UNITARY REPRESENTATIONS AND BASIC CASES

A. W. Knapp*

In attempting to classify the irreducible unitary representations
of linear semisimple Lie groups, one knows that it is enough to decide
which of certain standard representations in Hilbert space admit new
inner products with respect to which they are unitary. 1In this
context B. Speh and the author [3] introduced a notion of basic case
and gave a conjecture that would if true reduce the classification
problem to a study of finitely many basic cases in each group. The
paper [3] did not, however, tell how to calculate what the basic cases
are. The present paper will address this question, giving some
theorems that usually make it a simple matter to identify the basic
cases.

The paper is organized as follows: In §1 we review the setting
of the classification problem and restate the existence-unigueness
theorem for basic cases. 1In §2 we give two reduction theorems for
calculating basic cases and show how to apply them. The proof of
the second reduction theorem is in §3.

The development of the theory of basic cases has been influenced
extensively by conversations with David Vogan. Vogan's paper [5] may
be viewed as a related but different attempt to isolate the phenomena

that lead to unitary representations.

1. Definition of basic cases

Let G be a connected linear semisimple group with maximal

compact subgroup K. We assume as in [3] that rank G = rank K .

* gupported by NSF Grant MCS 80-01854 and by a Guggenheim Fellowship.
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Let P = MAN be a parabolic subgroup of G with rank M = rank(KNM),
let o Dbe a discrete series or limit of discrete series representa-
tion of M, and let e’ be a homomorphism of A into ¢ . We

denote by U(P,0,v) the unitarily induced representation
U(p,o,v) = indfj{c@ e¥®1) .

This representation may be regarded as acting in a closed subspace

of L2

functions on K with values in the space on which ©
operates. When Re v is in the closed positive Weyl chamber relative
to N and when a certain computable finite group (known as an

"R group") is trivial, this representation has a unique irreducible
quotient called the Langlands quotient and denoted J(P,o,v) . Ve
shall assume these conditions on v are satisfied; they are always
satisfied when Re v is in the open positive Weyl chamber.

The representations J(P,0,v) act in gquotient Hilbert spaces,
and the classification question for the unitary dual comes down to
deciding which of the J's admit new inner products that make them
unitary. 1In fact, by an observation of Vogan's recited in [2], it is
enough to handle v real-valued. For v real-valued (and rank G
= rank K) , the representation U(P,0,v) (and hence also J(P,0,v))
always admits a nonzero invariant Hermitian form, and the guestion is
whether the known operator that relates this form to the L2 inner
product is semidefinite.

We think of o as fixed and v as varying, and we look for
those real v in the closed positive Weyl chamber for which J(P,o,v)
can be made unitary. Then it appears from examples that there are
only finitely many distinct pictures of unitary points for a given
¢ and that most of these pictures are associated to subgroups of G.
The idea behind "basic cases" is to pick out finitely many o's whose

pictures ought to include all the pictures that are new for G. Then
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we want to associate to a general (G,0) a pair (L,UL) with LEG
and ok basic such that the pictures of unitary points for ¢ and
ol ought to match exactly.

To define basic cases o, we restrict attention to a class of
o's for which some minimal K-type of U(P,o0,v) depends coherently
upon o , and then the basic case is the o of smallest parameter
in the class.

In more detail, let bCS1t be a compact Cartan subalgebra of g,
let A Dbe the roots of (gc,bc), and let Dy be the subset of
compact roots. We may assume that the Lie algebra o of A is
built by Cayley transform from strongly orthogonal noncompact roots

{al, ""GL]' We decompose b =b_@®b_, where b_ is the common

kernel of the aj, and we let
A, =AN Zmaj.

From b and A, Wwe can construct a split semisimple subalgebra 8
enes (A Let G, be the corresponding analytic subgroup, and choose
L, = Kr1Gr as maximal compact subgroup. Since each ﬁaj is in AL s
we have agigr. In fact, a can be taken as the Iwasawa a of 8,
The M of a corresponding minimal parabolic subgroup of G.. is then
M, = ZKr(u); M, is a direct sum of two-element groups, and it is
a subgroup of the center ZM of M.

