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1. Introduction. Investigations of bounded complex-valued functions on

groups have tied in closely in recent years with the study of the continuous functions

on compact Hausdorff spaces on which groups act. Almost periodic functions, for

example, can be treated as continuous functions on a compact group in which a

homomorphic image of the given group is a dense subgroup, and the standard

results about almost periodic functions then follow from the Peter-Weyl Theorem.

In 1963 Auslander and Hahn [1 ] reversed this situation by starting with functions

on classes of compact spaces and using them to define classes of bounded functions

on groups. For one example, they started with the class of so-called compact

distal transformation groups, which had been introduced as early as 1902, and

arrived at the class of distal functions, which are the subject of this paper.

Our intrinsic definition of distal functions is less easily motivated than the

definition of distal transformation groups, but it is as follows: A bounded function

/on a group G is right distal if whenever {gn}, {n¡}, and {k,} are nets in G (functions

from directed sets to G) with

lim lim f(ggnht) = lim lim f(ggnk,)
ni n       t

pointwise for ail g in G, then already

lim/(gn¡) = limf(gkt).
i i

In case G is topological, we assume also that/is left-uniformly continuous. Almost

periodic functions are distal; functions on locally compact groups which vanish at

infinity are not. On the integers exp (2irin26) is distal, and it is not almost periodic

if 6 is irrational. The set of all right distal functions will be shown to be a Banach

algebra containing the constants and closed under conjugation and left and right

translation.

The purpose of this paper is to give an analysis and synthesis of distal functions.

The key to the results is the notion of relative almost periodicity, which is defined

in §4; we shall speak of functions which are almost periodic relative to a distal

algebra—a left-invariant conjugate-closed Banach algebra of right distal functions

containing the constants. The functions which are almost periodic over a distal
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2 A. W. KNAPP [July

algebra themselves will form a distal algebra. The functions almost periodic over

the algebra of constants will be exactly the almost periodic functions in the sense of

von Neumann [12].

A distal algebra A is defined to be almost periodic over a distal subalgebra B

if every function in A is almost periodic over B. When this happens, there is a

canonical Z?-valued invariant mean defined on A, i.e., a projection E(-\B) of A onto

B which is ZMinear, commutes with G, and sends functions è 0 into functions ^ 0.

The analysis and synthesis of distal functions proceeds in three steps, and

the first two are given by Theorems 1.1 and 1.2.

Theorem 1.1. If G is locally compact o--compact and if A is a distal algebra, then

there exist an ordinal v and a system Af of distal subalgebras of A, indexed by all

ordinals 0 á f ¿ v, such that

(a) A0 is the algebra of constant functions, and AV = A.

(b)IfÇèi,thenA^A(..

(c) If tj<v, then A( + x is a.p. over At.

(d) If $ is a limit ordinal ^ v, then

A( = unif. clos. ((J AX

Theorem 1.2. 7/ G is any topological group and if A is a distal algebra almost

periodic over a distal subalgebra B, then there exists a set {FA} of canonically deter-

mined bounded projection operators of A into itself with the following properties :

(a) Image(FA) is a finitely-generated B-module left-invariant under G. (More

particularly, FA is B-linear and commutes with the action of G.)

(b) (Orthogonality). IfX^a and if fand h are in A, then

E((PJ)(J7h) \B) = 0.

(c) (Completeness). For each fin A, only countably many of the Pkf are different

from 0, and

E(\f\2\B) = ^E(\PJ\2\B),

the series on the right converging uniformly.

(d) (Approximation Theorem). There is a net of bounded B-linear G-commuting

operators Tn on A with this property: IfPKfis nonzero for X= 1, 2, 3,..., then Tnfis

in the weak direct sum

imaged) © image(F2) ©• • •

and {Tnf} converges uniformly to f

(e) Every G-invariant B-submodule o/image(FA) is finitely generated, andimage(PK)

splits into the finite direct sum of irreducible G-invariant B-modules.

(f) Call two finitely-generated G-invariant B-modules in A equivalent if there is

a bounded invertible B-linear map of one onto the other which commutes with the

action of G. Then equivalent irreducible finitely-generated G-invariant B-modules are

contained in the same image(FA) and inequivalent ones are contained in different ones.
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1967] DISTAL FUNCTIONS ON GROUPS 3

In a special case Theorem 1.1 asserts that if we start with the constants, form all

functions almost periodic over them, take all functions almost periodic over the

resulting algebra, and keep going in this way (allowing uniform limits at limit

ordinals), then eventually we get all right distal functions. The effect of Theorem

1.2 is to reduce the study of relative almost periodicity to the study of finitely-

generated (/-invariant 73-modules. (In fact, when B is the algebra of constants,

Theorem 1.2 simplifies to the usual analysis of almost periodic functions into

finite-dimensional invariant vector spaces.) The two theorems taken together

reduce the study of all distal functions to these Ä-modules.

The third step is to study these modules. To each such module we shall associate

a vector bundle which makes it easier to understand. Introducing coordinates, we

obtain a "unitary crossed representation" of G from which the functions of the

module can be recovered. Conversely if such a representation is given, then the

functions it determines are all almost periodic over B and generate such a ß-module.

After the preliminaries, Theorem 1.1 is proved in §4, Theorem 1.2 is proved in

§§5-7, and crossed representations are developed in §8. Some examples are col-

lected in §9.

These results are an extension of those announced in [9] and of those in the

author's doctoral thesis [10] written under the direction of Professor S. Bochner.

I would like to express my appreciation particularly to Professors Bochner, H.

Furstenberg, and R. Gunning for their help with this work.

2. Notation and definitions. .Throughout this paper G denotes a topological

group with identity e. If/is a complex-valued function on G, then ||/|| denotes the

supremum norm of / and fg is the left translate of / with fg(h) =f(gh). Such a

function is left-uniformly continuous if limg_e]|/,—/|| =0. The set of bounded left-

uniformly continuous functions is denoted LUC; LUC is a conjugate-closed

Banach algebra containing the constants and closed under left and right translation.

If A is a Banach algebra in LUC containing the constants and closed under con-

j ugation, then A in a canonical way is isometric and algebraically isomorphic to

the set of all continuous functions on the maximal ideal space M(A) of A. If g is in

G, then the evaluation-at-g homomorphism on A has as its value on/the constant

f(g)- We shall use the letter g in referring to the associated member of M(A).

A flow (X, G) will mean a jointly continuous group action of G on the compact

Hausdorff space X. (We shall suppose G acts on the left.) If an algebra A of the

sort described above is also closed under left translation, then the left action of G

on itself extends in a natural way to a jointly continuous action of G on M(A), and

(M(A), G) is thereby a flow. Conversely if (X, G) is a flow and if p is a point of X,

then for each continuous complex-valued function / on X, the function fx defined

on G as fx(g) =f(gp) is in LUC, and the set of all such functions fx for fixed p

forms a conjugate-closed Banach algebra containing the constants, invariant under

left translation, and having maximal ideal space the closure of the orbit of p in X.

We shall say fx arises from the orbit of p. (Normally, however, we shall use the
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same notation for a function on X and the corresponding function on G.) The two

constructions just described are inverse to one another if p is chosen to be the

evaluation-at-e functional in the maximal ideal space.

We recall from [11] the definition and properties of shift operators. Consider

nets {gn} in G such that limn f(ggn) exists pointwise for every g in G and for every /

in LUC. Every convergent net, for instance, has this property. Call two such nets

{gn} and {hj equivalent if

lim/(ggn) = lim/(g«m)
n m

pointwise for every g in G and/in LUC. The operator that sends/into its limiting

value for that equivalence class is called the shift operator associated to the class.

Shift operators are denoted Ta, TB, etc. Every right-translation operator is a shift

operator.

Each shift operator is a homomorphism of norm one on LUC, each commutes

with conjugation and left translation, and each has range in LUC. The composi-

tion of two shift operators is again a shift operator.

There is a one-one correspondence between the multiplicative linear functionals

on LUC and the shift operators defined as follows: If a functional p is given, put

Taf(g) = p(fg). On the other hand, if a shift operator Ta is given, put p(f) = Taf(e).

The topology of A7(LUC) therefore induces a compact Hausdorff topology on the

set of shift operators. In this topology a net of shift operators {Tan} converges to

Ta if and only if {Tanf} converges to Taf pointwise for every/in LUC. Moreover,

if lim Tan = Ta, then lim TanTB = TaTB for fixed TB and hence the map Ta -> TaTB,

for fixed T¡¡, is continuous. Thus the set of shift operators is a semigroup under

composition and is a compact Hausdorff space, and its multiplication is continuous

on one side. Note that the compactness implies the following: Any net in G has a

subnet which defines a shift operator.

If (X, G) is a flow, the Ellis semigroup G of the flow is the closure in Xx (endowed

with the product topology) of the set of actions on X by the members of G. It is

clear that G is compact Hausdorff, and it is shown in [5] that G is a semigroup in

which the map t -> ts for fixed s is continuous.

In [11] a connection was shown between the set of shift operators and Ellis

semigroups. Let A be a conjugate-closed Banach algebra in LUC containing the

constants and invariant under left translation. Relative to A we define an equiva-

lence relation ~ on the set of shift operators. Call Ta~TB if TaTyf= TBTyf for all

fe A and for all Ty. The quotient inherits the semigroup structure of the set of

shift operators, and it is compact Hausdorff in the quotient topology. If t is in the

Ellis semigroup of M(A), put Tf(g)=fg(te) for g e G and fe A; the result r-> F can

be shown to be a function (referred to below as the natural map) into the set of

equivalence classes of shift operators. Theorem 4-2 of [11] becomes

Lemma 2.1. Let A be a conjugate-closed Banach algebra in LUC containing the

constants and invariant under left translation. Then the natural map of the Ellis

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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semigroup of M (A) is a topological isomorphism onto the quotient of the set of shift

operators by the equivalence relation induced by A.

A flow ( Y, G) is a subflow of (X, G) with respect to tt if tt is a continuous map of

X onto Y which commutes with the action of G. If B and A are Banach algebras

in LUC containing the constants and closed under conjugation and left translation

and if B^A, then the inclusion of algebras induces a continuous projection of

M(A) onto M(B) which carries the e of M(A) onto the e of M(B). Moreover it

commutes with the action of G and thus exhibits M(B) as a subflow of M(A).

The following lemma which connects subflows and Ellis semigroups, was pointed

out as part of Lemma 2 by Ellis and Gottschalk in [6]. It will be used frequently

without specific reference.

Lemma 2.2. If(X, G) is a flow with Ellis semigroup G and if(Y, G) = tt(X, G) is a

subflow, then, for any xx and x2 in X, tt(xx) = it(x2) implies Tr(txx) = Tr(tx2) for all t

in G.

3. Distal functions.    A function/in LUC is right distal if whenever

(3.1) lim lim f(ggnhi) = lim lim f(ggnk¡)
ni n        j

for some three nets in the group and for all g, then also

(3.2) hmf(ghi) = hmf(gk,).
i i

In view of the compactness of the set of shift operators,/is right dis- il if and only

if an equality TaTBf= TaTyf always implies TBf=Tyf.

Right almost periodic functions (right and left are actually equivalent) are right

distal because the convergence is uniform in (3.1). Hence

lim\\\imf(ggnhi)-timf(ggnk,)\\ = 0
"    II    ¡ t II

or, for any e > 0,

\\lim f(ggnht)-lim f(ggnkM\ < e

eventually. Replacing g by ggñ1, we obtain

||lim/(gnO-lim/(gy|| < e.

Since e is arbitrary,/is right distal.

On the other hand it is shown in §9 that, for any real number 9, the function

exp (in2d) on the integers is distal. But if 8 is an irrational multiple of it, this func-

tion is easily seen to have all Bohr-Fourier coefficients equal to 0, and hence it is

not almost periodic.

