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David Vogan has pointed out that Lemma 5.3 is incorrect, even for matrix 
groups, and therefore some changes are needed in the statements of the main 
theorems. The changes in question are not decisive, but we feel that the 
accurately stated versions of the theorems should be in the literature. Actually, 
when changes are needed, the new results yield more Szegi5 mappings than were 
originally predicted and in that sense represent an improvement of the original 
results. Vogan also suggested the statement below of Theorem A as an approach 
to making the necessary changes. 

To correct matters, delete Lemma 5.3 and introduce M I=Mo(Fc~T ), where 
F is the finite group defined in the proof  of Lemma 5.3. Redefine oa on p. 176 to 
be the restriction of zx(M1) to the Ml-cyclic subspace H a generated by q~x. As in 
Proposition 5.5, we can conclude that cr~ is irreducible and has the stated highest 
weight and highest weight vector. The character ix gives the values of crx on 
elements of F ~ T ,  instead of F. For  the most part, we can then replace 
subsequent occurrences of M by M 1 and of induction from MAN by induction 
from M1AN, and the results through the end of w 10 go through, with their new 
interpretations. (At the beginning of w delete the fourth paragraph and then 
define A(rr, v) directly in the obvious fashion.) No changes are needed in w167 11-12. 

Qualitatively the result is that the Szeg6 mapping f--*Sf now operates on a 
different domain of functions but otherwise has the same properties as in 
Theorem 1.1. The new domain is smooth functions from K into the redefined Hx 
that transform under the smaller group M1 according to the redefined aa. In 
representation-theoretic terms, the Szeg6 map S gives an intertwining operator 
between a representation W(a~, 2p + -  v) induced from MaAN to G (rather than 
MAN to G) and the discrete series ~a" 

We can use this result to get an explicit quotient map to ~A from a 
representation induced from MAN to G. To this end, let 
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(#~,/~z) = representation of M on the M-cyclic subspace of ~bz in Vx, 

~ =  ~ % be a decomposition into irreducibles under M, 
j = l  

| (K, or) = ~fE CO~ (K, space for a )  f (m k) = aj(m) f (k)], 
( for m e M ,  k ~ K  J 

U(aj, v)=induced representation of G (in nonunitary principal series) nonuni- 
tarily induced from a j | 1 7 4  1 on M A N  (cf. formulas (6.6) and (6.7)), 

m 2 ={meMlza(m)Ha~_Hz} .  

Theorem A. With 2 = A + ~ , -  b k integral and with A nonsingular and G-dominant, 
the operator 

S j ( f )  (x) = S z z(k)- i f ( k x )  dk = ~ e ~H"~ -') v ~(~c(lx - 1))- x f(1) dl 
K K 

carries C ~ ( K , a )  into the kernel of the operator ~ on C~ zz), and under 
the identification of C~(K,  a j) with the space of the nonunitary principal series 
U(trj, 2p + - v ) ,  it carries the K-finite vectors of U(aj, 2p + - v )  in a g-equivariant 

fashion onto the K-finite vectors of  the discrete series ~z A. 

Proof Clearly Sj is g-equivariant. Define a function f~ in 0~(K,  %) by fj(k) 
= P~ zz(k)qSz, where P~ is the orthogonal projection on the space for aj. Then 

Sjfj(1) = ~ z~(k)- 1 p~, z~(k) ~ d k -  Trace P~ degree aj 
K ~ -degreez~ qS~-degreez~ qSz" 

Thus Sj is not the 0 map. In view of Proposition 10.7, Theorem 10.8, and the 
remark after Theorem 10.8, Theorem A will follow if we show that image 
Sj ~_ image S. 