The roots of M can be naturally identified with the subset A_
of A orthogonal to all aj 7 If o is a discrete series or limit
of discrete series representation of M, then we know that o is

#

induced from some o on

_ =
M = MOZM = MOMr'

We let % denote the scalar value of ¢ on the subgroup Mr of ZM’

and we let (RO,C) be a Harish-Chandra parameter of of . Here RO
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is dominant for the Weyl chamber C of ib_, and we let (a_)+ be

the corresponding positive system in A_.

The paper [1] shows how to obtain a positive system A" such that

(1) Ao 1s A" dominant
(11) A" =2 ()"
(111) A, is generated by the AT simple roots that it contains

(iv) some other properties hold.

The theorems of [1l] then identify the (highest weights of the) minimal

K-types of U(P,0,v) as all a§ dominant expressions of the form

A=A = Ef2pK) + 2pp +H. (2:+2)
r

Here p refers to a half-sum of positive roots, A 1is the Blattner

#

parameter of o given by

N =t PR EB Ts (1.2)

and E 1is the orthogonal projection on itmaj. The linear functional
4 is any minimal (= fine) Kr—type for the principal series representa-
tions of Gr with Mr parameter the translate of ¥ given by

= X'ex‘—P(E(epK) i epKr)1Mr .

We say © has ({aj},A+,x,u) as a format if A in (1.1) is a

oL
K

consider simultaneously all o's with a common format and pick out

minimal K-type of U(P,o0,v), i.e., if A is A, dominant. We

a smallest one. Theorem 3.1 of [3], reproduced below, gives the

sense in which there exists a unique smallest one.

Theorem 1.1l. Suppose Gm is simply connected. Among all

infinitesimal characters AO of discrete series or limits of discrete

series of M with a particular format for G, there exists a unique

one ko,b such that any other Ao for that format has Ao"ko,b

dominant for A" and G-integral.
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We call A or its associated Oy the basic case for the

0,b

format. When Gc

is not simply connected, we pass to the appropriate
cover of G in order to use Theorem 1.1 to define "basic case";

back in the original G, the parameter ko,b continues to make
sense, but 0, may no longer be single-valued. In any event there
are only finitely many basic cases for each G.

Some detailed examples appear in [3], all attached to minimal
parabolic subgroups. For the double cover of So(2n; 1) %y is the
trivial representation or the spin representation. For SU(n,1) and
SU(N,2) the basic cases are finitely many one-dimensional representa-
tions of M close to the trivial representation. For Sp(n,1) with
n)2, M 1is sU(2)xsp(n-1) . The basic cases (kX fundamental) @ 1,
with 0¢{ k¢ 2n-1, were listed in [3]; there is one other basic
case—given by Iy = 1@::0, where % is the fundamental
representation attached to the long simple root of Sp(n-l).1

Returning to the general (G,0), we recall how [3] assoclates to
(G,0) a basic case (L,UL) for a certain subgroup I, of G. Let
A. be the infinitesimal character of o, let ({aj},A+,x,u) be a

0

compatible format, and let A be the basic case for this format.

0,b
Let q = 1®®u be the parabolic subalgebra of ¥ defined by the

+
A dominant form ko"ko,b

q is built from b® and all pea with (A -Aj 4, B) 2 0,
1® is built from v® and all pea with (Ay-Agy 1, B) = 0,
u is built from all BeA with (Aj-2y 45 B 2 0

L This additional basic case for Sp(n,1l) was inadvertently omitted
from the 1list in [3]. For it the induced representation has two
minimal K-types, and J(P,Ub,tpA) is not infinitesimally unitary for
any t » 0.
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et I = 1 ¢ N g, and let L be the corresponding analytic subgroup

of G. The root system of (Iw,bm) , namely
L =
A% = {ped | {Ag-Ng 5 B =01,

(7 €

contains all iaj, and thus |1 contains a . Then it follows
that
pb = (MNL)A(NN L)
is a parabolic subgroup of L. We define ol by
e T (1.3a)
0 0 - i
L [
X~ =x-[exp E(2p(un17)]ly - (1.3Db)
1%

The propositions in §4 of [3] establish the following.
Theorem 1.2. The definitions (1.3) consistently define UL,

L L

and ({aj],a+n aAl,x¥u) 1s a compatible format for oY. Moreover,

GL is the basic case for this format.