Left distal functions will play no role in this paper, and we shall therefore use

distal to mean right distal. (We warn the reader that we do not know whether right
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distal and left distal are the same.) A distal algebra is a Banach algebra of distal

functions containing the constants and closed under conjugation and left transla-

tion.

Our first step is to show that the distal functions are exactly the functions arising

from distal flows. A flow (X, G) is distal if whenever x, y, and z are in X and {gn}

is a net in G such that

gnx -> z   and   gny -> z,

then x=y. The lemma and two corollaries below were proved by Ellis [4] and

re-proved by Furstenberg [8]. These results are central to this paper.

Lemma 3.1. A flow (X, G) is distal if and only if its Ellis semigroup is a group.

Corollary 3.2. A subflow of a distal flow is distal.

Corollary 3.3. If(X, G) is a distal flow with a dense G-orbit, then every G-orbit

is dense and the Ellis group acts transitively on X.

If fis a member of LUC, let A, he the least Banach algebra containing/, its left

translates, their complex conjugates, and the constant functions.

Proposition 3.4. Iff is in LUC, then f is distal if and only if M(At) is a distal

flow.

Proof. If/is distal, we show M(Aj) is a distal flow. Let z = lim gnx = lim gny,

x = lim «j, and y = lim k¡. The last two equations are possible since the evaluations

are dense in M(A¡). Then for every g in G

f(z) = lim lim/(gA) = lim Yimfg(gnkj)
ni ni

and hence (3.1) holds. Since/is distal, (3.2) gives

fg(x) =f(gx) = limfg(hk) = limfg(k,) =f(gy) = fg(y).
i i

Since the left translates off separate points on M(Af), we obtain x=y. The con-

verse follows from the implication (b) => (a) in

Proposition 3.5. If A is a Banach algebra in LUC containing the constants and

closed under conjugation and left translation, then the following conditions are

equivalent :

(a) Every function in A is distal,

(h) M(A) is a distal flow.

(c) M(A¡) is a distal flow for every f in A.

Proof, (a) => (b). Repeat the proof of Proposition 3.4 and use the fact that the

members of A separate points on M(A).

(b) => (c). Corollary 3.2.

(c) => (a). If M(Af) is distal, then the shift-operator classes for A, form a group
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by Lemmas 2.1 and 3.1. Let TaTBf= TaTyf and let [TE][Ta] be the identity. This

stipulation means that

TBf= TeTaTBf= TeTaTyf= Tyf.

Hence/is distal, and the proof is complete.

Conditions (b) and (c) of Proposition 3.5 were shown to be equivalent by

Auslander and Hahn in [1]. They took these conditions as a definition of a class

of functions, and they proved this class was a lattice algebra. We see that they

were dealing with the set of all distal functions. We show now that this set is

actually a Banach algebra.

We require some results proved by Ellis. In Lemma 3.6 the three statements are

from Lemma 1 in [4] and Lemmas 1 and 2 in [5]. A left ideal in a semigroup S is

a nonempty subset 7 such that S/s 7.

Lemma 3.6. Let W be a compact Hausdorff space with a semigroup structure such

that the maps t -> ts are continuous for each s. Then

(a) Each nonempty closed subset I of W with I2-I contains an idempotent.

(b) The minimal closed left ideals are the same as the minimal left ideals.

(c) If I is a minimal left ideal of W and if p e I, then there exist s and u in I such

that u is an idempotent, up=p, and ps = sp = u.

A shift operator Ta is minimal if Ta is in some minimal left ideal of the set of all

shift operators. (This definition is not identical with the one in the author's

announcement [9], but it is not hard to show that the definitions are equivalent.)

The following was announced as Theorem 1 in [9].

Theorem 3.7. If fis in LUC, the following are equivalent:

(a) / is distal.

(b) TuTaf= Taffor every Ta and for every idempotent Tu.

(c) TuTaf= Taffor every Ta and for every minimal idempotent Tu.

Proof, (a) => (b). We have TUTUTJ=TUTJ. If/is distal, TuTJ=Taf

(b) => (c). A fortiori.

(c) => (a). Order the closed nonempty left ideals of the set of all shift operators

by inclusion downward, and by Zorn's Lemma let 7 be a minimal one. Then 7 is

a minimal left ideal by part (b) of Lemma 3.6 and 7 contains an idempotent F„ by

part (a) of that lemma. Therefore a minimal idempotent F„ exists. Now let TaTBf

= TaTJ. By hypothesis

TvTBf=TBf   and    TVTJ = TJ
and hence

TaTvT„ = TaTvTyf

But TaTv is in 7 since 7 is a left ideal. Apply part (c) of Lemma 3.6 to find a member

TE of 7 and an idempotent Tu of 7 with

Tu(TaTv) = TaTv   and   Te(TaTv) = Tu = (TaTv)Ts.
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8 A. W. KNAPP [July

Then

TuTBj = TETaTvTBj = TETaTvTyf = TuTyf

and it follows that TBf= Tyf by two applications of the hypothesis. Hence / is

distal.

Corollary 3.8. The set of all distal functions on G is a Banach algebra containing

the constants and closed under conjugation and left translation. Any shift of a distal

function is distal.

Proof. Immediate from condition (b) of Theorem 3.7.

4. Relative almost periodicity. The key to the results of this paper is the defini-

tion of relative almost periodicity, which is given in this section together with a

proof of Theorem 1.1.

Let B be a distal algebra. We say that a function / in LUC is almost periodic

relative to B (a.p. over B) if/is distal and if whenever the conditions

(4.1) Tan-*Ta   and    T6n -> Tb

and

(4.2) Tinh = h = Tdh

for all n in B and for all n are satisfied, then

(4.3) TaJàn^TaTôf   pointwise.

A distal algebra A is a.p. over B if A ̂  B and if every function in A is a.p. over B.

We denote by AP(B) the set of all functions a.p. over Ti.

We shall see in Corollary 4.6 that /ÍP(constants) is the set of all almost periodic

functions on G. In fact, when B is the algebra of constants, (4.2) is vacuous, and

(4.3) is not very different from the definition of almost periodicity given in

Bochner [2].

The first step in proving Theorem 1.1 is the characterization in Proposition 4.4

of almost periodicity of A over B in terms of the Ellis group of M(A).

Proposition 4.1. If B is a distal algebra, then AP(B) is a distal algebra with

AP(B)^B.

Proof. AP(B) is a distal algebra because the distal functions form a distal algebra

and because (4.3) is preserved under all the operations defining a distal algebra.

If n is in B, then n is distal and (4.3) is satisfied because

TaJbJ1 = T„nh -> Tah = TaTöh.

Hence AP(B)^B.

Lemma 4.2. Let B be a distal algebra, let TBn and TB be shift operators with
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1967] DISTAL FUNCTIONS ON GROUPS 9

TBn -+TB, and let TSn and Te be shift operators with TCn —yTe and TCnTyh = Tyh

= TeTyh for all h in B and some fixed Ty. Iffis a.p. over B, then

TBJeJyf^TBTeTyf

Proof. Since the distal functions form a distal algebra (Corollary 3.8), their

maximal ideal space is a distal flow (Proposition 3.5) whose Ellis semigroup is a

group (Lemma 3.1). Thus the isomorphism given in Lemma 2.1 shows that there

is a shift operator T~x which is inverse to Ty on the set of all distal functions. Put

Tin=Ty1TSnTy and T,<-T?1TJ'r Then Tôn and Tô satisfy (4.2). Put Ta¡i = TBnTy

and Ta = TBTy. Then Tan -> Ta. Passing to a subnet if necessary, we may suppose

that Tin converges. If we can show that T6nf^- Tdf then (4.3) gives

TBnTeJyf = TaJàJ^ TaTJ = TBTSTJ

as required.

Thus suppose T6n -> Tz. By relative almost periodicity of/ we have

TyTJ = lim TyT6J = lim TSnTrf = TeTyf.
Therefore

lim T6J = TJ = Ty- 'TeTyf = T6f

and the proof is complete.

From here through Corollary 4.5 let A and B be fixed distal algebras with A^B,

let G be the Ellis group of M(A), and let it be the projection of M(A) onto M(Ti).

We denote by Xy the fiber it ~ 1(y) and by Iy the set of all t in G such that ir(tx) = tt(x)

for all x e Xy, i.e., the set of all t which leave the fiber Xy fixed as a set. If the

actions of the elements of Iy are restricted to Xy and elements are identified which

have the same action on Xy, the resulting quotient space will be called Iy; Iy is a

set of point transformations of Xy and is given the quotient topology.

Lemma 4.3. If t in G maps some point xx of Xy into a point of the same fiber, then

t is in Iy.

Proof. If x is such that tt(x) = tt(xx), then ir(tx) = iT(tx1) by Lemma 2.2.

Proposition 4.4. Let A and B be distal algebras with A^B. Then A is a.p. over

B if and only if the following condition is satisfied: For each y in M(B), whenever

(4.4) tn and t are in G with tn^ t and

(4.5) sn and s are in Iy with sn -*■ s,

then

(4.6) tnsn(x) -y ts(x)for all x in ir~1(y).

Proof. We first remark that if the quotient map on the set of shift operators (by

the relation induced by A) is followed by the isomorphism of Lemma 2.1, then the
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result is a continuous map of the set of shift operators onto G such that the image

u of Fy satisfies f(ue) = Tyf(e). Moreover, if two shift operators are given, then

f(uxu2e) = TyJyJ(e).

Let the condition of the proposition be satisfied. Under the above map let Tin

go into sn, T6 go into s, Tan go into f„, and Ta go into t. Then sn -> s and tn -*■ t.

If h is in B and x is in Ze, then h(sne) = Tönh(e) = h(e). Since such «'s separate points

of M(B), -rr(sne)=Tr(e). By Lemma 4.3 sn is in Ze. Similarly s is in /„ and therefore

tnsn(e) -*■ ts(e) and f(tnsne) ->f(tse). This result applied to fg gives

fg(tnsne) -^f9(tse).

The remark at the end of the above paragraph then shows that (4.3) holds.

Conversely, let A be a.p. over B, and let y, sn, s, tn, and t be given. Lift sn to some

T€n and tn to some TBn under the composition map in the first paragraph of the

proof. By compactness it is enough to prove that tnsn(x) -> ts(x) for subnets along

which TEn and TBn are both convergent. We may therefore assume that T£n -*■ Te

and Tßn -> Tß to begin with. Then Te projects to s and TB projects to t by continuity.

Let u e G send e into x, and choose Fy projecting to u. For/in A we have

TcJJ(e) =f(snue) = f(snx).

Thus for he B,

TsJyh(g) = TSnTyhg(e) = hg(snx) = hg(Tt(snx))

= hg(n(x)) = hg(x) = Tyhg(e) = Tyh(g),

or TSnTyh = Tyh. Similarly TeTyh = Tfi. By Lemma 4.2

f(tnsnx) = TBnTeTyf(e)^TBTeTJ(e) = f(tsx)

for all/in A. Then tnsnx^- tsx since the/'s separate points on M(A).

Corollary 4.5. If A and B are distal algebras with A almost periodic over B,

then I y is a compact topological group and the action of Iy on Xy is jointly continuous

and transitive.

Proof. If tn is in 7y and tn -> t, then, for x in Xy, Tr(x) = n(tnx) -*■ tr(tx) and hence

t is in /„. Thus Iy is compact and so is Iy. To show that Iy is Hausdorff, we must

show that the equivalence relation on Iy is closed. Let sn~tn, sn -> s, and /„ -> t.

Then, for x in Xy, snx = tnx. Passing to the limit, we get sx = tx and hence s~t.

Therefore Iy is Hausdorff.

