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The Gindikin—Karpelevi¢c Formula
and Intertwining Operators

A. W. Knapp

In Honor of F. I. Karpelevi¢

Although I never met F. . Karpelevié in person, I was greatly influenced early
in my career by a paper that he and S. G. Gindikin published in 1962 as [GiK1]
and improved upon a little later as [GiK2]. These papers obtain a formula for the
evaluation of a certain definite integral, with parameters, that arises in the harmonic
analysis of L? of a Riemannian symmetric space of noncompact type. Such a
symmetric space is of the form X = G/K, where G is a noncompact connected
semisimple Lie group with finite center and K is a maximal compact subgroup.

For current purposes, G may be assumed to be any closed connected subgroup
of real or complex matrices that is stable under conjugate transpose and has finite
center. The group G = SL(n,R) is an example, and in this case we can take
K = SO(n), with X equal to the set of positive definite real symmetric matrices
and the action of G on X given by ¢ -z = gzg".

Among other things, the papers [GiK1] and [GiK2| made possible the full
development of a theory of intertwining operators for the standard induced repre-
sentations of (7, and that development is the way that those papers affected my
own research.

1. Bhanu Murthy’s Work

T. S. Bhanu Murthy was officially a student of I. M. Gelfand and F. A. Berezin,
and Berezin and Karpelevi¢ had jointly obtained [BeK] explicit integral formulas
for the “zonal spherical functions” (now simply called “spherical functions”) asso-
ciated to the symmetric spaces of certain classical groups. The definite integral
of interest arises from limiting properties of spherical functions, and Gindikin
reports that Berezin suggested to Bhanu Murthy the problem of evaluating this
definite integral for SL(n,R). Bhanu Murthy worked with Karpelevi¢ as unofficial
supervisor on solving this problem, so much so that he thanked Karpelevic but
not Berezin when he published the result in [BM1|. Bhanu Murthy mentions
in [BM1] that Karpelevi¢ was able to evaluate the definite integral for SL(3,R),
though apparently not by the method that Bhanu Murthy eventually found for
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SL(n,R); Karpelevi¢ did not publish his own result for SL(3,R), and it is not
clear what Karpelevié’s method was. After Bhanu Murthy had solved the problem
for SL(n.R), Karpelevi¢ suggested the additional problem of evaluating the cor-
responding definite integral for the real symplectic groups. Bhanu Murthy solved
this problem as well, publishing the result in [BM2].

Before coming to the integral in any generality, it is instructive to consider the
integral written out concretely in the special case SL(3,R), where it is

(1.1) [//_; (A +22+22)"*(1+9° + (zy — 2)?) P drdyd=.

The parameters a and b are complex numbers, and we shall see that (1.1) is
convergent when a and b have real parts greater than 1/2. Any attempt to estimate
(1.1) is likely to reveal how subtle the integral is, even though there is no cancellation
if @ and b are real. More to the point, it is far from apparent that it is even possible
to give an exact value for (1.1) in elementary terms.

The key to understanding (1.1) lies in an ingenious substitution that Bhanu
Murthy or Karpelevi¢ found. To evaluate (1.1), one regards y as the variable in
the expression 1 + y? + (ay — 2)?%, completes the square, changes variable in y to
eliminate the translation, and finds that (1.1) becomes

i : —a AL 1422 4 22\ —b
:jj/r;g(l-k-arz+z2) (l—i—;z:?) b(y?—}m) dz dy dz.

This integral is much simpler. Replacing y by y(1 + 22 + 22)Y/2(1 + 2?)~! shows
that it is

= /// (1?4 22)_“_“%(1 + 22711+ y?) P da dydz.
In turn, replacing z by z(1 + 22)'/2 shows that it is
= // (142271 + %) 21 + 22) > *t3 dedy de.
R."

Thus (1.1) is exhibited as the product of three 1-dimensional integrals of the form
2o (14 z?)~°dz. Use of the formula [% (1+ z?)~¢dz = #!/2T(c— 3)I'(c)?,
which dates back to Euler and is valid for Re ¢ > 1/2, therefore completes the
evaluation of (1.1).

To state the analog of (1.1) for SL(n.R), it is helpful to introduce some
matrices. In terms of the matrix

100
(1.2) (mlo),
2oyl

the expression 1 + x? + 22 is the sum of the squares of the three entries in the first
column, and 1+ y% + (xy — z)? is the sum of the squares of the three 2-by-2 minors
obtained from the first two columns. For SL(n,R), one forms the analog of (1.2),
namely a lower triangular matrix (z;;)}',_; with 1's on the diagonal. For each ¢
with 1 < ¢ < n — 1, an ingredient of the analog of (1.1) is obtained by forming the
sum of the squares of the (?) minors of size {-by-£ obtained from the first £ columns
of (w;)7 ;= The result is raised to a power depending on ¢, and the analog of (1.2)
is the integral over R™("=1/2 of the product of the n — 1 expressions raised to their
respective powers. Bhanu Murthy evaluated this integral inductively in [BM1] by
a sequence of steps that handle the off-diagonal entries of the last row, then of the



THE GINDIKIN-KARPELEVIC FORMULA AND INTERTWINING OPERATORS 147

next-to-last row, and so on. For the i*" row, one focuses on the entries x;; from
right to left, i.e., for j decreasing from ¢ —1 to 1. The (7. 7)™ step involves a change
of variables that isolates the role of x;; in the integral.

