

min e HM > min g?*H@=Mas)

|i] =exp(tix(Ho)) li|=1
(16)
2 aexp(td; (Ho)),
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where o is the left-hand side in the statement of Lemma 5.4. Inequality (16)
is the statement of the proposition with f = 4; (H,)/4,(H).

Corollary 5.6. e~ "™ panishes at infinity.

Proof of Lemma 2.2. For the statements concerning N, it is sufficient
to consider P(aK, i) for ae A, because any ge G is of the form g = 7iyak,
and therefore satisfies

P(gK, ) = ¢ pHem R

We have

J P(aK,f)dii = J' e~ 2pH@™ T 200 g J e~ 2P g5 = 1

oN aN aN

the middle equality following from the change of variables 7' = a~'/ia. Hence
P(aK, ) is in I}(ON). To see that P(aK,ii) vanishes at infinity (and hence
is in L), we use parts (a), (c), and (d) of Proposition 5.1 to write

P@aK,i)"! = X G a)D(A) = [minGya)] X D,(7i) = [min G(a)]e*"® .

Thus
P(aK,i) < [minGya)] ‘e~ "™,

and the result follows from the vanishing at infinity of e=*""™ (see Corol-

lary 5.6). Finally the identity f P(gK,kM)dk = 1 follows from formula (1)

KM

and the identity [ P(gK,fi)dii = 1. The proof is complete.

aN

REFERENCES
1. R. E. Edwards and E. Hewitt, Pointwise limits for sequences of convolution operators,
Acta Math., 113 (1965), 181-218.

2. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.,
77 (1963), 335-386.



76 A. W. KNAPP AND R. E. WILLIAMSON

3. S. G. Gindikin and F. I. Karpelevi¢, Plancherel measure for Riemann symmetric
spaces of nonpositive curvature, Soviet Math., 3 (1962), 962-965.

4. R. Godement, Une généralisation du théoréme de la moyenne pour les fonctions
harmoniques, C. R. Acad. Sci., Paris, 234 (1952), 2137-2139.

5. Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. of Math.,
80 (1958), 241-310.

6. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New
York, 1962.

e , Lecture notes, Massachusetts Institute of Technology, fall, 1966.

8. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple
integrals, Fund. Math., 25 (1935), 217-234.

9. A. W. Knapp, Fatou’s theorem for symmetric spaces, I, Ann. of Math., 88 (1968),
106-127.

10. A. Koréanyi, Boundary behavior of Poisson integrals on symmetric spaces, Trans.
Amer. Math. Soc., 140 (1969), 393-409.

11. C. C. Moore, Compactifications of symmetric spaces, Amer. J. of Math., 86 (1964),
201-218.

12. H. E. Rauch, Harmonic and analytic functions of several variables and the maximal
theorem of Hardy and Littlewood, Canad. J. Math., 8 (1956), 171-183. The author of this
paper would like to point out that his Theorem 9 is false.

13. E. M. Stein, Maximal functions and Fatou’s theorem, C.ILM.E. Summer course
on bounded homogeneous domains, Cremonese, Roma, 1967.

14, A, Zygmund, Trigonometric Series, I, Cambridge U. Press, Cambridge, 1959.

15. S. Helgason and A. Kordnyi, A Fatou-type theorem for harmonic functions on
symmetric spaces, Bull. Amer. Math. Soc., 74 (1968), 258-263.

CornNELL UNIVERSITY, ITHACA, N. Y., U.S.A.
AND
Dart™ouTH CoLLEGE, HanoVER, N.H., U.S.A.

(Received September 9, 1968)



