Notes on Covering Spaces

A. W. Knapp

A. Fundamental group.

Notation: X denotes a separable metric space, i.e., a regular
Hausdorff space with a countable base.

Paths and loops:
Path in X: continuous function a: [0,[a]] > x.

” a|| = stopping time.

a(0) = initial point .

a(llall) = final point or endpoint .

Loop in X: path with a(0) = a(/la]); a(0) is the base point

for the loop.
Identity path: a path with [a] = o.

Constant path: a path with a(t) = a(0).
1

Inverse path a’ a_l(t) =a(llal -t) for o< t < e .

Multiplication of paths: If a and b are paths with a(|la]) = b(0),

then their product c¢ = a*b is defined to be the path traced out

by a and then b:

. a(t) for 0< t < |4
Vot ey for el < v < el + 100

Properties:

(1) The product ¢ is a path with stopping time lal +[ vl .

(2) If a:b and b-.c are defined, then (a*b)-c and a-(b-c)

are defined and (a*b):-c = a-(b-c).
(3) If 1 4is an identity path, then i.a = & whenever i.s is

defined and b-i = b whenever b-i is defined.

(4) a-a™l and a"l.a are always defined.



Equivalence: Two paths a and b with the same initial points

and same final points are equivalent, written a 2=b, if there

are continuous functions s: [0,1] » [0,0) and h:{(u,t)~> X

(for ue[0,1] and te[0,s(u)]) such that

h(o,t) = a(t), h(u,0) = a(0) = b(0)
h(l:t) o b(t) ) h(u,s(u)) = a(”a”) = b(”b”) .
Picture: )
t ;rl::u] = tinen)
ézﬂ K
inte
ale)=4to)
Properties:

(1) "Equivalent" is an equivalence relation; denote a class by [a] .

(2) If a=a' and b=Db' and if a-b is defined, then a'.b!
is defined and a'b ~a'-b'. Also a LT =gt 1,

(3) Constant paths are equivalent with identity paths.

(4) aca”" and a t.a are equivalent with constant paths.
Class multiplication:
If a+b is defined, set
[a][b] = [ab] and [a] = [&a
Both are well defined by (2).
Properties:
(1) If [a][b] and [b][c] are defined, then ([a][P])[c] and
[2]([P][c]) are defined and equal.
(2) [1][a]
[2][1]

Il

[a] , where 1 = identity path a(0)

1

[2] , where 1 = identity path a(]la]) .
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@) le=lpay?
(2] [a]

[1] , where 1

identity path a(0)

[1] , where 1 = identity path a(|all) .

Proposlition 1. Fix p In X. The set of classes of loops with
base point p is a group under class multiplication, denoted
m(X,p) . If also g is in X, then any path & from p to

q canonically defines an isomorphism of w(X,p) with 7(X,q) .

Proof. 1In the properties above, all products are now defined.
So m(X,p) 1is a group, by the properties. ILet a be a loop
based at p. Then §_l-a-§ is a loop based at g, and this

correspondence defines the isomorphism.

Definition: w(X,p) = fundamental group of X with base point »p.

If X 1is pathwise connected, then 7(X,p) as an abstract group 1is

independent of p. We say a pathwise connected X is simply
connected if 7(X) = 1.

Let f:X~>Y be continuous. Then f induces a homormorphism

Ey 2 WEB) > 7T, (p))

by f,([a]) = [fea] , which is independent of the representative.

The induced homomorphism has the important property

(feg), = Pod.



B. Properties of covering spaces.

Notation: X and Y denote separable metric spaces that are
pathwise connected and locally pathwise connected (i.e, each
point has arbitrarily small pathwise connected neighborhoods.

Then every open set has open connected components.

Let e : X > Y be continuous, and let V be open in Y. We say

V 1is evenly covered by e if each connected component of e"l(v)

1s mapped by e homeomorphically onto V. (Note this implies

V is connected.)

Let e: X~=>Y be continuous. We say e 1s a covering map if

each y 1in Y has an open neighborhood V& that is evenly
covered by e. (Note that this implies e is onto ¥.) In

this case Y 1s called the base space and X is the covering space.

Proposition 2 (Path-lifting theorem). Suppose e : X > Y is a

covering map. If y(t), 0{ t< 1, is a path in Y and if
Xy 48 din e_l(y(o)), then there exists a unique path x(t),
0£+<1, in X with x(0) = x, and e(x(t)) = y(t).
Proof. Let T be the set of t in [0,1] such that yl[o’t]
1lifts to a path from X, The set T 1is nonempty since 0
18 9n 9 T 18 open. [TIn fact, let to be Iin T. Form
the connected component U, of e_l(vy(to)) containing x(to),

so that e'l $ v&(t ) => Uo is continuous. Extend x(t) by

0
the definition x(t) = ehl(y(t)); then we see that T is open.

(Note that this definition is forced since x(t) for t near
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t_ must be a connected subset of e"l(

a ) containing

V&(t

)
o
x(to) and so must be in the component U .)] T is closed.

o
In faet, let ¢ be a 1imit point of T not in T. Form
o
vy(to) and choose & > 0 so that y(t) is in vy(to) for
-1
(

G =8 G tye Find the component of e Vy(to))

containing x(to-—a) and 1lift y to this component. As
above, t, is in T. Thus T 1is closed.] Since [0,1]
1s connected, we conclude T = [0,1].