Use of a little theory explains better where the integral comes from. For
G = SL(n,R), we are taking K = SO(n). Let A be the subgroup of G consisting
of all diagonal matrices whose diagonal entries are positive, and let N be the
subgroup of G of upper triangular matrices with ones on the diagonal. Examining
the Gram-Schmidt orthogonalization process, one readily sees that G = KAN in
the sense that each element of G has a unique decomposition as a product from
the indicated subgroups. The action of G by matrix multiplication on the space C"
of n-dimensional column vectors extends naturally to an action of G on the space
/'\'0 C™ of alternating tensors of rank £. Let us use the notation 7, to refer to this
representation of &, and let g = kan as above. If {¢;}7_; denotes the standard
basis of C" and if a has diagonal entries dy,...,d,, then it is easy to check that

||7we(kan)(ex A--- A (ﬂp)||2 = df = -d? [l(ex Ao A Cf)||2
and therefore that
(1.3) Ime(g)(er A+ Aer)||? = H@|(ex A--- Aee)?,

where H(g) is the function from G to diagonal matrices that extracts the A part
of g and then takes its logarithm, and where A, is the linear functional on diagonal
matrices that yields the sum of the first ¢ diagonal entries. From (1.3) we see
that €229 is the sum of the squares of the (%) minors of size ¢-by-¢ formed
from the first £ columns of g. If N denotes the subgroup of SL(n,R) consisting
of lower triangular matrices with ones on the diagonal, then the analog of (1.1)
for SL(n,R) is [y e "™ dn for a suitable lincar functional v that encodes the
exponent parameters we are using.

2. Spherical Functions and Harmonic Analysis

The integral we are discussing arises in the analysis done by Harish-Chandra
in [HC2] and [HC3| in investigating L* of a Riemannian symmetric space of
noncompact type. The end of the previous section gives an indication that this
integral looks fairly tame when expressed in terms of group-theoretic constructs,
but it is of course still the same complicated integral of which (1.1) is a special
case. In order to describe the formula of Gindikin and Karpelevic, let us introduce
the group-theoretic constructs for an arbitrary Riemannian symmetric space of
noncompact type. For more details about terminology and notation beyond what
is given here, see [Kn2|.

Let G be a noncompact connected semisimple Lie group with finite center,
and let K be a maximal compact subgroup. The associated symmetric space is
X = G/K, and Harish-Chandra was interested in giving an explicit Fourier-type
decomposition of L?(X) modeled on either the classical Fourier inversion formula
for Euclidean space or the classical Plancherel formula in Euclidean space. In the
setting of X = G/ K, an abstract theorem due to I. Segal [Se| and a proof by Harish-
Chandra [HC1] that G is of type I together yield a Plancherel formula that gives,
for any suitably regular L? function f on G/K, an expression for the square of the
L? norm of f as an integral over 7 of the Hilbert-Schmidt norms squared of (),
7 varying over the irreducible unitary representations of G and = (f) denoting the
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operator 7(f)v = |, ¢ f@)m(z)vdr. Only very special representations 7 can enter
into the formula, namely the ones with a nonzero K-fixed vector ¢.. If € denotes
the set of these special representations, then the abstract theory says that there
exists a unique measure dy on £ such that an identity holds of the kind mentioned
above. Harish-Chandra’s goal in [HC2] and [HC3] was to find £ and dpu explicitly
in terms of the structure of Gj; it was not actually necessary to find all of £, only &
apart from subsets of du measure 0.

Harish-Chandra knew the simple identity || f||2 = (f* * f)(1), where f*(z) =
f(z~1), and he observed from this identity with f defined on G/K that it is
necessary and sufficient to obtain a Fourier inversion formula at the identity for
sufficiently nice bi-K-invariant functions F on (. If, as we may, we assume that
each ¢, has norm 1, then the Fourier inversion formula takes the shape

(2.1) F(1) :j (7(F)r, ¢r) du(mw) for F bi-K-invariant,
£
and £ and dy are to be determined explicitly.

Examples of representations 7 in £ were known from the book [GeN] of I. M.
Gelfand and M. A. Naimark and were studied by F. Bruhat in his thesis [Br]: they
are the ones in what is now called the “spherical principal series.” Let G = KAN
be an Iwasawa decomposition of G, let a be the Lie algebra of A, and let M
be the centralizer of A in K. We shall make use of restricted roots, the nonzero
simultaneous eigenvalues of the members of a in their action by left bracket on the
Lie algebra of . The group N is the exponential of the sum of these eigenspaces
for the positive restricted roots. We write e(9) for the A component of an element
g in the Iwasawa decomposition.