Next we show that Iy is a group. It is clear that Iy is a semigroup. If / is in 7^,

fix an x0 in Xy. Then tx0 is in Xy and so is t~1(tx0) = x0. By Lemma 4.3, i_1 is in

Iy, and Iy is a group. Let s, t, and u be in Iy with s~t. Then sx = tx for all x in Xy,

in particular for ux. Thus su~tu. Since sx and /x are in A'j,, we also have usx = utx.

Thus us~ut. Consequently Iy is a group.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1967] DISTAL FUNCTIONS ON GROUPS 11

Convergence in Iy is pointwise convergence on Xy of the transformations of Xy.

Proposition 4.4 therefore shows that multiplication is jointly continuous. Since the

map (x, z) -y- (x, xz) of Iy x Iy into itself is continuous, one-one, and onto, its

inverse (x, z) -> (x, x~1z) is continuous. The map x -> jc_1 is then the composition

of the continuous functions

X-y (x, z) -+(x, x_1z) -y x~1z -y x'1,

and Iy is a compact group.

The action of Iy is transitive on Xy because if x0 and x are in Xy, let t be an

element of G with tx0 = x (existence by Corollary 3.3). By Lemma 4.3, t is in Iy,

and hence [t] is an element of Iy mapping x0 into x.

Finally the action of Iy on Xy is jointly continuous because a compact group

which acts on a compact space under the topology of pointwise convergence

always acts in a jointly continuous manner.

Corollary 4.6. The functions almost periodic over the algebra of constant

functions are exactly the ordinary almost periodic functions.

Proof. If/is almost periodic, then/is distal and (4.2) holds for all shift operators.

The shift operators may be identified in a many-one way with translations on the

Bohr compactification, and the fact that (4.1) implies (4.3) is a reflection of the

joint continuity of the multiplication on the compactification.

Conversely, Proposition 4.1 shows that we may apply Corollary 4.5 with

A = ^P(constants) and B=constants. That corollary shows that G is a compact

topological group and M(A) is a homogeneous space. The proof that the functions

in A are almost periodic is then routine.

We come now to the proof of Theorem 1.1. The system {A(} of the theorem will

be called a transfinite sequence associated to A, and the ordinal v is the length of the

sequence.

Lemma 4.7. Let A be a distal algebra, and suppose that, for each fin A, A, has a

transfinite sequence of length vf. Then A has a transfinite sequence of length s\xpfeA v¡.

Proof. Let Af(g) be the £th step algebra in the sequence for A,. (For ordinals

from v,+ l to sx\n,eAvf, we let Ar(f) = Af.) Let A((;) be the least Banach algebra

containing all Af(é) as / ranges over A. We shall prove by transfinite induction

on f that A(tj) is a transfinite sequence for A. We note that conditions (a) and (b)

are clearly satisfied. Thus let $ be given, and suppose that for all r¡ < f conditions

(c) and (d) are satisfied.

Case 1. £ is a limit ordinal.

We are to prove that

A(i) = unif.clos.ru A(i¡)F

Containment 2 is evident because

A(0 2 Af(0 2 Af(v)   for all v < $   and all/
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and hence

A(i) 2 V Ar(v) = A(v)   for all v < £
f

and

A(0 2 cl[U A(v)].

To see that (J ^(7?) is dense in A(¿¡), let « be in A(£) and let e > 0 be given. Then h

is a uniform limit of polynomials of functions in (J/e.4 ^/(¿0- Find one within e/2

of«; call it/?. Let

F = P1P2P3 +■•• + •■ •/?„,   pk e Afk(i).

Let M be the maximum of the ||jO,||'s and let m be the maximum number of factors

in each term. For each k we can choose an -nk<£ and an hk in Aflc(-nk) within

S = e¡2n(M+\)m-1

of pk. Put p' = hxh2h3+ ■■■ + ■■■ hn. If e< 1, then an easy calculation shows that

1iP~p'\\=eß- Hence if r¡ is the maximum of the rjks, then p' is in A(rj) and

\\p'~h\\=e.

Case 2. £ is any ordinal less than v.

We are to prove that A(£ + I) is a.p. over A(tj). Since the functions a.p. over a

distal algebra form a distal algebra (Proposition 4.1), it is enough to show that each

function in a generating set of A(£+ 1) is a.p. over A(£). In particular, it suffices

to show that heAf(Ç+l) implies h a.p. over A(£). But « is a.p. over Af(Ç) and

hence it is certainly a.p. over any larger distal algebra since it has less conditions

to satisfy. Thus « is a.p. over A(£), and the proof of the lemma is complete.

We are going to use Furstenberg's main theorem in [8]. Furstenberg considers

only separable distal flows and makes the following definition: A separable distal

flow (X, G) with a dense orbit is an isometric extension of a separable distal sub-

flow (Y, G) = tt(X, G) if there is a real-valued function p defined on the set

A = {(xx, x2) e Xx X I tt(xj) = tt(x2)}

such that

(a) Restricted to the product of any fiber by itself, p is a metric for the fiber.

(b) p is continuous on A.

(c) p(gxx, gx2) = p(xx, x2) for all g in G and for all (x1; x2) in A.

The theorem that Furstenberg proves is this: If G is a locally compact a-compact

group and if (X, G) is a separable distal flow with a dense orbit, then for some

ordinal v there is a system {(X(, G)} of subflows indexed on the ordinals O^l^v

such that

(a) (X0, G) is the one-point flow, and (Xv, G) = (X, G).

(b) If Ç£ ê', then (X¡, G) is a subflow of (X(; G), and all the projection mappings

are consistent.

(c) If |< v, then (Xf + 1, G) is an isometric extension of (X(, G).

(d) If f is a limit ordinal ^v and if Xx and x2 are two distinct points of X(, then

there is some t¡ < i such that the projection -n of X( to Xv satisfies 7t(xj) / tt(x2).
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Lemma 4.8. If A and B are distal algebras and if M(A) is an isometric extension

of M(B), then A is a.p. over B.

Remarks. The proof of this lemma does not require that A be separable; this

observation will be of importance in §8. As a converse to this lemma, it is true that

if A and B are separable distal algebras with A a.p. over Ti, then M(A) is an iso-

metric extension of M(B). This fact will not be needed, and its proof is omitted.

Proof. We shall apply Proposition 4.4. Let tn, t, sn, s, and x be given as in that

proposition, and let p define the isometric extension. We first note that if ir(xx)

=tt(x2) and if « is in the Ellis group G of A, then p(uxx, ux2) = p(xx, x2) by proper-

ties (c) and (b) of p. Since ir(snx)=Tr(x) = ir(sx), we see that p is defined on

(tnsnx, tnsx) and satisfies

p(tnSnX, tnSX) = p(snX, SX).

Since sn -> s, the right side tends to zero with n. Therefore

p(tnsnx, tnsx) -* 0.

To prove the convergence of tnsnx, the compactness of M(A) implies that it suffices

to prove that any convergent subnet of tnsnx has limit tsx. Suppose a convergent

subnet has limit x0. Then

ir(x0) = Um ir(tnSnx) = lim ir(tnSx) = ir(tSx)

so that p(x0, tsx) is defined. By the continuity of p and the convergence of tnsx to

tsx, we must have p(x0, tsx)=0. Therefore x0 = tsx, i.e., tnsnx -*■ tsx.

Proof of Theorem 1.1. In view of Lemma 4.7 it suffices to prove the theorem

for the algebra Af. The map g -yfg of G into LUC is a continuous map of a

à-compact space into a metric space, and the image must be a-compact and hence

have a countable dense set. Any such dense set of left translates of/ together with

their conjugates and 1, generates A,. Hence A, is separable. Therefore M(Af) is

separable, and we can apply Furstenberg's theorem to it. Let the flows obtained

be Xt, ¿¡^v, let e be the evaluation-at-e element of Xv, and let irt be the projection

of Xv to Xt. Let A( be the distal algebra with maximal ideal space Xf and evalua-

tion-at-e element ir((e). Conclusions (a) and (b) of Theorem 1.1 are then clear, and

conclusion (c) follows from Lemma 4.8. For conclusion (d), let f be a limit ordinal

^ v. We are to prove that

A( = unif. clos. ({J AX

The containment 2 is evident since A(^A„ for each -q. In the reverse direction

consider the members of (J Av as continuous functions on Xt. These functions

form an algebra containing the constants and closed under conjugation; we claim

this algebra separates points of X(. In fact, let xx and x2 be points of X(. Find i¡

such that the projection tt of X( to Xn satisfies -n(xx) /ir(x2), find / in A„ which
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separates n(xx) and 7r(x2), and lift / to Xt. Then the lifted / separates xx and x2.

By the Stone-Weierstrass Theorem, Ai=cl({J Av).

5. Fourier analysis of almost periodic extensions. In this section we begin the

proof of Theorem 1.2. The order of what we shall do is this: We first define a

convolution, an invariant mean, and the projection operators FA. In §6 we prove

the "finite-dimensionality" of the analysis, the orthogonality relation, Parseval's

equality, and the approximation theorem. The problem of irreducibility and

equivalence will be treated in §7.

Throughout this section we shall use the following notation : A and B are distal

algebras with A a.p. over B, n is the projection of M(A) onto M(B), G is the Ellis

group of M(A), e is the identity of G or the evaluation-at-e element of M(A) or

M(B), Xy is the fiber Tr~1(y) in M(A), and Iy is the compact group defined in §4.

Lemma 5.1. If tn and t are in G with rn —>-1 and iff is continuous on M(A)', then,

for any y in M(B),f(tnx) converges tof(tx) uniformly for x in the fiber Xy.

Proof. Let e > 0 be given and fix a point x0 in Xy. Let s and s0 denote elements

of Iy. By Proposition 4.4, ts(x0) is jointly continuous in j and in t, where t ranges

through G. This joint continuity, together with the continuity of/ means that for

each s0

\f(t'sx0)-f(tSoX0)\ < e/2

for all i in some open neighborhood N(s0) of s0 and for all t' in some neighborhood

of t. Then |/(íníx0)-/(/í'x0)| <£ for s and s' in N(s0) as long as «^«(i0). In

particular,

|/(ínÍX0)-/(í5X0)|   <  e

for s in N(s0) and n ^ n(s0). The sets N(s0), as s0 varies, cover Iy, and a finite number

suffices. We therefore obtain

\f(tnSX0)-f(tSXo)\   < e

for all í in Iy if « is sufficiently large. But Iy is transitive on Xy by Corollary 4.5,

and hence \f(tnx)—f(tx)\ <e for all x in Xy if« is sufficiently large.

Proposition 5.2. Let p(s) be any bounded Bore I function on Ie which is constant

on conjugate classes. If fis any continuous function on M(A), then the equality

Kx) =        p(s)f(tsr1x)dme(s),   rr(te) = tt(x),
Jsele

where me is normalized Haar measure on Ie, unambiguously defines a continuous

function h on M(A).

Remark. The function « of the proposition will be denoted fxp. This function

may be thought of as a convolution if p(s) is replaced hy p(s~1).

Proof. We first show that the definition is unambiguous, i.e., that it does not

depend on the choice of t. Let ■n(t'e)=-n(x)=TT(te). Then the restriction of t~xt' to
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Xe is a member of Ie. Using in succession the facts that me is invariant on both

sides and that p is unchanged by inner automorphisms, we find

f    p(s)f(tst-1x)dme(s)

= f    p[(r't')s(t-H')-í)f[t(t-it')s(t-ít')-^x}dme(s)
J se/c

=  f     p(s)f(t's(t')-1x)dme(s).
Jsele

Therefore the definition is unambiguous.

Next we show that n is continuous. Let xn -> x and let xn = tne. We are to show

that h(xn) -y h(x). If not, choose a subnet of xn so that h(xn) converges to something

else, and choose a further subnet so that tn converges, say to t. Then te = x. Apply

Lemma 5.1 to the fiber Xe. Then for n sufficiently large

\f(tnz)-f(tz)\ è E

for all z in Xe. If s is in Ie, then stñ1xn is in Xe and hence

If^St-'xJ-f^St-'Xn)]   á  E

for all s in Ie as long as n is sufficiently large. But t~ 1xn = e = t~ 1x, and thus

If^st-^-f^st-'x)] g E

for large n. For such n we evidently have

\h(xn)-h(x)\ S«M~

Therefore n is continuous.