Remark. The group L 1is reductive, not necessarily semisimple,

L

and the statement that o is a basic case is more precisely a

L

statement about the restriction of o within the derived group

of L.

Conjecture 5.1 of [3] expects that J(P,o,v) is infinitesimally

unitary for G if and only if J(PL,UL,v) is infinitesimally

unitary for L.
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2. Reduction theorems

Even in ostensibly easy examples, it is a bit subtle to determine
the basic cases without a guess as to what they a.re.2 In this section
we give two reduction theorems to make this determination easier. We
apply the theorems to give formulas for the basic cases attached to
maximal and minimal parabolic subgroups.

Throughout this section we work with a fixed format

({aj},&+,x,u) . Following [1], we say that

real if in E]Rczj
a root in A is imaginary if orthogonal to T Ra
complex otherwise.

The first theorem is a kind of localization theorem for the
calculation of basic cases. Fix a complex or imaginary g simple

root B, and let

QH = root system generated by g and 4,
H
b = IRiHﬁ"'br
3% = 0N+ T ex
H

YEA
5 =g ny°
H = (semisimple) connected subgroup of G corresponding

to § . (253

We use a superscript H to denote the usual subgroups, subalgebras,

etc., associated with H. Note that AE = Ar and thus GI; = Gr'

Let

2 Cf. Footnotes 1 and 3 elsewhere in this paper.
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b= N EX S, (2.2)
Y€&+ Y
yEaR

Theorem 2.1. Fix a format ({aj],a+,x,u) and a complex or
imaginary &+ simple root B, and make the corresponding definitions
(2.1) and (2.2). Let A, = Mo, b
({aj},A+,x,u) for G, and define

be the basic case for the format

Ao =y = p(n) (restricted to )

>
Il

X-[exp E(2p(0n1%))1], -
r

Then ({aj},(AH)+,xH,u] is a format for H, and the basic case for
this format is exactly xg.
Proof. This is proved in the same way as Propositions 4.1 and

4.2 of [3] but with H in place of L.

Corollary 2.2. Let ko b be the basic case for the format
({as},aT,x,u) of G, and let B be an imaginary At simple
J

root. Then

+

al if g is in QK

2Ny, p 2 B
|8l

if not.

Proof. We apply Theorem 2.1. Since #*p are orthogonal to the

other members of &H, we may think of &H

as being just {zp}.
Then H is locally SU(2) or SL(2,1R), and the corollary results

from direct calculation.
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Corollary 2.3. Let ?\O b be the basic case for a format
2
({cx],&"',x,p) of G that corresponds to a maximal parabolic subgroup
other than in a real form of Gg , and let B Dbe a A+ simple

root. Then

1 if B8 is compact imaginary
2Ny po B
]’l = 0 if B is real or noncompact imaginary
B

correction(p) if p is complex.

Here correction(g) is always 0, %, or 1, depending on the form of
B. With e denoting a member of (ib_)', the formula for

correction(g) 1is

(1 e S e
and p =0
(1 - senu, 1)) if p=¢ -%a, |l =la|l , p=%3%a,
and a sign = is fixed so that
Y=ex%a 1s compact
correction(p) = ']g"i' %gq if p=¢ -a, 16|12 =2]al®, and
B

the sign £ is fixed to be + if
B is compact for G and - if B

is noncompact for G

max{O,—e—iu—T—E}—} if p=e -%a, |t112=2|ﬁ]2, and
Y
l a sign £ is fixed so that

y=e+*%a is compact.