For uniqueness let T' Dbe the set of t in [0,1] such

that all 1lifts of yl[o t] starting at x_ agree. Then

T' 1s nonempty, and it is closed by continuity. T' 1is open

by the argument for T above. By comnectedness, T' = [0,1].

Lemma. TLet e : X > Y be a covering map and let V be an open

subset of Y +that is evenly covered. Then the components of

e_l(v) are open.

Proof. TLet U, be a component of e-l(v) and let x_  De in Uy
Since X 1is locally connected, choose a connected open
-1
(

neighborhood U of X, contained in the open set e Vs

Then UC UO since U0 is a component, and so UO is open.

Proposition 3 (Covering homotopy theorem). ILet e : X > Y be a

covering map, let K be a compact space, and let fo T R

be continuous. If g : Kx [0,1] - Y is continuous and satisfies
g&(-,0) = ef , then there is a unique continuous £ : XKx [0,1] = X
such that f(.,0) = f, and g = ef,

Proof. For each k in K, Proposition 2 shows there is a

unique path f[kx [0,1] starting at f (k) and covering the
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path g;]k>< [0,17" This defines f and proves uniqueness.

We must prove f 1is continuous as a function of two variables.
Let T be the set of t, in [0,1] such that f(k,t) is
continuous at (k,t) for all k in X and all t < e

Then O ds in T. [In fact, fix k, in X. Form the

_l(v

component U of e " )) containing fo(ko), so that

go( o}
-1

e - Vgo(ko) -> Uo 1s continuous. UO is open by the lemma.
Choose a neighborhood Nko of ko so that fO(NkO) c U,
and g(Nkox [0,€)) €V (k) Then f(Nkox [0,¢)) € U.

Hence f = e'lg on N, X [0,€) and is continuous. ]
o]

T 18 open. [In fact, let to be In T, Wix ko in E.

-7 el )
Form the component U, of e (Vé(ko’to)) containing f(ko,to),
-1 : i
then e 2 vg(ko’to) = UO is continuous. Choose a
neighborhood Nk of ko and an € so that
o o
-1
f(NkOx (to-eko,to-+eko)) € U, Then f=e g on

Nkox (to-eko,t0-+eko) and so is continuous on this set. The

N's cover K. Extract a finite subcover and use the minimum
of the ¢'s to see that T is open.]

T ds closed. [In faet, let t, be a limit point of T
not In 'I. Fix ko in. K. Form V = Vg(ko’to)’ and choose

N' (a neighborhood of ko) and ¢ so that g(N!'x [to-e,t0-+e])

€ V. Form the component U, of e"l(v) containing f(ko,to-e);

then e ™+ : vV » U, 1s continuous. Choose a neighborhood N & N!
so that f(N,t -€) c U

f = e—lg on this set, and f is continuous at (ko,to). So

o- Then f(Nx [, —i€st_ + €]) € U,»

T 1is closed.] By connectedness, T = [0,1].
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Proposition 4. If e : X > Y is a covering map, then a path x(t)

in X 1is a contractible loop (i.e., a loop equivalent with a

constant map) if and only if the projected path ex(t) is a

contractible loop. Consequently e, is one-one.

Proof. = is trivial. For <=, put f,(t) = x(t), and
suppose ex(t) is contactible. Then we can find a continuous

g(t,s) for s [0,1] such that g(-,0) = ex(-), g(0,s) = ex(0),

m

g(l,s) = ex(1) = ex(0), and g(:,1) = ex(0). TFind f as
in Proposition 3. Then f(-,0) = x(-). Alzgo fP(o,8) is
continuous into the discrete space e_l(ex(o)) and so is
constant and must be x(0). Similarly f(-,1) = x(0), and
then f£(1,s) = x(0). So x(0) = x(1), and x(t) is

equivalent with the constant x(0).

Proposition 5. If e : X >Y is a covering, if y 18 I W,

o]

and if x. is in ehl(

5 Yo)» then the 1ift of a loop y(t)

Y

based at y_  1is a loop if and only if [y(t)] 4is in e*v(X,xo

Proof. —» is trivial. For <=, choose a loop x'(t) Dbased
at x, in X such that [ex'(t)] = [y(t)], and let g
exhibit ex' and y as equivalent: g(-,0) = ex'(-),
g(-,1) =y(-), g(0,8) = g(1,8) = ¥y Produce f as in

Proposition 3. As above, f(:,1) is a loop based at X, and

it is the 1lift of y(t).

Theorem 1 (Map-lifting theorem). If e: X->Y is a covering, if

P 1is a pathwise connected, locally pathwise connected separable

metric space, if g : P+ Y is continuous, and if P, is in

=7\ -1
g ( (
£ 2 PoX wilth P£lp

yo) and x_ is in e yo), then there exists a continuous

0) =X, and g = ef if and only if

g*(W(P,po)) E_e*(r(X,xo)). When f exists, it is unique.



Proof. If f exists, then
g*v(P,po) = e f,7m(P,p,) S e,m(X,x.).

Conversely, suppose the inclusion holds. Tet p be in P
and let w be a path from Po to p. Then gw is a path
from Yo to ¥y = g(p), and we let u be the 1ift of gw
to a path from x, to some x in X. Define f(p) = x.
Another choice of w 1leads to a loop in P +that is mapped
under g to a loop in Y. Since the class of the loop in
Y 4is in g*v(P,po) E_e*w(X,xo), Proposition 5 shows the
loop 1lifts to a loop in X; therefore x is uniquely
determined by this definition.

