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ABSTRACT The question of unitarity of representations in the analytic continuation of discrete
series from a Borel-de Siebenthal chamber is considered for those linear equal-rank classical
simple Lie groups G that have not been treated fully before. Groups treated earlier by other
authors include those for which G has real rank one or has a symmetric space with an invariant
complex structure. Thus the groups in question are locally isomorphic to §O(2m, n)q with
m=>2andn > 3, orto Sp(m, n) withm = 2 and n = 2.

The representations under study are obtained from cohomological induction. One starts
from a finite-dimensional irreducible representation of a compact subgroup L of G associated
to a Borel—de Siebenthal chamber, forms an upside-down generalized Verma module, applies
a derived Bernstein functor, and passes to a specific irreducible quotient. Enright, Parthasarthy,
Wallach, and Wolf had previously identified all cases where the representation of L is 1-dimen-
sional and the generalized Verma-like module is irreducible; for these cases they proved that
unitarity is automatic. B. Gross and Wallach had proved unitarity for additional cases for a
restricted class of groups when the representation of L is 1-dimensional.

The present work gives results for all groups and allows higher-dimensional representa-
tions of L. In the case of 1-dimensional representations of L, the results address unitarity and
nonunitarity and are conveniently summarized in a table that indicates how close the results are
to being the best possible. In the case of higher-dimensional representations of L, the method
addresses only unitarity and in effect proceeds by reducing matters to what happens for a 1-
dimensional representation of L and a lower-dimensional group G.

Introduction

Let G be a connected simple Lie group with finite center, and let K be a maximal
compact subgroup. Let go and £y be the respective Lie algebras, and let g and t be
their complexifications. If rank G = rank K, then G has discrete series representations
[HC2], and they are parametrized roughly as follows. Fix a compact Cartan subalgebra
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bo inside ¥, and let b* be the dual of the complexification b of bg. To each system
of positive roots corresponds a set of discrete series representations parametrized by
the dominant nonsingular elements of a translate of the set of integral points in b*.
As the system of positive roots varies, the entire discrete series is obtained, each
representation appearing a number of times equal to the order of the Weyl group of
K.

In a suitable realization of the representations, once the positive system is fixed, the
parameter for the discrete series can be moved a certain amount outside the region of
dominance to give new representations. These new representations are obtained by a
two-step process, the first step involving the moving of a continuous parameter and the
second step involving an operation that makes sense only at a discrete set of parameter
values. For this reason the two-step process has been called “analytic continuation of
discrete series.”

N. Wallach was the person to introduce this term, and in [Wal] he made the first
progress in deciding which of the continued representations had a natural infinitesi-
mally unitary irreducible (g, K) module associated to it. He worked with the situation
that G/K is Hermitian symmetric and the discrete series are the holomorphic ones
constructed by Harish-Chandra in [HC1]. Following the reformulation in [Kn3], we
can describe matters this way: Let g = £&p be the complexified Cartan decomposition
corresponding to K. The condition that G/K is Hermitian symmetric is equivalent
with the existence of a K stable splitting p = p* @ p~, and each of p* and p~ is an
abelian subspace of p. If Z is an irreducible finite-dimensional representation of €, then
the parameters of Z are rigid in most directions but can be moved continuously in a
direction that corresponds to the 1-dimensional center of £ The two-step construction
of the analytically continued representations is to form the upside down generalized
Verma module ind} - (Z® /\'Pp*) and then to restrict attention to those parameters
where this g module makes sense as a representation of K. The resulting (g, K) module
need not be irreducible, but it has a unique irreducible quotient containing the K type
Z ® /\'®p*. In [Wal] Wallach exactly determined, under the hypothesis that Z is
1-dimensional, those parameters for which this irreducible quotient is infinitesimally
unitary. Enright, Howe, and Wallach in [EHW] and Jakobsen [Ja] independently de-
termined the parameters for which this irreducible quotient is infinitesimally unitary
when Z is higher-dimensional. We shall refer to the cases with 1-dimensional Z as the
“line-bundle cases” and to the higher-dimensional cases as the “vector-bundle cases.”

