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IRREDUCIBLE CONSTITUENTS OF PRINCIPAL
SERIES OF SL, (k)

S. S. GELBART anp A. W. KNAPP

§1. Introduction. The unitary principal series of the general linear group
GL, (k) or the special linear group SL,(k) over a nondiscrete locally compact
field k of characteristic zero consists of the representations unitarily induced
from a continuous unitary character of the upper triangular group. In the case of
GL,(k), Gelfand and Naimark [4] gave a proof that shows that these
representations are always irreducible (see also [2]).

Our concern in this paper will be with SL,(k), where reducibility can occur.
We shall describe the irreducible constituents of the unitary principal series of
SL,(k), and we shall relate the reducibility that occurs to the abelian Galois
extensions of k. In particular, the irreducible constituents will be parametrized by
an abelian Galois group.

Some historical remarks about SL,(k) will put matters in perspective. For
k = C, the proof of irreducibility for GL,(C) given by Gelfand and Naimark [4]
also proves irreducibility for SL,(C). For SL,(R), reducibility into two pieces can
occur [8], and the irreducible constituents were described in [9]. The method of
accounting for the reducibility within SL,(R) turns out to be a prototype for the
classification of irreducible tempered representations of real semisimple groups.

For the case that k is nonarchimedean, Winarsky [18] showed that reducibility
into more than two pieces can occur. Howe and Silberger [5] proved that in any
event the irreducible constituents all have multiplicity one. Muller [14] and
Winarsky [18] independently introduced a finite group, known as the R group, to
parallel the case of real groups and obtained, with the aid of a completeness
theorem due to Harish-Chandra ([17], Theorem 5.5.3.2), a basis for the
commuting algebra. Keys [7] clarified the nature of this basis.

In all this, however, the problem of describing the irreducible constituents
remained unsolved. Our intention is to give such a description in this paper for k
nonarchimedean.

From [3] this result is known already for the case n = 2, but our proof is new
even in that case. Briefly we start with a character x, of the upper triangular
group of SL,(k), extend it to the upper triangular group of GL,(k) in a
particular way, and use the extension to define a group G, intermediate between
SL, (k) and GL, (k). Using an easy general argument, we show that none of the
reducibility is lost in passing from SL,(k) to G,. We can then apply a slight
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variant of the Gelfand-Naimark argument to G, to find the irreducible
constituents.

The paper is organized as follows. In §2, we take advantage of special
properties of SL, (k) to introduce a finite abelian group L(x) as a more
convenient version of the R group. This definition is used in §3 to introduce the
group G, and to show that no reducibility is lost in passing to G,. In §4 we give
the variant of the Gelfand-Naimark argument that enables us to describe the
irreducible constituents. The multiplicity-one result of [5] is a consequence of this
argument, and the argument is not simplified by assuming the result of [5].

As already suggested, our approach to the problem contains a bonus in that it
points to a close connection between this reducibility problem and abelian class
field theory. It turns out to be possible to associate to the given character x; a
canonical finite abelian Galois extension of k, and the R group and L(x) are
both canonically isomorphic to the dual of the Galois group. Moreover, every
finite abelian Galois extension of k arises in this way. These matters are
discussed in more detail in §5.

It is known that the irreducible constituents under study are parametrized by
the dual of the R group, once a particular constituent is specified as base point,
and it follows that the irreducible constituents are parametrized by the Galois
group (after a choice of base point). Connections between this fact and the
Langlands notion of L-indistinguishability will be discussed in a later paper [1].

§2. The group that indexes reducibility. Let k be a nonarchimedean
nondiscrete locally compact field of characteristic 0, i.e., a finite extension of a
p-adic number field, and let k™ be the multiplicative group. We use the notation
G for the general linear group GL,(k) and G, for the special linear group

G,=SL,(k)={g€ G|det g=1}.

Generally a subscript s on a subgroup of G will denote the intersection with G,
and a subscript s on a function with domain contained in G will denote the
restriction to the intersection of the domain with G,. If A is a locally compact
abelian group, A will denote the dual group of continuous homomorphisms into
the circle.