The spherical principal series consists of representations induced from M AN
to G, the inducing representation being of the form 1 ® e* @ 1 on M AN, where
A is a complex-valued linear functional on a and where e is the corresponding
I-dimensional representation of A. Apart from technicalities, the space of the At
representation is

(22) {f:G —C| f(xzman) = e~ A+PH@) £(2) for & € G and man € MAN},

the norm is the L? norm of the restriction to K with respect to normalized Haar
measure, and the action by G is given by

(Ux(9)f)(z) = fg~ ).

In (2.2), p is a real-valued linear functional on a with the property that Haar mea-
sure on N satisfies d(ana™') = €2°'°89 dn; its value is half the sum of the positive
restricted roots, repeated according to their multiplicities. The representation U,
is unitary if A is imaginary-valued. Bruhat [Br| proved that U, is irreducible for
almost every imaginary-valued A. (Later Kostant [Ko| proved that U, is irreducible
for every imaginary-valued A.)

The constant function 1 on K can be extended via ¢ = KAN to an element
of the space for Uy, and the result is a K-invariant member of norm 1 in the
space. For m = U,, we can write ¢, for the element ¢., and the result is that
oa(z) = e~ AP H () Then

(UA(-L')(DAa@A):/ e~ WHAHGETR () dk = / e~ +R)H@ETR) g
JK JK
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The function I
99)\(:::):/ e~ AR HETk) gy

is the A\*™ spherical function, and any integrable function F on G satisfies
ONF)or03) = [ F@)Os@orox) do = [ Faon(@) .
JG Ja

When F' is bi-K-invariant, we denote the right side by F (\); the function F is
the spherical Fourier transform of the bi-K-invariant function F. Harish-Chandra
soon presumed and ultimately proved that the measure dp in (2.1) is carried on
the subset of £ consisting of the spherical principal series with A imaginary-valued.
Thus the desired Fourier inversion formula (2.1) can be rewritten as

(2.3) F(1) = / ’ F(\) du(N),

where a’ denotes the dual of the real vector space a.

Harish-Chandra’s guess for what dp would be was based on results of H. Weyl
concerning ordinary differential equations. This analogy led him to examine the
asymptotic behavior of ¢, (x) for fixed imaginary-valued A as z tends to infinity
through G in a certain way, as follows. Members of GG have a nonunique decompo-
sition according to G = KAK: in fact, only the members a of A with a(loga) > 0
for every positive restricted root a are needed in the decomposition. The set of
a where a(loga) > 0 for all positive a is called the open positive Weyl chamber
A*, and we write AT for its closure. Since py is bi-K-invariant, its values on GG
are completely determined by its values on A*. The way in which the asymptotic
values of o, (z) are studied is that z is taken to be a member a of AT and a gets
large in the sense that a(loga) tends to +oo for each positive restricted root cv. We
write @ — +o0o for this behavior of a.

Harish-Chandra obtained an expansion, as a — +oc with A fixed, of py(a) for
almost every imaginary-valued A; the coefficients in the expansion determined a
certain function ¢ defined and holomorphic on a dense subset of A € ia’; cf. Lemma
37 of [HC2|. Harish-Chandra’s conjecture for du on the basis of the analogy with
Weyl's theory was that du()\) = |e(\)|~2?d|A| for suitable normalizations of Haar
measures, the measure being carried on ia’. The goal of [HC2] and [HC3] was
therefore to prove that, for suitable normalizations of Haar measures.

(2.4) F(1) = / } F)e\)|~2d|)|.

This goal was not completely reached in those two papers, and we will return to
this point in a moment.

For A complex-valued with real part strictly dominant, Harish-Chandra showed
in Theorem 4 of [HC2]| that the analytic continuation of ¢()\) was given by

(2.5) c()) = [ e~ R HE) g,
JN
where N = ©N, © being the global Cartan involution of G corresponding to K. In
the special case of SL(n,R), this is the integral we considered in §1.
The paper [GiK1] of Gindikin and Karpelevié¢ took ¢()\) as a fundamental
function in harmonic analysis, and the point of the paper was to obtain an explicit
expression for ¢(\) in terms of values of standard transcendental functions. The
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proof involved an inductive argument that generalized the three stages for reducing
(1.1) that were written out in §1. To obtain a final formula, one needed an
explicit evaluation in the cases in which the symmetric space had rank one. The
formula in the rank-one case had been obtained by Harish-Chandra in §13 of [HC2]
by means of an argument with classical hypergeometric functions. The paper
[GiK1] gave a different-looking rank-one formula, saying that Harish-Chandra’s
formula contained a small mistake; however, use of the duplication formula I'(2z) =
2% =17 =V2D(2)D(2 + 1) shows that the two rank-one formulas are the same except
for a multiplicative constant. A more elementary derivation of the rank-one formula
appears in [He2], pp. 437-438. In any event, substitution of the rank-one formula
into the inductive argument yields one version of what is now called the Gindikin-
Karpelevié formula. Two other versions of the Gindikin—Karpelevi¢ formula, as well
as the rank-one formula, will be recited in §3.

