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For a real semisimple group of matrices, every unitary principal series

representation splits into inequivalent irreducible representations [5]. This

multiplicity-one result was conjectured [7] in 1971 because one expected in

general and knew in some special cases that all reducibility was accounted for by

canonical geometric constructions, such as the imbedding of a space of analytic

functions on the disc in the space of functions on the circle by passage to boundary

values.

We shall give an example to show that the corresponding multiplicity-one

statement is false for a semisimple group of matrices defined over a locally

compact, totally disconnected, nondiscrete field of characteristic 0. This example

is summarized in §2, and its properties are verified in §5. It is ultimately

motivated by the work of Langlands [11] on classification of irreducible admis-

sible representations. Langlands [12] was able to give a formulation of the

results of [8] that suggests that straightforward generalization of the multiplicity-

one theorem to other fields is not likely to succeed. An exposition of [12] is given

in [9], and the way in which this work motivates our example is explained in § 6.

Verification of the properties of our example depends on a suitable develop-

ment of intertwining operators for split groups. Most of such a development

has been carried out by Sally [15] and Winarsky [18], Some small modifications

and elaborations of their work are the subject of § 3 and 4.

The work in this paper grew out of conversations at the American Mathe-

matical Society Summer Institute in 1977 with Langlands, Lusztig, Schiffmann,

Shelstad, and Wallach. The work by I. Muller [13] on intertwining operators

was also of influence; Muller developed a variation on Winarsky's work and was

able to push through analogs of the results of [8]. In addition, she came close

to discovering the example of § 2. We thank all these people* for their help.

The results in this paper were announced in a talk at Hiroshima University

on August 30, 1977, and later in Notices of the American Mathematical Society

25 (1978), abstract 753-G6, in connection with a meeting of the American

Mathematical Society.

* Supported by the National Science Foundation.
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§ 1. Notation

Let F be a locally compact nondiscrete field of characteristic 0, and let G

be a semisimple algebraic group defined over F. We shall assume that G is

split over F and that G is simply-connected in the algebraic sense. Let T be

a maximal split torus in G, fix a positive system of roots, and let P = TN be the

corresponding minimal parabolic subgroup in G. Here N is the nilpotent radical

of P.

Let μ be the positive character of T whose square is the module of the action

of conjugation of Ton N. In terms of Haar measures on N9 dψnΓ1)—μ(t)2dn.

The unitary principal series for G is a series of unitary representations of G

parametrized by the unitary characters of T. If ξ: T->{zeC| |z| = l} is such a

character, the representation U(ξ9 g) is given in the dense subspace

/ continuous,
G->C

f(xtή) = μOΓ1^')"1/^) for xeG9 teT9 neN

by the action

U(ξ9g)f(x)=f(g-iχ).

We can allow a generalization in which a character ξ: T-+C* is not necessarily

unitary, and then we speak of the nonunitary principal series.

Since G is simply-connected, the torus Tis isomorphic to a product of copies

of F x . We introduce notation that makes this isomorphism explicit. Let α be

a root and form the image in G of the corresponding SL(2, F). The image in

G o f ( ? -i), x e F x , is denoted ψa(x). Number the simple roots o^,..., αA,

and define ψ:(F*y-+Tby

Then ^ is the required isomorphism of (F x) f i onto T.

§ 2. Example

To describe our example, we specialize to the case that F is a finite extension

of the field Qp of p-aάic numbers with p odd. Let Θ be the ring of integers, Sβ

the maximal ideal, and π an element with ?β = π(9. Define q by \π\ = q~1. We

shall take the group G to be (simply-connected) of type D 4 . With standard nota-

tion we list the simple roots in the order e1 — e2, e2 — e39 e3 — e49 e3 + e^9 and this

list defines the function ψ that coordinatizes T.
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Let ε be a generator of the unique cyclic subgroup of F x of order q — 1.
Then each x has a unique decomposition [17, p. 11] as

x = nnείa

with 0<£<q-2 and a in 1 + φ. We write n = n(x) and £ = £(x).
Define a unitary character ξ0 of T by

and form the corresponding unitary principal series representation U(ξθ9 g).

