Investigations of Unitary Representations of Semisimple Lie Groups

By A. W. Knapp*

These notes give a survey of some current areas of research in the
representation theory of semisimple Lie groups, all discussed in the context
of examples. The first section reviews the unsolved problem of classifying
the irreducible unitary representations for such groups. An extensive
bibliography for the classification question appears in [8] and will not,
for the most part, be repeated here. Later sections deal with three active
areas of research—minimal K-types, Zuckerman's conjecture, and Flensted-
Jensen representations——and relate them to each other and to the

clasgification question.

1. The problem of classifying irreducible unitary representations

Let G be a linear connected semisimple Lie group, by which we mean
any connected closed group of real of complex matrices that is closed under
conjugate transpose and has finite center. The problem is to classify the
irreducible unitary representations of G. These will normally be
infinite-dimensional.

Examples of noncompact simple groups fall into two classes, as

follows. In each case we assume that the indices are sufficiently large:

Complex groups:

SL(n,C) special linear
50(n,C) orthogonal
Sp(n,C) symplectic

5 exceptional groups

Real groups:
SL(n,R)

special linear groups
SL(n,H) = su*(2n)
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(1)

(2)
(3)

(4)

SOe(m,n)

SU(m,n) isometry groups of Hermitian forms
Sp(m,n)

Sp(n,R) other automorphism groups of bounded
so®(2n) symmetric domains

12 exceptional groups.

The status of the problem is that it is unsolved in general. However,
it is known that it is sufficient to decide the unitarity of some
specific representations,
it is known which of these admit an invariant Hermitian form,
it is known that the Hermitian form is given by a specific integral
operator, which therefore needs to be semidefinite,
it is known how to use a few techniques to decide in some cases whether

the operator is gemidefinite.

Simple noncompact groups for which the classification is complete are as

follows:

SL(2,R) Bargmann 1947

SL(2,C) Bargmann 1947 and Gelfand, Naimark 1947

SL(3,R) Vahutinskii 1968

SL(3,C) Tsuchikawa 1968

SOe(4,l) double cover Dixmier 1961

SOe(n,l) double cover Hirai 1962

SU(n, 1) Ottoson 1968 and Kraljevie 1973
————— Langlands classification, 1973---—-

Sp(2,C) and Gg Duflo 1976

SL(4,R) (actually GL) Speh 1977

Sp(n,1) Baldoni Silva 1980

SL(4,C) and SL(5,C) Duflo 1980

Sp(2,R) several people, about 1981

Su(2,2) Knapp; Speh 1981

Fﬁ(—ZO) Baldoni Silva, Barbasch 1981



This list is not intended to suggest that one should or does proceed
case-by-case. Rather it serves to test the strength of new methods.

The two parts of the list are qualitatively different. The answer is
relatively simple in the first cases, not so in the last ones. In the first
ones, people spent most of their effort classifying representations of a
broader class than the unitary ones. The Langlands classification and
results shortly after it swept away that problem, in a way that we
discuss shortly.

Partly for illustration and partly for use later, let us examine the

case of SL(2,R). The irreducible unitary representations fall into four

classes:
+ - ;
1) Discrete series ,B'n and B«n , m>>2 an integer
* P 2 2'n=
Bn space = {f analytic for Imz >0 l £1° = H ‘f(z)\ ¥ 2 dx dy <=}

Im z>0
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_9; is analogous with antianalytic functions. These representations are
square integrable in the sense of having one (or equivalently every)
nonzero matrix coefficient (8n(g)u,v) in Lz.

2) Principal series P ana PN, veRr

Space = L2 (R)

it fh ax+c :
i,iv(a b) £ = foxeal f(bx+d Ean
P cd i 2 =1=iv £ ax+c F
sgn(bx+d) 'bx dl Svd if -

These representations can be viewed as induced, in a suitable sense, from
the upper triangular subgroup. Parameters v and -v give equivalent

representations, and P_’O must be excluded because it is reducible.



3) Complementary series Cu Sl o |

Space = {f : R>C l ||f'|'|2 = T.J'” f(x)f(x)]dﬁ dy ”}

ufab 2 =1-u axte
& (c d)f(x) = |bx+d| f(bx+d)'

These representations can be viewed as follows: fﬁt'w makes sense for
all complex w, acting in LE(R, (I+x2)Re Y dx), and C}l comes about

. +
by redefining the inner product for £ Y,

4) Trivial representation 1, and

TS . A + = A
Limits of discrete series {}i and i;l with a Hardy space norm.

In the general case, the breakthrough beginning in 1973 was control
over candidates for irreducible unitary representations. The problem
became one of checking whether certain representations were unitary. This
reduction came about in several steps:

1) Parametrization of discrete series (Harish—-Chandra, 1966). Discrete
series are irreducible unitary representations whose matrix coefficients
are square integrable; they are exactly the irreducible representations
that are direct summands in L2 of the group.

2) Classification of "irreducible admissible representations" (Langlands,
1973).

3) Construction of limits of discrete series (Schmid, Zuckerman, 1975).
These are representations whose algebraic properties are similar to
those of discrete series but whose analytic properties are different.

4) Classification of "irreducible tempered representations" (Knapp,
Zuckerman, 1976).

The reduction, then, is to a consideration of some standard series of

representations. We shall say what these standard series are for the

group SU(2,2).