Let 7 and T, be the diagonal subgroups of G and G,, respectively. We write
@i 0a) for the member of T with diagonal entries @, ..., a,. Let x, bea
member of T We recall the unitary principal series representation of G, with
parameter x,. For this purpose let N be the group of upper-triangular matrices
with ones on the diagonal, and let u: T—>R™ be defined by

w(ay, ... a)=lla/al.
1<y
(Recall that p, extended trivially on N, describes the modular function of TN.)
We define the unitary principal series representation
G,
U(x:) = l‘j.t.}g (X.r ® l)
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of G, to operate in the dense subspace

f(tng) = p(1)"*x,()f(g) fort E T, n € N]

H(x,) = [f G,—»C
flocally constant

of a Hilbert space by
(Uxs> 8))(x) = f(x8)-

The norm on H(y,) is the L? norm of the restriction to the maximal compact
subgroup K, of G, consisting of integer matrices.

The reducibility of U(x,) is understood on a certain level by knowledge of the
commuting algebra C(U(x,)) of U(x,), which is known to have a basis of
operators parametrized by a certain finite group R(x,). (See [14], [18], and [10].)
For SL,(k) we can proceed more directly, using the group L(x) defined below.
The group L(x) is canonically isomorphic with R(x,), as will be proved in [1],
and has the advantage that it leads directly both to an identification of the
irreducible constituents of U(x,) (see Theorem 4.1 below) and to connections
between reducibility of U(x,) and field extensions of k (see [1]).

Before defining L(x), we recall the action of the Weyl group W for our
situation. The group W can be regarded as the group of all permutations on »
letters; it operates on T (and also on T by

OXs(@1s « « 5 @) = Xs(Go(1ys + « + 5 Do(my)-

For each pair (i, j) with 1 < i< < n, let y; : k> — T, be defined by the recipe
that y;(a) is a in the ith entry, @ in the jth entry, and 1 in the other entries.

To defme L(x), we choose a particular extension x of x; from T, to T.
Namely, define x, € (k*)" for 1 <i < n—1by x; =X, ° {i,, and define x, = 1.
Our choice is x in 7" given by

x(ay, ..., a,)= _Hix‘.(al) =X (@18 G7 ¢ - ) (21)
j-
and it is clear that the restriction of x to 7, is x,. Motivated by Labesse-
Langlands [11], we define
L(x) = {0 € W|ox = (w ° det)x for some w in (k™ )"}

L(x) = {w € (k*)"|(w ° det)x = ox for some o in wi.

Then L(x) and L(x) are finite groups, L(x) is abelian, and there is an obvious
homomorphism ¢ of L(x) onto L(x) given by associating the unique w that goes
with ¢ in the definition of L(x).

Define N, to be the intersection of ker w for all w in L(x). We observe that N,
contains all nlh powers of members of &*:

N, (2.2)
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In fact, let w be in L(x) and choose o in L(x) with ¢(0) = w. Then
x(a.a,...,a)=ox(a,...,a)=w(a")xa,...,a)

and so w(a") = 1.
Let us observe the canonical isomorphism

L(x)"=k*/N,. (2.3)

In fact, we know that L(x) C (k*)*; hence L(x)" is a quotient of (k™))"
= k. By definition the kernel of this quotient map must be N, . Hence L(x)" =
k* /N, canonically.

§3. Restriction of induced representations. The connection between L(x)
and the reducibility problem under study comes in partly through two general
lemmas about restricting irreducible unitary representations to open normal
subgroups of finite index. Temporarily we set aside our notation G, G,. etc.
Lemma 3.1 is given explicitly as Lemma 1.16 of Mili¢i¢ [13]. Lemma 3.2
underlies a variant of Lemma 1.2.1 of Jacquet, Piatetski-Shapiro, and Shalika [6];
their result is stated in [6] in the context of admissible representations and is
given without proof.

LemMa 3.1 (Mili¢i€). Let G be a locally compact unimodular group, let H be an
open normal subgroup of finite index, and let m be an irreducible unitary
representation of G. Then |, splits as the finite orthogonal sum of < |G/H|
irreducible pieces. Moreover, there are integers M and m such that the
decomposition of |, into irreducible pieces takes the form

M
wlu= 3 mm, ()
J=1

with m, . .., my mutually inequivalent and all in the same G-orbit of the unitary
dual of H.