THEOREM 2.1. TTie commuting algebra of U(ξ0, g) has dimension 32 and
is noncommutative. Therefore some irreducible constituent of ξ0 occurs with
multiplicity greater than one.

More precise information about the reducibility will be given in Corollary
5.4. The noncommutativity of the commuting algebra depends upon elementary
properties of intertwining operators that will be assembled in the next two
sections. The fact that the dimension is at most 32, as well as the precise
information about reducibility, requires in addition a theorem of Harish-Chandra
that is the analog for F of Theorem 38.1 of [3] for the field R. See Harish-
Chandra's lecture notes for 1971-73; cf. Theorem 5.5.3.2 of [16].

§3. Intertwining operators for SL (2, F)

The theory of intertwining operators for SL(2, F) was developed by Sally
[15]. We shall briefly redevelop the theory here, in a different form that is
more parallel to the development in [6].

For this section let G = SL(2, F), let K = SL(2, Θ\ let T be the diagonal
subgroup of G, let A be the subgroup of matrices diag(πΛ, π~"), let M~TΓiK,
and let

- IC I M C :»•-(::)•
Then we have G=KAN, with the ^-component unique; we write g = κ(g)h(g)n.
The formula for h(g) is

πmin(n(α),n(c)) Q \

Q π-min(π(α),n(c)) J '

with n(x) as in §2. For this element g, μ(h(g))=max{\a\, |c|}=max {q~nia),
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LEMMA 3.1. For a suitable normalization of Haar measures, every con-
tinuous function f on K that is right-invariant under K(] N satisfies

f(k)dk = ( f{κ(v)m)μ(h(v))-2dvdm.
JV*M

This is proved in the same manner as Lemma 18 of [10]..

The formal intertwining operator A(w, ξ), with ξ SL character of T, is defined
by

A(w, ξ)f(x) = ( f(xwv)dυ
Jv

for / in the representation space for U(ξ, g), and it satisfies formally

9 ξ)U(ξ, g) = U(ξ-\ g)A(w, ζ) (3.1)

for all g in G. Corresponding to ξ there are a complex number z0 (determined
modulo 2πz'/log q) and a character ξ* trivial on A such that

ξ(t) = ξ*(t)μ(ty°, teT.

Let ξz for z in C be defined by

ξJίt) = ξ(t)μ(ty.

For Re(zo + z)>0, the integral defining A(w, ξz) is convergent and is given by a
simple formula, as we shall see below. To write down the formula, we note that
G= VTN in the sense that

a b \ ί 1 0 \ / a 0 \ / 1 ba~x

c d ) \ ca-1 1 / V 0 a'1 ) \ 0 1

if a φθ. We extend μ and ξ from Γto VTN by having them ignore the Fand N
factors. The formula for A(w, ξz), proved in the same manner as Lemma 56 of
[6], is

(3.2)

and the integrals are convergent for Re(z o+z)>0 (cf. [17]) because
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if v = ( A. Consequently we can obtain an analytic continuation by decom-

posing/into two pieces as in the proof of Theorem 3 of [6]. The result is

LEMMA 3.2. Let f be locally constant on K and right-invariant under

K(] N. If the character ξ is ramified (i.e., ξ* is nontriviaΐ), then

Λ(w, ξz)f(k0)

extends to be entire in z and continuous in the pair (z, k0). Otherwise, ξ(i)

= μ(t)zo, and A(w, ξz)f(k0) extends to be meromorphic in z with poles, at

most simple, only at —z0 and points congruent modulo 2πί/logg; moreover,

Λ(w, ξz)fis continuous in (z, k0) away from the poles.

In terms of the analytically continued operators, equation (3.1) extends to an

identity of meromorphic functions. Also the operators satisfy the adjoint re-

lation, K-space by K-space, given in the following lemma. The proof is the

same as for Lemma 24 of [10].

LEMMA 3.3. In terms of the character ξ% trivial on A,

If the unitary character ξ does not have order exactly two, U(ξ, g) is irreduci-

ble, by [2, p. 164]. Consequently the proof of Proposition 27 of [6] can be

repeated in the context of the field F.