In [EPWW], Enright, Parthasarathy, Wallach, and Wolf, as part of a study of condi-
tions for cohomological induction to preserve unitarity, made a beginning at addressing
the question of unitarity of the analytic continuation of nonholomorphic discrete series.
A defining property of the positive system of roots for the holomorphic case is that
there is just one noncompact simple root and that it occurs exactly once in the highest
root. The authors of [EPWW] examined cases in which there is just one noncompact
simple root and it occurs exactly twice in the highest root. According to a theorem
of Borel and de Siebenthal [BoS], every G for which rank G = rank K but G/K
is not Hermitian symmetric has such a system of positive roots; see Theorem 6.96
of [Kn1] for a quick proof. In the notation of [Kn3], the situation may be described
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as follows. With b and the positive system fixed, let ¢ = [ @ u be the parabolic
subalgebra of g such that the semisimple part of the Levi factor [ is generated by
the root spaces for the roots in the span of the compact simple roots and such that
the nilpotent radical u is generated by the root spaces for the remaining positive roots.
Let g = [ & u be the opposite parabolic subalgebra to g, and let L be the analytic
subgroup of G corresponding to the Lie subalgebra [; = go N [ of go; the group
L is a compact connected subgroup of K. If Z is an irreducible finite-dimensional
representation of [, then the parameters of Z are again rigid in most directions but can
be moved continuously in a direction that corresponds to the 1-dimensional center of [.
The two-step construction of the analytically continued representations is to form the
upside-down generalized Verma module ind2(Z ® A\ '°Pu) and then to apply the S
derived Bernstein functor TTg, where § = dim(u N €), when the parameters have the
property that this g module makes sense as a representation of L; see Section 1 below
for more detail. The resulting (g, K) module is said to be cohomologically induced.
If in addition the highest weight A of the L representation Z ® A'P(u N p) is domi-
nant for K, then the K representation with highest weight A occurs with multiplicity
one in the cohomologically induced representation, and the cohomologically induced
representation has a unique irreducible subquotient containing that K type. It is this
subquotient whose unitarity we investigate.

When Z is 1-dimensional, we say that the cohomologically induced representation
is a “line-bundle case™; otherwise it is a “vector-bundle case.” The paper [EPWW]
identified, more or less, those line-bundle cases where A is dominant for K and the
generalized Verma-like module is irreducible for the given value of the central param-
eter for L and also for all larger values; the authors showed that the cohomologically
induced representation is infinitesimally unitary in those cases.

In [GW1] and [GW2], Gross and Wallach dealt with additional line-bundle cases
when G/K has a quaternionic structure. In the presence of such a structure, G has
rank G = rank K and, except when the Dynkin diagram is of type A, there is a
canonically associated positive system of Borel-de Siebenthal type. The groups in
question are locally isomorphic to any of SO (4, n)o with n > 3, Sp(l, n), or five
exceptional groups. Gross and Wallach were able to prove for a few line-bundle cases
beyond those in [EPWW] that the unique irreducible subquotient containing the K
type A is infinitesimally unitary. They were able to do so despite the complications
introduced by reducibility of the generalized Verma-like modules.