LemMA 3.2. (cf. [6]). Let G be a separable locally compact unimodular group, let
H be an open normal subgroup of G with finite index and with G/ H abelian, let m
be an irreducible unitary representation of G, and define

Xy(m)y={vE(G/H)" |7®@v=m}. (3-2)
Then
dim (‘3('.'1'|H) = |XH('.-7)|.

Proof. Let I(-, ") refer to the dimension of the space of intertwining maps
between two representations. The unitary equivalence

-G .G 33
w@u}’dl=1r}fd(w|,{) (3.3)
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is exhibited by the map carrying an element v ® f of the representation space on
the left side of (3.3) to the function F on G defined by F(x) = f(x)7(x ~")v. Then

Xp(m|= 2 I(w®w,m) by irreducibility
vE(G/H)"

=I(-.-r® > v,-rr)

vE(G/H)"

G
= 1(«5 ®indl,-.rr)
H

= I(ilzd(wh,.), -:r) by (3.3)

= I(7| g, 7| ),

the last inequality holding by Frobenius reciprocity (Theorem 4’ of [12]) and an
application of Lemma 3.1. The result follows.

Returning to the notation at the beginning of §2, let x, be a character of T,
and let x be the extension of x, to T given by (2.1). We define

G,={gEG|detgEN,)
T,=TnNG,

GX
Ux)= ng (x®1), representation of G,
x

H (x) = dense subspace of locally constant functions
on which U(x) acts.

LemMA 3.3.  Restriction of functions in the space H(x) from G, to G, maps H(x)
one-one onto H(x,), and under this identification the restriction U(x), of U(x) to G,
is identified with U(x,).

Remark. Similarly we can relate U(x), and U(x) to the restrictions to G, and
G,, respectively, of the induced representation ind$, (x ® 1) of G. The proof is
substantially unchanged.

Proof. 1Tt is clear that the image of this restriction map is in H(x,) and that
the map is G,-equivariant. We prove the map is one-one onto.

If g is in G, then t=(1,..., l,det g) is in T,» and g = tg, for suitable g, in
G,. If fis in H(x), then

f(8) = r'2()x(1) f( &)
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and so f= 0 on G, implies f =0 on G,. Thus the map is one-one. To see the map
is onto, let £ on G, be a given member of H(x,), and define

f(8) = w(Ox(Dh(&)
whenever g = tg, as above. If g=1r'g/ also, then tg, = t'g/ and hence g/g "
=¢"'tisin G,N T, = T,. Thus
= Gt e B P
w2 (x(h(g) = Ax() e (ge") x(gieT") h(ge's)

= p!A()x(1)h( &),

and f is unambiguously defined. The function f has the correct transformation
properties, and the lemma follows.

LEMMA 34. With U(x), denoting the restriction of U(x) to G,, the commuting
algebra C(U(X)) for G, equals the commuting algebra C(U(x),) for G,. Moreover,

dim C(U(x),) = |L (x)| = |k*/N,]. (34)

Proof. Since G, D G, we have C(U(x)) C C(U(x),)- To get equality, it is thus
enough to show that these commuting algebras have equal finite dimension. Let
U = ind§,y (x ® 1); U is known to be an irreducible representation of G = GL, (k)
from Gelfand-Naimark [4]). Lemma 3.3, together with the remark after its
statement, gives us isomorphisms

e(U(x) =¢E(Ulg,)
and
C(U(x),) = C(U(x,)) =C(Ulq,)-
Thus the desired equality of commuting algebras will follow if we show that
dimC(U|g) =dimC(U|g). (3.5)

To prove (3.5), let Z be the set of scalar matrices and apply Lemma 3.2 with
H = G,Z and m = U. Then the left side of (3.5) is identified as | X, (U)|, since Z
acts as scalars. Define

H'={g€G|r(g)=1 forall »in X (m)}.

Then H' D H, and we can apply Lemma 3.2 to H'. The definition of H' makes
Xy(U) = Xy(U), and thus the lemma gives

X (V)| = dim (U] ).