The standard series are constructed from subgroups known as "cuspidal
standard parabolic subgroups,” and we begin by writing down these subgroups

for SU(2,2), indicating where they come from. Let

G = sU(2,2) = {g € SL(4,0) 5 & (g _2) g = (é _2)}

ab
o= {(b"d ; a and d skew Hermitian, Tr a + Tr d = 0],
The group G has an Iwasawa decomposition G = KA . N , whose

min min

components are as follows: K is maximal compact and is given by

k= {{g g] : aeU(2), deu(2), (det a)(detd) =1}
The Lie algebra of A . is
min
00s 0
000t
%in “{|s 000 it &3 s
0t00
: x . 2 :
and Amin exp al'min is then isomorphic to R”. The group N . =~ is a

certain 6-dimensional nilpotent subgroup of G whose exact nature is not
very important.

[To define N precisely, we let f, and fz be the linear

min 1

functionals on O'Lmin defined as s and t, respectively, on the above

matrix in m’min' Then ad(d‘Lmin) acts diagonably on q with

simultaneous eigenvalues %f tfz 5 thl S :1:,2f2 , 0 , and we choose

|
Noia ™ e""“ﬂsz ® Fs 45, @ "J’fl—fze ‘e"zfz)' 1

Let

'r={ Li® }



i . = = =
Main = Zg@;) = 1i% 5 0=n =3 and tert} T®2z,
P. =M.A.N. ="ninimal parabolic subgroup."
min min min min

The group Mmin

is compact, and oo is the analog of the upper
triangular subgroup of 3L(2,R).

A standard parabolic subgroup is any closed subgroup containing Pmin'

Such a subgroup always has a suitable decomposition as MAN, and M is

noncompact except in the case of Pmi .

n
2dim(Ami )

The number of these subgroups is

3 and is 4 in the case of sU(2,2). We retain only those

standard parabolic subgroups for which M has a compact Cartan subgroup
(equivalently, M has a compact torus whose Lie algebra is maximal
abelian in M.); such standard parabolic subgroups are called cuspidal.
(The condition of having a compact Cartan subgroup is Harish-Chandra's
famous necessary and sufficient condition for the existence of discrete
series.)

In SU(2,2) there are three cuspidal standard parabolic subgroups,

two of them being P . ~and 6= G{1){1]. The other is P2f2 = szzAszNZfz,

where

Q
]

26, 1R e @y | 26,0 = 0)

~ 1
A2f = exp anfz (=R")
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sz = exp(c;tzfl @g“‘ffz @f;}.f]_fz) with dim sz12 = 5,



Now we can describe the standard series of representations associated
to a cuspidal standard parabolic subgroup. P = MAN. The parameters are
pairs (¢,v¥), where
& = discrete series or "nondegenerate" limit of discrete series on M
¥ = member of (cm‘)c with Re® in the closed positive Weyl chamber.

In the case of SU(2,2), the condition on Re ¥ is as follows:

Gl e Re ¥ = af, + bf
min 1

Pl aZb?_O

oL Re v = af, , a>0 .

2f2

Let
u(p,s,v) = indg(tr @’ ®1).

[Io define the induced representation, we use "unitary induction,"”" so that
the induced representation is unitary if ¥ is imaginary. The
representation is realized in a space of functions on K and obtains a
norm from LZCKJ; however, it is not unitary as it stands if # 1is not
imaginary.] Under known conditions on ¥, U(P,%,») has a unique
irreducible quotient J(P,0,%), the "Langlands quotient." A sufficient
condition for J to be defined is that Rew be in the open positive

Weyl chamber.

Reduced problem: Decide whether J(P,o,v) is unitary.

By way of explanation, the J's include all the representations that
can be unitary, but there may be equivalences. However, these equivalences
are understood, and so an answer to the reduced problem does yield a
classification of irreducible unitary representations.

The meaning of the reduced problem in the case of SL(2,R) 1is as
follows: P is either G or the upper triangular group MAN. For G
one is to test L}i for n=1. For MAN one is to test the irreducible
quotient of ‘Pt’w for Re w 2> 0, except that ‘P_'c need not be tested.

It is a general fact that the series attached to G itself always
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consists entirely of unitary representations. Thus in SU(2,2), where
we initially have to deal with three standard series, only the series

attached to szz and Pmin really need attention.

There are four further reductions now, much smaller in scope:

1) J(P,s,¥) has an invariant Hermitian form (necessarily unique up to a
scalar) if and only if there is an element w in K normalizing A
with we=6, yys= -7, and w2 centralizing A. 1In the case of
SL(2,R) this means that the complex parameter in the case of the
MAN series has to be real or imaginary, or J cannot be unitary.

2) If the condition in (1) holds, then the Hermitian form is given by a
specific integral operator on L2(KJ, and the representation is unitary
if and only if the operator is semidefinite.

3) (Vogan) If one is willing to proceed by induction on dim G, then it
is enough to take % real. (Specifically, one needs to assume that
the classification is known for all M's of proper standard
parabolic subgroups, not necessarily cuspidal.) In the case of
SL(2,R), this means that we need only consider a real parameter for
the MAN series, and a similar simplification occurs for SU(2,2). The
inductive assumption for 8U(2,2) 1is that one can handle groups that
are essentially a circle or SL(2,R) or SL(2,C).

4) A necessary condition (aow that we are assuming % is real) is that
¥ must lie in a certain bounded set. The reason is that w» gives the
grosa asymptotic behavior of matrix coefficients and the matrix

coefficients must be bounded for a unitary representation.