LEMMA 3.4. For each character ξ on T there exists a meromorphic

complex-valued function n^{z) of one complex variable such that

Λ(w-», («-iμ(w, ξz) = η£z)I.

The function ηξ(z) has the further properties that ηξz (z) = ηξ(z0 + z) and

( i ) r\ξSz) is unchanged if w is replaced by wt with t in T,

(ii) ηξ£z) is >0 on the imaginary axis,

(iii) fy^ (̂z) = ^ ( - z ) ,

(iv) ηξXz) = ηξ£-z),

( v ) γ\ξ*(z)==rlξXz) tf Ψ *s a n automorphism of G leaving A fixed and K stable.

By Lemma 36 of [6] there exists a meromorphic function yξ£z) in the plane

such that
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If ξ* has order two, then (iii) above, together with the same Lemma 36, shows that

yξXz) can be taken to be real for real z. In any case, we define

, ξ*μzo) = yφ0 + z)-M(w, £*μ20).

Then we have, for all ξ9

rf(w-\ Γ ι W(w, ξ) = /

and

Hence J/(W, ξ) is unitary for ξ unitary.

LEMMA 3.5. // ξ is a unitary character on T, then jf(w, ξ) is nonscalar

except for ξ trivial.

PROOF. Write ξ = ξ*μz. Except when ξ* is trivial and z = 0mod(2πί/

logg), A(w, ξ) and A(w~x, ξ'1) do not have a pole and are not identically 0, by

Lemma 3.2. By Lemmas 3.3 and 3.4, ηξm(z) is regular and not 0. Hence yξ(z)

is regular and not 0. In addition, (3.2) shows that A(w, ξ) cannot be scalar

(cf. p. 575 of [6]). Hence s/(w, ξ) is not scalar.

§ 4. Intertwining operators for G split over F

For general G split over F, the principal series is still defined as in § 1. If

ξ is a character of Tand w is in the normalizer NG(T), the intertwining operator

A(w9 ξ) is defined on the representation space for U(ξ, g) and is given formally

by

A(w9ξ)f(x) = [ f(xwv)dv. (4.1)

The operator, except for a scalar, depends only on the coset of w in the Weyl

group WG(A) = NG(T)IT. The formal intertwining relation is

A(w, ξ)U(ξ, g) = U(wξ, g)A(w, ξ). (4.2)

The details of how these operators are defined rigorously by analytic con-

tinuation are not very different from the real case and were carried out by

Winarsky [18]. Winarsky used an integration over a quotient space instead of

the one in (4.1), and Muller [13] began her work by redeveloping matters from

(4.1) as definition. After either development, (4.2) results.

Some features of this analytic continuation are relevant for us. Let K be

a "good" maximal compact subgroup (relative to Γ), and let M = K(] T. With
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ι/rasin §1, let

A = {ιKπni,..., π"i)I nl9..., n&eZ}.

Then T=MA, direct product. In corresponding fashion, we can decompose ξ as

ξ = ξ*λ,

where ξ* is trivial on A and A is trivial on M. Then λ is a character, not neces-
sarily unitary, on A^Z A . That is, λ can be regarded as a parameter on (Cx)£

or as a periodic parameter on Cfi. If functions in the representation space for
U(ξ, g) are restricted to K, the space of restrictions is independent of λ, and the
analyticity property of A(w, ξ) is that A(w9 ξ)f is meromorphic in λ (when λ is
regarded as a parameter on Cfi) for each locally constant / on K. Moreover, if
w=zwί- wn corresponds to a minimal decomposition into simple reflections in
the Weyl group, then

A(w, ξ) = Λ(wu w2 -wnξ)A(w2, wy~wnξ)-A(wn9 ξ). (4.3)

To obtain normalized intertwining operators s/(w, ξ), we normalize each
factor in (4.3) by means of the normalizing factors in § 3. Thus, changing nota-
tion, suppose w mod T is a simple reflection in the Weyl group. If w mod T is
the reflection with respect to the simple root α and if α is as in § 1, we define
ίβ—S'^β Then ξΛ is a character of the torus in a subgroup SL(2, F) and
decomposes as ξa=(ζo)*μl. In this situation we define

This defines normalized intertwining operators for the case that w is a simple
reflection. Changing notation back again, we can then normalize each operator
on the right side of (4.3), and we take the normalized ja/(w, ξ) to be the product
of the corresponding normalized operators. This procedure is independent of
the decomposition of w that led to (4.3). One can then proceed as in the real
case [6] to prove the cocycle relation

2, ξ) = s/{wu w2ξ)*/(w2, ξ).