To see that f 1is continuous at p, let UO be the

component of ehl(v ( ) containing f(p), so that

g(p)

vg(p) - UO is continuous. Choose a pathwise connected

s5 .
neighborhood N of p in P so that g(N) E-Vg(p)‘ Then
a path from p within N is mapped by g and lifts to a
path from f(p) within Uy Hence f(N) < U,- Then

= e"lg on N, and f is continuous on N.

If f exists, then the conditions in the definition above

must be satisfied. So f is unique. This completes the proof.

Notation for unigueness theorem: Tet e : X - Y and e' : X' > Y

be coverings. We say e and e' are equivalent coverings if

there is a homeomorphism t of X onto X' such that e'y = e.

X-——————aX'

N,/
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Theorem 2 (Uniqueness theorem). Iet e : X > Y and e' : X' > v
be coverings, and let ¥s be in Y. Then e and e' are
equivalent coverings if and only if base points X in X and

x, in X' can be chosen so that e(xo) = e'(xé) = ¥, s8nd

e (T(X, %)) = el (m(X',x1)).
Proof. If e and e' are equivalent, choose X in e_l(y

and define x! = t(xo). Then G*W(X,Xo) = el 7(X,x

&)
= e;W(X’,Xé).
Conversely suppose e*w(X,xo) = e;v(X',xé). By Theorem 1,
we can cover e : X >Y Dby t : X > X' and we can cover
el Ebos S by o s AR s g Now Jjt leaves Xy fixed
and e(ji1) = (ej)t = e't = e. So Ji covers the identity
map of Y into itself and by the uniqueness in Theorem 1
is the identity map of X. Similarly 1+J is the identity,

and therefore t 1is a homeomorphism. By construction

e't = e, and therefore 1 defines an equivalence.
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C. Existence of covering spaces.

Notation: X and Y are separable metric spaces, pathwise

connected, and locally pathwise connected.

In proving existence of covering spaces, the next proposition will
guide the choice of open sets in Y that are to be evenly
covered by e. In particular, we shall want to assume that

such sets exist.

Proposition 6. If e : X > Y is a covering, then any pathwise

connected open subset Q of Y such that any loop in Q is
contactible in Y 1is evenly covered.

Proof. Fix y_ in q, x, in e-l(yo). Lift the paths in

Q@ from y_ to paths in e_l(Q) from x. Let P_  De
o

the union of the images of these paths, and let

el = e|P . Then e'!' is continuous from P, onto Q.

X5 o
We show e' 1is one-one. Thus let Py and Ps be in

~L(a).

e"l(q). Connect x_  to p; and p, by paths in e
The projections to @ yield a loop in @, which is in
e*(w(X,xo)) since 1t is contactible in Y (by hypothesis).
By Proposition 5 the 1ift is a loop and Py = Do Thus e!
is one-one.

We show e' 1is onto Q. If q 1is given, join I to

g by a path and 1ift to a path from X5 to some x. Then

e'(x) = q.

-1

We show e! 1s continuous. If ¥y is in @, 1let
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VE Q be a pathwise connected evenly covered neighborhood

of ¥, let x be in B r1e—l(y), and let U be the

o)
component of e_l(v) containing x, so that et : V> U
is continuous. Then e' Tt = 71 on V, and er1 is thus
continuous at y. Hence e' 1is a homeomorphism of Px

o]
onto Q.

Clearly Px is connected. If X # x, then Fe and
o o

PX coincide or are disjoint since a point of intersection

Joins X to X. Also Px is open: 1In fact, let x be
_ o

in P, and let UC e %

o}

neighborhood of x. Then U is path connected to P and

Q) be a pathwise connected open

so U S'P&o. Thus PXO 1s open.

Finally the union of all Px for x in e

._l(

e'l(

Q), and so P_ is a component of e
o

is evenly covered.

We say Y 1s locally simply connected if each y in Y has an

open pathwise connected, simply connected neighborhood. 1In this
case, each y 1in Y has arbitrarily small open pathwise
connected neighborhoods with the following property: Any loop

in the neighborhood is contractible in Y.

Lemma. TIf Y is locally simply connected, then W(Y,yo) is
countable.
Proof. Let U be a countable base of open sets of Y that are
pathwise connected and contain only loops that are contractible
% Y. - IF £ and V, are in V', then erlvk has a

countable number of components (since Y is separable and the
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components are open). Let if* be the collection of all
components of all erlvk. By the separability we can
cover each Vj by countably many open sets Vi such that
vy S Vs. Let f£(t), 0{ t< 1, bea loop based at Yo
Cover [0,1] with open intervals such that f of each
interval is in some vi,
extract a finite subcover. If V! € Vy eand if f maps

and, by compactness of [0,1],

L
some open interval into V,, then f maps the closure of

the interval into Vj, by continuity. As a result, we can
choose points t; and sets V;, 0 i< n, with t_ =0,

Gy Lo ElB ) e TR,

i for 1 > 1, and f£(t) e v, for

1 2

t: £ £ ¢

*
5 Let Vi be the component of Virwvi_ to

131" £5

which f(ti) belongs. To f we can associate the finite
sequence

* *
Vys Vis Voo Voo

*
wisiais, Wiange Vi

= 2
and this sequence determines [f]. (To see this, suppose g
is given with the same sequence. We may assume without loss
of generality that g(t;) = f£(t;) for all i since v? is
pathwise connected. Then f ~ g for each interval

ti Lttt

in Vi.) The set of sequences is countable, and so W(Y,yo)

$41 because taken in succession they give a loop

is countable.