The paper [GiK 2] sought to be a little more systematic and a little more general
about the inductive argument, and it advanced part way toward an application of
the Gindikin—Karpelevi¢ formula to intertwining operators that would come out
later in the work of G. Schiffmann. We return to this matter in §4.

At the end of [HC3], Harish-Chandra stated two conjectures that he was unable
to prove and that would complete the proof of the desired inversion formula (2.4) for
recovering F'(1) from F. The first of these conjectures concerns the global behavior
of ¢(A) for A imaginary valued. The Gindikin-Karpelevi¢ formula gave such a good
handle on ¢(\) that one can well imagine settling this conjecture quickly. Indeed,
in a 1964 paper Helgason ([Hel], §3) gave an affirmative answer to the conjecture,
making use of the Gindikin-Karpelevi¢ formula.

The second conjecture at the end of [HC3] is that Fy(a) = er(°8) J5 f(nh) dn
does not vanish identically on A for any nonzero smooth bi-K-invariant function
f on G that satisfies a symmetric-space analog of the conditions for a function on
Euclidean space to be a Schwartz function. Harish-Chandra proved this conjecture
in §21 of [HC4|. This work completed the proof of the Plancherel formula for G/ K.

3. Gindikin—Karpelevié¢ Formula

The formula of Gindikin and Karpelevi¢ may be written in various ways. and
we select two of them to reproduce in this section, following [Kn1l|. For the first
one we work with all Iwasawa decompositions G = K AN with K and A fixed. The
choice of N is determined by deciding which restricted roots are to be considered
as positive. Let M be the centralizer of A in K. For any choice of N, the closed
subgroup M AN is a minimal parabolic subgroup of G. We write n, n’, etc., for the
Lie algebras of N, N’, etc., and we write N, N, etc., for the images under the
global Cartan involution © of N, N, etc.

Here is a first version of the Gindikin-Karpelevi¢ formula.

THEOREM 1. Let MAN, MAN', and MAN" be minimal parabolic subgroups
with the same M A, and suppose that v/ Mn C n' Nn. Define H(-) and p relative
to the two decompositions G = KAN and G = KAN', calling them H(-) and
p, H'(-) and p'. If X\ € (a')F is real-valued and if Haar measures are suitably
normalized, then

/ e~ (AR H(R) g — [/ C—{)\+p’)H’(ﬁ')dﬁ;] [/ e~ AP HE) gl
JNONY NNt NAN?
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This formula is valid also for any compler-valued N\ for which the integrals in
question are convergent for Re A.

REMARK. The tools that we develop below will show that the integrals in
question are convergent when (ReA, 3) > 0 for every N-positive restricted root
that is negative for N".

Theorem 1 permits an inductive evaluation of [ge MPH(™ dp and some
related integrals, and the result is a product formula similar to what was obtained
with (1.1). We discuss some background for Theorem 1 here, but postpone most
of the discussion of Theorem 1 to §4 because the meaning of Theorem 1 is best
understood in the context of the intertwining operators that will be discussed in
that section. One begins with a very general lemma.

LEMMA 1. Let N be a simply connected nilpotent analytic group with Lie algebra
n, and let n;, 0 < i < r, be a nonincreasing sequence of ideals in n such that ng = n,
n, =0, and [n,n;] € nyyq for 0 < i < r. Suppose that s and t are vector subspaces
of n such thatn =s&t andn; = (sNny) & (tNny) for alli. Then the map st — N
given by (X,Y) — exp X expY is a diffeomorphism onto.

The proof is Problem 20 at the end of Chapter I of [Kn2] and may be found
in the chapter of hints in that book. In our application, s and t will actually be Lie
subalgebras of n.

Let 3 be the set of restricted roots, and let (-, -) be the complex bilinear form
on (a’)€ obtained in the usual way from a given invariant bilinear form on g that is
invariant under the Cartan involution on g and is positive definite on a’ x a’. The
various choices for N are in one-one correspondence with the choices of a positive
system I1 within X,

COROLLARY. Let N and N’ be two choices of the nilpotent group N in the
Twasawa decomposition of G, the two choices corresponding to choices 11 and TI'
of a positive system within X, and let V' be an analytic subgroup of N whose Lie
algebra is the sum of the full restricted root spaces for some subset of II. Then

(3.1) V=(WVnN)VnN)

in the sense that multiplication from the product of the two groups on the right is a
diffeomorphism onto V.