See [13] for details.
We have also the adjoint relation

and it follows that sf(w, ξ) is unitary for ξ unitary.

From this point one can prove the theorem describing a basis for the com-

muting algebra of U(ξ, g) when ξ is unitary. The following ingredients allow

one to imitate the proof in the real case; Muller [13] has carried out the details.
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(1) The fact that the definition of A(w, ξ) can be written as an integral over

V Π w~ίNw, not just as an integral over a quotient.

(2) The Bruhat double-coset decomposition of G.

(3) < The description (due to Borel-Tits) of the closure of a Bruhat double coset.

(4) Harish-Chandra's completeness theorem referred to at the end of § 2.

The result is as follows. For ξ unitary, let

If w mod Tis in W(ξ), (4.2) shows that JZ?(W9 ξ) commutes with U(ξ, g). Let

Δ\ξ) = {α I s/(w» ξ) is scalar} = {α | ξoψa = 1} .

The equality of the two formulas for Δ\ξ) follows from Lemma 3.5. The system

Δ'(ξ) is a root system if it is not empty, and we let W'(ξ) be its Weyl group. The

β-group for ξ is defined as

R(ξ) = {WE W(ξ)\ wα>0 for every α > 0 in Δ'(ξ)}.

THEOREM 4.1. W(ξ) isthesemidίrect product W(ξ)= W'(ξ)R(ξ), and W\ζ)

is normal The operators s/(w, ξ) for w m o d T in W'(ξ) are scalar, and the

operators s/(w, ξ) for w mod T running through R(ξ) are linearly independent.

Consequently (by Harish-Chandra's completeness theorem), the operators J/(W,

Qfprwmoά.T running through R(ξ) form a linear basis for the commuting

algebra of U(ξ, g).

§5. The example of §2

For. the example of § 2, let w be in the Weyl group. We have

ψ(xu...,xd = ni=iΨaj(Xj) (5.1)

for a particular listing of the simple roots. Then

Wξθ(ψ(xl9..., X4)) = ίθ(Π}=l W"Va/*i)) = "ίθ(Πί=l Ψnj{Xj)) (5.2)

We compute the groups W, W, and R. For W, the condition is that wξo = ξo,

and in view of (5.1) and (5.2) it is necessary and sufficient that

(5.3)

hold for each simple root α. If α, β, and α + β are roots, we have

Ψ«+β(x) = ψa(x)Ψβ(x); (5.4)

thus (5.3) holds for all simple α if and only if it holds for all α,
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According to the definition of ξ0, we have the following formulas for

ξo(φa(x)) when α is simple:

I ( —l)π(*) for α = e1 — e2, e3 — e4, or e3 + e 4

( _ iy(χ)+Hχ) for oc = e2 — e3.

Then by (5.4) and a little computation

- l)π<x> for α = ± eγ ± e 2 , ± e3 ± e4 (5.5a)

-1)£(*> for a= ±ex± e3, ± e2 ± e4 (5.5b)

— i)"(*)+£(*) for α = ± ex ± e 4 , ± e2 ± e3 (5.5c)

{ + 1 for no α. (5.5d)

The whole Weyl group is the semidirect product of the even sign changes and

the permutations on el9 e2, e3, e 4 . The condition for an element w of the Weyl

group to be in W is that w leaves each line of roots stable in (5.5). The even

sign changes have this property, and thus W is the semidirect product of the

even sign changes and a group of permutations. Clearly the permutation group

is the four-element group:

{(1), ( 1 2 ) ( 3 4), .(13)(2 4), ( 1 4 ) ( 2 3)}.