Theorem 3 (Existence theorem). If Y is locally simply connected,
if ¥y, isin Y, and if H is a subgroup of F(Y,yo), then
there exists a covering space X with covering map e : X > Y

and with point X, in X such that e(xo) =y, and

e*(W(X,xO)) = H.
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Proof. Let X be the set of equivalence classes of paths in
Y from Yo under the equivalence relation that f ~ f£!' if
(1) £ and f' have the same final point

(2) [etegmt

] 418 @n H:

This is an equivalence relation because H is a group.
Typical equivalence classes will be denoted x or {f}. TLet
X be the class of the constant path at ¥or 19(eh I g S

let e(x) be the endpoint of a path in the class x; then
e(xo) = ¥

Let YV be a base of open sets in Y +that are pathwise
connected and contain only loops that are contractible in Y.

For V in VY and x in e'l(v), define U(x,V) € X by

l(V) | x' = class of some f-h,
where {f} = x and h is
a path starting at e(x)
and remaining within Vv 3.

U(x,V) = {x' € e

The sets U(xX,V) have the following properties:

(1) A class x' in U(x,V) is not affected by using
a different representative f, nor is it affected by using
a different h as long as the endpoint of h is not changed.
[In fact, f{f~h} = {f~h} because £fh and f'-h have the same
endpoint and [f-h-h™L.f1™1) = [r.r17l) ¢ B plso, if h and
h' both have the same endpoint, then so do f:h and f+ht';
since h-h'™ T is contractible in Y, we have
[£-hent ™2™y = [foe™l) = [1] e m
and hence {f-h} = {f-h'}.]

(2) If x' is in U(x,V), then U(x',V) = U(x,V).
[In fact, let x" be in U(x,V), and write x' = {fo-ho} and

x" = df-ni. Applying (1), we have
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x" = {£:0} = {£-h-h71on) = {(£2h)- (h31-n)].  (¥)

On the right side, {f-ho] = x' TDbecause f-ho has endpoint
the same as for fo-ho and because x = {f} = {fo] implies
1

-1 i

[fo-ho-h; L] = [£of ] € B
Also h;l-h is a path within V starting at e(x'). Thus
() shows that x" is in U(x',V). Hence U(x,V) C U(x', V).
In particular, x is in U(x',V). Then we can repeat the
above argument with x and x' interchanged to conclude
U(x!,V) € Ulx, V)]

(3) If = is in U(xl,Vl)ﬂ U(x,,V,), choose V in
so that e(x) is in V and VE V;NV,. Then

x is in U(x,V) and U(x,V) S U(xq,Vy) NU(x,, V).

[In fact, U(x,V) € U(x,V;) = U(x;,V;), with the equality
holding by (2). Similarly, U(x,V) E_U(XE,VQ), and the
assertion follows. ]

Now let W= {U(x,V)}. WU is 2 base for a topology of

X, according to (3), and e is continuous since e—l(
-1
(

V)
is the union of all U(x,V) for x in e (V). Next, e is
one-one on U(x,V). [In fact, suppose x and x' are in
U(x,V), e(x) =e(x'), and {f} = x. The path h that
exhibits x' as in U(x,V) is then a loop in YV, hence
contractible. Thus x = {f} = {f'h} = x'.] Also e maps
U(x,V) onto V. [In fact, let v be given in V, and join
e(x) to v by apath h in V. Then f+-h defines a point
x' of X with e(x') = v and exhibits x' as in U(x,V).]
-1

Moreover, e ~ : V = U(x,V) is continuous because

(e L(u(xr,vr)) = v is open. Thus e : U(x,V) > V is a
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homeomorphism. Siﬁce V 1is connected, U(x,V) is connected.
The set U(x,V) 1is open by definition, and e_l(v) is the
union of the U(x,V) for x in e_l(v), with the U(x,V)
disjoint or equal, by (2). Consequently the sets U(x,V)
are the conﬁected components of e_l(v). Hence V 1is
evenly covered by e.

Now we prove the appropriate topological properties of
X. S8ince U(x,V) is open and is homeomorphic with V, X
is locally pathwise connected. To see that X is pathwise
connected, let x in X be given. Then x is a class of
paths in Y starting at Yo Pick such a path f. Then
for 0 t < lzlls B() = fl[o,t] is a path from x_ to
X dn 536G The space X is Hausdorff and regular because
these properties are local properties and they hold in Y.
To complete the argument that X 1s a separable metric space,
it is enough, in view of the metrization theorem, to prove
that X has a countable base.

To prove that X has a countable base, we may assume
that VU is countable. For each V in 4, select one y
in V. Then the number of sets U(x,V) with e(x) =y 1is
the same as the number of elements of e-l(y), which is the
number of classes of paths from Yo to ¥y, modulo H. Since
w(Y,yo) is countable by the lemma, U is countable.