Proor. The Lie algebra v of V' is the sum of certain full restricted root spaces
corresponding to some subset €2 of II. Let v = s @ t be the decomposition of v
corresponding to Q@ = (QNI') U (2N (=I1")). Define v; to be the subspace of v
corresponding to those members of € that are sums of > ¢ simple restricted roots
in II. Then Lemma 1 gives the required decomposition of V' if we take into account
that the exponential map is a diffeomorphism from v onto V.

A decomposition of the form (3.1) always leads to a corresponding product
decomposition of Haar measure, namely
(3.2) dv = dn' dit’,
if the Haar measures are suitably normalized. This is quite a general fact about
Haar measures; see Theorem 8.32 of [Kn2].

We are now in a position to see the role of the inclusion n” NMn C n'Nn in
Theorem 1. The following lemma explains matters.
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LEMMA 2. Let MAN., MAN', and M AN" be minimal parabolic subgroups with
the same M A, and suppose that v’ NMnCn’ Nn. Then

(3.3) NN =@ nN")({NNN)

in the sense that multiplication from the product of the two groups on the right is a
diffeomorphism onto N N N".

ProoF. From n” Nn C n’ Nn we have n” Nn D ' Nn, and thus
(3.4) NNNNN'cN'nNAN"=1.
An application of (3.1) gives
N NN'=({® NnNnN")®N nNnN"),
and we conclude from (3.4) that
(3.5a) NnN'=NnNnN".
Application of © to (3.4) shows that N’ NN N N’ =1 and vields similarly
(3.5b) N'NnN=NNNnN".
One more application of (3.1), followed by substitution from (3.5), gives
NNN’={ N nNnN')(N'NnNnN") =[N nN") N nN),
which is the identity that was to be proved.

Let us turn to a second version of the Gindikin-Karpelevi¢ formula. Fix a
positive system II for ¥ (and therefore also the corresponding n and N). Let g be
the Lie algebra of G'. If 3 is in II. we say that 3 is reduced if 31_;_.{3 is not in II. In
this case let g'?) be the Lie subalgebra of g generated by the restricted root spaces
for 3. 28, — 3. and —2/3. The subalgebra g'? is stable under the Cartan involution
of g, and is simple. Let G'® be the corresponding analytic subgroup of G. The
K and A for GY¥) may be taken to be the connected groups K® = K n G and
AP = ANGP, and the M group is then MP) = M N K, The group AP is
l-dimensional, its Lie algebra being generated by the element Hg in a such that
MHg) = (N, B) for all A € (a/)¢. Consequently the symmetric space G'#) /K?) has
rank one, and the group G?) is said to have real rank one.

The set of restricted roots of G is either {B,28,—8,-28} or {B,—p}, ac-
cording as 23 is or is not in ¥. If we decree that 3 is to be positive for G'?), then
n'?) is the sum of the restricted root spaces for 3 and 23, and a'?) is the sum
of the restricted root spaces for —3 and —28. Let us write H”(-) and p'® for
the analogs of H(-) and p for G'”). The function H¥)(-) is given by restriction
of H(-). For j simple, one can show that p'® is the restriction of p, but this
equality does not necessarily hold for nonsimple 3. For example, if G = SL(3,R),
then. in the notation of §1, the positive restricted roots are given by 3; = e; — ea,
s = es —e3, and ) + f2 = e; — e3, where ¢; denotes evaluation of the §* diagonal
entry of the diagonal matrices. Then we have

pP =161, pP) =18, and pPrtte) = 1(8 +Bs).
On the other hand, p is equal to ) + 2, and thus

= e L P (3
P|RH,.3[ — 2.‘517 leHg2 T 2}32: and pIRHm_‘_HQ —_.di +.'-J12-



THE GINDIKIN-KARPELEVIC FORMULA AND INTERTWINING OPERATORS 153

We need one more ingredient. The members of the normalizer Ny (A4) of A
in /{ conjugate one choice of N to another, while the members of the centralizer
M = Zg(A) conjugate each choice of N to itself. The quotient group W(A) =
Ng(A)/Zk(A) is called the Weyl group and is known to act simply transitively on
the set of N's. If w is in N (A), we write [w] for the class of w in W(A).

Now we can state the second version of the Gindikin—Karpelevic formula.

THEOREM 2. Let MAN be a parabolic subgroup of G, and let w be in the
normalizer N (A). For X in (a’)c and 3 in 11, let A\g = %3; B. Then

/ o~ H ) gy _ 11 / o~ Cate ) HD () 4o
e ()
D= A BENL L BTl wpen

for any real-valued X\, and the formula remains valid for any complex-valued X
such that the integrals in question are convergent for Re A, namely those with
(Re A, B) >0 for all 3 in Il such that wp is not in 11.

One particular Weyl group element has wy 'Nwy = N for any representative
wo in Wk (A), and then the condition wyf ¢ Il is automatic. This special case
gives us a formula for (2.5), as follows.