Thus FT is a nonabelian group of order 32.

The roots in A' are those that appear in (5.5d); thus Δ' is empty and W is

trivial. It follows that R = W and that .R is a nonabelian group of order 32.

Theorem 2.1 follows from this fact and from Theorem 4.1.

Actually we can describe precisely the number of irreducible constituents and

their multiplicities for U(ζ0, g), and the remainder of this section will be devoted

to deriving such a result. For this purpose we do need to use the result of

Harish-Chandra's cited after Theorem 2.1.

L E M M A 5.1. The R-group for ξ0 can be written with generators and

relations in such a way that every relation is of one of the forms

( i ) the square of a generator, or

(ii) the commutator of two words, each of which is of order 2 when realized

inR.

PROOF. If α is a root, let pa be the corresponding reflection in the Weyl

group. Let s£ be the ΐ-th sign change. Define

W l = Peι-e2Pei+e2 ~
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W4 = Peί-e3Pe2-e4 = (1 3)(2 4).

Since sis4 = w3wίw2w3

1

9 it is apparent that these 4 elements generate R. Also

wf = 1 and

w3 commutes with w4;

wt commutes with w3, with w2, with w ^ w j 1 , and with W3W2WJ1;

vv2 commutes with w4, with w l5 with w^w^^1, and with w3w2w3

ι;

w3w4 commutes with w ^ .

Consequently if we let R' be an abstract group with generators w l5 w2, w3,

w4 and with relations as in the previous sentence, then R is a homomorphic

image of R'. The lemma will be proved if we show that \R'\ < 32.

Consider the subgroup So oΐ R' generated by wί9 w2 and w3wίw2wjί. These

three elements commute and are of order < 2 . Thus | S 0 | < 8 . Also w3 nor-

malizes So since

1 = W l 5

w51 = (wx)(w2).

Then w3 and 5 0 generate a subgroup Si of R' of order < 16. We claim that this
larger subgroup St is normalized by w4; if so, then the fact that w4 is of order
< 2 implies that |Λ'|<32. Now w4 commutes with w2 and w3. Also

= w4w1w1w2w3w4wj1

= w4w2w4 = w2,

so that

Finally

Thus 5 t is normalized by w4, and the proof of the lemma is complete.

LEMMA 5.2. If the R-group for a character ξ of T can be given by gener-
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ators and relations as in Lemma 5.1, then ξ extends to a character of the smallest

subgroup R of NG(T) containing T and coset representatives of each element

ofR

PROOF. Let the generators be r1?..., rm, and let the relations be rf,..., r}n

and piqiPTiqTi with each pt and q{ a word in r l v . . , rm. Choose representatives

w l v . . , wm ofr1,..., rm in NG(T), and let p t (w) and qt(w) be the results of substituting

the w/s for the r/s in pv and qt. Define elements of Tby

According to Lemma 59 of [6], R is given by generators vvl5..., wn and t

(t e Γ), with relations

( i ) T,

(ϋ) (T?)"1*/7,

(iii) vviίvv71(wί/w71)"1,

(iv) S?1^?,

(v) Ϊ71

We define ξ on the free group on the above generators in such a way that

To complete the proof, it is enough to show that, in the free group, ξ annihilates

each relation (i),..., (v).

Our definitions make (i), (ϋ), and (iv) immediate. For (iii) the question is

whether

and hence whether

But this holds since rjιξ = ζonT.

Thus we are left with (v). Applying ξ, we see that the question is whether

) = l5 and hence whether

PiM-'qM'1) = I- (5.6)

Let us consider the effect on (5.6) of replacing p^w) by a different representative
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Pi(w)t. Then the left side of (5.6) becomes

The first factor is 1 since piξ = ξ = qiξ. Thus the validity of (5.6) is unaffected by

using a representative Pi(w)t for pt in place of Pi(w). Similarly the validity of

(5.6) is unaffected by changing the representative of qv Since pt and qt are

commuting elements of order 2, Lemma 3 of [5] says they have commuting

representatives.* Then the left side of (5.6) collapses to 1, and the lemma is

proved.