In the present paper we work with analytic continuation of discrete series for arbi-
trary classical groups, starting from any positive system of Borel-de Siebenthal type.
We address the unitarity question for line-bundle cases and vector-bundle cases alike,
even when the generalized Verma-like modules are reducible. The main restriction is
that we assume G to be linear; the need for G to be linear seems to be an essential
feature of our method. For nearly all of the line-bundle cases where we do not prove
unitarity, we prove a certain amount of nonunitarity, in order to give an indication that
our result seems to be close to best possible. For the vector-bundle cases, we examine
only parameters that the line-bundle case suggests might be unitary, and we offer only
examples of nonunitarity results.
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Let us be more precise about the groups in question. The group G may as well be
taken to be a simple Lie group with a simply connected complexification. Theorems
6.74 and 6.88 of [Knl1] show that the Lie algebra of G is completely determined up to
isomorphism by specifying a Dynkin diagram and identifying which simple root is to
be the noncompact one. We omit the cases corresponding to G/K Hermitian symmet-
ric and also those corresponding to G of real rank one. The analytic continuation of
discrete series has been settled in the first case in [EHW] and in [Ja], and the unitary
dual is completely known in the second case (e.g., [Hi], [Ot], [Kr], [Ba], and [BaB];
see [BaK] for a uniform description).

The Lie algebras in the remaining cases are as follows: For a Dynkin diagram of
type By, neither of the end simple roots is to be the noncompact one; the Lie algebra is
s0(2m,2(l —m) + 1) with m > 2 and / — m > 1. For a Dynkin diagram of type Cj,
neither of the end simple roots is to be the noncompact one, and nor is the one next to
the long simple root; the Lie algebra is sp(m, | —m) withm > 2 and [ —m > 2. Fora
Dynkin diagram of type Dy, none of the three end simple roots is to be the noncompact
one; the Lie algebra is so(2m, 2l — 2m) withm > 2andl —m = 2.

The proofs of unitarity involve three techniques. The first is the main theorem
of [Kn3], which provides an intertwining operator between certain cohomologically
induced representations, essentially converting the cohomologically induced represen-
tation under study into one that comes from a different parabolic subalgebra q' =
I' @ v’ and a 1-dimensional representation of ['. The second is Vogan’s Unitarizability
Theorem ([Vo]; see also [Wa2]), which provides certain sufficient conditions for coho-
mologically induced representations to be unitary. The third is a combinatorial result
that we return to in a moment.

Let us elaborate on the use of Vogan’s theorem. Vogan actually gave at least three
sufficient conditions for unitarity. The general-purpose condition is that the infinitesi-
mal character of the inducing representation is in.the “weakly-good” range. This result
will be of relatively little use for our current purposes. A more sensitive condition,
applicable when the inducing representation is 1-dimensional, is that the parameter is
in the “weakly-fair” range. This result is easy to apply and, when applied to ' = '@/,
can handle all the cases that arise from line-bundle cases at the start of our construction.
But it does so in an unnatural way and gives incomplete results when we have a vector-
bundle case at the start. The third sufficient condition, applicable when the inducing
representation is 1-dimensional, is that a certain equation in the dual of the Cartan
subalgebra has no nontrivial solution. This result handles all the cases of interest
for us, but it is the most difficult to apply. Our technique for applying it is to take
advantage of a combinatorial result that is complicated to prove and is given below as
Proposition 4.8 in Section 4.

This use of the same three techniques arose in [Kn3] earlier when we gave a rela-
tively simple proof of unitarity for the relevant vector-bundle cases of analytic contin-
uation of holomorphic discrete series when the root system is simply laced. For most
groups the weakly-fair condition handled everything. But for groups with Lie algebra
su(m, ! — m), it did not. We had to use the above third condition, the one involving
an equation in the dual of the Cartan subalgebra, to handle matters. Unfortunately
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the argument we gave for su(m, [ — m) in [Kn3] was flawed, and we need a correct
argument now. In fact, the combinatorial result needed for su(m, [ — m) turns out to
be a preliminary step toward the result needed for B;, C;, and Dy, and we shall prove
the preliminary step below as Proposition 4.3. In Section 6h we describe briefly how
to use Proposition 4.3 to repair the argument in [Kn3].