Proof. For B real the formula is trivial, and for B
imaginary the formula comes from Corollary 2.2. For S complex we
apply Theorem 2.1 and are led to a group H of rank 2, where we make

an explicit computation. The group H is locally su(2,1) for the
first two forms of B, SO(4,1) for B compact of the third form,
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and Sp(2,R) in the remaining cases.

If we try to use Theorem 2.1 to handle the general case, we find
that H can still be fairly complicated. Specifically the subgroup
G of H is split with rank Gr = rank Kr’ and its simple
components are of type Al ) B‘n ’ Cn 3 D2n » E7 s E8 ’ FLL S OT" G,2 . However,
not all of G, 1s needed to handle the projection E(B) of the
simple root p£, and we seek a second reduction theorem that allows
us to discard the unnecessary part of Gr'

The success of such a reduction depends upon the nature of B8.

The full list of possibilities is enumerated in the following lemma.

Lemma 2.4. Apart from indexing and signs, the following
expressions B =e¢ + L cjoy (with e in (iv_)') are the only
possibilities for a complex root in A other than in a factor of

type GJQR. Each such possibility has

(g, ay K, ap®
cJ=---—IE—- and E—E——-—E!ll i = n <
CCJ 16 aj
(EL)RS D=L p and o of equal length; B =€ +3a .
(2)) ni=2.
a) B,ay,0, Of same length; p =¢ +30; + 3oy,

b) p long relative to aq

B
e¢) B short relative to 0y 5 B=¢ + 50

]

a) B,ay,ap,0ay Of same length; B e+ga1+%a2+§a3_

b) B and o, long, a short; B=¢+a; + %a2.

c) B and a, short, a, long B =¢ + %0 + 30y
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Proof. We apply Parseval's equality to the expansion of g in
terms of the orthogonal elements e, Oy 5 eees and we are led to the

list of possibilities in the statement of the lemma.

Taking advantage of the reduction in Theorem 2.1, let us now
suppose that G and At are such that there are no imaginary simple
roots and there is exactly one complex simple root, which we call §Z.

Fix a subset 8 of the indices 1, ...,4 such that

{aj] jES}a{dj I (aasﬁ> # 0},

and let
H
AT = AN [IRB + Zmaj]
Jes
H 3
bih = ]RlH;S + RiH,
Jes J
1;“3 = (bH)‘E + ECXY
H
YEA
5 =gny°
H = (semisimple) connected subgroup of G corresponding to § .
(2.3)
Again we use a superscript H to denote the usual subgroups,
subalgebras, etc., associated with H. In terms of the given format
for G, we define
(QH)_'— - &4— n AH
TR H
H
wh o= wl
0 MEH exp b _
Hy = ol .
Xo = wg-exp (B (2p1) -QpKHH : (&2
r

MEN exp b_
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Theorem 2.5. Fix a format ({aj},&+,x,p) for which the only
nonreal AT simple root is the complex root g, and make the

corresponding definitions (2.3) and (2.4). Assume further that

(i) if e isin A_ and exa are roots, then J, is in. 8

JO
(ii) in the notation of Lemma 2.4, B 1is of type (L) (229, ox ((3&);

or else g is compact and is of type (2b).

Then there exists an extension wH of mg to a character of M?
such that if p 1is a fine K -type for w then wf is a fine Ki-type
for wH. For any such extension wH and corresponding xH 0 i
hozzko b is the basic case for the format ({aj],a+,x,p) , then
2

(Lo s (8B ,xEuH) 15 & fornat for H and the basic case A

Jj Jjes 0,Db
for this format is exactly A = A | ...

0 0' H
Remarks. We may ignore real forms of Gg, since otherwise

AEZA. Then we see that Assumptions (i) and (ii) are satisfied 1f
all roots in A have the same length. In particular the theorem
reduces calculations of basic cases for A of type E6’ E?, or ES to

a classical root system AH

of rank at most four. Moreover, the
corollary below shows that the theorem handles formats associated to
minimal parabolic subgroups. With a little additional work, one can
weaken Assumption (ii) in the general case, but we shall not do so

here.