Lemma 5.3. T//« a continuous function on M(A) and ifp andq are bounded Borel

functions on Ie which are constant on conjugate classes, then

(fxp)xq = (fxq)xp.

Proof. We have

(fxp)xq(x) = J q(s)(fxp)(tst~1x) ds,   -n(te) = ir(x)

= £ ¡r q(s)p(r)f[(trt-')(tst-ix)] drds

since 7r(»;e) = ir(tst~ix)

= \   i q(s)p(r)f(trst~1x)drds.

Similarly

(fxq)xp(x) = q(s)p(r)f(tsrt~1x)ds dr.

Under the change of variable 5 -*■ rsr'1, this last expression is equal to

j      q(rsr ~ ̂ (^(trst ~ lx) ds dr.

Since q(rsr'1)=q(s), the proof is completed by applying Fubini's Theorem.
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With the aid of this convolution, we introduce the functional that will play the

role of an invariant mean. If p is taken to be identically one on Ie, then/x 1 is a

constant function on each fiber. In fact, if 7r(x)=7r(x'), let rx = x' for some r in

/*(*>• Then

fx 1 (x') = f f(tst-xx') ds,   Tr(te) = tt(x')

= \ f((rt)s(rt)'1x') ds   by unambiguity

= JMrt)st~lx)ds

=  \ f(tst~ix)ds   under s^(t'1r'1t)s

= /xl(x).

We can therefore define unambiguously a function on M(B) by

E(f\B)(y)=fxl(x),   n(x)=y.

By Proposition 5.2, E(f\B) is continuous. The explanation of notation independent

of A appears in the remark with Proposition 5.5.

Lemma 5.4. If t is in G, then the map fa defined on Ie by fa(s) = tst~1\XMte) is a

topological isomorphism of Ie onto Ix(te). If t ' also is in G and if n(te) = n(t 'e), then

fa and fa- differ by an inner automorphism.

Proof. Since Tr(tst ~ 1(te)) = 7t(te), Lemma 4.3 shows that tst '11 XMte) is in 7B(te).

The map fa is clearly a homomorphism, and it is one-one onto because s' -> t~1s't

is a two-sided inverse. Moreover fa is continuous because it is the composition of

the continuous maps s->£s (Proposition 4.4) and tá-> tst'1. Since Ie is compact

and Inm is Hausdorff, fa is a homeomorphism.

If F is given, then t't~\te) = te and hence t't~1\Xx(te) is in In(te). Since

t't-ifa{s)(t't-x)-x = fa.(s),

fa and fa. differ by an inner automorphism. The proof is complete.

The map <f>t of Lemma 5.4, being a topological isomorphism, carries normalized

Haar measure me of Ie over to normalized Haar measure my of Iy, and there is thus

an alternate way of defining E(f\B), namely

E(f\B) = f    f(rx) dmy(r),   n(x) = y.
Jrely

That is, E(f\B)(y) is the integral over Xy off with respect to the unique normalized

left Zy-invariant measure on Xy. To see that these definitions are equivalent, let
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■n(te) = ir(x) and observe that

f(rx) dmy(r) = f(rx) dmy(r)
Jrely Jretlet'1

f(tst-1x)dmy(tsr1)-L
S.

sele

f(tst ~ 1x) dme(s).

Proposition 5.5. E(- \B) has these properties:

(1) E(f+h\B) = E(f\B) + E(h\B).
(2) E(bf\B) = bE(f\B)forbinB.

(3) £(1|T7)=1.
(4) Iff^O,thenE(f\B)^0.

(5) E(f\B) = [E(f\B)].
(6) E(fg\B) = E(f\B)gforginG.
(7) If fand h agree on a fiber Xy, then

E(f\B)(y) = E(h\B)(y).

Remark. It is shown in [10] that these seven properties determine E(-\B)

uniquely. It follows that E(f\B) does not depend upon A as long as fe A and

BçA^AP(B).

Proof. In view of the alternate definition of E(- \B) above, all of the properties,

except possibly (6), are obvious. For (6) we have

E(fg\B)(y)=fgxl(x),   n(x)=y

=   \ fg(tst~1x)ds,    ir(te) = tt(x)

= j f(gtst~1x)ds

= jMgt)s(gt)-1gx)ds,     ir(gte) = ir(gx)

= f*Hgx)

= E(f\B)g(y).

We introduce the projection operators PA of Theorem 1.2. Let A={A} be the set

of equivalence classes of irreducible (finite-dimensional) continuous unitary

representations of the compact group Ie. Let ya(s), s in Ie, be the trace of A and let

dK be the degree of A. The map 4t defined in Lemma 5.4 is a topological isomorphism

of Te onto Inite) and it therefore induces a map of the set of representations of the

one group onto the set for the other. If TT(te)=ir(t'e), then the facts that 4t and 4v

differ by an inner automorphism and that equivalence classes of representations

are invariant under conjugation imply that the maps of representations induced by

4t and 4v are identical. Thus for fixed A, we can speak umambiguously of yA as

associated to all Iy.
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Define PAf for /continuous on M(A) by

PJ(x) = dx Xx(r)f(rx) dmy(r),   tt(x) = y,
Jrely

where my is normalized Haar measure on Iy. Restricted to any fiber Xy, PAf is the

F2-projection of /to the finite-dimensional 7^-invariant subspace associated with

the representation A.

Lemma 5.6. Iff is continuous on M(A), then PAf=fx dKxx- Consequently PAf is

continuous on M(A).

Proof.

PJ(x) = dA        X\,y(r)f(rx) dmy(r),   y = tr(tx)
Jrely

= <4 , X^.y(r)f(rx) dmy(r)

= dK i     XKy(tst~x)f(tst- xx) dmy(tst-x)
Jsele

= ¿a i     x~Ás)f(tsr1x)dme(s)
Jsele

Continuity is by Proposition 5.2.

6. Properties of the projection operators. This section consists of proofs of parts

(a) through (d) of Theorem 1.2. We retain all of the notation in force in §5. Notice

that the Peter-Weyl Theorem, together with the interpretation of Zs(-|ZJ), shows

immediately that the Px are projections and that (b) holds in Theorem 1.2. It is

clear also that PA is ZMinear and hence that image(FA) is a 77-submodule of A.

Let U he an open set in M(B). Since E(- \B) is defined fiber-by-fiber, there is a

natural way of defining E(h\B)(y) whenever y is in U and « is a continuous function

defined on 7r-1([/). That the function £(«|Z?)(_v) is continuous for y in U is seen as

follows : Fix y and choose an open set V such that y e V and F£ U. Apply the

Tietze Extension Theorem to extend «|7r_1(F) to all of M(A), apply E(-\B) to the

result, and get a continuous function. This continuous function agrees with E(h\B]

in the neighborhood V of y.

The proofs of the next two lemmas use the notation (/ h) = E(fh\B).

Lemma 6.1. Z/{/,... ,/„} is a set of continuous functions on M(A) whose restric-

tions to a single fiber Xy are independent, thenfx,... ,fn are independent on all fibers

in some open neighborhood of y.

Proof. Form the Gram matrix whose i-jth entry is (/,/). The determinant of

this matrix is a continuous function on M(B), and its vanishing at z is equivalent
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with the linear dependence of {fx,.. .,/„} on Xz. Since the determinant does not

vanish at y, there is an open neighborhood of y in which it does not vanish.

Lemma 6.2. If{fx, ••,/„} is a set of continuous functions on M(A) whose restric-

tions to the fiber Xy are independent for every y in a nonempty open set U of M(B)

and if fis a continuous function on M(A) which satisfies

f(x) = cx(y)fx(x)+ ■ ■ ■ +cn(y)fn(x),   tr(x) = y,

for all y in U, then cx(y),..., cn(y) are continuous on U.

Proof. By symmetry it suffices to prove that cn is continuous. Restrict the

functions/!, ...,/„ to 7r-1(r7) but give the restrictions the same names. Apply the

Gram-Schmidt process fiber-by-fiber to the restrictions, using the inner product

formed from E(- \B). We obtain thereby functions 4>i, ■ ■ -,4n defined on 7r_1((7)

whose restrictions to each fiber are orthonormal and which satisfy

9i=filE(\fx\2\B),

K =fk~(fk, "¿l)$l- •-(fk, 4k-l)4k-l,     k = 2,

4k = hk¡E(\hk\2 I Bf'2,   k^2.

The continuity of E(\B) ensures that the 4k are continuous on tt~ 1(U). On one

hand we have

A*) = 2 ck(y)fk(.x)
k = l

= cn(y)E(\hn\2 | B)(yY'24n+ "t* (-)4k,
k = l

and on the other hand we have

f(x) = ¿ (/ 4k)9k-
k = l

Since E(\hn\2 \ B) is nowhere zero on U, we conclude

Cn = (f, 4n)IE(\hn\2 | BY12,

and cn is therefore continuous. The proof is complete.

A Ti-submodule M of A will be said to be of constant (finite) dimension n if, for

each y in M(B), the restrictions of members of M to Xy form a complex vector

space of dimension n.

Lemma 6.3. If M is a G-invariant B-submodule of A such that, for some y in M(B),

the restrictions of members of M to Xy form a finite-dimensional vector space, then

M is of constant dimension.

Proof. Fix an integer n, and let U be the set of points y in M(Ti) such that the

vector space of restrictions to Xy has dimension ^ n. It suffices to prove that either

U= 0 or U= M(B). Thus let y be in U, and let/i, ...,/„ be members of M whose

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



20 A. W. KNAPP [July

restrictions to Xy are independent. By Lemma 6.1, the restrictions to neighboring

fibers are also independent. Therefore U contains a neighborhood of y and U is

open. We show U is G-invariant. Let y be in U, and let/,.. .,/„ be as above.

Then (f1)g-1, • ■ -, (/n)»-1 are independent on the fiber Xgy and hence gy is in U.

It follows that the complement of U is a closed G-invariant subset of A7(Zf), and

by Corollary 3.3 we see that such a set must be 0 or M(B).

Lemma 6.4. If M is a B-submodule of A of constant dimension n, then M is finitely-

generated as a B-module. Specifically, any set of elements {/} of M whose restrictions

to each Xy span a space of dimension n has a finite subset which is a set of generators

for M.

Proof. Let {/} be given. For each y in M(B) find « functions from the set which

are independent on Xy and find, by Lemma 6.1, an open neighborhood of z's in

M(B) such that these n functions continue to be independent on Xz. As v varies,

these neighborhoods cover M(B), and a finite number Nx,..., Nm suffices. Let the

corresponding y's be ylt..., ym and let the functions be

fl,   where 1 Ú j Ú m   and    1 :£ k :£ «.

This set of functions has the same vector-space-spanning property that {/} has.

We shall prove this set generates M. In view of the compactness we can choose a

partition of unity {fa) on M(B) subordinate to the cover {N,) such that each fa,

vanishes on the complement of a compact subset 70. of N¡. Let « in M be given.

The only properties of « that we shall use are that it is continuous and that its

restriction to each fiber is in the subspace spanned by f\,.. .,/nm. Let fa be a con-

tinuous function with range in [0, 1] which is one on 7Ç and is zero on the com-

plement of Nj. By Lemma 6.2 we can write

fa(y)h(x) = ci(y)fi(x)+ ■ ■ ■ +c'n(y)fi(x),   n(x) = y,

with the c's continuous on N¡. Then since fa,fa, = fa,, we have

fah = (fac[)fi+---+(facn)fl,

and the functions fac'k are everywhere continuous. Summing on/ we see that « is

a ZMinear sum of/},...,/".