We discuss results concerning techniques shortly. First let us look
at the pattern of unitary representations in groupe that have been settled.
We consider a table of three indices of difficulty in handling a group, the
first index being the most important. The idea is that each & gives a
picture of ¥ parameters, and the indices relate to the complexity of

such pictures.



(i) (ii) (iii)
Group Max. dim. of -1 Real rank Complex rank

eigenspace in o = = dimov . = ¢
for w as in (1) mett rank of of

SL(2,R) 1 1 1
SL(2,C) 1 1 2
SL(3,R) 1 2 2
SL(3,C) 1 2 4
S0, (4,1) 1 1 2
50, (n, 1) ! 1 [E%‘-]
SU(n,1) 1 1 n
$p(2,C) and G5 2 2 4
SL(4,R) 2 3 3
Sp(n,1) 1 1 n+l
SL(4,C) 2 3 6
SL(5,C) - 2 4 8
Sp(2,R) 2 2 2
SU(2,2) 2 2 3
B i 1 1 4

Table. Indices of difficulty in known cases.

In no case has a simple group with index (i) greater than 2 been settled.
Index (i) equal to 1 means that all pictures of interest are one-dimensional.

In the first set of groups when index (ii) is 1, the picture is an
interval starting from the origin and going to a point depending on & that
is easily described: For SL(3,R) and SL(3,C), it is such an interval,
plus a point for the trivial representation when o is trivial. (In all
these cases, only Pmin needs attention. For SL(3,R) there are two

intermediate P's to consider, but the formal symmetry condition (needed



for the existence of the invariant Hermitian form) is never satisfied.

On the basis of the first set of examples, one might expect an easy
solution to the problem in general. The work by Duflo on Sp(2,C) and
Gg eliminated any such expectation. See [ 3 ] for pictures when o is
trivial; to have just the positive Weyl chamber, one should look at only
1/8 or 1/12 of the plane in the two cases. Moreover, in Sp(2,C) for a
certain nontrivial ¢, there is an isolated representation (not the
trivial representation of G), and Duflo points out that it is a
constituent of the Weil representation of Sp(2,C).

Later work showed that the situation is difficult but not hopeless.
Baldoni Silva, partly with Barbasch, handled the remaining real-rank-one
groups. The only P's are G and Pin® @nd each o« has a
one-dimensional picture. The picture is an interval from the origin,
together with possibly one additional point.

The groups SL(4,R), SL(4,C), SL(5,C), Sp(2,R), and 5SU(2,2)
required some new techniques, but the pictures were fairly simple—---
triangles, squares, line segments, and the trivial representation (isolated
in all these cases in the picture for o trivial).

More of a sense of what to expect comes from looking at some
pictures for a class of groups that cannot yet be handled completely-—-
SU(N,2) for N> 3. The results noted here are joint work with B. Speh.

Here the P's are

G s all cases unitary, as usual
intermediate P : dim = |
Pmin - dim Amin =00

and all real v satisfy the formal symmetry condition. The intermediate
P leads, in the case of discrete series on M, to an interval from O

that is understood. The interesting pictures come from Pmin' We have
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Let
a(this) = 81(m0+n9) so(w) .

Three pictures are worth concentrating on. Let us take N =8 and
consider
(1) & trivial
(2) o, with highest weight (k,0,0,0,0,-k) with k> 2

m=mn=0
(3) ¢, trivial

m=0 and n= 1.
The picture of (1) is reproduced here and is now known to be complete.
We have included two Weyl chambers to display the symmetry better.
The picture of (2) appears to be a shrunken version of (1), moved toward
the origin by 2f1+2f2' This picture has not yet been verified inm all
details: it is known to be correct within the small square around the
origin, it is known that the point 7fl+5f2 corresponds to a unitary
representation (one of those obtained by Flensted-Jensen [4], in view of
results of Schlichtkrull [12]), and it is known that there are no unitary
points farther from the origin than this one. The picture of (3) was
given in [ 8 ] and is now known to be complete; qualitatively it looks
something like (1), but spread out farther from the diagonal, without any
isolated point, and asymmetric with respect to the diagonal.

Other pictures for SU(N,2) with ¢ such that U(P

min’f’o) is

irreducible do not seem to be substantially different from these three.



—20 =

Vv = .;1fi + bf2 » two chambers showing

Positive chamber: 0 < bh<a

Rey: (/A e / unitary points
_____ reducible points
edge of region of

bounded matrix
coefficients

Figure 1. Unitary J(Pmi

with ¥ real and o trivial.

nsws") in SU(S,Z)
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¥ = af, + bf

1 53 two chambers showing

Positive chamber: 0<b<a

Key: ® / unitary points
_____ — reducible points
= edge of region of

bounded matrix

coefficients
Figure 2. Unitary J(Pmin,o',v) in 8U(8,2)
with ¥ real and & such that m=n =0

and G'OH(B'.;O’O:U:O!_‘R)'



For other groups of real-rank two, one expects nothing very different
from what is already seen in SU(N,2) and the cases that have been solved
completely, except that the Baldoni Silva isolated representations of
Sp(n,1) should affect some cases a little. So the pattern is
complicated, but fairly regular.

For higher-rank groups, one expects to require n-dimensional analogs
of the 2-dimensional pictures for SU(N,2), for example, and this
expectation is an argument why the final answer should be given inductively.