COROLLARY. Let MAN be a parabolic subgroup of G. For X\ in (u’)c and 3 in

I1, let A\g = <|j,;-i"§> B. If (Re X, B) > 0 for all B € II. then

f e~ (A+P)H(R) gm H /”} e_()\l,ﬁﬂfuﬂm{;n(ﬁ} i,
1 gen, ipegn’ N

with all the integrals in question convergent.

For G = SL(3.R), there are three factors on the right side, and each is of the
form [% (14 22)~“da, as in §1.

References for how to evaluate each integral on the right side of the formula in
the corollary were given at the end of §2. Let us be content to state the result: Let
G be simple with real rank one, let 3 be the positive restricted root such that %;3
is not a restricted root, let p be the multiplicity of 3, and let ¢ be the multiplicity
of 23. Then

cT(5(p+2Xs))T(Ap)
(3(p+2X8))L(5 (P + 29 + 2)5))

(3.6) () =5 if Re As > 0,

where A3 = (IA_GI? /3 and where ¢ is a multiplicative constant independent of A. For
real-rank-one groups it is customary to use the normalization [ e 2H(") dn = 1,
i.e., c¢(p) = 1. For A = p, we have A3 = 1 (p + 2¢), and therefore the value of ¢ is

C(p+q)/T( %(p + ¢)) with this normalization.

4. Intertwining Operators

The spherical principal series is part of the full principal series, in which the
representations are still induced from the minimal parabolic subgroup S = M AN
to G but the inducing representation is now of the form o @ e* @ 1 on M AN, where
o is an irreducible unitary representation of M and A remains equal to a complex-
valued linear functional on a. Let us suppose that o acts on the inner-product space
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V7. Apart from technicalities, the space of the representation with parameters o
and A is
(4.1)

{f:G— V7| fleman) = e~ MPH@5=1(f(2)) for 2 € G and man € MAN},

: 2 : :
the norm squared is [, |f (A:)|V,, dk, and the action by G remains as

(U(S,0,M)(9)f)(@) = f(g~"2).
The representation U(S,o,A) is unitary if A is imaginary-valued. Bruhat [Br]
proved that U(S, o, \) is irreducible for almost every imaginary-valued A\. When o is
nontrivial, there are occasionally imaginary-valued parameters A where reducibility
oceurs.

We have included S as a parameter in the notation for the representation
in order to examine later the dependence of the representation on the choice of
N. Long ago Harish-Chandra recognized that the global distribution character of
U(S,o,)), which can easily be computed explicitly and turns out to be a function,
is independent of the choice of N. Also, if w is in Ng(A) and if wo and wA are
defined by wo(m) = o(w™'mw) and wA(a) = AN(w ™ 'aw), then the global character
of U(S,0,A) is unchanged by replacing (o, A) by (wo,wA). At least when ) is
imaginary-valued, so that the induced representation is unitary, it follows that the
corresponding representations are equivalent when N is changed and when (o, \)
is replaced by (we,wA). Bruhat [Br] examined the equivalence of U(S, o, \) and
U(S,wo, wA) closely in his thesis.

Inspired perhaps by other cases historically in which the explicit identification of
an operator implementing an equivalence led to a rich new theory, R. A. Kunze and
E. M. Stein took up the question of identifying actual operators that implemented
the equivalences studied by Bruhat. In [KuS1|, [KuS2|, and [KuS3|, they worked
successively with SL(2,R), with SL(n,C), and with general semisimple groups. In
all cases they found that it was a good idea to allow A initially to be complex-valued
even if the apparent eventual goal was to study only A imaginary-valued. On the
basis of a heuristic computation that was regrettably cut from [KuS3] during the
refereeing process, they found that an operator Ag(w, o, \) carrying U(S, o, \) to
U(S,wo, wA) and commuting with the action by G (i.e., an intertwining operator)
ought to be given formally by

(4.2) Ag(w, o, M) f(z) = / flozwn) dn.

NNnw—1Nw
In addition, when the class [w] in W(A) is the reflection in a simple restricted root
3, this operator in a certain sense could be regarded as a tensor product of an
operator for G'?) with the identity operator. Such operators they could handle
somewhat.

The paper [KuS2| had studied the dependence of Ag(w,o,)\) on w. To the
extent that the space of intertwining operators for a particular choice of parameters
is l-dimensional, the nicest behavior would be for the operators (4.2) to satisfy a
cocycle relation
(4.3) Alwyws, o, \) = A(wy, weo, wo ) A(ws, o, \).

The work in [KuS2| with SL(n, C) showed that this relation did not hold for all w,

and ws, but the use of abelian Fourier analysis enabled the authors, in the case of
SL(n.C), to normalize the operators in such a way that the cocycle relation always
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on
3]

holds. The cocycle relation is then to be interpreted on any f as an identity of
meromorphic functions in A that are holomorphic for A imaginary-valued. With the
normalized operators in place, the authors went on to deduce certain consequences.