In the line-bundle cases for B;, C;, and D, the Langlands parameters of the irre-
ducible unitary representations that we obtain are known from [Kn2], which gives an
algorithm for computing them. The verification in [Kn2] that the parameters are the
correct ones is combinatorial in nature. P. Friedman ([Fr1], [Fr2]) interpreted the result
in [Kn2] in terms of intertwining operators, and he generalized it. His work may have
some bearing on the Langlands parameters in the vector-bundle cases for By, Ci, and
Dy.

The present paper is organized as follows: Some notation is introduced in Section 1,
and the two main theorems (Theorems 1.1 and 1.2) are stated there. Table 2 in that
section shows the extent to which Theorems 1.1 and 1.2 are complementary for line-
bundle cases. Section 2 gives the proof of the nonunitarity in line-bundle cases, using
a technique in [GW2]. Section 3 reviews material from [Kn3], some describing the
intertwining operators of interest between cohomologically induced representations
and some summarizing aspects of Vogan’s Unitarizability Theorem. Section 4 is the
long one, establishing the combinatorial result (Proposition 4.8) that is to be used to
check the hypotheses of Vogan’s theorem. Section 5 gives the proof of the unitarity in
line-bundle cases and vector-bundle cases alike, and Section 6 gives some examples
and other remarks, including examples of nonunitarity in vector-bundle cases.

For a general exposition of cohomological induction and historical references con-
cerning it, see [KnV]. For a brief summary of some useful properties of cohomological
induction, see [Kn3].

1 Main theorems

Let g be a simple Lie algebra over C, let b be a Cartan subalgebra, let A*(g) be a
positive system of roots relative to b, and let @ be a simple root. Define by to be the
real subspace of b on which all roots are purely imaginary. By Theorems 6.74 and 6.88
of [Kn1], there exists a real form gg of g such that bg is a compact Cartan subalgebra of
g0, such that « is a noncompact root, and such that all other simple roots are compact.
Moreover gg is unique up to isomorphism.

Let £ be the sum of b and the root spaces for the compact roots, and let p be the sum
of the root spaces for the noncompact roots. Put g = €M go and po = p N go. Then
90 = o @ po is a Cartan decomposition of go, and g = € @ p is its complexification.
Let 6 be the Cartan involution.

Let A(I) be the set of roots in the linear span of the compact simple roots, let [ be
the sum of b and the root spaces for the members of A([), and let u be the sum of the
root spaces for the positive roots that are not in A(l). Then q = [ & u is a € stable
parabolic subalgebra of g. We shall be especially interested in the case that  occurs at
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most twice in the largest root (always the case if gg is classical), and then we say that
A™T(g) and q = [ @ u are of Borel—de Siebenthal type.

The center Z; of [ is the common kernel in b of the members of A(l), and this is 1-
dimensional. It is the complexification of its intersection Zy, with bo. If a bar denotes
the conjugation of g with respect to gp, then q = [ & u is the opposite parabolic of g.

If E is a complex subspace of g spanned by root spaces and a subspace of b, let
A(E) be the set of roots contributing to E, and let AT (E) be the set of positive roots
contributing to E. We write §(E) for half the sum of the members of A*(E), and we
abbreviate 8(g) as 8. If Hs(,y denotes the member of b paired with §(u) by the Killing
form, then Corollary 4.69 of [KnV] shows that H;(y) is in i Zy, and every member f
of A(u) has B(Hjy) > 0.

Let F be an irreducible finite-dimensional [ module. If v is its highest weight, we
write F = F,. Define a 1-dimensional [ module & by &£([[, []) = 0 and §(Hsy) = L.
For z € C, z& is another 1-dimensional [ module, and we write C,; rather than Fy¢ for
its space. Then F,, ® Cy¢ is a family of [ modules parametrized by C.

We regard /\mpu as a 1-dimensional [ module with unique weight 28 (u). We define
F¥ to be the [ module F, ® /\'°Pu, and we convert it into a § module by having i act
by 0. With U (g) denoting the universal enveloping algebra of g, we define a g module
N (v + 248(u)) by

N(v +28(u)) = inclg F! = U(g) ®; FY.