Then (3.5) will follow if it is shown that H' = G, .
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Now X,,(U) consists of all one-dimensional characters (= w o det) of G such
that

'Gd ® 'Gd
[ Pt

Since (ind x) ® » = ind(rx), X, (U) consists of all » such that ind(»x) = indx. By
global character theory (or by [14, 18] and Theorem 2.5.8 of [17]) this condition
occurs if and only if »x = ox for some o in W, hence if and only if » = w © det
has @ in L(x). Briefly X, (U)= L(x)e° det. Passing to kernels, we obtain
H' =G, and (3.5) follows.

We have seen in the course of the argument that dim € (U(x),) equals [ X, (U)|,
which in turn equals |L(x)|. In combination with (2.3), this observation proves
(3.4).

§4. Irreducible constituents. We shall describe the irreducible constituents of
U(x,) in terms of supports of Fourier transforms of functions. When n =2 and
reducibility occurs, the constituents are known from [3] to be characterized as
follows. One restricts the functions in U(x,) to the lower triangular group V =
(( 9)), identifies ¥ with the field k, and takes Fourier transforms. The two
irreducible subspaces are then realized as functions with support on one or the
other coset of k*/N._.

Our theorem will generalize this characterization, using an iterated construc-
tion with n — 1 iterations for SL,(k). However, as we remarked in §1, our proof
is new even for n = 2. The new twist is that we deal with U(x) and G, in place of
U(x,) and G,, taking advantage of Lemma 3.4; a consequence for n = 2 is that
we need not examine U(x,, (, ¢)) at all.

Our construction is canonical once we fix a definition of Fourier transform.
Thus let ¢ be an additive character of k and define

f(y) =J;xp(_yx)f(x)dx for f€ L'(k,dx) and y€Ek.

We shall state the main theorem in a qualitative form, but the proof gives more
precise information.

THEOREM 4.1. By means of a sequence of n — 1 Fourier transforms, the unitary
principal series representation U(x,) has a canonical realization in which the
commuting algebra C(U(x,)) is canonically isomorphic with the algebra of
complex-valued functions on k that are constant on multiplicative cosets of the norm
group N,.

Remarks. It is an important part of the conclusion that the isomorphisms are
canonical. (Otherwise the theorem would add nothing new beyond formula (3.4)
and the results of [5]) To be more specific, we note that the irreducible
projections in the commuting algebra correspond to the cosets of N,.
. Consequently one can trace through the canonical isomorphisms in the proof of



320 S. S. GELBART AND A. W. KNAPP

Theorem 4.1 below to obtain an explicit (albeit complicated) description of the
irreducible subspaces themselves.

Preparation. 'We shall work with the representation U(x) of G,. Define

+ | o
M;=G, N - oJ, 1<j<n
0 %
0 *
r! ‘ 01}-’!'
N=G.N|o |1 0}1, 1< j<n—-1
00 |17]
1|0]0]};
V=GN 10|}, 1<j<n-1
0|01
* i 0
M/ =GN mo OJ, 1<j<n—1
g 0 .mo
Observe that
M =T, M,=G,, Mi, =M .

M'C M, for I<j<n-1.
Define inductively
& =x| r, on M,

M,

!
.= ind ; 1), 2<j<n
§ M,.f’.‘N,_f@-*@) <j<n

The representation £ operates by right translation in the space H § given by

{f:ﬂ@—)Hg* (4.1)

f(mnx) = (m)'/%,_(m)f(x) }

for me M}_,,nEA{,-_l,xE%-
Here p;(m) is given in terms of the action of M;_, on Haar measure of N,_, by
dx'=p(mydx if x'=m"'xm.

By the double induction formula, U(x) = £, canonically.
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LEMMA 4.2. There is a natural algebra inclusion of the commuting algebra
G(g]M v_,) into @(g ilag W) for 3< j<n, given as follows: If B is in
C(§ JM v, ), then B in the noncompacr Fourier transform picture is given by

(B)"(2)=b(») ] (»),

where y is in the dual V_,, b(y) is a bounded operator on H*)-', and b(y) varies
continuously in y for y # 0. The inclusion is given by B—> b( y,), where y, picks off
the (j, j — 1)th entry of members of V,_,

Proof. Restriction of the functions in (4.1) from M; to V,_, gives the

noncompact picture of §. (The Gelfand-Naimark decomp051t1on M, =
N;,_\M,_,V,_, allows one to recover the functions (4.1) from their restnctlons)
In this realization