G. Schiffmann [Sc] took up the problem of making sense of (4.2) for general (¢
to the extent possible. There were at least three separate problems to address: the
convergence of the defining integral (4.2) for an open set of A, the cocycle relation
(4.3), and the problem of analytic continuation of (4.2). In considering the cocycle
relation. he was led to make use of the notion of a “minimal produect™ in W(A).
The length £(s) of a member s of W(A) is the number of reduced positive restricted
roots that s sends into negative restricted roots, and a product sy - - - s,, is minimal if
{(sy---sy,) is as large as conceivable, namely equal to ¢(s;)+---+¢(s,). He wanted
to prove (4.3) when [wyws] = [wy][ws] is a minimal product in the Weyl group. For
example, in the case of SL(3,R), the reflection s13 in e; — ez in the Weyl group
has length 3 and is the product s;3 = $12893512 of three simple reflections, each
necessarily of length 1. Thus this decomposition of s13 is a minimal product. One
needs to understand the corresponding product decomposition of the operators.

In the case that o = 1, one knows a function in the space on which U(S, 1, \)
operates, namely ¢y(z) = e~ APHE)  Since any left-K-invariant function on
K is constant., ¢, is the only K-invariant function in the representation space,
up to a multiplicative constant. Hence (4.3) may be interpreted on ¢ as fol-
lows: A(ws,0, ) sends e~ MAHE) to a multiple c,,(A) of e~ (w2A+P)HE)  and
A(wyws, o, \) sends e~ (@2A PV H(@) t6 o multiple ¢y, (wo ) of e~ (W1w2A+P) H()  Mean-
while A(wywa, 0, A) sends e~ A+ H(2) ¢4 5 multiple ¢y, (A) of e~ (w1w2A+p)H(z)
If (4.3) is valid, then

(44) Cw.'w-g(/\) = Cu,y (?-92)‘)811:2 (A)

What Schiffmann realized is that the decomposition (4.4) is exactly the one
carried out by Gindikin and Karpelevie, ¢, (A) is the left side of the identity in
Theorem 2, and c(\) is just ¢y, (A), where [wg] is the member of W(A) such that
wy 'Nwy = N. Consequently, apart from the question of convergence and the
question of being able to iterate formulas suitably, Theorem 2 follows if one can
prove (4.3) for minimal products and also the formula

(4.5) Ag(w, 0, N)e " OTPHE) = ¢ (N)e=A+PIH()

It turns out that this analysis, including the proof of the Gindikin-Karpelevi¢
formula, is more transparent when one views Ag(w,o,A) in a natural way as a
composition of two operators and separates the effect on (4.3) of each of these
operators. This separation is carried out partially in [KnS3] and more fully in
Chapter VII of [Kn1], and we give a sketch of some of it here.

Let us remember that U(S, o, A) and U(S’, o, A) have the same global character
if S = MAN and 8" = MAN'. A formal operator carrying the space of the first
representation to the space of the second. commuting with the action of G, is

(4.6) A(S”:.5':or:)\]f(:i'.‘}:[T . flzn) dn.
J NN

Let us give some indication of the fact that (4.6) does indeed carry the space of
U(S,0,)) to the space of U(S’,a, \), because the same tools will arise again later.
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Let f be in the space of U(S,a, A). For the behavior under A, we have

A(S":S:0:)) f(za) /_ f(xan) dn = ]_ f(z(ania™")a) dn

NNN! NNN*

NN’

det(Ad(a) ] saxap) L ] flzna)dn

= ¢~ (A+P)oga det(Ad(a) |ﬁmn, j=2 / flan)dn
JNNNY
= e~ (AP loga 487 6.5 0) f(2),
the last equality holding since
(4.7) det(Ad(a)|

The behavior under M is handled by a similar change of variables, but more easily.
For the behavior under N’, we use the decomposition N’ = (N’ N N)(N’ N N) of
(3.1) to make the identification

(4.8) N'NN < N'/(N'nN).

)7t = elp—p")loga
nrin’ & '

After a suitable normalization, the Haar measure for N’ 1 N matches the invariant
measure on N'/(N' N N), according to (3.2). If n{, is in N’, then we have

A(S":S:0:0) f(zng) = / flangn) dn

N*/(N'N)

= / flzn) dn
JNT NNy
= A(S":S:0:)\) f(x),

as required. Thus, if we ignore convergence questions, A(S":S:0:\) has the asserted
intertwining property.
Comparison of (4.2) and (4.6) shows that formally we have

(4.9) As(w,0,)) = R(w)A(w ™1 Sw:S:a:\),
where R(w) is the operator given by
R(w)f(z) = f(zw) for w e Ng(A).

The operator R(w) carries the space of U(w ™! Sw, o, ) to the space of U(S, wo, wA),
commuting with the action of (G. To approach (4.3) by writing each operator as
a composition, we have to know the effect on an operator (4.6) of conjugating by
R(w). The relevant formal identity is

(4.10) A(S2:51:0:0) = R(w) " A(wSow ™ :wSiw ™ i we :wA)R(w).