We mention some techniques that are used with SU(N,2):

1) Continuity and irreducibility arguments: If the full induced
representation is irreducible at the origin, the operator is the
identity there and has to remain positive until reducibility occurs.
This argument also applies along the sloping lines in the pictures
for SU(N,2). Important techniques for concluding irreducibility
away from the origin come out of the work of Vogan [16] and Speh and
Vogan [l&]. These techniques have been used also by Baldoni Silva and
Barbasch. We discuss them further in §3 below.

2) Calculation of intertwining operators: This is a technique, originally
used by Duflo, for showing the operator is indefinite on a small
finite-dimensional space and the representation is therefore not unitary.

3) Dirac inequality (Schmid, Parthasarathy, Baldoni Silva, Enright): This
rules out unitarity beyond a certain radius.

4) Movement of M parameter (Knapp and Speh): Under certain conditions,
unitarity is preserved when the A parameter is fixed and the M
parameter is moved. (The reason is that the one operator is related to
the other in a way that maintains positivity.)

We conclude by mentioning some other aspects of the classification

problem that will play a role in later sections of these notes. These



= g3l =

include Vogan's theory of minimal K-types, a new formula for minimal
K-types, the theory of discrete series of semisimple symmetric spaces,
as developed by Flensted-Jensen, Oshima, and Schlichtkrull, and
Zuckerman's conjecture concerning a family of algebraically defined
representations that are thought to be all unitary. For other work

on the classification problem, see the survey [s ]

2. Background and notation

We shall now go into more detail about some areas of research that
appear to bear on the problem of classifying irreducible unitary
representations. We shall use extensively the Cartan—Weyl theory of roots
and weights and also the Harish-Chandra homomorphism defined on the center
of the universal enveloping algebra; see [15] for this material.

The context for our discussion will normally be G = SU(N,2). We

let

suN,2)

si(y+2,0C)

S(U(N)xU(2))

s(w(N)Du(2))

diagonal subalgebra of g

o W T o3, a3
u

diagonal subalgebra of d}c.

(9]

Here 4 is a Cartan subalgebra of both ?C and &C. We let A and AK
denote the sets of roots of (g'c,gc) and (kc,l;c), respectively, and we

let W and W, be the respective Weyl groups.

= c N+2
Integral forms on 4  are complex-linear functionals 3 cse,
j=1 9
with cg ~ey am integer for all i and j. Here ey denotes evaluation

of the jth diagonal entry. MNote that the same integral form may be
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realized in different ways since c(el P G 3N+2) = 0. We sometimes
write

N+2

j:zl cie; &> (cl,cz,...,cN+2)

to make the correspondence with classical notation. The Weyl groups W

and W, act by permutations, with W leaving stable the sets of indices

K
{1,...,8} and {w+1,342}.

K

A positive system ot € A results from an ordering of the indices
1,...,N+2 and induces a positive system A; EAK . We shall have
occasion to use several distinct positive systems. For any positive
system ﬂ+, we let P be half the sum of the positive roots, and we let
PK be half the sum of the members of AE .

For q-c = gl(N+2,0), 1let U(uf) be the universal enveloping algebra,
let 2(39) be its center, and let U(J’c) be the universal enveloping
algebra of ﬁc. The Harish-Chandra homomorphism ¥ is an algebra
isomorphism of Z(l}.c) onto the set U(-!;c)l;'I of Weyl-group-invariant
members of U(ﬁc).

The Harish-Chandra homomorphism ¥ leads to a description of the

algebra homomorphisms of Z(?C) into C. If A is in (bc)‘, then
z = X\(2) =A(¥(2))

is such a homomorphism. It is easy to see that XA= Al if and only if
AN = wA for some w in W. Moreover, one can show that every homomorphism
of Z(t}.c} into C is of the form XA for some A.

For any reasonable irreducible (infinite-dimensional) representation 1
of: G, Z(gyc) acts as scalars. Then z — w(z) gives a homorphism of

Z(t}c) into C, and the above discussion means that

w(z) = XA(Z)I



for some A\ in {J)C)‘. We say that T has infinitesimal character A.

The infinitesimal character is determined up to a member of W.

An example of infinitesimal character in a classical context occurs
with SU(n): If a (finite-dimensional) irreducible ™ has highest weight
A, then the infinitesimal character of T is A + F.

An irreducible unitary representation ™ of G is said to be in the
discrete series if it is equivalent with a direct summand of L2(G).
Equivalently its matrix coefficients g - (w(g)¢, ¥) are to be in Lz(G).
Harish-Chandra [5) proved that the discrete series for G is nonempty if
and only if there is a maximal torus T in K that is maximal abelian in
G. This condition is satisfied in SU(N,2) with T equal to the
diagonal subgroup. Harish-Chandra [5] proved also the following theorem

parametrizing the discrete series.

Theorem (Harish-Chandra). Let {0 be the set of integral forms on
ﬁc. Then discrete series representations of G are parametrized (up to
equivalence) in terms of global characters by nonsingular elements A of
{0 + P (i.e., (1\,“> # 0 for all « €A), modulo the action of I-JK.

Moreover, the discrete series representation Wa has infinitesimal

character A, i.e., tﬂﬂ(z) nxA(z)I for z in Z(gg).