Theorem 2.5 will be proved in §3. The proof uses the following
lemma, which we need also when we apply Theorem 2.5 to obtain

Corollary 2.7.

Lemma 2.6. In the notation of Theorem 2.5, if the component of

g orthogonal to all o is €, then every member of AT is of the

form Y = ne +zcj%. with n=0,1,o0r 2.
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expand Y in terms of the simple

roots and then regroup to see that Yy =ne +2cja,j with n an integer

2 0. Then

21812 > 1v12 > Ine|® = n®le]|® = n®x (For g or $)[pIZ  (2.5)

by Lemma 2.4. So EZIlrng and n{ 2.

Corollary 2.7.3 Let A

0,b

be the basic case for a format

({ccj},5+,x,u) of G that corresponds to a minimal parabolic

subgroup, and let B be a A"

15
2Ny 5 B =T
|8l
correction(g)

simple root. Then
if B imaginary (and compact)
16 real

if B complex.

Here correction(p) is always 0, %, or 1, depending on the form of B.

With e denoting a member of

[1

2]

ol =

correction(B) = .]2:+ 2<!Pig)
g

B Q(IETW
Y

(1 - sgnlu,Y))

|

', the formula for correction(p) is

ifﬁ=2—%c¢j, Iisl =|CI':]| ’ U*Laj

ifﬁ=e-%ajs |ﬁ]:|aj|.‘ “lajs
and a sign £ is fixed so that

Y=et 2 a is compact

if B=¢ -a, with |;3|2=2|cej|2

J

if p=e -%ai_%aj ’ !.Sl =lai]

= IaJ1 , c=% or 0 according as
%(czi+aj) is or is not a root, and
a sign + is fixed so that

Y =¢ —%aii:%aj is compact .

3 A result of this sort was announced in [3]. However, the formula

for correction(g) in [3] contains some misprints and an omission.
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Proof. For A real the formula is trivial, and for B
imaginary the formula comes from Corollary 2.2. TFor p complex we

apply Lemma 2.4. Our assumption about a minimal parabolic subgroup

means that aA_, =@. If B were of type (2c) or (3a) or (3b),
t]

then 2 would be in A_ 3 1if fp were of type (2b) with B8

noncompact, then € would be in A_ . . So B 1s of none of

11
these types.

We apply Theorem 2.1 and prepare to apply Theorem 2.5. Normally
we let S =1{j| (ﬁ,aj);éo}. But if there is an index J, such that
el +a;

CX.JO
to S. (Such an index ], is necessarily unique.) Then

is in A with e' orthogonal to all as then we adjoin
J-0
Assumption (i) is certainly satisfied.

In view of what we have already proved, Assumption (ii) will be
satisfied if we show that p cannot be of type (3c). II, (on the
contrary, p 1is of type (3c), then the component Aﬁ of A to which
B belongs is of type B/ ., C,» 0T Fy » For the case of Bn, we note

n

that p and are short and nonorthogonal, contradietion. For the

e
case of Cn or Fh’ e shows the existence of long noncompact
roots, and it follows that the group corresponding to Aﬁ is split
over TR . Since the format is assumed attached to a minimal parabolic
subgroup, Aﬁ can contain no complex roots, in contradiction to the
assumed form of f .

Thus we can apply Theorem 2.5. We consider the possibilities
for S. First suppose AT contains some member Y =¢' —aj with
€' #0 orthogonal to all ay, and let € Dbe the projectionoof B
orthogonal to all aj. Lemma 2.6 shows that €'=2¢ or e'=¢. T
et -2c, examination of (2.5) shows that [e|? =#lgl®, 1.e., B 1s
of type (3), in contradiction with what we already know about B .

So Y must be of the form e-—aj . For e to be a root, §B

0
must be of type (2a) or (2b). If p is of type (2a), say
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B=¢ —%ai—éaj, then %ai+%aa. Isiln A, IEN B is of typell(2b);
then B must be Y. In any event, the only way S can have more
than one element is if B 1is of type (2a).

when A" does not contain a member E'-—aj , then the only way
S can have more than one element is if B 1is og type (2a), since 8
is not of type (3).