§(vo)f(v) = f(vvy) for vEV,_|,0E Viei (42)
§(m)f(v) = w(m)'%_\(m)f(m~'om) for vEV, | ,mEM,_,. (43)
The noncompact Fourier transform picture £ of £ is defined by
§@f0)=f, ¥rDi(@fx)d  for yEV i gE M, (44)
For g = vy in ¥,_,, (4.4) becomes
S0l ()= [, ¥0f(ondx =305 f () (45)
For m in M,_,, define m~'ym for y in ¥/_, by
(m™lym,x) = (y,mxm™").
Then (4.4) with g = m becomes
§(m)f () = w(m) ™/ (m)[ f (m™lym)] (46)

because the left side equals

S, ¥ xdmm)! () fm ™ xom) | dx
=J;_|¢f<y,mx’m“'>;§,-(m)" V2 _(m)[ f(x")]dx
under x'=m " 'xm

= _fp‘}_|¢<m_ I)’m,x’);,&(m)— 1/2%_“ ](m)[ f(x’)] dx

which is the right side of (4.6).
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Let B be given in C(§],, ,, ). Here B is acting on Lz( _1,H%), and (4.2)
implies B commutes with translations. Since B is bounded, we have

(B (») = ()] (),

with b(y) a bounded operator on H%-' varying measurably in y and with |b(y)|
in L. The commutativity of B with £| M, implies, in view of (4.6),

w(m) =72\ (myb(m ™ 'ym) f (m™ym) = §(m)b(»)f (»)
= b(»)&(m)f (»)
= w(m) "' 2b () \(m) f (m ™~ ym)
for m in M/_,. Since f is essentially arbitrary, for each m in M/_, we have
§_1(m)b(m~'ym) = b(y)§_(m) forae. y€Vi_,. (4.7)

By Fubini’s Theorem almost every y has the property that (4.7) holds for almost
every m. Finding one such y and redefining b(m ~ ym) for the exceptional values
of m by (4.7), we are led to conclude that (4.7) holds for all m and for every y in
any open orbit of V/_,

§_ 1(m)b(m ™ 'ym) = b(y)§_(m) for me€ M/ |,y € any open orbit.
(4.8)

Now we compute m~ ym for m in M;_,. For x in V,_,, denote by X the row
vector consisting of the first j — 1 entries of the jth row of x. For m in M;_,, let
m be the upper left (j — 1)-by-(j — 1) block, and let m, be the jth dlagonal entry.
If yisin V/_,, let j be the (j— 1)-dimensional column vector such that
{y,x) = Xy. We readily compute that

1 poe—

mxm = = myXm

Then

xm~ym=(m"ym x) = (y,mxm~")y = mxm~'y

= mXm

¥ = %(moi " ),

and we conclude that

m-ym=mgn~'y for meM,_,. (4.9)

We shall use (4.9) to show that M,_, acts in V/_, with just one orbit, apart
from a set of measure 0. Lete,, 1 < r < j— I, be the (j — 1)-dimensional column
vector that is 1 in the rth entry and O elsewhere. The linear functional y, in the
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statement of the lemma has y, = ¢;_,. Let us specialize to elements m in M;_,
that have my, = 1 and 7 of determinant 1. Then (4.9) simplifies to

m-ym=m""y. (4.10)
Let a column vector a=a,e, + - - - + a,_,¢,_, be given with g, # 0. In (4.10)
choose 7 = y, = e,_,, and let m ' bc the mamx given by
—¢_, inrth column
m-'=1le in (j — 1)st column
e in ith column for other i.
Then 77~ 'e,_, = e,. Next define 7' by
a in rth column
m~'=1a"'e inIth column for some /+# r
e in ith column for other i.

i

(This definition makes sense as soon as j — 1 > 2, i.e.,j > 3 as in the hypothesis.)
This =" satisfies 7~ 'e, = a. Thus j > 3 implies that the M/, orbit of y, is

— {0}. By (4.8), b(y,) determines b(y) on ¥/, — {0}, hence almost
cverywhere Consequently the algebra homomorphism B —> b(y,) is injective into
bounded operators on H* .