Meaning in special cases other than SU(N,2):

1) G = SU(n), compact. Every irreducible representation is in the discrete
geries. If A is given, introduce an ordering to make /\ dominant. Then
wA is the irreducible representation with highest weight A-P.

2) G = SU(1,1), conjugate to SL(2,R). For n> 2 an integer, we have a

discrete series .B'n acting in a space of analytic functions in the disc by

3;(%2)“2) - (pr e g2 28 ).
—Pz + &

The corresponding Harish-Chandra parameter /A has }\(é _?) =n-1.



formula for the multiplicities of the K~types in W It has the

IK b
following two important features:
1) If we introduce an ordering to make A dominant and put
A=A- 2P + P,
then the representation ¥, of K with highest weight A occurs
exactly once in wpl, -

2) If TA' occurs in wA] then ' 1is necessarily of the form

K 3

AT =X+ z + kimi
o, €A

with the k. integers > 0.

3. Minimal K-types

Let 1 be a representation of G, and let

1'|'|K SR 0¥

TEK
be the decomposition of its restriction to K into irreducible representations,
lumped by equivalence class (or "K-type"). We say that T is admissible if
each n. is finite.

In this context Vogan has introduced a useful notion of minimal (or
"lowest") K-type. The minimal K-types T, of 1 are those K-types
occurring in trlK for which |A+ ZPKIZ is a minimum. It is clear that
T has a minimal K-type; it may have several.

Example. For the discrete series representation uh the Blattner
weight A = A - ZPK + P gives a minimal K-type, and it is the only one.

Some results obtained by Vogan [16] about minimal K-types are the
following:

1) If ™ is irreducible and T, 1is a minimal K-type, then T, occurs

with multiplicity one.
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2) For the standard series of representations U(P,o,v) = ind{P;(G ®e’'®1) with

P = MAN
¢ = discrete series on M
Ve (uL‘)c

(in which the K-types that occur do not depend on wv),

a) if Re ¥ € (o!.')+, go that the Langlands quotient J(P,o,v) is defined,
then all the minimal K-types of U occur in J.

b) if ¥ = 0, so that U(P,s,¥) 1is unitary, then each irreducible summand
of U contains exactly one of the minimal K-types of U.

c) if Re ¥ is in the closure of (UU)+, then there is a result

incorporating both (a) and (b) above.

In this work of Vogan's and in some later work, the role of the
minimal K-types seems to be as an anchor for beginning a study of the.
representation, using information about its K-types.

We have a new formula [7] for the minimal K-types of Langlands
quotients J(P,o,v) and give it here for € = su(N,2), P = Pmin’ and

certain representations ¢ (approximately 1/4 of them). We write

Plin =M A.N. anduse the formulas for M, ~and o given in §1.
In particular, ¢ is given by three parameters: m, n, and G'O. Our

assumption on ¢ will be that m = n = N mod 2.
The key thing in the formula is to use the correct ordering. Thus let

the highest weight of 0 be

N
1 1
A gle, TG Ste W ) ™ j§3 2

with all cj in Z and with cy 2 e 2 Sy -

The half sum of the positive roots of M is

N
1 4
I"M = j§3 E(N = 2% 3|)ej



We introduce an ordering to make Ag + PM dominant for A® and to make
€ 40 and &5 et be simple roots, i.e., to keep the pairs 1,N+2 and
2,N+1 intact in the ordering. (There is an additional condition in
genmeral, but it is automatically satisfied here.) Schematically this
means that we take the string of integers

3, 4, 5, ..., N-2, N-1, N
and insert the pair 1,N+2 somewhere and the pair 2,N+1 somewhere so that
the corresponding coefficients for AG.+ PH are nonincreasing. This
ordering defines A® and P. We let A;: ﬂdKn &' and form P+ Then
the formula for the highest weight of the minimal K-type, which in this
case will be unique, is
orthogonal projection of ZPK on
A= RG -

span of e - o) and €y = eyl

The significance of the roots e ey,, and €y"eys+y in the formula is

that they are the roots that determine Amin'

Example. Let us take the situation in Figure 2. Thus N =8, and «
is given by m=n =0 and Ty (k,0,0,0,0,-k). The highest weight of o
is )€ = k(e3-e8), and thus

3

w

4 [ 7 8
5 3
7\0_+ PMH(— +ky 5,

1 o3 o5
29 E: 2! 2 k-)
The coefficients for indices 1, 10, 2, 9 are all 0, and these indices can
be placed in this order between 5 and 6. We compute PK and find that it

18 orthogonal to EI_EIO

A= Ap= k(e3 - ea)

and ey7eqs and thus the result is that

The current area of research with minimal K-types is to establish

relationships between representations UG(P.c,v) and UL(P V),

L,min’ci’

where L is a subgroup of G, using minimal K-types as anchor. We give

three examples of this kind of research:



1) The theory [14] of Speh and Vogan gives conditions under which UL

irreducible implies UG irreducible. In our situation with G = SU(N,2)
and with m=n =N mod 2, the allowable groups L are obtained as
follows: We list the indices in the order described above. Then L can
be any block diagonal subgroup containing the diagonal and the (1,10) block
and the (2,9) block. The formula for the highest weight of oL is
L L
ao_L At (B ) = (8 = P
A +

The allowable w's are those with <J\°.+PM+ v, °t>>0 for all o in A
that do not contribute to L.