Theorem 6.5. FA commutes with the left action of G. Image(FA) is left-invariant

under G, is of constant finite dimension, and is finitely-generated as a B-module.

Proof. For the commutativity with G we have, by Lemma 5.6,

PJo(x) = dA J xMfÁtsr^) ds,   n(te) = tt(x)

= dh jxMf((gt)s(gt)-1gx) ds,   -n(gte) = 7T(gx)

= PJ(gx)

= (PJUx).
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Consequently image(PA) is left-invariant. The restrictions to Xe of functions in

image(PA) form a finite-dimensional vector space, by a classical theorem on group

representations. By Lemma 6.3, image(PA) is of constant finite dimension, and by

Lemma 6.4 it is finitely-generated as a Ti-module.

Lemma 6.6. If X is a compact Hausdorff space and if {/„ | a e P} is a nonempty

(and possibly uncountable) set of nonnegative continuous functions whose pointwise

sum

f(x) = 2/«(*)
a

is everywhere finite and continuous, then all but a countable number of the functions

are identically zero.

Proof. For fixed n, the sets

ix\f(x)-2fa(x)< 1/n)

form an open cover of A'as F varies through the finite subsets of P. By compactness

there is a finite subcover, and, if we form the union Fn of the corresponding finite

subsets of P, then we have ||/— 2aef„ fa\\ < I In. It follows that f='2ae\JFK fa and

hence that all but countably many of the functions /„ are identically 0.

Theorem 6.7. If fis continuous on M(A), then PAf is identically zero for all but

countably many X, and

(6.1) E(\f\2\B) = 2E(\PJ\2\B),

the convergence of the right side being uniform on M(B).

Proof. The equality (6.1) pointwise is an immediate consequence of the Peter-

Weyl Theorem and the interpretation of E(- \B). By Lemma 6.6, TÍ(|PA/|2 | T?)=0for

all but countably many A. Since \P\f\2 is continuous and nonnegative on each fiber,

it must be zero for the same A's. Finally the statement of the uniformity of the

convergence follows from Dini's Theorem.

Lemma 6.8. If fis continuous on M(A), then for any e>0 there is a neighborhood

N of the identity in Ie such that, for all x in M(A) and for all t in G such that ir(te)

= tt(x), the inequality

\f(tst-iX)-f(x)\ ^ .
holds whenever s e N.

Proof. The expression under consideration is equal to

l/iTjr1*)-/^"1*)!,

and t'1x is in the fiber Xe. Thus it is sufficient to prove that

\f(tsre)-f(tre)\ g e
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for all t, for all r in Ie, and for all i in a neighborhood of the identity in 7e. By joint

continuity off(tsre) in the three variables t, s, and r, for each t0 and r0 there is a

product open neighborhood of Fs, s's, and r's, where the i's form a neighborhood

of the identity, such that

\f(tsre)-f(t0r0e)\ < e/2

and hence

(6.2) \f(tsre)-f(tre)\ < ..

As t0 and r0 vary, these product neighborhoods cover the product of the i-space

and the /--space, and there is therefore a finite subcover. Then (6.2) holds for s in a

neighborhood depending on what subcover set (t, r) is in. Intersecting the cor-

responding finitely many ¿-neighborhoods of the identity to obtain a neighborhood

N, we see that (6.2) holds for all t and r as long as s is in N.

Lemma 6.9. If K is a compact group and if U is a neighborhood of e, then there

is a continuous function p^O on K such that

(1) p vanishes outside U,

(2) ¡p(s)ds=l,

(3) p is constant on conjugate classes.

Proof. Choose a family of two-sided invariant semimetrics {dm} for K which

generate the topology of K. Since U is open, we can choose finitely many, say

dx,..., dn, and a set of e's, say ex.en, such that

V = {s | dj(e, s) < e¡   for j = 1,...,«} £ U.

Since

dAgsg-1, e) = d¿gs, eg) = d,(s, g~leg) = d¡(s, e),

V is closed under the operation of conjugation. Form the quotient space of con-

jugate classes, and let a be the projection. Then a(K— V) is compact and disjoint

from o(e). If we can show the quotient is Hausdorff, then we choose a function «

which vanishes on o(K— V), is ^ 0, and is one at o(e). Lifting A to a function p

on K and renormalizing, we get the desired result.

In order for the quotient to be Hausdorff, it is necessary and sufficient that the

equivalence relation be closed. Let xi~yi, x¡->x, and yt-*-y. Then xi=giyigr1.

Choose a convergent subnet of {gt}, say with limit g. By joint continuity x=gyg~1.

Hence x~j.

Theorem 6.10. There is a net of bounded B-linear G-commuting operators T¡ on

A with this property: If P^f is nonzero for A= 1, 2, 3,..., then TJ is in the weak

direct sum

(6.3) imaged) © image(F2) © • • •

and {TJ} converges uniformly to f
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Proof. The required net will be a subnet of the following net : The directed set

D is the product of the set of finite subsets of A's by the set of neighborhoods of

the identity in Ie. To each such neighborhood U, associate a function p satisfying

the conditions of Lemma 6.9 for K=Ie. The operator that corresponds to /*

= ({Alt..., A„}, Í7) is the composition of convolution by p followed by PAl + ■ ■ ■

+PAn. Lemmas 5.3 and 5.6 show that Tf always lies in the weak direct sum (6.3).

The F/s are clearly bounded and TMinear, and they commute with G by the same

sort of calculation as in the proof of Theorem 6.5.

We first show that for any e>0 and functions/,...,/., we can find arbitrarily

large ; such that !|/-F,/|| <b for i= l,...,k. Thus let 70 = ({A1,..., XnJ, U) be

given. Choose a neighborhood TV¡ for e and/ in accordance with Lemma 6.8, let

N=U n Nx n • • • n Nk, and let /» be the function associated to N by Lemma 6.9.

Then ||/-/ xp\\ ¿e for each / because

ll/i-/¡x/>l ^ sup f \fi(tsr1x)-f(x)\p(s)ds,    ir(te) = it(x)
x     Js

^  sup \f(tst-1x)-f(x)\(\p(r)dr\   ir(te) = tt(x)

<,E.

Put hi=f-PxJi-■ ■ ■-PxJi, where n^n0 is chosen large enough so that

£"(|/it[2 | B)112 is uniformly ^e/||/»||2 for i=l,..., k. Such an n exists by Theorem

6.7 since the PA's are orthogonal. For fixed x apply the Schwarz inequality to

nt xp (x). Then

I /• _ I
\htxp(x)\ =      h¡(tst  xx)p(s) ds\

| Ja

è (Js \hi(tst-'x)\2dsy2^ \p(s)\2 dsj'''

= [E(\hi\2 | fiX'K*))]1'a||/'l|a

^   E.

Hence, by Lemma 5.3,

ll/-(A1(/x/»)+---+PA„(/x^))||

^ M-fiXpW + Mxp-ŒPiJfiXpM

^e+Uxp-(IP,Jdxp\\

=   E+\\hiXP\\

as asserted.

Finally let E be the set of all triples (d, e, F) such that d is in the directed set

above, Fis a finite set of functions in A, and ||Fd/-/|| <e for all/in F. Partially

order F by the product ordering, and define TidiS:F) = Td. The argument of the
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previous paragraph shows that any triple (d, e, F), whether or not satisfying the

inequality defining E, has members of E beyond it in the product ordering. Hence

the result is a subnet. Its convergence is obvious.

7. Irreducibility and equivalence. We continue to use the notation of §6. This

section is occupied with the proof of parts (e) and (f) of Theorem 1.2. A nonzero

G-invariant Z?-submodule of A is irreducible if it contains no proper nonzero

G-invariant Z?-submodules. We note some facts connected with the proof of

Lemma 6.4.

(1) If Af is a Ä-submodule of A of constant dimension n, then there is a finite

open cover {Ux, ■ ■ -, Uk} of M(B) and there is a set of functions {// | 1 fki = n,

1 </<;&} such that for each fixed y the functions//, l-i^n, are independent on

every fiber in ^'^(U^.

(2) Any such set {//} generates M as a 5-module.

(3) If, for each y in M(B), the restrictions of members of M to the fiber Tr~x(y)

form a vector space Vy, then M contains all functions /continuous on M(A) such

that, for each y,f\tT~1(y) is in Vy.

(A) Let h{ be defined and continuous only on tt~\U,) and let h{,...,hjn be

independent on every fiber in ir'1^,). We describe a procedure for getting

from these functions a set of generators for M. Let {fa) be a partition of unity on

M(B) such that each fa> is nonzero only on an open set W¡ with IF, £ U¡. Then the

functions

f((x) = fa(tr(x))h'i(x)    if X 6 77-1( Wi)

= 0   otherwise

are globally defined on M(A) and are continuous. The sets IF, cover M(B), and the

functions//,.. .,f'n are independent on every fiber in ■n~1(W,). By (2) the functions

// generate M.

Any set of functions {h\} satisfying the properties described in (4) will be called

a local base for M.

Lemma 7.1. If M is a B-submodule of A of constant dimension and if{U,) is a

finite open cover of M(B) which admits a local base for M, then there is a local base

h{ relative to the same cover such that E(hihk\B) = 8ikfor all i,j, and k.

Proof. The Gram-Schmidt process works for any local base. The continuity on

each tt'\U¡) of the functions involved is preserved because if « is continuous on

tt'^U), then E(h\B) is continuous on U.

The set of functions constructed in Lemma 7.1 will be called a local orthonormal

base for M.

Lemma 7.2. If M is a B-submodule of A of constant dimension a and if N is a

B-submodule of M of constant dimension b, then relative to some finite open cover

{Wr} of M(B), there is a local orthonormal base for N which can be extended to a

local orthonormal base for M.
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Proof. By remark (1) let {U,} be a finite open cover of M(B) relative to which M

has a local base, and let {Vk} be any finite refinement of {U,} for which N has a

local orthonormal base (existence by remark (1) and Lemma 7.1). Let such a base

consist of the functions {nf | l^i^b}. Let, by Lemma 7.1, {/»{} be a local ortho-

normal base for M relative to {£/,}. Since {Vk} is a refinement of {U,}, we may

choose a j(k) for each k such that Vk £ U¡. Let m\ be the restriction of hfm to

ir-\Vk). Then

{n$ | 1 á i £ a}

is a local orthonormal base for Af relative to the cover {Vk}. Form, for fixed k, the

a functions

/nf- 2 (rrí¡,nf)ri¡.
i = i

On each fiber in 7r_1(Ffc) these functions span a subspace of dimension a — /» which

is orthogonal to that spanned by the restrictions of the nf. For each fixed y, find

a—¿» of them which are independent, and find an open neighborhood of y in Vk

in which they remain independent (Lemma 6.1). As y and k vary, these neighbor-

hoods cover M(B) and a finite number suffices. The resulting cover {Wr} is a finite

refinement of {Vk}. To each Wr choose a Vk containing it and choose y that gave

rise to Wr. Retain the a — b functions obtained for y, Vk, and Wr. Also retain (and

list them first) the restrictions to ir~1(Wr) of the b functions nf, l^iSb. The result

is a functions defined on each ir~1(Wr), and, as r varies, these functions form a

local base. Apply the Gram-Schmidt process to obtain a local orthonormal base

with the required properties.

Lemma 7.3. Let M be a B-submodule of A of constant dimension a and let N be a

B-submodule of M of constant dimension b. Denote by N1 the set of all functions f

in M such that E(fh\B) = 0for all h in N. Then

M = N@NL.

Proof. Choose, by Lemma 7.2, a local orthonormal base for M which, for each

U¡, consists of b functions in a local base for N and a — b functions in a local base

for N1. From this local base form a generating set for M according to remark (4).