Thus if B is not of type (2a), we can apply Corollary 2.3 to
H to handle matters. If B is of type (2a), say with
p=¢ -%a, - %aj » then we make an explicit calculation. If %(ay +a3)
is a root, the calculation is in a group locally isomorphic to

S0(5,2) or 80(6,3); if %(ai+a ) 1is not a root, the calculation

J
is in a group locally isomorphic to SU(2,2) . There are no other

possibilities, and the corollary follows.

3. Proof of Theorem 2.5

Throughout this section the notation and assumptions in Theorem
2.5 will be in force. We write Ppg=¢ 'Zbiai with e orthogonal to

all aj.

Lemma 3.3,  AF = and A% L=l .
—_— g - = g |

Proof. Let Y be in A_ and write Y=cB+3Icya; . Here c#0
to make Y orthogonal to all aj - Taking the inner product with

a; s, we have

J
- 2
0= (Y’CC-) = c(,Bju'J'> + Cdlajl .

Thus cj;éo implies (ﬁ,aj)rﬁo, which implies J is in S. Thus

Yy is in A%, and we obtain ﬁfaﬁ.” - The equality AI_{ c=4_ , then
’

]

follows from Assumption (i).
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Lemma 3.2. p - pH S pII{, is analytically integral on i

Remark. Assumption (ii) is used only in this lemma and in
Lemma 3.3.

Proof. The expression in question is half the sum of the members
of AT that are in neither &H nor A, and it is enough to show
that the expression is actually a sum of members of AT, The roots
contributing to the expression are all complex, and we write them out
as in Temma 2.4. Then we consider together roots differing only in
the signs attached to each a. If there are at least two a's, then
half the sum of the members of a class is an integer multiple of the
sum of the root with all plus signs and the root with all minus signs.
So the only problem is with roots of types (1), (2b), and (2c). We
show the only ones that contribute are of type (2b).

For type (1) let Y=e'#%q, . Consideration of lengths shows
that p=e'-4a,, and then j=k to force 20y, /|8|° to be an
integer. Thus Yy 1s already in Q.H. For type (2c) let Y =e'# %ak.
Then 2¢' is a root, and Lemma 2.6 implies e'=¢ . Assumption (ii)
forces B to be of type (2a), (2b), or (3a), and (2b) is ruled out
since 2 is a root. If p=¢ —%ai—éaa is of type (2a), then
é(ai+aj)i %0, 1s a pair of orthogonal roots whose difference is a
root. Then the sum ay +aj must be a root, in contradiction to
strong orthogonality. Finally if B is of type (3a), then {B,ak) #0
in order to avoid 2(B,¥)/|p]° = 1/2. 1In short, no root y of
type (1) or (2c) makes a contribution.

For type (2b) let Yy =e'% a - Half the sum of these two roots

is €', which is a root. This completes the proof.

+

Lemma 3.3. Every member of QK

is the sum of members of (AI}'I{)+

and AT,
T
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Proof.  Let Y dn A;} be given. 1In view of Lemma 2.6, we can
write ¥ =ce +2ciai with ¢=1 or 2. Lemma 3.1 shows we may assume
Tegag # 0.

First suppose c¢=2. Then !YIE > 4le|?, and (2.5) shows that
le|®=%1pl @ ana 2|p|®=[v|?. That is, B is of type (3) in Lemma
2.4, hence of type (3a) by Assumption (ii). Also y is of type (2);
being long, it must be of type (2a) or (2b). If Yy is of type (2a),
then the a's 1in it are all long, while the a's in A are short;
thus we obtain 2(Y,§3>/|Y[2 = 1/2, contradiction. So Y is of
type (2b), and then Assumption (i) and Lemma 3.1 show that Yy is
already in (Ag)"'

Thus c=1. Suppose now that |B!2=2|Y12. Then B is of

.