Replacing F, by F;, ® C;¢, we can form N (v + z& + 26(u)). We shall be interested in
properties of this family as z varies.

To define the Bernstein functor I1, we need to fix a group with Lie algebra go. Let
G be such a group, and assume that G has finite center. In our theorems we shall make
the stronger assumption that G has a simply connected complexification; but we do
not make the stronger assumption yet. Let K and L be the analytic subgroups of G
with respective Lie algebras £y and [y. The group L is a compact connected subgroup
of the maximal compact subgroup K.

We shall be interested only in values of v and z such that F, and C_¢ are actually L
modules. Since L is compact, this condition forces z to be real. When F,, and C,¢ are L
modules, the extension of the action to ¢ makes them and /\“’pu into (g, L) modules,
and N (v + z& + 28 (u)) becomes a (g, L) module. Chapter I of [KnV] introduces rings
R(g, K) and R(g, L) that play the same role for (g, K) and (g, L) modules that U(g)
plays for g modules. The Bernstein functor [T for this situation carries (g, L) modules
to (g, K) modules and is given by I1(X) = R(g, K) ®p(g,2) X; I is a covariant right
exact functor, and the interest is in its S™ derived functor I1g, where S = dim(u N ).

The (g, K) modules that we study in the first instance are

a(v+ zE) = [Mg(N (v + z& + 286(u)))

under the assumption that F,, and C;¢ are actually representations of L, not merely of
[. Again, z must be real for this condition to be satisfied. The (g, K) module 7 (v +2z§)
is known to have a composition series. If v 4 z& 4 § is strictly dominant, as happens
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when z is sufficiently large positively, (v + z£&) is known to be irreducible, to be
in the discrete series, and to be the underlying (g, K) module of the representation
that Harish-Chandra called 7y ,¢45 in [HC2]. A relatively direct proof of the square
integrability of 7 (v + z&) may be found in [Wal]; all other facts needed for this
identification may be found in [KnV]. We are interested in what happens when z moves
out of the interval (zg, +00) where we have a discrete series representation.

We need to impose one more condition to get a reasonable (g, K) module to study,
namely that the parameter v + z& is such that v + z& 4+ 28(u N p) is A (¥) dominant.
In this case, according to Corollary 5.85 of [KnV], the K type with highest weight
v+ z& 4+ 28(u N p) occurs with multiplicity one in 7 (v 4 z£€). It is said to be in the
bottom layer.

When this K type occurs in 7 (v + z&), the fact that 7 (v + z&) admits a composition
series implies that it makes sense to speak of the irreducible subquotient 7 (v + z&) of
7(v + z&) containing this K type. The (g, K) module 7 (v + z&) is the one that we
study for unitarity in Theorem 1.1 below.

There is a related (g, K) module that arises naturally. If N'(v + z& + 28(u)) is
the unique irreducible quotient of N (v + z& + 28(u)), this related (g, K) module is
7'(v + z&) = Ms(N'(v + z& + 28(u))). For v = 0, we study 7'(z€) for nonunitarity
in Theorem 1.2 below. Specifically 7'(z&) carries a natural nondegenerate invariant
Hermitian form known as the Shapovalov form, and we study whether this form is
definite or indefinite.

Itis currently not known whether 7’ (z£) is irreducible.* If it is, then it is isomorphic
to 7 (z£), as we shall see in Section 2, and it follows that the Shapovalov form is, up
to a scalar, the unique candidate for an invariant Hermitian form on 7 (z§). We discuss
the relationship between 7 (z&) and 7' (z&) briefly in Section 2 and again in Section 6b.

Now let us specialize to g of type By, Cy, or Dy, with o given in standard notation as
en—em-+1. The integers m and [ —m are assumed to be > 2, except that [ —m is allowed
to be 1 in the case of B;. The positive system of Borel-de Siebenthal type makes go
equal to so(2m, 2(I — m) + 1), sp(m,l — m), or so(2m, 2(I — m)) in the respective
cases. Let G be a connected Lie group with Lie algebra g and with a simply connected
complexification.