Finally we are to show that e*(w(X,xo)) = et ¥
be a loop based at x_ and let f = e¥. If x is the point
in X corresponding to f, then f'(t) = f’[o,t] is a path

from x  to x covering f, and so f' = ¥%. Thus x is

the endpoint of ¥, which is X,- Consequently f and the
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constant path represent the same point in X, and [f] must
be in H. Thus e*(v(x,xo)) c H. In the reverse direction,
let [£f] bedin H, and 1ift £ to T. Again f
represents x_ since [f] is in H, and it represents the
endpoint of 7. Thus T 1is a loop, and Proposition 5

shows that [f] is in e*(v(X,xO)). Hence e*(v(X,xo)) =SH.

This completes the proof.

By Theorems 3 and 2, if Y is locally simply connected, Y has a
simply connected covering space that is unique up to

equivalence. This space is called the universal covering space

of Y.
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D. Computation of fundamental groups.

We shall establish formulas for m(X) for some basic spaces X
and then show how w(Y) can often be computed when a covering
e: X=>Y 1is given and 7(X) 4is known. This will allow us to

compute 7(X) in all cases of interest for Lie group theory.

Proposition 7. R™ is simply connected.

Proof. Without loss of generality, let the base point be 0.
Let f(t) be a loop based at 0. Then h(u,t) = (1-u)f(t),
0<{ u< 1, exhibits f(t) as equivalent with a constant
path.

Proposition 8. If X and Y are pathwise connected separable

metric spaces with x e X and ¥ € ¥, then m(Xx Y,(xo,yo)) is

canonically isomorphic with T(X;XO)G)W(Y:yO)o

Proof. We map m(XX7Y,(x,,y))) to m(X,x,) @ T(Y,y,) by
mapping a loop (f(t),g(t)) based at (xo,yo) to
(L 2] .l alt])- If py and Py denote the projection maps
of XXY onto X and VY, respectively, then this map can
be written as ((pX)*’(pY)*); hence it is a well-defined map
on the fundamental group and is a group homomorphism. To see
it is onto, let [f(t)] ¢ T(X,x ) and [g(t)] e T(Y,5,) -
Without loss of generality, we may assume 0 g_t é 1 in both
cases. Then [(f(t),e(t))] maps onto ([f(t)],[&(t)]). Thus

the map is onto. To see the map is one-one, suppose [f(t)] =

and [g(t)] = 1. Again suppose 0< t< 1 in both cases.

Find hf(u,t) with h(u,0) = h(u,1) = X n(0,%) = £(t),



e

and h(l,t) = x_ . Find hg(u,t) similarly. Then

h(f,g) (u, t) = (hf(u: t):hg(u: t)) exhibits [(f(t),g(t)]
as equal to 1.

1

Proposition 9. Let X = R = line and Y = {zeC( I lz| =1}

= ecircle. Let e: X> Y be the map e(x) = e*%, Then e

1s a covering map, w(Y) = Z, and y(t) = eit, 04 &< 2w, B

a generator of w(Y).
Proof. TLet e® ip Y be given, 0< 8 < 2r. Choose

Vy = {eiCP | lo -8 < m/2}. Then

~+o0

ehl(Vb) = U {o €Xﬁ| o -6 - 21| < T/2}
n=-o
disjointly, with each set homeomorphic to Vb. Hence e
is a covering map.
We use x_ = 0 as base point in X. By Proposition 7,

o]

m(X,0) = {1}. Let y_(t) = it

» 0 t< 2m. The 1ift of
Uy ds xn(t) =t, 0< t< 27mn, which is not a loop. By
Proposition 5, [¥,] 18 not in e 7w (X,0) = {1}, Ey
definition [yn] = [yl]n. Hence ¥y, &enerates an infinite
cyclic group contained in 7 (Y,1).

Now suppose y*(t), 0< t< 1, is any loop based at 1
in Y. Lift to apath x (t), 0< t ¢ 1, based at o.
Then e(x*(l)) =1 implies x*(l) = 2mn for some integer n.
Form y*-y;l. This path 1ifts to a loop in X (necessarily

contractible) and so is contractible in Y, by Proposition L.

Thus [y*] =yl = [yljn. Hence y,; generates all of m(Y,1).
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Proposition 10. The n-sphere " is simply connected if n > 1.

Proof. This follows from the next lemma if we take

X, = s® - {(1,0,...,0)} and Xo= & = {62505 00450)3

Lemma. TLet X be pathwise connected and locally pathwise connected.
If there exist connected, simply connected open subsets Xl and
of X with X = xlu X2 and with Xlr1X2 connected, then
mE) = i,
Proof. Fix x, in X, NX,. (If X;NX, 1is empty, one of X,
and X, must be empty, and the result follows.) Let a(t)
be a loop based at X, Without loss of generality, we may
assume 0 < t <{ 1. To each point in (0,1), we can associate
an open interval centered at the point such that a maps
the closure of this interval completely into Xl or
completely into Xg. For t = 0, similarly, a maps the
closure of some (relatively) open interval [0,€) into one

of X and Xg; and for t =1, we similarly obtain a

il
(relatively) open interval (e',1]. By compactness of [0,1],

we extract a finite subcover and obtain a partition

0=1%t,<% <... < t, =1 so that a([ti_l,ti]) e in for
I Construct a path b,, 0 £ i n, from x, to
a(t;) such that b, remains in whatever Xj's a(t;) 1is in.