type (3), and Y is of type (2). Hence g is of type (3a) by
Assumption (i1i), and Y (being short) must be of type (2a) or (2c).
If Y is of type (2a), then the a's in it are all short, while the
a's in B are all long; thus we obtain 2(Y,ﬁ)/[ﬁ]2 =iyl
contradiction. So ¥ is of type (2e¢): Y=g éai . The reguirement
(Y, p) /|B|2 #1/2 forces a; to occur in B, and we conclude that
¥ is already in (A}é)Jr

With c=1, suppose next that |Y|2=2[ﬁ|2. Then B is of

type (2) and Yy is of type (3). Since B is short and y is long,
g 1is of type (2a) or (2c), and Y is of type (3a) or (3b).
Assumption (ii) says B 1s not of type (2c). So B is of type (2a),
say p=c-%a;-%a;. Then 2(B,Y)/|v|% # 1/2 implies y is of
type (3b) of the form Y=e*a;*%0a, . It follows that %(ai‘taj)*%ak
are orthogonal roots whose difference is a root; hence the sum ai-%uj
is a root, in contradiction with strong orthogonality.

Consequently we may assume that c=1 and |g|=]|y|. Then B

and ¥ are both of type (n) for n=1,2,0or 3. If n=1, write
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B=e-%a; . Then 2(.8,Y>/|Y12;£3/2 implies Y =c*3%a,;; hence
e a0 (A
Suppose n=2. If g 1is of type (2b) (and is thus compact, by

assumption), say p=¢€¢ -a then Y =e*a,; or else (Y,a;) =0, by

i
consideration of the lengths of the a's in Y. In the first case
y is in (A§)+, and in the second case (Y,R) > 0 and B simple
imply that ¥ = g+ (Y -p) 1is the required decomposition of Y .

If B is of type (2a), write B=¢ -% ai—%a‘j. Ef Y0 dsof
type (2b), Assumption (i) shows ¥ is in (ag)“L. EF oy Higlof
type (2c), say Y =ed:1§ak, then %(qi+uj)i%uk are orthogonal roots,
and we are led to conclude that c:1+c13 is a root, contradiction. So
we may assume Y is of type (2a). We may assume that ¥ 1s not
cexda ?gaJ , and then the fact that 2(?,;5)/113|2 is an integer
means that ¥y =e¢ &%akd—.%am with {i,j}n{k,m} empty. Let us assume
that i precedes J; we choose a sign % so that f=e¢ —%aii%aj
is compact. Then Y = E + (¥ -—__é) is the required decomposition;

Y --E is positive because Y -8 is positive and because 1
precedes Jj.

Finally suppose n=3. By Assumption (ii) B 1is of type (3a),
say pB=¢ —%ai-%aj—%ak. Then 2¢ is noncompact, and so Y is of
type (3a) or (3b). If Yy is of type (3b), then 2(5,Y>/|Y]2 £ 1/2
implies ¥ is of the form ei:}iait o, - Then C‘m'%(aj +ak) is a
root, necessarily negative for B to be simple. Hence j or k
precedes m. TLet us say that j precedes k, for definiteness.
Then the roots % aj* %akt a, are all positive. Choose the
coefficient of o to match that in Y , choose the coefficient of
= Qe to make the whole root compact, and call the result & . Then
Y=6+(Y-8) is the required decomposition of Y.

For Y of type (3a), we argue in the same way. Since
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E(ﬁ,y)/[yleyél/Q, we may assume Y=ei%ait§a3,i%ak,. Ssay J
precedes k and Jj' precedes k'. Since B is simple, J

precedes Jj'. Then the roots

%qj % %dl{* %aj'l' = %akl
are all positive. We choose the signs for a,j' and et to match
those in Y and the sign for . to make the whole root compact.

If we call the result &, then Y =8+ (Y -8) is the reguired

decomposition of ¥ . This proves the lemma.

[

Proof of Theorem 2.5. We may assume G  1is simply connected.

It is clear that 7\13 is dominant for (QT_{)“L. From (1.2) and Lemma
3.1 it follows that AL = A on b and hence that A\ 1is

analytically integral on bD and is dominant for (a )*. Then it

follows that }\g is the infinitesimal character of a discrete series

or 1limit of discrete series of (MN H)O !