Let {ql, 1 <=i<=n} be representatives of M / M  E chosen from F. Formula (3) 
below, valid in the linear case, implies here that F normalizes T. Thus each qi 
gives rise to a member s i of the Weyl group Wr, and we have z~(qi ) (aa=ci(a~, ~. 
These si2 are distinct, l < i < n ;  in fact, si2=sj)~ leads to zz (q~- lq i ) (~z=c~,  
hence q7 1 q jE M 2, and hence qi = q j. Consequently the vectors z ~ (qi ) 494, 1 < i < n, 
are linearly independent. Each such is a highest weight vector for Mo, since 
Ad(F) acts on m as the identity, and thus 

= i=1 

Consequently the spaces z~(qi ) H a are independent 

hieH ~ for l_<i_<n and ~ 
i=1  

imply h i = 0 for all i. 
From (1) it follows that the operator T on/4~ 

T= ~ ~(ql)P~(qi)- 
i = l  

dim z~(qi ) H z. 

and 

za(q i  ) h i = 0 

given by 

(1) 
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where P is the orthogonal projection of _Qz on H~, is invertible. In fact, if Tv=0 ,  
take hi=Pz~(qi)-lv in (1) to see that Pzz(qi)- lv=O for all i. In terms of the 
inner product in Ha, we then have 

(zz(qi)- 'v,  u ) = 0  for all u in H a and all i, 

(zz(qi)-av, z~(m2)O~)=O for all m 2 in m 2 and all i, 

(v, z~(qim2)d~:~)=0 for all m 2 in M 2 and all i, 

(v, za(M ) dpa> =0,  

and so v = 0  since ~b z is M-cyclic in/4~. 
Thus T is invertible on /4a .  But also T commutes with all ~ (m)  for m in M 

since 

f zz(m) Pzx(m) -1 dm= ~ za(qi ) Pza(qi) -I = T. 
M i=1 

Let f in ( ~  (K, ff~) be given, and define F = T - '  o f  Then it follows that F is 
in (7| ~ )  and 

~. zz(m)-i PF (m k) dm = ( ~. z~ (m)-I pza(m) dm) F (k) 
M M 

= T(F(k))=/(k). 

Now P o F is in C~ a~) since P~z(m2)= a~(m2)P for m 2 on M 2. Consequently 

Sj( f ) (k)= S S(x,k)zz(m)-l  PoF(mk)dmdk  
K x M  

= ~ S(x, mk )PoF(mk)dmdk  
K x M  

=~ S(x ,k )PoF(k)dk  after m k ~ k  
K 

= S(P o F) (k) 

and image S)~ image S. This proves Theorem A. 

In short, each irreducible constituent of ~z leads to a Szegb mapping whose 
image is the same discrete series. In the linear case we can say more. The group 
F is central in M and is spanned by the commuting elements ?~ of order at most  
2 given by 

? ~ =exp 21ri{fll- 2 hp, 

where fl runs through the restricted roots and h~ is the member  of a dual to ft. 
(See [26], p. 93.) Thus F is a sum of copies of Z2, and M is the direct sum of M 2 
and a group ~ ~2. It follows that ~z is multiplicity-free and that the number of 
distinct constituents aj is ]M/M2]. The various ass are related as follows: They 
have a common formula on M2, and all of them are obtained from one of them 
on ~ 772 by multiplying by an arbitrary character of ~ 2~ 2. Theorem B below 
identifies the formula on M 2. Let u =  Ilu~,, be the Cayley transform in Eq. (5.7), 
and let ~.=~.o Ad(u) and ~j=o~jo Ad(u). 
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Theorem B. Suppose G is a matrix group and 2 is integral and K-dominant. I f  the 
product 7=7pl ... Y& is in FroM2,  then aa(7) acts on klz as the scalar - 1  raised to 
the power 

~' 2(,27, flk)/lflkl 2. 
k 

Proof. Since 7 is in ME, t~x(7) leaves H a stable. Since 7 is central in M, 6,(7)[n~. 
commutes with ~a(m~) for m 1 in M~. The irreducibility of % implies that aa(7) is 
scalar on Ha, hence on qSx. Since ~ba is M-cyclic for #~ on /Qz and since 7 is 
central in M, ~a(~) is scalar on /~a. Thus it is enough to identify the scalar c in 
the equation 

~a(7) qSa = cqSa. (2) 

We need a different formula for 7. If p=, denotes a particular one of the two 
standard representatives of the reflection in ~j in the Weyl group WK, then we 
shall show that 