This is possible since XlrlX2 is pathwise connected. Let

a; (t) = a(t+t; ) for 0 t< t;, 1< i< n. Then

fa] = [boalbil][blagbél]'--[bn_lanb;l] ;

Fix 1. Then ai(t) € X, » in particular for t =0 and

i
So b,” c Xk by construction. Thus
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b b;l lies in X, . Since X,  is simply connected,

i a
| = . Therefore [a] = 1.

. A,
i-171

LA
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Let X Dbe the universal covering space of a pathwise connected,
locally pathwise connected, locally simply connected, separable
metric space Y, and let e : X - Y be the covering map. A

deck transformation of X 1is a homeomorphism f of X +that

satisfies ef = e.

Theorem 4. Tet e : X > Y be a universal covering map (as above),

and let e(xo) = ¥ Then

(1) W(Y,yo) is in one-one correspondence with e-l(

> yo), the
-1
(

correspondence being that x y_) corresponds to

o}

1ee

[e(any path from x, to xl)].

(2) the group of deck transformations H of X acts simply
transitively on e—l(yo).

(3) the correspondence that associates to a deck transformation
f in H the member of w(Y,yO) corresponding to f(xo)

is a group isomorphism of H onto w(Y,yo).

. Proof. (1) Let [y(t)], y(0) =y be in W(Y,yo). Let x(t)

0’
be its 1ift with x(0) = x,, and let Xy be the endpoint.

We make y - xy. This map is independent of the representative
because a contractible loop based at ¥ lifts to a loop in

X, by Proposition 4. TFor the inverse correspondence, let Xq

be given. Then [e(any path from X, to Xl)] is well

defined because any loop based at x is contractible, X

o]
being simply connected. The result is in W(Y,yo) and defines

the inverse map.



(2] TE x; 1s in e_l(yo), we apply Theorem 1 to the
diagram
X
,7}
fL,z l e f(xo) = X;.
ST

g=e
Then g*(v(X,XO)) = {1}, and so f exists with ef = g.
Arguing similarly, we see that f is a homeomorphism. This
proves transitivity. The transitivity is simple by the
uniqueness in Theorem 1.
(3) The map in question is one-one onto by (1) and (2).
We show it is a homomorphism. Iet f and g be in H.
Then feg corresponds to [ex(t)], where x is any path
from x_ to f(g(xo)). If we choose x(t) to pass through
f(xo) on the way, we see that the problem is to show that
[eu(t)] = [ev(t)] if
u(t) is a path from x, to g(xo)

v(t) is a path from f(xo) to f(g(xo)).

Now [ef(u(t))] = [eu(t)] since f is a deck transformation,
and f(u(t)) 4is a path from f(xo) to f(g(xo)). Since X
1s simply connected, [ef(u(t))] = [ev(t)]. Therefore

[eu(t)] = [ev(t)].
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E. Topological groups.

A topological group is a Hausdorff space that is a group such that

multiplication and inversion are continuous.

Properties of a topological group G:
(1) Left and right translations are homeomorphisms.

Proof. The continuity of multiplication implies the
continuity of translation, by restriction. Translation
is a homeomorphism because translation by the inverse
element is continuous.

(2) To each neighborhood V of the identity 1 corresponds a

neighborhood U such that UU ™t c V.

Proof. This is the statement of continuity of the map

L at (Xsy) == (l’l)'

(x,y) > xy~
(3) G 1is regular as a topological space.

Proof. TIf a point and a closed set are given, we may assume
the point is 1, by (1). Then find U in (2) for
V=G- F. We claim that Tc V. In faet, If x 48 in
U-U, then xU is a neighborhood of x and so meets U.
If y 1is in xUNU, then y = xu, x = y‘u_l € UU"IE V.

(4) Let H be a closed subgroup, and let G/H have the quotient
topology. Then the projection p : G > G/H is open, and

G/H is a Hausdorff regular'space such that the action of @

on G/H 1is jointly continuous. If G has a countable base,

so does G/H.
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Proof. The set EC G/H is open if and only if p L(E) is

open. Let U be open in G. Then p_l(p(U)) = U qh,
heH
which is open. The action of G on G/H is the composition

multiplication quotient
GX G > G > G/H,

which 1Is continuous.

If x is in G/H and F 1is a disjoint closed subset,
we may assume X = 1 by this continuity. Choose &
neighborhood U of 1 in G and a neighborhood N of 1
in G/H such that UNc G/H-F. As in (3), we claim

Nc UN. [In fact, if y is in N-N, then U'ly is a

neighborhood of y since p 1is open. Hence U_lyriN

is not empty; let 2z be a member. Then 2z = u-ly, and
y = uz € UN.] Consequently G/H is regular. Next,
p_l({x}) = XH 1is closed, and so {x} is closed. Thus
G/H 1is a T, regular space and must be Hausdorff. If
W is a base of G, pU is a base of G/H since p is
open. Hence if G has a countable base, so does G/H.
(5) Let H be a closed subgroup. If H and G/H are connected,

then G 1is connected.

Proof. Let G =UUV with U and V nonempty, open, and
disjoint. For each x in G, xH is connected, by (1).