Then each function in the generating set is in N or NL and it follows that M =

N+N1. On the other hand, iff is in N n N\ then E(\f\2 \ B)=0 and so /=0. Thus

M=N® N1.

Proposition 7.4. If M is a G-invariant B-submodule of A of constant finite dimen-

sion and if N is a G-invariant B-submodule of M, then M=N© N1 exhibits M as

the direct sum of G-invariant B-submodules.

Proof. By Lemma 6.3, TV is of constant finite dimension; hence, by Lemma 7.3,

M = N@ N1. If/is in N1 and n is in N, then/ is in M and

E(fgñ\B) = E(fñg-í\B)g = 0.

Hence/ is in N1 and N1 is a G-invariant Ti-module such that M=N® NL.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



26 A. W. KNAPP [July

Theorem 7.5. Every G-invariant B-submodule o/image(FA) is finitely-generated,

and image(FA) is the finite orthogonal direct sum of irreducible G-invariant B-modules.

Proof. A proper Z?-submodule of constant dimension of a 5-module of constant

dimension is of lower dimension. The rest follows from Lemmas 6.3 and 6.4 and

Proposition 7.4.

We turn to the problem of equivalence. If M and N are G-invariant Z?-sub-

modules of A of constant finite dimension, then M and N are equivalent if there is

a one-one bounded Zi-linear transformation F of M onto N which commutes with

the action of G. (The symmetry of this definition, i.e., that F_1 is bounded, follows

from the interior mapping theorem and Lemma 7.6 below.) The proof of part (f)

of Theorem 1.2 will be an easy matter once we have established the connection

between the notion of equivalence above and the usual notion of equivalence

under Iy of vector spaces of functions on Xy.

Lemma 7.6. Any B-submodule M of A of constant finite dimension is complete in

the uniform norm.

Proof. Let {/„} be uniformly Cauchy in M and let/be its limit in A. Then/is

continuous on M(A) and its restriction to any fiber is in the space of restrictions

of members of M because this space is finite-dimensional. By remark (3),/is in M.

Lemma 7.7. 7/Af and TV are irreducible G-invariant B-submodules of A of constant

finite dimension and if F is a B-linear transformation of M into TV which commutes

with the action ofG, then F is zero or F is one-one onto. If, in addition, F is bounded

and M=N, then F=cl for some complex number c.

Proof. Since kernel(F) and image(F) are G-invariant 7i-submodules of M and

TV, respectively, kernel(F) = 0 or M and also image(F) = 0 or TV. Hence F is zero

or one-one onto. If, in addition, Fis bounded and M=N, then Lemma 4 on p. 567

of [3] and Lemma 7.6 show that the spectrum of F is nonempty. If c is in the

spectrum, then c7-F is ZJ-linear and commutes with G. Since it is not one-one

onto, it must be zero.

Proposition 7.8. If M is an irreducible G-invariant B-submodule of A of constant

finite dimension, then there is a X such that M is equivalent to an irreducible B-sub-

module o/image(FA).

Proof. Fix a in A and let imaged) decompose as

image(Fff) = M1©---©Mm

with the Mi irreducible. Fix /', rewrite this expression as

imaged) = Ml@(M1 ©• • •© Mt-t © Ml + 1 ©• • •© Mm),

and let Pi be the projection mapping onto Mx. Since pt is a projection and its domain,

kernel, and image are complete (Lemma 7.6), the closed graph theorem shows that
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Pi is bounded. Hence PiP„ is a bounded ZMineai.. M into M( which commutes

with the action of G. By Lemma 7.7, either M is equivalent to M¡ (and we are done)

or elsepiPa(M) = 0. We may thus assume thatpiPa(M)=0 for all i and a. Summing

on i, we obtain Pa(M)=0 for all o. By Theorem 6.7, M=0, a contradiction.

Lemma 7.9. If fis in A, then the function h defined on M(B) as

h(y) = max |/(x)|
xeXy

is continuous.

Remark. We shall use the notation ||/||y in place of h(y) after this lemma.

Proof. Fix y q and let yn -*■ y0. By compactness we may assume that «( vn) con-

verges. Choose xn e Xyn so that h(yn) = |/(x„)|, and choose a subnet {xn-} so that

x„- converges, say to x0. Then

lim«(Jn) = lim |/(xn)| = hm |/(xn,)| = |/(x0)| Ú  max |/(x)|
XeXy0

= h(y0).

Failure of equality to hold would mean that |/(x)| > |/(x0)| on an open neighbor-

hood Í7 of some point x± in 7r_1(_v0) and that tt(U) contains no points yn if « is

sufficiently large. That is, to complete the proof it suffices to show that tt(U) con-

tains an open set about y0. Let k be a continuous function with values in [0, 1]

which is 1 at Xx and 0 off U. Then E(k\B), being continuous, is positive in a

neighborhood of y0, and that neighborhood is contained in tt(U).

Lemma 7.10. Let M and TV be B-submodules of A, and let F be a bounded B-linear

map of M into TV. For each y in M(B), let Uy and Vy be the vector spaces of restrictions

of members of M and TV, respectively, to Xy. Then the identity

F*(f\ Xy)(x) = F(f)(x) ;      feM,ye M(B), xeXy

consistently defines a linear transformation of Uy into Vy.

Proof. We are to show that if/ and/2 agree on Tt~1(y), then so do F(/) and

F(/2). Subtract. We are to show that if/=0 on v -\y), then F(/)=0 on n'^y).

Let £>0 be given. Let, by Lemma 7.9, TV be an open neighborhood of y such that

||/||2^e for z in TV. Choose a continuous function b on M(B) with values in TO. 1}

which is 1 at j and 0 off TV. Then ¡¿>/|| ̂  e. Hence

\\bF(f)\\ = \\F(bf)\\ = e\\F\\

and ||F(/)||j,^e]|F||. Since e is arbitrary, we conclude that F(/)=0 on Xy.

Lemma 7.11. Let M be a G-invariant B-submodule of A of constant finite dimension,

and let Uy be the vector space of restrictions to Xy. Iffe M and t e G, then the func-

tion f\Xy defined on Xy as (ft\Xy)(x)=f(tx) is in Uy.

Proof. Let gn -*■ t. Then, for x in Xy, fQn(x) ->fi(x) uniformly for x in Xy by

Lemma 5.1. Since fBn | Xy is in Uy and since Uy is finite-dimensional f\Xy is in Uv.
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Proposition 7.12. Let M and N be G-invariant B-submodules of A of constant

finite dimension, and let F be an equivalence of M onto N. If Uy and Vy are the

respective vector spaces of restrictions to Xy, then the induced map Fy exhibits Uy

and Vy as equivalent under the action of Iy.

Proof. If we apply Lemma 7.10 to the bounded operator F"1, we see that

(F ~ 1)ï exists. It is clear that (F " *)" is a two-sided inverse of Fv. Lemma 7.11 shows

that Uy and Vy are invariant under Iy.

Now let/be in Uy, let s be in Iy, and let gn -y s. We are to show that

Fy(f) = F»(f)s.

Extend/to a member n of M. Since F'J is bounded and since hQn(x) ->/,(*) uni-

formly for x in Xy, we have

F»(/.)(x) = lim F»(hgjXy)(x).

On the other hand,

F«(hgn\Xy)(x) = F(hgJ(x) = F(h)gn(x) = F(h)(gnx)

and

lim F(h)(gnx) = F(h)(sx) = F»(f)t(x).

Hence

Fy(fs) = F»(/)s.

Proposition 7.13. Let M and N be G-invariant B-submodules of A of constant

finite dimension, and let Ue and Ve be the respective vector spaces of restrictions to

Xe. If H is a linear transformation of Ue into Ve which commutes with Ie, then there

exists a bounded B-linear transformation of M into N which commutes with G and

satisfies Fe = TT.

Proof. If/is in M and t is in G, then Lemma 7.11 shows that/I^ is in Ue. We

therefore define

F(f)(te) = H(ft\Xe)(e).

First we show the definition is unambiguous. If te = t'e, then t'xt' is in Te and

(ft\Xe)t-^f=ff\Xe. Hence the given commutativity of TT with Ie implies that

F(f)(t'e) = H(fv\Xe)(e) = H((ft\Xe)rh,)(e)

= H(ft\Xe)(rYe) = H(ft\Xe)(e) = F(f)(te),

and the definition is consistent.

For continuity of F(f), let xn = tne^ x. If continuity fails, choose a subnet of

xn such that F(f)(xn) converges to something other than F(/)(x), and extract a

further subnet so that tn converges to some t in G. The desired contradiction

follows from Lemma 5.1 and the boundedness of TT.
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It is clear that F is Zi-linear and that ||Fj| â ||77||. Since

F(f)(gte) = H(fgt\Xe)(e) = H((fg\\Xe)(e) = F(fg)(te),

F commutes with G. Also Fe = H because

F*(f\Xe)(se) = F(f)(se) = H(fs\Xe)(e) = H(f\Xe)(se).

Finally we are to show that F has range in TV. By remark (3) it suffices to show

that, for fe M and y e M(B), F(f)\Xy lies in the space Vy of restrictions of TV to

Xy.  First notice that if -rr(te)=y and p=se is in Xe, then

F(f)(tp) = H(fls\Xe)(e) = H((f)s\Xe)(e) = H(f\Xe)(p).

This observation applied to t'1x for x in Xy shows that

F(/)(x) = H(ft\Xe)(t^x).

Let « be an extension of 77(/|Xe) to a function in TV, and let gn -> t'1 in G. Then

h9n\Xy is in Vy and hence so is the uniform limit, which is F(f)\Xy.

Theorem 7.14. If M is an irreducible G-invariant B-submodule of A of constant

finite dimension, then there is a X such that A/£image(FA). If M and TV are two such

modules, then M and TV are equivalent if and only if they are contained in the same

image(FA).

Remark. This theorem is a corrected version of conclusion (2) of Theorem 3

in [9].

Proof. By Proposition 7.8, there is a A and there is an irreducible G-invariant

Z?-submodule R such that M is equivalent to R and 7?£image(FA). Apply Proposi-

tion 7.12. In the notation of that proposition, Uy is equivalent to Vy for each y.

But Vy is contained in the restriction Wy of image(FA) to Xy, and Wy is such that

it contains every vector space of functions on Xy equivalent to any of its sub-

spaces. Hence [/,,£ IF, and Afçimage(FA).

If TV is given and TV is equivalent to A7, then TV is equivalent to R and the same

argument shows that TV£ image(FA).

Let M and TV he irreducible and contained in IF=image(FA). If Ue and Ve are

the respective spaces of restrictions to Xe, then Ue and Ve are invariant under Ie

by Lemma 7.11. Write Ue and Ve each as the direct sum of irreducible 7e-invariant

vector spaces. Any two such spaces, being in We, are equivalent. Hence we can

construct, summand by summand, a nonzero linear transformation 77 of Ue into

Ve which commutes with Ie. Apply Proposition 7.13 to get a nonzero bounded

ZMinear map F of M into TV which commutes with G. By Lemma 7.7, Af and TV

are equivalent.

8. Crossed representations. Step three in the treatment of distal functions is to

analyze the individual G-invariant 77-modules of constant finite dimension. Again

let 5 be a distal algebra, but now let A = AP(B). Let n he the projection of

M(AP(B)) onto M(B).
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We shall approach this problem in two ways. Both ways begin by associating to

each such module a vector bundle with base space M(B). The first way, which is

coordinate free, further defines on the bundle a "unitary" fiber-preserving action

of G ; we shall consider these G-vector bundles only briefly. The second way, which

uses coordinates and is more appropriate for §9, uses matrices to express the action

of G and associates to each module a "unitary crossed representation." The

functions of the module can be recovered from this representation, and, in fact, the

functions arising from any abstract unitary crossed representation are all almost

periodic over B and together form a G-invariant TJ-module of constant finite

dimension. When B is the algebra of constants, the unitary crossed representations

reduce to ordinary unitary representations of G, and our results reduce to familiar

theorems about almost periodic functions.