~ = H p~,<~'~'>/<)2- (3) 
J 

In fact, our definitions make h~, = Ad(u~,)-* H~j. We can expand 

and then 
~, 2(fl, gj)  nih,~ (exp ~2<fl'eJ)l[pl2 

7 ' = e x p ~  ~[$ [ ~ , i 2 = ~  Ig,[ 2} 

= l-I exp(}ni(E=, + E_,,))2 <",~,>/le12 = 1-[ p2 <a,~,>/)eF 
J J 

as required. This proves (3). 
Since 2 is integral and G is a matrix group, we can introduce a G-ordering 

(for current purposes) so that 2 is G-dominant. Let fa be an irreducible 
representation of G with highest weight 2. Then it is easy to see that the 
restriction of fa(K) to the span of a highest weight vector is equivalent with z a. 
That is, we may regard za as extended from K to G, with the space suitably 
enlarged. 

In view of (3), z~(y) qSa is a weight vector for the weight 

Hence (2) implies that 

I I r o t . l  J " 
j , k  

2(&, aa) is odd (2, ~i) =0  whenever ~ igjl 2 

and hence that -ca(p,,) fixes q~a for these j. For  any j, 

"~a(p~,) ~ 4,a ='cA%) ~ 
=(--  1) 2<a''>/l'A2 (ha =(- -  1) 2<~'~'>/1~'1~ 4'a 

(4) 

(5) 
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by a computation in SL(2, ~,). Then (4) and (5) show that c in (2) is given by - 1 
raised to the power 

2(X, ~ )  (fig, 8j) (6) 
lajl ~ I&l 2 ' 

with the sum extended over those j  for which ~ 2(ilk, ~j)/l~jl 2 is even. The sum 
k 

in (6) may be further extended to be over all j because of (4), and then (6) reduces 
to the sum in the statement of the theorem. 

Theorem C. I f  G is a matrix group and 2 is integral and K-dominant, then 
2 (X, fi)/lfi[ 2 is an integer for every restricted root fi, and the assignment 

ry(7/~) = ( - -  l)2(;.,~)/[Isl 2 

extends to a well-defined character of F. Moreover, some constituent oi of 3 a has 
a l ( z )=a(z ) l  for all z in F. 

Proof. Since 2 is integral, 2 is the differential of a well-defined character gz on T. 
Define a character a on exp ia ~_ G e by a(z)= ~a(uzu-~). Applying (3), we have 

uYa u-  * = 1-[ exp (�89 Ad(u) (E=, + E_~,)) 2 <e'a'>/lel~ 
J 

-- [ I  exp(~ i [%l -  2 H=,)a<e,~,>/lol~. 
J 

Therefore 

, j i~j]2 [fl12 

=exp ? <X, 
�9 I~al a I/~l 2 1 

=exp  
IPff 1" 

Since ~ =  1, it follows that 2 ( Z  fl)/lfl[ 2 is an integer. 
Now write M = M 2 |  2 with ~2___F .  Let % be a constituent of #a and 

define 
~o0(m ) for m ~ M  2 

a l (m)=[o(m) I  for m~-~7Z 2. 

The remarks before Theorem B show that a 1 is a constituent of ~ ,  and 
Theorem B shows that Ol(Z)=O(z)I for all z in F. 

Concluding Remarks. 1) If G is a matrix group and 2 is also K-regular, 
Theorem A gives IM/M~[ distinct explicit quotient mappings. For K-singular Z, 
Theorem A gives only the smaller number [M/M2[ of distinct explicit quotient 
mappings. However, an argument with tensor products on the nonunitary 
principal series and on ~z  shows the existence of [M/Mll maps from nonunitary 
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principal series to ~a  even if 2 is K-singular; it is just that not all of these maps 
are given by Theorem A. 

2) Vogan offered S0(4, 4) as a counterexample to Lemma 5.3. For other 
groups it is often the case that M a -=M, hence that Lemma 5.3 remains correct. 
This happens for G if it happens for the adjoint group of G. It happens if G has 
real-rank one, or if M is connected (e.g., when the restricted roots form a BC 
diagram), or if G/K is Hermitian symmetric. Among the classical simple groups, 
it can fail only for groups locally isomorphic to SO(m, n). 
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