The analog of the cocycle relation (4.3) for the operators A(S:S:0:)) is the
product formula

(4.11) A(S":S:0:)) = A(S8":5":0:\)A(S":S:0:)).

Under the hypothesis n” Mn C n’ N, (4.11) follows immediately from Lemma 2
and the corresponding formula (3.2) for the Haar measures.
The analog of (4.5) is

(4.12) (A(S":S:1:0)e= A+ HO) Y () — e._(’\"'p)H(x)/ e~ (A+P)H(zm) g

NNN!
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This is a straightforward consequence of formulas that we have already seen. In
detail, write @ = kanj, relative to G = KAN'. The left side of (4.12) is

:/ E—{A—i—p}H{arﬁ.) dn

Nnn’

= j e~ Wt Han') gpf by (4.8) and (3.2)
N*/(N'AN)

- / e~ (Mo Hlangn’) g since k drops out
N'J(N'NN)

= / e~ tp)H(an) gpf by translation
N’/(N'NN)

= / e=(Wtp)H(ana™) o ~(M+p) loga g by (4.8) and (3.2)
NnN*

= (det Ad(n'.)|_r1 e ATRxIdEs j e~ AP H®) g under afia~' — @t

2N NNN'
— e—{)\—kpf)fogu/ e—(,\—i—p)ﬁ(:rﬁ.} dn b}" (47:]
NNN?

and this equals the right side of (4.12).

Except for questions of convergence, the combination of (4.12) and (4.11), the
latter under the hypothesis n” NMn € n’ N n, proves Theorem 1. Then we use
(4.9) and (4.10) to convert (4.11) into (4.3) and to convert (4.12) into (4.5). It is
easy to check that the hypothesis n” Nn C n’ N n transforms into the hypothesis of
minimal product for Weyl group elements. Then (4.12), (4.5), and an easy induction
prove Theorem 2; see p. 180 of [Knl] for details. For a careful treatment of the
normalization of Haar measures, see §2 of [KnS2].

Finally, we have to address the convergence questions. The integrands in
Theorem 2 are nonnegative if A is real, and the equality holds whether or not the
sides are finite. Formula (3.6) shows that the right side is finite when (Re A, 3) > 0
for each [ that appears. This handles the convergence question in Theorem 2, and
the region of convergence in Theorem 1 follows as a consequence. We can then use
these convergence results to settle convergence of the intertwining operators. The
point is that if f is in the space for U(S, o, \), then

f(@)lve < e~ EMIHE gup | (k)
ke K

Vo

Thus any estimates for integrals involving e (ReAt2)H (@) jinply estimates for inte-
b g ;
grals obtained from intertwining operators.

5. Concluding Remarks

Thus the Gindikin-Karpelevi¢ formula provided tools and ideas for unblocking
the theory of intertwining operators in the late 1960s. Conversely, the theory of
intertwining operators suggested that the Gindikin-Karpelevié formula be put in a
certain particular group-theoretic setting where it became fairly natural to prove.

Some of my own work early in my carcer was with the above intertwining
operators, beginning for groups of real rank one. In [KnS1], Stein and I proved
the meromorphic continuation of the operators in the real-rank-one case without
any Fourier analysis, avoiding the limitation that the Kunze-Stein approach in
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[KuS2] had imposed of requiring N to be abelian for all relevant real-rank-one
cases. From there. we succeeded in normalizing the operators and using them to
settle irreducibility /reducibility of the unitary principal series. Also we produced
complementary series by showing how to use the intertwining operators to change
the inner product for certain nonimaginary A\’s to make the representation unitary.
Schiffmann independently obtained this analytic continuation, and he produced his
own normalization, but he did not carry the theory any further.

The effect of the results in §§3 and 4 was that Stein and I were able to extend
our theory from real rank one to general real rank. A theory for general real rank
in turn led us directly to the discovery of the “R group,” introduced in [KnS2];
the /7 group described the reducibility of unitary principal series.

In later work [KnS3|, Stein and I studied representations induced from other
parabolic subgroups M AN, in which M need not be compact, and the use of
operators of the form (4.6), rather than (4.2), enabled us to get around the problem
that the relevant Weyl group need not act transitively on the set of N's. The theory
of the R group extended to this situation as long as the representation o on M was
in the discrete series of M. Subsequently G. J. Zuckerman and I found in [KnZ]
how to use the R group to classify the irreducible tempered representations of G,
and that classification has, in the hands of other people, led to significant progress
in the theory of automorphic forms.

Part of the legacy of the Gindikin-Karpelevié formula is the idea of proving
theorems by reducing matters to real rank one. That idea was already present in
special cases in Bhanu Murthy’s work and in [KuS2], but the idea became part of
the standard arsenal of tools for researchers in the field as a result of [GiK1] and
[GiK2]. T have seen the idea used with great success a number of times since the
original uses with the ¢ function and intertwining operators.
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