The problem of classifying the crossed representations involves the problem of

deciding when two crossed representations lead to the same module of functions,

and this problem of equivalence is treated briefly at the end of the section.

We begin by associating to each G-invariant T7-submodule M of AP(B) of con-

stant dimension a complex vector bundle with base space M(B) in such a way that

the continuous cross-sections of the bundle are identified with the members of M.

Let M be a G-invariant Ti-submodule of AP(B) of constant dimension n; the

module M will be fixed until further notice. Let J( denote the set of all restrictions

of members of M to individual fibers of M(AP(B)), and let the restrictions to Xy

=iT~l(y) be denoted by Vy. We define a topology on JÍ as follows: If/is a restric-

tion to the fiber Xy, a subbase open set containing/is any set Tv7(/i, U, e) such that

(a) e is a positive real number, U is an open neighborhood of y in M(B), and

fx is a member of M such that f=fx\ Xy.

(b) NAjx, U, E) = {h eVz\zeU, supxeXs \fx(x)-h(x)\<e}.

Lemma 7.9 can be used to show that this class of sets is actually a base for the

topology, but this fact will not be needed.

If/is a restriction to Xy, we definep(f)=y. Then/» is a continuous projection

of J( onto M(B), because the inverse image of an open set U in M(B) is

U"=i M0> U, k)- The inverse image of a single point of M(B) is a complex vector

space isomorphic to C".

Now we make Ji into a bundle. The bundle space is J(, the base space is M(B),

the projection is p, the fiber is Cn, and the structure group is the group U(ri) of

n-by-n unitary matrices. Let {fu \ l^ièn, Ue finite cover} be a local orthonormal

base for M. We define a coordinate function 4u- UxCn ^p_1(U) by

4u(y,[ci,.-;cn])= 2 Ci(fiv\xy).

It is clear that 4u is fiber-preserving, and Proposition 8.1 will show that 4u is a

homeomorphism. Set 4u.y(c) = 9u(y,c), and, if ye U n V, define a matrix huv(y) by

(8.1) m^ = 2hrtv(y)(jr\xy).
i
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Then

<Pv}y<t>U,y[Cx, ■ ■ ■, Cn]  =   [2 Cih%V> ■ ■ ■ > 2 i«*£r]'

and hence Auv(_y), when thought of as acting on row vectors, equals the coordinate

transformation <pv,y<f>u¡y. The matrix huv(y) is unitary, and Lemma 6.2 shows that

the dependence on y is continuous. Thus Jt becomes a coordinate bundle under

this structure. Any two coordinate bundle structures induced by different local

orthonormal bases are clearly equivalent, and hence Jt inherits the structure of

a fiber bundle. Proposition 8.2 will identify the continuous cross-sections of Jt

with the members of the module M.

Proposition 8.1. <pv: UxCn^p~1(U) is a homeomorphism.

Proof. For continuity of <f>v, let yk -> y0 e U and cf -*■ c¡ for j= 1,..., «. Let

H(fi, V, e) he a neighborhood of 2 c,(f}u\Xyo). Then

and the right side is eventually less than e/2 by Lemma 7.9. Also Lemma 7.9 shows

that, for some neighborhood IF of y0,

||/x-2c>/>tr<«/2
and hence

I/i-2c^L<e/2
eventually. So eventually 2 Cj(fiu\Xyic) is in TV(/1; V, e).

For continuity of ¡pu1, we need show only that a net in the locally compact space

UxC which diverges to infinity cannot be mapped by <pv into a convergent net.

(In fact, then fay extends to be continuous on the one-point compactification.)

Composition with p shows that the U component of such a net in UxCn must

converge to something in U. Hence the Cn component diverges to infinity. Thus

suppose [ex, ■ ■., c„] diverges and 2 Ci(f]U\Xyie) converges. Since the square root of

the sum of the squares of the c's is diverging to infinity, it suffices in an obvious

notation to prove that E(\ ■ \2 \ B)112 is a continuous complex-valued function on Jt.

Let/be in JÍ with/>(/)=j0, and let e>0 be given. Let/ be a fixed extension of

/ and let V be an open neighborhood of y0 such that, for y e V,

(8.2) |F(|/|2 | By'2(yo)-E(\fx\2 \ By>2(y)\ < e/2.

We claim that N,(fx, V, e/2) is mapped into the e-neighborhood of E(\f\2 \ B)ll2(y0).

In fact, if« is in Nf(fx, V, e/2) with p(f)=z, then

|F(|/|21 By2(z)-E(\h\21 Bf'\z)\ Ú E(\fx-h\21 By<2(z)

è l/I-A||a < e/2
and so (8.2), with y=z, gives

\E(\f\2\By\yo)-E(\h\2\By<2(z)\ < e.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



32 A. W. KNAPP [July

Proposition 8.2. If q is a continuous function from M(B) into Ji such that pq is

the identity on M(B), then the function defined on M(AP(B)) by

h(x) = q(ir(x))(x)

is a member of M. Every element of M arises in this way from such a function q.

Proof. In view of remark (3) at the beginning of §7, h will be in M if h is con-

tinuous on M(AP(B)). Thus let xn -> x and let e>0 be given. Fix an extension fx

of q(ir(x)). Eventually \fx(xn)—fx(x)\ is <e/2 and also, since q-n is continuous,

q(ir(xn)) is in the neighborhood N(fx, M(B), e/2) of q(ir(x)). Then for large n

\q(ir(xn))(xn)-q«x))(x)\ Ú \W(xn))-(fx\XMxJ\\

Hence n is continuous and is a member of M.

Conversely let h be given and put q(y) = h\ Xy. We are to show that q is continuous.

Let yn -^yy and let NQ(y)(fx, U, e) be a neighborhood of q(y). Since h andfx agree

on Xy, Lemma 7.9 shows that there is an open subneighborhood Wof U containing

y such that \\h—fx\\w<E- If« is chosen large enough so that yn is in W, then q(yn)

will be in Nq(y)(fx, U, e). The proof is complete.

The action of G on AT has not yet appeared in the properties of Ji. The coordi-

nate-free way of bringing it in is to define an action of G on the vector bundle and

arrive at what might be called a G-vector bundle. Iff is defined on Xy and x is in

Xgy, put

g(f\Xy)(x)=f(g-1x).

The result is defined on Xgy. It is easily seen that this definition gives a left action

of G on Ji with these two characteristic properties:

(a) The action commutes with p and is jointly continuous.

(b) The action of g restricted to Vy is a linear transformation onto Vgy preserving

the inner product obtained from F(- |T7).

We omit the details.

The approach with coordinates brings in the action of G by means of a crossed

representation. Fix a coordinate system for Ji corresponding to a local ortho-

normal base {fiU}. If g is in G, if y is in U, and if gy is in V, let Dvu(g, y) be the

matrix defined by

(8.3) J7{gx)= 2 Dlv(g,y)ff(x),   xeXy.
i = i

The assumption that the {ftu} are orthonormal implies that the matrices Dvu(g, y)

are all unitary.

The reader is asked to keep in mind the case in which Ji is a product bundle;

Ji is a product bundle if and only if the cover {U} can be taken to consist of just

the one set AT(Ti). In this case there is a global orthonormal base {/}, and the set
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of matrices D(g, y) defined in (8.3) gives a crossed homomorphism (actually con-

tinuous) of G into unitary-matrix-valued functions on M(B). The classical situation

with almost periodic functions is a special instance. Then B is the algebra of con-

stants and M(B) consists of one point. Each bundle is a product bundle, and the

matrices D(g, y) reduce to a continuous group representation of G in U(n).

Proposition 8.3. The matrices Dvu(g, y) are unitary and satisfy these five

properties :

(a) IfyeUn U' and gy e V,

D™Xg,y) = Dvu(g,y)h™\y).

(h) IfyeUandgye Fn V,

Dv'v(g,y) = hV'v(gy)D™(g,y).

(c) If y e U, hye V, and ghy e W,

Dwu(gh,y) = D*v(g, hy)D™(h, y).

(d)IfyeU,Du"(e,y) = I.

(e) Dvu(g, y) is jointly continuous in the variables g and y.

Proof. It was noted above that the matrices are unitary. Properties (a) and (b)

follow directly from (8.1) and (8.3), while (c) and (d) use (8.3) alone. We sketch a

proof of (e). Let gn -> g and yn ~> y, and let (8.3) hold. Then

Dlv(g,y) - E(fiV(g,x)fu(x)\B)(y),

and a similar relation holds for Dvu(gn, yn). Since we are interested in what happens

only in a neighborhood of y, we may replace the /'s with globally defined con-

tinuous functions which agree with the /'s on all fibers in a neighborhood of y.

We give the new functions the same names. On one hand the functions fv are

uniformly continuous, and on the other hand E((f^)gfjU\B) is continuous on M(B).

Thus a 2e-argument completes the proof.

A set of unitary matrices Dvu(g, y) associated to a U(n) vector bundle over

M(B), defined whenever y e U and gy e V, and satisfying properties (a) through

(e) of Proposition 8.3 is called a unitary crossed representation of G relative to B.

In the crossed representation constructed above, the matrices Dvu(g, y) and the

« numbers fiu°(e), l^i¿n, for any fixed U0 containing e determine the module M

completely. To prove this statement, we proceed as follows. Let V be given and

let x e 7r_1(F). Choose a net {gm} with gm -> x. For large m, Dvu°(gm, e) is defined

and we have

fiv(x) = limJtDluo(gm,e)fiUo(e).

It is reasonable that other choices of the constants f"°(e) will lead to G-invariant

Zi-submodules of AP(B). We are now going to prove that every choice of these
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constants leads to such a submodule. The span of these modules will be called the

set of functions determined by {Dru(g, y)}. The result we shall therefore establish

is the following :

Proposition 8.4. If{Dvu(g, y)} is any unitary crossed representation of G relative

to B, then the set of functions determined by {Dvu(g, y)} is a G-invariant B-submodule

of AP(B) of constant finite dimension.

The proof will be given after some preliminary discussion. The main difficulty

will be to show that the functions in the module are distal, and the proof will be

roundabout. We begin by constructing a flow from the crossed representation.

Let Ji be the underlying vector bundle of {Dyu(g, y)}. We form a fiber bundle

which is the transpose inverse of the principal bundle of Ji. If 7 is the index set

for the cover {U}, the bundle space is all equivalence classes in M(B)x U(n)xJ

where (yx, ux, U)~(y2, u2, V) if yx=y2 and u2 = hvu(yx)ux, the base space is M(B),

the fiber is U(n), and the projection p satisfies p(yx, ux, U)=yx. This fiber bundle

we shall call P(Ji). Its topology is compact Hausdorff. We let {M~ be its set of

coordinate functions.

Lemma 8.5. The identity

g9v(y, k) = 9v(gy, Dvu(g, y)k),    where y e U, gy e V, k e U(n),

unambiguously defines a jointly continuous group action of G in P(Ji).

Proof. Let

(8.4) My, k) = M(y, k')

and let gy e V. To prove that the definition is unambiguous, we must show that

(8.5) Mgy, t)vu(g, y)k) = Mgy, DruXg, yW)-

From (8.4) we have k — huu'(y)k', and this equation, together with (a) and (b) of

Proposition 8.3, gives

Dvu(g,y)k = hvvXgy)Dv'V(g,y)k',

which is equivalent with (8.5). The given transformations form a group action by

(c) and (d) of Proposition 8.3, and the action is jointly continuous by (e) of that

proposition. The proof is complete.

Since P(Ji) is compact Hausdorff, (P(Ji), G) is a flow. Let d be a left-invariant

metric for U(n), and let A denote the set of pairs (jci, x2) such that xx and x2 are

in the same fiber of P(Ji). Define a function p from A to the reals by

p(<l>u(y, k), My, k')) = d(k, k').