Since xHC UUYV, we must have XHC U or xH c V. Let

n

A={xeqg| xHc U} and B={xeq | XH € V}.
We have just seen that G = AUB. Since U and V are
complements, A = {xe¢G | xHNV = g}. Tt follows that
lpV=£5}.

Consequently (4) shows that A is open in G. Similarly

A={xeq | xEnp"
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B is open in G. Since p_lpA = A ‘and p_lpB s
we see that G/H = pA U pB is a disjoint decomposition
of G/H into open sets. By connectedness of G/H, one
of pA and pB is empty, say pB. Then B is empty,
A=G, and U = G. We conclude G 1is connected.
(6) Let H be a closed subgroup. If H and G/H are compact,
then G is compact.

Proof. Let W be an open cover of G. For each x in G,
W is an open cover of xH. Let Qfx be a finite
subcover and let

V, = {yea | yH is covered by 10
We prove Vo is open. Fix y in Vi For each heH we
can find Uh_ch; with yheszh. By continuity of
multiplication, we can then find open neighborhoods Mh of = ¥
and N, of h such that MhNh € Uy - The open sets Ny,

cover H, and we let {Nh } be a finite subcover. Then

J
M = nj Mh is an open neighborhood of Ve EE & ds IR M
J
we show 2z is in Vk. Let h be given and let hesNh .

J
Then zheM,_ N, € U e U_. Hence z 1is in V., and we
hj hj — hj oit X
conclude V., 1is open. The sets pV, cover G/H. Since G/H

is compact, let {ka seeesDV, } be a finite subcover.
i) n
Since V = p"lpv for all j, {V. ,¢..,V. } covers G@.
X x5 Xq X,
Then LJJTZ; is a finite subcover of W.
J

(7) If H 4is a closed normal subgroup, then G/H is a
topological group.
Proof. Let V be a neighborhood of 1 in G/H. Choose by
(4) a neighborhood U of 1 in G and a neighborhood N

of 1 in G/H such that UN € V. Then pU and N are
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neighborhoods of 1 in G/H such that (pU)N € V.
Hence multiplication is continuous at (1,1), therefore
everywhere. If V 1is a neighborhood of 1 in G/H

and U 1is an open neighborhood of 1 in G with

gt E_p_l(vj, then pU"l € V, and so inversion is

continuous at 1, hence everywhere. Finally G/H is
Hausdorff by (4).
(8) Any open subgroup is closed.

Proof. TIf H is the open subgroup, then H =G - U xH

X£H
shows H 1is closed.

(9) The identity component G, of 1 in G is a closed normal

subgroup.

Proof. The image of Gox Go under multiplication is a

connected set containing 1. Hence GOGO E.Gb' Similarly

G;l € G, So G, is a group. It is closed because

components are closed in any topological space. It is

normal because the same argument shows xGox_l E.GO for

each x 1in G. If G is locally connected, its
components are open, and GO in particular is open. Hence
so are the cosets of GO. Since p : G - G/GO is an

open mapping, G/G. has every subset open.

o
(10) If G 1is connected, then any neighborhood of 1 generates G.

Proof. Let V be a neighborhood of 1, and choose an open
neighborhood U of 1, by continuity of inversion, such

oo}
that U=U " €S V. Set H=UTUU---U, with n factors
n=1

th

in the n term. Then H 1is nonempty, is open, and is a

subgroup of G, since U = U T, By (8), H is closed.

Therefore H = G. Then V must generate G since UCE V.
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(11) 1f H is a discrete subgroup of G (i.e., if every subset
of H 1s relatively open), then H is a closed subgroup.
Proof. Choose a neighborhood V of 1 in G so that

HNV = {1}, and choose an open neighborhood U of 1
with UUS Vv, by (2). If x is in H-H, then U  x
is a neighborhood of x and so must contain a member h
of H. Write u 'x = h. Then wu = xh~1 is in H-H and
is in U. Since it is a limit point of H, we can find
h' # 1 such that h' e Uxh T, Then h' is in U(Xh-l)
CUWE YV, and h' =1, contradiction.

(A2) & ¢ is connected, then any discrete normal subgroup H

of G 1lies in the center of (.

Proof. If h is in H, then ghg™' is in H, and by
continuity ghg_l is in the same component of H as
i e Since H is discrete, ghg_l =h and h

is central.

Notation for the remainder of the section:

G = pathwise connected, locally pathwise connected, separable
metric topological group
H = closed subgroup of G, locally pathwise connected (but not

necessarily connected)

Proposition 11. (a) The quotient G/H is pathwise connected and
locally pathwise connected.
(b) If H, 1s the identity component of H, then the natural

map of G/HO onto G/H is a covering map.
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Proof. (a) If x and y are given in G/H, take their
preimages in G, connect them by a path, and map back down
to G/H to see that G/H is pathwise connected. TIf x is
in an open subset U of G/H, take a preimage % in p_l(x),
and choose a pathwise connected open subset V‘E_p_l(U) with
X in V. Then p(V) is a pathwise connected open
subneighborhood of U and shows that G/H is locally
pathwise connected.

(b) Let pj: G- G/H;, p: G=> G/H, and q : G/H, > G/H
be the projection maps. Then q-l(U) = po(p-l(U)) is open if
U 1is open, and so g is continuous. Also q(U) = p(p;l(U))
shows that g 1s open. Since H is locally connected, we
can find an open neighborhood U of 1 in G with UNH = Hy

(i.e., H, 1s relatively open in H). Next, find an open

1

connected V about 1 with V V< U; this is possible by (2).