For an illustration let us go back to the situation in Figure 2. If

we abuse nmotation by thinking of ol as contained in 5C when it is actually

only conjugate to a subalgebra of it, we can write
1
V= gale) - epg) * 3ble; = &)
with 0 < b < a. (The correspondence with the figure has flea-%(el—elo)
and fzevé(ez-eg).) We give three examples of L by indicating how the

indices are arranged in blocks in each onme:

3 by 5y Vs 10,02, 9506, s 8

— o (id)
= & 4 (iii)

Let us examine the three examples separately:
(i) Here L = torus x SU(1,1) x sU(1,1). A little computation shows

that o is trivial on SU(1,1) x SU(1,1) and nontrivial on the torus and

L
that the allowable ¥'s have 0<£ b< a<l.

(ii) Here L = torus x SU(6,2). We find that & is trivial on

SU(6,2) and nontrivial on the torus and that the allowable +w's have

0<b<Lads+ 2k
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(iii) Here L = torus x suU(7,2). On SuU(7,2), GL is given by
m=mn=] and (cb)L<—9(0,0,0,0,-k). The allowable +'s have
0<b<a<5+ 2.

2) The Zuckerman conjecture (to be considered in detail in §4) expects
JG(P,T,PL) to be unitary when 0, = 1 on the semisimple part of L and
the infinitesimal character of J is nonsingular. (Here PL denotes the
half sum of the positive restricted roots for L.) For an illustration, let
us continue with the situation in Figure 2, going over the examples of I in
(i) and (ii).
(ii) This L has semisimple part SU(6,2), and g, is trivial

there. The functional Fi corresponds to a =7, b = 5, The

infinitesimal character of J is

3 4 5 6 7 8 1 10 2 9
5 2L k2 5 L A e
(5 + k, '2'9 5: '2" 27 2 k} U ( 3 o Coh 2))

which is nonsingular (i.e., has no repeated entries) for k > 2. The
conjecture expects J to be unitary in this case. And indeed J is
unitary here. The point in question is the isolated unitary dot in
Figure 2 and is a unitary point because J is a Flensted-Jensen
representation, as we shall see in §5.

is

(i) This L has semisimple part SU(1,1) x SU(1,1), and o

trivial there. The functional fp, corresponds to a =1b = ]. The
infinitesimal character is singular this time, so that the conjecture does
not apply. But we can look at Figure 2 anyway and see that J ig unitary.
3) A broader conjecture is possible. A picture of the unitary points
for ¢=1 in SU(6,2) is shown in Figure 3 and is known to be complete.

A glance at Figure 2 shows that the unitary points in Figure 3 coincide with

the points in Figure 2 that are known to be unitary. Thus we raise the



2f

Zfl 4fl Sf]

¥ =:af, + bf two chambers showing

1 2

Positive chamber: 0<b<a

Key: D ® / unitary points

_______ reducible points
edge of region of

bounded matrix
coefficients

Figure 3. Unitary J(Pmin,o',v) in SU(6,2)

with ¥ real and o trivial.
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question: In the setting of (2), can we expect that JG(P,G;bj will be

unitary if and only if JL(P 1,¥) is unitary?

L,min’

4. Zuckerman's conjecture

Zuckerman [18] has conjectured that the irreducible admissible
representations obtained from a certain construction can always be made
unitary by introducing a suitable inner product. The motivation for the
construction and the conjecture comes from the known realization of discrete
series and from an understanding of representations with cohomology. We
shall give the realization of discrete series, show how it leads to the
conjecture, and then give a theorem that is joint work with Speh [9],
saying that unitary Zuckerman representations are as far as posgible from
the origin among any unitary representations that occur in pictures like
those we have given.

The context for our discussion will still be G = SU(N,2). The
generality of the theorem in [9] is that G is any linear connected
semisimple Lie group with rank G = rank K, and Zuckerman's conjecture can
be made in even greater generality.

A setting for realizing discrete series was proposed by Langlands [lD].
We fix an ordering and hence A'. Let B be the lower triangular subgroup
of GC relative to df. Then the orbit of | under G in the complex
manifold GCfB is open, and the isotropy subgroup is T. Hence G/T imbeds
as an open subset of GC/B and thereby becomes a complex manifold. Let X
be an integral form on 60’ and extend X to the Lie algebra li of B by
defining it as 0 on the strictly lower triangular matrices. Then ex is
a holomorphic character of B whose restriction to T is unitary. We form

the associated holomorphic line bundle £X over G/T :



G/T

Then we construct the space ‘Hq((.x) of L2 harmonic (0,q) forms. [In

more detail we let

Co’q((x) = space of smooth {,-valued differential forms of type
(0,9) on G/T
0

Cgé:‘,(ix) = subspace of members of C 'q({x) of compact support

? Co’q({x)—lcc’qﬂ(.{x) the usual 3 operator

S formal adjoint of 3 defined relative to 00’q )
com X

O =33*+3*3
'H-q(l(xJ = 12 subspace of Co’q({x) in the kernel of [] .]

In any event, G acts and gives a unitary representation.

Theorem (Schmid [13]). If X+p is nonsingular, then ,ﬁOHP) (L) =0 s
where
q(X+P) = |{% > 0 |® compact and (‘X+ ?,M)-:O)l

+ |{® >0 |« noncompact and (?(+f',°i>>0}| 3

Now let us track down a change of notation in Schmid's theorem. Let
us suppose that X - P is dominant for ﬁ+ and is nonsingular.
Also let us replace B by the upper triangular group. Following through the

statment of the theorem, we find that 'Hq(.fx) = ""x—r' when
q=[{*>0]|a compact}| = dim. (K/T).