To complete the proof, we show that b(y,) is in C(§_| AR This
conclusion will follow from (4.8) if we show that the isotropy subgroup in M/
at y, is exactly M/_,¥,_,. Let m in M;_, be built from the (j — 1)-by-(j — 1)
matrix 7 and the scalar my, as above. The isotropy condition for y, in (4.8), in
view of (4.9), is that j, = myim ~ ', hence that miy, = m j,, hence that ¢;_, be an
eigenvector of 7 with eigenvalue m,. This condition means that the last column
of 7 is mge;_,, and the result follows. The proof of the lemma is complete.

LemMA 4.3. There is a natural algebra inclusion of the commuting algebra
C (&, p;p,) into the algebra of complex-valued functions on Vi = k that are constant
on multtphcanve cosets of the norm group N,, given as follows: If B is in
C (&l p;v), then B in the noncompact Fourier transform picture is given by

(Bf)"(») = b)) f (),

where y is in V{, b is complex-valued, and b is constant on cosets of N,. The
inclusion is given by B— b.

Proof. The proof of Lemma 4.2 remains valid with j = 2 through the proof of
(4.10). The mapping B — b is certainly an algebra inclusion, and we have to show
b is constant on cosets as indicated. Since (4.8) is a scalar equation, we have

b(m~'ym)=b(y) for m€ Mj,y € any open orbit.
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In view of (4.9), we have to know the orbit structure under j— myim ~ 'y, i.e.,
under multiplication in k by the scalar mom ' subject to the condition that the
diagonal matrix m = (m, my, . . . , my) is in M. Rewriting i as m’m,, we see that
m’ is to be in Nx, smce mg is in N, by formula (2.2). Then the multiplicative
scalar myiii ~ ' is m’ ", and the multlphcatlon is by an arbitrary member of N,.
This completes the proof of the lemma.

Proof of Theorem 4.1. We have established canonical isomorphisms and
inclusions

C(U(xs)) = e( U(X)s) by Lemma 3.3
=C(&le,) by Lemma 3.4
CC(&alm;_ v, trivially
CC&-lm,y,_y) by Lemma 4.2
C - CC(&lmp) by Lemma 4.2

&

functions on k constant
[ on cosets of N, } by Lemma 4.3,
The dimensions of the first and last spaces are equal, by Lemma 3.4, and hence
all the inclusions are equalities.

§5. Interpretation in terms of abelian field extensions. Theorem 4.1 shows
that the group k™ /N, acts canonically as a simply transitive permutation group
on the set of irreducible constituents of U(x,). We can reinterpret this fact in
terms of abelian field extensions of k. By the fundamental theorem of local class
field theory (see [16], Chapter XIV), there is a one-one correspondence between
closed subgroups H of finite index in k™ (such as H = N,) and finite abelian
Galois extensions K of k, the correspondence being that H is the norm group of
K over k; moreover the degree of the extension is |k ™ / H|, and the Galois group
is canonically isomorphic to k> /H.

Applying this correspondence to H =N, and using the isomorphism
L(x)"=k>*/ N, of (2.3), we obtain a finite abelian Galois extension X
associated to x, for which the group L(x) is canonically isomorphic to the dual
of the Galois group of K, over k. The map x,—> K, is onto the set of such
abelian field extensions, as is implied by the following theorem.

THEOREM 5.1.

(a) The map x,—> K, carries T onto the set of finite abelian Galois extensions.

(b) Two members of T, in the same orbit under W lead to the same field
extension.

(c) If the map is restricted to W-orbits of characters whose L group is of order n,
then it carries the set of such orbits in a one-one fashion onto the set of abelian
Galois extensions of degree n.
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Proof. We prove (b) first. Let x be the extension of x, to T defined by
equation (2.1), and let € be in W. An easy calculation shows that the extension
(2.1) of ex, to T'is

= (w, ° det)ex,

where @, is the composition of (ex,)”' and the function 4"(,,) e (Here ¢, =1
if e(n) = n.) If 0 in W exhibits w as in L(x) by the equation

ox=(we det)x,
then
eoe” X' = (wo © det)eox = (wow ° det)ex = (w © det)y’

and eoe ' exhibits w as in L(x’). And conversely. Thus L(x) = L(x'), and (b)
follows.