Then V ~V 0 HE H,. Form the sets
T\mHD’ h = Ho

These sets are open and connected in G—/H0 and their union is

_1(

q “(VH). If VhiH, N VhH  is not empty, then the same thing

. . -1 -1
is true first of VHohl n VHOhg, then of V VHO n Hohehl -
and finally of V'V n Hohoh'. since vlvn H c H,,

L _ . s
hghl g in Ho’ and so VthO = thHo. In short, distinct
sets VhHO are disjoint. Thus q 1is one-one continuous open
from each VhHO onto VH, and VH is evenly covered. By

translation we see that each gVH is evenly covered. Hence

g 1is a covering map.
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Cofollary. (a) If G/H 4is simply connected, then H is connected.
(b) If H is discrete, then the quotient map of G onto
G/H is a covering map.
Proof. (a) If G/H is simply connected, then g : G/HO > G/H
cannot be a nontrivial covering because the diagram
_ G/H

£
At

G/H > G/H
g =1dentity

says that f exists and is q"l. So H,=H, and H is

connected.
(b) This is the special case of Proposition 11b in which

Ho= )

Proposition 12. TILet G be simply connected and let H be a

discrete subgroup of G, so that p : G- G/H is a covering
map. Then the group of deck transformations of G is exactly
the group of right translations in G by members of H.
Consequently m(G/H,1-H) is canonically isomorphic with H.
Proof. Let fh(g) = gh. Then pfh(g) = ghH = gl = p(g), so that
pfy, = p and f, 1is a deck transformation. Since p-l(lvH) = H,
o

the group of translations fh is simply transitive on p

and by Theorem 4 is the full group of deck transformations.

1-H)

Again by Theorem 4, w(G/H,1-H) = H.

Proposition 13. ILet G be locally simply connected, let T be the

universal covering space with covering map e : T > G, and let
T be in e_l(l). Then there exists a unique multiplication on
T that makes T into a topological group in such a way that

e 1s a group homomorphism.
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Proof. ILet m : GX G- G be multiplication, and let
® : Gx %> G be the composition me(e,e). Since

{1} = 9, (r(Bx T Ix I)) < e, (7(T,1)),

there exists a unigque continuous & : Tx % - T such that
¢ = e and §(I,T) =T. This § is the multiplication on
T (and it is the only possible candidate for the multiplication).

It is associative by unique lifting because

P (B (x,5)52) =0 (x,y)(ez) = ((ex)(ey))ez

I

F (& (x,y),2)
= ex((ey) (ez)) = e (x,8(y,2))
and $(¥(T,7),T) =T = F(L,F(T,T)). It has Y as identity
because @(T,-) and &(-,Y) cover the identity and send 7
to 1. To obtain existence of inverses, we 1lift the composition
inversionee : T > G to amap of % to T sending T to I..

Finally e 1is a group homomorphism because

e(a(X:Y)) = CP(X!Y) = m(exiey-)'

The group G of Proposition 13 is called the universal covering

group of G.

In the homework, we shall obtain information about rotation groups
S0(n) and special unitary groups SU(n) and their fundamental
groups. The information will be obtained by induction by means

of the following proposition.

Proposition 14. If G/H is simply connected and if ¢ and H are

locally simply connected, then 7(G,1) is isomorphic to a
quotient group of w(H,1).
Remarks: In the homework, we shall see that the fundamental group

of a group is necessarily abelian.
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Lemma.
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e: G+ G be the covering homormorphisn.

Let T be the universal covering group of G and let

set # = e_l(

H).

Define e, : G/H > G/H by e (8H) = e(g)H. Then e, is

well defined, one-one, and onto. An open

mapped under e  to its preimage in T,

and to its image in G/H. So e_ 1is open. Similarly e;

o]
is open, and so e, is a homeomorphism.

is simply connected.

set in T/H is

to its image in G,
1

Therefore T/H

We claim that ® is locally pathwise connected. In fact,

if U 1is a connected open neighborhood of T in T mapped

homeomorphically by e, then e(U) N H contains a relatively

open pathwise connected neighborhood V of 1 since H is

locally pathwise connected. Then U N e~

with V and is the required neighborhood

1

(V) is homeomorphic

ef Il En H.

By (a) of the Corollary to Proposition 11, ¥ is

connected. By (b) of the Corollary, the map eIﬁ : -1

is a covering map. Now by Proposition 11,

T(G,1) = ker e

= ker elﬁ . Hence the result follows from the following

lemma applied to H.

If G 1is locally simply connected and

e & @' = E H48 g

covering homomorphism and & : T > G' is the universal covering

group and homomorphism, then ker e = ker &B/ker B.

Proof. The map of ker e8/ker 8 to ker e

is induced by B.

Nemely if g is in ker €€, then %(E) € ker e and 2ZX ¢ ker %

for K € ker 8 map to the same member of

ker e under e.

Since & is a homomorphism, so is the induced map. The map
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is onto because if k is in ker e and ¥ is in B T(k),

then ¥B(K) = k. To see it is one-one, let B(g) = 1 in
ker e. Then g is in ker % that is, g is trivial in

ker ee/ker B. So the map is an isomorphism onto.