To see that this definition is unambiguous, let 4>v(y, k) — i¡iv(y, kx) and 4'u(y, k')

= 4>v(y,k'x). Then

kx = hvu(y)k   and   k'x = hvu(y)k'.
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Since d is left-invariant, d(kx, k'x) = d(k, k'). Thus p is unambiguous. It is clear that

P defines a metric on each fiber and that p is continuous on A. Moreover p is

G-invariant. In fact, let y e U and gy e V. Then

p(My, k), My, k')) = d(k, kf)
and

p(gMy, k), gMy, k')) = d(D™(g, y)k, Dvu(g, y)k').

These two expressions are equal because d is left-invariant.

We need the following result proved by Furstenberg in [7].

Lemma 8.6. An isometric extension of a distal flow is distal.

Proof. Let (X, G) and (Y, G) = tt(X, G) be flows with Y distal, and let /»* exhibit

the isometric extension. Let gnx -> z and gnx' -*■ z. Then gnir(x) -> tt(z) and

gnir(x')=Tr(z). Since Fis distal, tt(x) = tt(x'). Hence p*(x, x') is defined. But then

0 = p*(z, z) = lim p*(gnx, gnx') = P*(x, x')

by the continuity and G-invariance of p*. Hence x=x'.

Lemma 8.7. Let x0 be any point in p'1(e). If x0 is taken as the evaluation-at-

identity element of P(Ji), then every continuous complex-valued function on P(Ji)

restricts to a function on G which is almost periodic relative to B.

Proof. The function p exhibits P(Ji) as an isometric extension of M(B). By

Proposition 3.5 and Lemma 8.6, the functions arising from the orbit of x0 in P(Ji)

are all distal. Since x0 lies in the fiber above e in M(B), Lemma 4.8 applies and

shows that the functions are all a.p. over B.

Proof of Proposition 8.4. Let U0 be a fixed open set in the cover which contains

e in M(B). Fix an open set V in the cover of M(B) and let y be a point of V. Let

/: M(B) -> [0, 1 ] be a continuous function whose closed support is in V and which

is one in a neighborhood of y. (This neighborhood is to be thought of as nearly

all of V.) The globally defined function

f(g)DJtU°(g, e)

is the restriction to the orbit of 4>u(e, I) 0I"a continuous function on P(Ji) and is

therefore a.p. over B by Lemma 8.7. Thus if x e Xy and if gm is a net with limit x,

the limit

lim Dïtuo(gm, e)
m

exists since/(tt(x)) =f(y) = 1. Therefore as x, y, and/vary, we see that DJfo(g, e)

is uniformly continuous for g in any compact subset of 7r_1(K). Consequently the

functions determined by {Dyu(g, y)} are all a.p. over B. The space of restrictions

of such functions to any fiber is of dimension at most n2, and hence to complete

the proof it is sufficient to show that this set of functions is G-invariant. That is,
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it suffices to show that for fixed h the function Dfjuo(hg, e) is uniformly continuous

for hg in any compact subset of tt~1(W). Thus let gm -*■ x and let 7r(x) e V. For

large m

Dwuo(hgm,e) = D«v(h,gm)Dv"o(gm,e)

and hence

lim Dwuo(hgm, e) = Dwv(h, tt(x)) lim Dvuo(gm, e).
m

Since for fixed h, Dwv(h, n(x)) is continuous for 7r(x) g Fç M(B), the uniform

continuity follows, and the proof is complete.

We conclude by characterizing equivalence of Z?-modules, as defined in §7, in

terms of their induced crossed representations.

Proposition 8.8. Let M and M be two G-invariant B-submodules of AP(B) of

constant dimension n, let {fu} and {fin} be local orthonormal bases for them, and let

{Dvu(g, y)} and {Dvn(g, y)} be the induced unitary crossed representations. Then

M and M are equivalent if and only if there exists a set of matrices A un(y) in GL(«, C)

such that these four conditions are satisfied:

(a) Au0(y) is defined whenever U is a set in the open cover for M, U is a set in the

open cover for M, and y e U n U.

(b) AuV(y) is continuous in y.

(c) The identities

Aun(y) = huu'(y)Au'u(y)

and
Aun'(y)hD'n(y) = Aun(y)

hold whenever each side is defined.

(d) Whenever both sides are defined,

Dvn(g,y) = AvV(gy)-^D^(g,y)A^(y).

If M and M are irreducible, then the matrices AuU(y) must be a scalar times unitary

matrices, where the scalar is independent of y, U, and U. In any case if M and M

are equivalent, their associated vector bundles are equivalent.

Proof. If F: A7-> Af is an equivalence, then Lemma 7.10 shows that F can be

defined on the functions/ü. If y e U n U, define AuV(y) by the identity

(8.6) F(fiV)\Xy = 2 AFWfflXJ.

Then (a) and (c) are immediate, (d) follows from the fact that F commutes with

G, and (b) follows from Lemma 6.2. Conditions (a), (b), and (c) define a vector

bundle equivalence.

Conversely if the four conditions are satisfied, then (a) and the second half of

(c) imply that the definition above of F(/°) makes sense. Condition (b) and Lemma
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7.9 imply that F maps continuous functions into continuous functions and that

|| F || y is continuous. Since M(B) is compact, ||F|| is finite. Condition (d) implies

that F commutes with the action of the group. Reversing the argument and using

the first half of (c) and the nonsingularity of Aun(y), we find that F"1 is defined

and bounded. Hence F is one-one onto.

If matrices AuV(y) exhibit irreducible M and M as equivalent, then multiply

both sides of (d) on the left by AvV(gy) and on the right by Aun(y)*. Use (c) in

Proposition 8.3 and the unitary character of the D's and D's to get

(8.7) D™(g, y)[A™(y)AuU(y)*] = [A^(gy)Av\gy)*]Dvv(g, y).

The second half of (c) shows that the definition

Bu(y) = Auü(y)Au0(y)*

is independent of U, and the first half of (c) shows that

(8.8) Bu(y) = huu'(y)Bu,(y)huu'(y)*.

If, for U and U' in the cover for M, we define

Buu\y) = Bv(y)huu'(y),

then the Ti's clearly satisfy the second half of (c), and (8.8) can be used to show

they satisfy the first half. On the other hand, (8.7) and the first two parts of Propo-

sition 8.3 show that the B's satisfy (d) with D replaced by D. Thus the Ti's define

an equivalence F of the irreducible module M with itself. By Lemma 7.7, F= ci for

some complex number c. Equation (8.6) applied to BUU = BU shows that

Aun(y)Aun(y)* = ci.

Since the A's are nonsingular, c is real and >0. But then AuU(y) is V~c times a

unitary matrix.

9. Examples for §8.

Example 1 (nilflows and a twisted bundle). This example, which was con-

structed by H. Furstenberg and L. Green, is a one-dimensional Ä-module whose

underlying bundle is not a product bundle. The algebra B will be a subalgebra of

the almost periodic functions on the continuous reals.

Let TV be the nilpotent Lie group of matrices

"1   x   y~

0    1    z   ,

_0   0    1.

and let F be the subgroup with x, y, and z integers. If N' is the commutator sub-

group of N, then it is easily checked that the group NI(N'F) is the 2-torus and the

left coset space (N'F)/F is the circle. Hence the natural map of the left coset space

TV/r onto NI(N'F) exhibits TV/r as a fiber bundle over the 2-torus with fiber
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(TVT)/r, the circle. Thus N/Y is compact. Since the fundamental group of TV/r

is the nonabelian group Y, N/Y is not the 3-torus and the bundle is not a product

bundle.

The continuous functions on N/Y arise from continuous functions on TV which

are invariant under the transformations

x-^x+fl,   y -*■ y + b + ex,   z-^-z+c,

where a, b, and c are integers. The function

(9.1) exp (27rt'(.y — x[z])) sin 2-n-z,

where brackets denote integer part, is an example.

Direct calculation shows that the left action of TV on TV/r is distal and that

TV/r is an isometric extension of TV/(TVT). Hence, a fortiori, the same will be true

of the action obtained by using only a subgroup of TV. The subgroup we choose is

the one-parameter subgroup 7? of matrices

"1     ta    $t2aß-

0    1       tß     ,

.0    0       1

where a and ß are fixed real numbers independent over the rationals. The 7?-orbits

in TV/r are dense, and the left translates by members of 7? (especially those with

tß slightly less than one) of the function in (9.1) separate points on TV/r. It follows

that the restriction to the 7?-orbit of Y of the function in (9.1), namely

(9.2) exp (2-nita(\tß - [tß])) sin 2-ntß,

generates a distal algebra whose maximal ideal space is all of TV/r. This algebra is

almost periodic over the algebra B of functions on the reals obtained from

TV/(TVT), namely those generated by continuous functions of period a-1 or j8_1.

The Z?-module Af generated by the Z?-translates of the function in (9.2) gives rise

to a flow in Lemma 8.5 which is a subflow of TV/r. But since Af requires all of TV/r

for the maximal ideal space of the algebra it generates, the flow in Lemma 8.5 is

exactly (TV/r, R). Since TV/r is a twisted fiber bundle, the vector bundle associated

to Af is twisted.

Example 2 (representations with product bundles). Let us consider the

general form of unitary crossed representations whose underlying bundle is a

product bundle when the group G is the integers. In this case a unitary crossed

representation is a function D(g, y) from G x M(B) into «-by-« unitary matrices

which is continuous in y and which satisfies

D(0, y) - I,       D(g + h, y) = D(g, hy)D(h, y).

The coordinate functions of the matrix D(g, 0) generate as a ß-module the func-

tions arising from the representation, and this module is automatically invariant.

By Proposition 8.4 these functions are a.p. over B.
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The whole representation is determined by D(l, y), and we have, for «>0,

D(n, y) = D(l, (n-Y)y)- -D(l, ly)D(l, y),

£>(-«, y) = D(l, (-n)y)-'- -D(l, (- l)y)~\

Conversely if D(l,y) is given, these equations define a D(g, y). So a representation

is determined by a single continuous function from M(B) into U(n). Two are

equivalent if there is a continuous A(y) from M(B) into GL(n, C) such that

E(g,y) = A(gy)-iD(g,y)A(y).

That is, equivalence means

E(l,y) = A(ly)-iD(l,y)A(y).

If D and E are irreducible, A(y) may be assumed to be unitary.

If D is one-dimensional, it is irreducible and A may be taken to be unitary, i.e.,

of absolute value one. The one-dimensional representations form an abelian group

under multiplication, a group of cocycles, and the trivial ones, those equivalent

with the identity representation form a group of coboundaries. The quotient is a

cohomology group equal to the group of equivalence classes of such representa-

tions. We have determined the group of cocycles above. For the coboundaries, the

condition that D(\,y) be trivial is that

D(l,y) = A(ly)IA(y)

or that D satisfy the functional equation

D(l,n) = A(n+l)IA(n)

for a function A in B of absolute value one.

Let B be the algebra of all almost periodic functions. It is well known that if

a(n) is real-valued almost periodic and if its indefinite sum b(n), with say ¿>(« + l)

— b(n)=a(n) and ¿>(0)=0, is bounded, then b(n) is almost periodic. Hence so is

emn\ But what if b(n) is unbounded? We assert that eiMn> is at least a.p. over

the almost periodic functions. In fact, if in (9.3) y=0 and D(l, n)=eiain), then

D(n, 0) = eWn). The assertion follows.

For a final example, let B again be the algebra of all almost periodic functions

(or even just those generated by eine for some fixed 6). If in (9.3) ^ = 0 and D(l, ri)

= eine, then

D(n, 0) = exp(ii«(«-l)0).

Therefore exp (in26) is distal, as was asserted in §3. This method may be iterated to

show that eip(n) is distal for any real polynomial p.
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