Zuckerman considered a generalization of this setting in order to
motivate his conjecture. For data he uses (L, ordering, X), with L, the

ordering, and X all to be explained. The case L = T will reduce to



Schmid's theorem in the changed notation. Thus let

L = any centralizer of a toral subgroup of T, Lie algebra £

ﬂ(L) = relative roots of (?F’;E)

(CEL))+ = positive system defined by "ordering"

Q g'Gc the block upper triangular group relative to L% and (£§L))+,

so that G/L imbeds as an open subset of GCFQ
X = integral form on 5C vanishing on (ZEJL = [Lc.ic], extended
to g as 0 on block strictly upper tiangular matrices.

T : r N :
Then e is a holomorphic charcater of Q, and its restriction to L 1s

unitary. We form the associated holomorphic line bundle {x over G/L:

G {x
x
e
L——C
G/L

% 2 =
Let Ho’ ({Q = ker 9/image ? be the Dolbeault cohomology. Then the
representation of interest is expected to be the representation of the Lie

0,d

algebra 9 in the K-finite vectors of H where d = dimc K/ (KoL),

provided X - P is dominant for (ﬂ&L))+ and nonsingular.

*
We say "is expected to be" because the actual construction that
Zuckerman used is different. The analytic problems in dealing with the
above setting are formidable. Instead of working directly with the above
setting, he attempted to imitate it algebraically, by means of derived
functors on injective resolutions. The details of the algebraic definition
may be found in the book by Vogan []ﬂ. The constructed representation is

nonzero irreducible admissible and has nomsingular infinitesimal character.



Zuckerman's conjecture. Under the assumptions that L is the
J

centralizer of a toral subgroup of T and that the integral form X

on 60 vanishing on [EC,LC] is such that X - p is dominant

a@)y*
a™y*

for and nonsingular, the algebraically constructed representation

admits an inner product with respect to which it is unitary.

We turn to the statement of a theorem about unitary parameters that
is motivated by these considerations. Let A be the set of roots of
('gc,ijc), and let £ be the set of roots of (Lc,.jc). Then we can choose
positive systems A  and £ so that £+E A and the restrictions of

members of A to ZLC c ,ﬁc are in (A(L))*. The above considerations

lead us to focus attention on representations with the following properties:

1) X - PA + 2F"x = infinitesimal character. (This expression is A+
dominant and nonsingular under the assumptions in the conjecture.)

2) X - ZPA,K + 292,1( = minimal K-type. (This expression is A; dominant
under the assumptions in the conjecture.)

3) The Langlands parameter parabolic subgroup is one whose A is the
Iwasawa A group of L, and the Langlands ov parameter is the PI.,min

for: T.

(These parameters do not coincide with those in Vogan [17] because Vogan

uses a different ordering.)

Accordingly we make the following definition. We say that (A0

is a Zuckerman triple if

i€
A = positive system for (o}c.éc)

E = root system generated by a set of simple roots in A+ Cile.,

blocks relative to the A" ordering)

X = integral form on 4,8 orthogonal to 2 with X - .I‘:& + ZPZ

dominant for A+ ;
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Theorem (with Speh [9)). Suppose that a Langlands quotient J(P,n%eyo)
is such that there is a Zuckerman triple (Lf.i,l) for which J(P’“A'vo)
has infinitesimal character X - ﬂg +2P2 and a minimal K-type

. oty -t . - 2
X ZPA’K E ZPI.,K . If the infinitesimal character of J(P,%,,V,) 1is

nonsingular (or satisfies a slightly more gemeral condition), then J(P,W,,V)

cannot be made unitary for any real v with |yl < |v].

We shall obtain in the next section a wide class of unitary examples

of representations J(P,uh,vb) to which this theorem applies.

5. Flensted-Jensen representations

Flensted-Jensen representations are representations occurring discretely
in LZ{G/H). where H is the set of fixed points of an involution of G.
Flensted-Jensen [4] has obtained sufficient conditions for the occurrence
of such representations, Oshima [ll] has refined Flensted-Jensen's results,
and Schlichtkrull [12] has obtained minimal K-types and Langlands parameters
for these representations. We shall discuss the results of these authors
and relate them to the theorem at the end of the previous section.

The context for our discussion will still be G = SU(N,2), and we
take H = S(U(r)»U(N-r,2)). Again the discussion could be carried out more

generally. The Lie algebras of G, K, and H are

q = su(N,2)
R = s(u(@@u(2))

r N 2

¥ 0
H,= s(u(@)eu®-r,2)) = |0 %

0 £3

£ NeT 2

0 ¥
«;-5‘@1 with ¢= [¥ 0

X 0 .
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Flensted—Jensen [4] obtained a sufficient condition for the existence
of representations occurring discretely in LZCG/H):
rank(G/H) = rank (K/(KnH)),
i.e., there is a maximal abelian subspace of kng that is maximal abelian
in ¢. For our particular G and H, this means that
r < N/2,

and then we can take

' 01
0 D 0
0
1
- -0_ —
t= _ar 0 0
_s]
0 0 0
as the required maximal abelian subspace of Rng. The Lie algebra %

ie conjugate via Ad(K) to a subalgebra of the Cartan subalgebra 4,
and we shall, by abuse of notation, often regard £ as a subalgebra of 5.
(If we wanted to study only Flensted-Jensen representations, we could wait
until this point to choose our Cartan subalgebra and then define it in such
a way that it contained %*.)