We use ! tuples to denote members of b*, with (ai,...,a) standing for
aye; + - - - + aje;. Normally we use a semicolon to separate the first m entries from
the last | — m. We begin by listing the values of various half-sums of positive roots. In
order to treat B;, C;, and D; simultaneously, we introduce h and A’ as in Table 1.

h =-£- and k' =0 for By,

h=1 and h' =1 for C,
h=0 and k' =0 for Dj.

TABLE 1. Definitions of & and &’

*Added in proof: Since the writing of this paper, Peter Trapa has shown for some groups of types B;
and Dj that ' (z&) is irreducible when the Shapovalov form is definite.
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Then
d=(U—-1+h 1l -2+h,....0 —m+h;l—m—1+h,..., h),
S®=m—-14+n, m=2+0,....kKil—m=1+h,...,h),
s =22, ..., =Ll —m—1+h,... h),
Sw=(-2L+h,..., -2 1p0..,0),
sune) = (2L +n0, ..., 25+ 15 0,...,0),
Sunp)y=U=m+h=n0,...,l=m+h=r;0,...,0).

The use v + z& as parameter of the representation of L is inconvenient because
the 1-dimensional part has to be extracted from the sum. Instead we shall make the
1-dimensional part be paramount. To do so, we introduce the 1-dimensional represen-
tation of L with weight

A=(=l+t,...,—l+1;0,...,0) witht € Z.

What A does is to detect the jump between the m™ and (m + 1)* entries of a high-
est weight for L. The — may be regarded as an additive normalization. Let w =
(w1, ..., ) be A*(g) dominant integral with w,, = wy11, i.e., with 0 jump between
the m'™ and (m+1)% entries. It will be convenient to assume that w; > 0. This condition
is automatic for B; and Cy; for D; the operation of negating the /'™ entry of  can be
achieved by an outer automorphism of G, and hence theorems when w; is < 0 can be
derived from what happens when @ is > 0.

The representation of L that we use is the one with highest weight A+ . The related
parameters are

Ado+d=(@ +t—1+h, on+t—2+h,...,
om+t—m+h; ogp1+l—m—1+h,..., oy +h),
A+o+2unp) =(w +t+1—-2m+2h =20, ...,
Ot I —2m L 2R 2R Gnlit s o WD),

Strict dominance of A + w + & relative to AT (g) is the condition for discrete series,
and the only thing to check is that the m' entry exceeds the (m + 1)*. Since wy =
w1, the condition for discrete series is thatz > [. Whent =1 — 1, m(A + w) isa
limit of discrete series. Our interest isin¢ </ — 2.

The condition for the existence of the bottom layer K type is the A™(€) dominance
of A + @ + 26(u N p), and the only thing to check is that the difference of the mt
and (m + 1)* entries is > 0. Since w,; = w11, the condition for the existence of the
bottom-layer K type is thatr > 2m — | +2h’ — 2h.

Theorem 1.1. Let gy be any one of the following:

s0(2m,2(l —m)+ 1) oftype By with m=>2 andl —m =1,
sp(m,l —m) oftype C; with m>2 and | —m > 2,
s50(2m, 2(l — m)) of type D; with m =2 and | —m > 2,
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and let G be a connected Lie group with Lie algebra go and with a simply connected
complexification. Define h and h' in the respective cases By, Cy, and Dy as in Table 1.
Let by be a Cartan subalgebra of gy lying in By, and introduce the positive system
AT(g) of roots of Borel—de Siebenthal type such that ey, — ep+) is the unigue non-
compact simple root. Let t be an integer, define .. € b* by b = =l + 1t fori < m
and A; = 0 fori > m + 1, and let w € b* be a A1 (g) dominant integral form with
W = wm+1 and w); > 0. The expression A + w + 28(u N p) is AT (€) dominant for

t>2m—1+2n —2h,

and hence 7 (M. + w) is well defined in these cases. Let iy be the smallest index i with
| <i < m such that w; = wy, let jo be the largest index j withm < j <1 —1
such that @j 41 = @my1, and put to =1 — (jo —ip +2), sothat 0 < to <[ —2. If
t>2m — 1+ 2h' — 2h and, in addition,

t > max{tg,2m — | + 1 — 2h},
then 7w (A + w) is infinitesimally unitary.