THEOREM 5.3. // the R-group for a character ξ of T can be given by

generators and relations as in Lemma 5.1, then the commuting algebra of U(ξ,

g) is isomorphic with the group algebra of R over C.

PROOF. Apply Lemma 5.2 to obtain an extension of ξ to the group R of

that lemma. Then the maps

w > ξ(w) and w • s/(w, ξ)

are homomorphisms on R and commute. Hence the map w->ξ(w)s/(w9 ξ) is

a homomorphism of R into unitary operators. The operator ξ(w)s/(w, ξ)

depends only on the coset of wmod T, and thus we have a homomorphism of R

into unitary operators. In view of Theorem 4.1, this map is an isomorphism

onto a basis of the commuting algebra of U(ξ, g). By the universal mapping

property of the group algebra, the map factors through the group algebra and

provides the required isomorphism of the group algebra with the commuting

algebra.

COROLLARY 5.4. The principal series representation U(ξθ9 g) of §2 splits

completely into 16 irreducible representations of multiplicity one and one

irreducible representation of multiplicity four.

PROOF. Lemma 5.1 and Theorem 5.3 show that the problem is to decom-

pose the regular representation of the 32-element group R. In R, the center is

the 2-element group consisting of the identity and the product of all four sign

changes, and the quotient is abelian of order 16. Hence R has 16 characters.

Also the standard 4-dimensional representation of the Weyl group on R 4 or C 4

is irreducible and remains irreducible when restricted to R. The corollary

follows.

* This lemma is stated over R, but the matrices in question are integer matrices, and the result
is valid over Q.
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§6. Motivation: Connection with Langlands theory of Weil group

By way of preliminaries, let G be a connected real semisimple Lie group

with a simply-connected complexification G c . Langlands [11] developed a

theory connected with a "Weil group" in the course of classifying irreducible

admissible representations of G. See Borel [1]. The relevant objects for clas-

sifying representations (up to "L-indistinguishability") are homomorphisms φ

of the Weil group into L G, which is a complex centerless semisimple Lie group

whose Dynkin diagram is dual to the one for Gc. In the case of standard unitary

continuous series representations of G, the image of φ is bounded, and Langlands

shows that the reducibility group R of § 4 for such a representation is essentially

the component group of the centralizer of image φ; see Theorem 3.4 of [9] for

a precise statement.

In the case that G is split over R and the representation is one from the

unitary principal series (i.e., induced from a minimal parabolic subgroup), the

theory simplifies as follows. In place of the homomorphism of the Weil group as

above, we may use a homomorphism φ of the multiplicative group R x into L G,

we may assume that the image of φ is contained in a fixed Cartan subgroup of
L G, and then the R-group of § 4 is exactly the component group of the centralizer

of image φ. See Theorem 3.4 of [9].

We can speculate that the same thing will happen when R is replaced by our

field F, as long as G is split over F and is simply-connected in the algebraic

sense. (Indeed, this turns out to be the case, but we omit the proof.)

We search for a two-element subset of a torus in a centerless compact semi-

simple group whose centralizer has a nonabelian component group. It is easy to

see that in S0(8)/Z2, the component group of the centralizer of the pair of ele-

ments {xί9 x2} with

x, = d i a g ( - l , - 1 , 1, 1, - 1 , - 1 , 1, 1) modZ 2 ,

x2 = d i a g ( - l , - 1 , - 1 , - 1 , 1, 1, 1, 1) m o d Z 2

is isomorphic to the 32-element group in §5. We therefore seek a homomor-

phism φ of F x into S0(8)/Z2 with image {1, xl9 x2, xxx2}. As in §2, put x =

π«(x)g£(*)α for x in F x . If we define

φ(x) = x1^x^x\

then φ is the required homomorphism.

To obtain a character ξ0 of T from the homomorphism φ, we recall that

φa is a map of F x into G, and we let ξa«, where α v is the root of L G dual to α

for G, be the character corresponding to the root αv of L G. Then we set
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ξoiΨJίx)) = ξ*Λφ(χ))

and find easily that ξ0 is the character given in § 2.
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