H

Next we show that exp At and any extension ¥ of Xg agree

on (exp b}_l) N (exp hg) , sSo that we obtain a well defined representa-
tion of (MN H)#’L , then of MNH. By Lemma 3.2, the restriction to

p!  of the linear functional

H
2py - 2px - (p = P = py+ po) (3.1)

is analytically integral on bl By Lemma 3 of [1], we have

EpK - 2p_,c =HEE Pl AR E(QpK) =0 (3.2)
and a similar identity on H. Restricting (3.2) to bH, subtracting

the corresponding identity on H, and taking into account Lemma 3.1,

we obtain
H H H H , H
2pp = 2p = (P = P = pp + pyp) = E(2py) - E7(2py) (3-3)

on bY. The integrality of (3.1) means that the right side of (3.3)

is analytically integral on bH . Therefore
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exp (B (2p) - ep§r> = exp(E(2p) - 2pg ) (3.4)

on exp b}_{. The required consistency

Xg = exp A on (exp blj) N (exp bg)

follows immediately by combining (3.4) with the identities

wg =w on MEI"! exp b _

G = xg-exp(EH(2p§)-EP§r) on MZN exp bl

w = X-exp(E(2pg) - 2pKr) on M,

X = exp A on (exp b_) N (exp br)
i on b,

It follows from the definition of "fine" in [U] that every

irreducible constituent of T;.leH is fine. Since TpH is such a
constituent, p' 4is fine. Fix ruJH as some constituent of T HlMH
Since M]:,n exp blf centralizes Gr ’ Tl-l 1s scalar on Mfr{ﬂ exp brf,r
and thus wH has to agree with w on M};ﬂ exp b? < Thus wH is an
extension of wg , and pH is a fine Kg-type for mH .

Now we check that AY is ()" dominant. The formula (1.1)
for A 1is

h=?\-E(2pK) +2pKr+p.,

and there is a similar formula for J'LH . Restricting the two formulas

to hH and subtracting, we obtain

H H H
A=A = [E(epK) 'QPKr] i+ [EerpK) 'EPKr] - (3'5)
Both bracketed terms on the right are orthogonal to A}é, and the
(ag)‘” dominance of AH therefore follows from the z_\% dominance
of A.
Hy CHE O H .
This establishes that ({aj}JEs, (A")T,xu™) is a format for H
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and that Rg is compatible with it. We now want to see that xg is
the basic case for this format. Assume the contrary. Then there
exists a 4, dominant H-algebraically integral form §H on ol not

H
identically 0 such that hg-gﬂ corresponds to a nonzero

representation (corresponding to & cover of H) compatible with our
format for H. One of the conditions on EX is that <gH,aJ> =0
for j in S. We extend el 4o g on b by requiring (§,aj)==o
for all j (and also ({E,B) =(§H,ﬁ>). Then E is a multiple nhﬁ

of the fundamental form A for G corresponding to B . Since G

g
is simply connected, & is analytically integral on b . From the

LY

H
fact that Aj- mﬁ[b“
compatible with the format of H, we shall prove that Aé = ho-nAB

corresponds to a nonzero representation compatible with the format of

corresponds to a nonzero representation

G, in contradiction with the fact that ko is a basic case. This
contradiction will prove that kg is a basic case and will complete

the proof of the theorem.

The integrality conditions are no problem. We need to see that

' is dominant for A’ _,

AL is dominant for (A )T, that its A .
=t >

0
and that its A

' is dominant for AE.
Ré and »' follows from Lemma 3.1 and the corresponding properties

H
in H of ?\O-mﬁth.

The required dominance for

For A', formula (3.5) shows that (A,Y) > 0 for v in (ap)¥,

and each Y in AE satisfies
r

(A',v) = () -nlAg,Y) = CA,) 2 0.

Thus A' is Al

K dominant by Lemma 3.3. This completes the proof of

the theorem.
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