Now fix n. To prove (a) in the sharp form given in (c), it is enough to prove
that if H is any subgroup of index n in k™, then there is a character x, for
SL,(k) such that L(x)=(k*/H)". Thus, given H, let ..., w, be an
enumeration of the characters of k™ that are trivial on H, and let us arrange that
w, = 1. Define x,(a,,...,a,)=]]i-1w(a). Then x is given by the same
formula since w,=1. If w is in L(x), choose o in W with ox = (w o det)x.
Applying this formula to (1,1, ..., 1,a), we obtain

w(a) = w(a)w,(a) = w(a)x(l,1,..., La)=o0x(l,..., La)
= W,-1(ny(@)- (5.1)
Hence L(x) C {w, - - . , @,}. For the reverse inclusion, we use the fact that the

w’s form a group. Given w,, define 6 by 0 ~'(r) = s if ww, = «,. Then

UX(ah G ) rI-Il wﬂ"(r)(ar) e 1_11 “’i(ar)wr(ar)

=wi(a;- ... a)x(a.--,a,).

Hence «; is in L(x), and L(x) = {w;, - . . , w,}. This proves (a).

Finally we prove the remaining part of (c), that the map is one-one. Suppose x,
extends to T as x, suppose x, extends as x’, and suppose L(x)= L(x’) with
|L(x)| = n. Recall that x, = x  {;,. The same calculation as in (5.1) shows that
LX) C {X1>--->»Xn)» and a similar result holds for x’. Since L(x)= L(x) and
since both sets have n elements, we conclude that the x, are distinct, the x| are
distinct, and the x; are a permutation of the x;, say x; = X,(; - Then X’ = o, as
required.



326

16.
17.

18.

S. S. GELBART AND A. W. KNAPP

REFERENCES

S. S. GELBART AND A. W. KNAPP, L-indistinguishability and R-groups for the special linear group,
Advances in Math., to appear.

I. M. GELFAND AND M. 1. GRAEV, Unitary representations of the real unimodular group ( principal
nondegenerate series), Translations Amer. Math. Soc. (2) 2 (1956), 147-205.

I. M. GeLFaND, M. 1. Graev, anD I. 1. PYATETSKII-SHAPIRO, Representation Theory and
Autoriorphic Forms, W. B. Saunders Company, Philadelphia, 1969.

I. M. GELFAND aND M. A. NEUMARK, Unitare Darstellungen der Klassischer Gruppen,
Akademie-Verlag, Berlin, 1957.

R. HOWE AND A. SILBERGER, Why any unitary principal seires representation of SL, over a p-adic

field decomposes simply, Bull. Amer. Math. Soc. 81 (1975), 599-601.

H. JAcQUET, 1. I. PIATETSKI-SHAPIRO, AND J. SHALIKA, Automorpic forms on GL(3), I, Annals of
Math. 109 (1979), 169-212.

C. D. KEys, On the decomposition of reducible principal series representations of p-adic Chevalley
groups, thesis, University of Chicago, 1979.

A. W. Knapp AND E. M. STEIN, Intertwining operators for semisimple groups, Annals of Math. 93
(1971), 489-578.

A. W. KNapPP AND G. ZUCKERMAN, Classification of irreducible tempered representations of
semisimple Lie groups, Proc. Nat. Acad. Sci. USA 73 (1976), 2178-2180.

———, Multiplicity one fails for p-adic unitary principal series, Hiroshima Math. J. 10 (1980),
295-309.

J.-P. LABESSE AND R. P. LANGLANDS, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979),
726-785.

G. W. MACKEY, On induced representations of groups, Amer. J. Math. 73 (1951), 576-592.

D. MILICIC, The dual spaces of almost connected reductive groups, Glasnik Mat. 9 (1974),
273-288.

1. MULLER, Intégrales d’entrelacement pour un groupe de Chevalley sur un corps p-adique, Analyse
Harmonique sur les Groupes de Lie II, Springer-Verlag Lecture Notes in Math. 739 (1979),
367-403.

1. SATAKE, On representations and compactifications of symmetric Riemannian spaces, Annals of
Math. 71 (1960), 77-110.

J.-P. SERRE, Local Fields, Springer-Verlag, New York, 1979.

A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton
University Press, Princeton, 1979.

N. WINARSKY, Reducibility of principal series representations of p-adic Chevalley groups, Amer. J.
Math. 100 (1978), 941-956.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853