We form roots of (?F,tc). If we identify ° with a subalgebra of
%C, then the roots of (1F,19) are the nonzero functionals among the

various (Eihej)ltc . Define
(el-eNJItC =%y

(ey-ey ) |tc =25,

Coprnl g - 2, -
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The multiplicities of these roots are given as follows:

Root A;Et) &(t)
,'l_-ij 1 1
:I:fj 2(N-2x) 2(N-2r+2)
if 4f 5 2 2

If we take 2fr and all fi-fj with 1< j to be positive, then we find

r
Pét) = ¥ (N-2j+1)f

j=1 4

r
) - v (-2i+3)E. .
j=1 g

Apart from the fixed-point group H, Flensted-Jensen's construction

uses one other parameter, a linear form A on t»c, which we may write as

X
A= :’E] cjfj s
Let
r
= A+ f(t) = ng') = 2 (cj—N+2j+l)fJ.

j=1

We have already arranged the orderings so that a suitable compatibility
condition holds for the inclusion of % in 4. The parameter A is required
to satisfy
1) (,U_\,,B»Iplz is an integer > 0 for each B in Cﬁlgt})+
2) P (extended to JJC by 0 on the orthocomplement of f.c) is integral on .30
3) (+68) pY>0 for a1l p e (A’

For such A, Flensted-Jensen constructs *‘A in C“(G;’H) generating
(under K) the K-type a and (under G) an indecomposable representation

m, in ¢ (c/m).
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With an additional condition on A, Flensted-Jensen was able to prove

that T, was an irreducible representation in Lz(GfH). Oshima [11]

A

improved Flensted-Jensen's condition to
%) (A) >0 for all pe(a®)*.

In the case that G is SU(N,2) and A is Z:cjfj , conditions (1)

to (3) are together equivalent with

cjsz and = N-1 mod 2 for 1< j<r
c: Dc, + 2

% 3
e. >N =2r = 1

rZ

Condition (L%) imposes the additional requirement that
(I 0
r

OFiy i Tais 5 but it is redundant

This is a new condition if r = g el
otherwise.

Schlichtkrull DZ] proved that fll is a minimal K-type of ™, and
that it is the only one.

Schlichtkrull also obtained information about the Langlands parameters
of . Namely let £ = Zqu) be the 0 root space of (ﬁf’tp) intersected
with ¢, and let L = zG(z) be the corresponding analytic subgroup. In our
notation for SU(N,2),

L = torus x SU(N-2r,2)

and, under the identification of © with a subalgebra of the Cartan
subalgebra %, L is the block diagonal subgroup built from the diagonal
and a block with indices T+l,...,N-r,N+]1,N+2.  Schlichtkrull's result
about Langlands parameters is that .
a) the @ of the parabolic subalgebra can be taken as an Iwasawa a of {.
b) the & parameter of T, is PL,min'

c) the M parameter is such that the minimal K-type of v, is }lx
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Let us interpret Schlichtkrull's results under the assumption that

T < E;- (This assumption makes dim ou equal to 2.) We can choose the
roots from which ov is constructed as & i1 oN+2 and e 42 N1 Let
1bj=12(cj -N+25+1) for 1<3<&r .
Then P is given by
1 r r+3 N-r N-r+l N
M= (bl, cees b, 0, +evs 0, “b, =eey _hi)
and is subject to the conditions that 'bj is in Z and b, > ... a'br >20.

The minimal K-type formula of §3 then shows that ¢ has m=n = 0 and

G <> (dys wuvs by 0y weey 0y =by uvy 7BY)

Now we shall identify the parameters with those of a Zuckerman triple

m“,z,x). Let A+ be defined by the ordering

1, 2, sav, T, T+l, r+2, r+3, ..., N-r, N#l, N+2, N-r+l, ..., N

et —t L ;v d el

and let ¥ be the subsystem of A corresponding to blocks as indicated. Define

E:
X = JE] (by + N = 2j + 1(e; = ey_syy) -

s H + . -
Then it is easy to check that (A ,E,X) is a Zuckerman triple and that
J(Pmin’u-'PL,min) has infinitesimal character X- fh-& Zf;: and a minimal

K-type X - ZPA x*t 2|°z k" The infinitesimal character is nonsingular if
» ]
b >2,

and, under this condition, the theorem at the end of §4 applies.

We conclude the following: In SU(N,2), let H = S(U(r)xU(N-r,2)) with

N-1 ¥ /) s
r< 5 - Then nonsingular Flensted-Jensen representations occur in the

nonunitary principal series with parameters © and ¥ where

09



¢ has m=n=0 and o‘oc—;(hl,...,br,ﬂ,...,D,—br,...,—bl) with erZ
Y has a=N-2r+ 1 and b=N-2r -1 .
For that ¢, no real ¥ with |v| » (v, ]| yields a unitary representation.
0 P

Example. If we choose N =8 and r =1, then G = SU(8,2) and
the above parameters are
¢ with m=n=0 and dhe-(k, 0, 0, 0, 0, k) with k> 2
vo with a =7 and b = 5.
These are the parameters of the isolated unitary dot in Figure 2, and the
theorem at the end of §4 is saying that there are no unitary points in that

picture at any position farther from the origin.
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