The line-bundle case is @ = 0, and thenig = 1, jo = [ — 1, and 1p = 0.
Theorem 1.2 is an indication of parameters for this situation that might correspond
to nonunitarity.

Theorem 1.2. Let go, h, h', by, and AT (g) be as in Theorem 1.1. Let t be an integer,
define . € b* by A = —l 4t fori < mand ;i = 0fori = m+ 1, and let
1> 2m — | +2h' — 2h, so that the expression A +28(uNp) is AT () dominant. Then
the Shapovalov form on 7'(}) is indefinite when t satisfies the additional condition
<0

If 7/() is irreducible, then, as we mentioned, it equals 77 (1), and Theorem 1.2 gives
aresult that for @ = 0 is close to being complementary to Theorem 1.1. A precise
comparison of the results for @ = 0 when A 4+ 25(u N p) is A (t) dominant, putting
together the results from Theorems 1.1 and 1.2, is given in Table 2. Let us emphasize
that to say a representation with parameter ¢ is “decided” means either that 7 (1) has
been shown to be infinitesimlly unitary or that the Shapovalov form on 7’() has been
shown to be indefinite. This is not quite the same as saying that either 77 (1) has been
shown to be infinitesimally unitary or it has been shown to fail to be infinitesimally
unitary.

Curiously the line-bundle cases listed in Table 2 as not “decided” are all spherical.
At least some of them have been shown by other authors to be unitary. Kostant [Kos1]
and [Kos2] extensively investigated the ¢+ = O representation of the group SO (4, 4)o,
which is of type D4 with m = 2. This representation is unitary. It has been investigated
also in [KaS], [BrK], and [GW1]. As we shall observe in Section 6a, some of the other
representations listed as not “decided” lie in the range treated in [EPWW] and are
therefore unitary.

The unitarity in the line-bundle cases of B; and D; when m = 2 was already known
from [GW2]. Some vector-bundle cases for B4 with m = 2 were shown to be unitary
in [Kn3].
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B; A+ 28(u N p) dominant for K for2m —[ —1 <1t.

2m <1 7 (A) defined and unitary for 0 < ¢,
Shapovalov form on /() indefinite for r < 0,
All points ¢ decided.

2m > | 7 (1) defined and unitary for 2m —1 <1,
All points but t = 2m — [ — 1 decided.

Cr A + 28(un p) dominant for K for 2m — [ < 1.

2m <1 7 (1) defined and unitary for 0 < ¢,
Shapovalov form on 7'()) indefinite for 7 < 0,
All points ¢ decided.

2m > 1 7 (1) defined and unitary for 2m — [ <t,
All points ¢ decided.

Dy A+ 28(un p) dominant for K for2m — [ <1t.

2m < 7 (A) defined and unitary for O < ¢,
Shapovalov form on /() indefinite for r < 0,
All points ¢ decided.

2m =1 7 (A) defined and unitary for2m — 1 4+ 1 <1,
All points but ¢ = 2m — [ decided.

TABLE 2. Unitarity and nonunitarity for line-bundle cases

Authors of some papers have constructed similar-appearing finite or infinite se-
quences of small unitary representations of the groups under study. It seems that
these sequences often have some representations in common with the ones obtained
from Theorem 1.1 but are basically just different sequences of representations. Among
papers of this kind are [BiZ], [Kob], and [ZhH]. Sections 8 and 9 of [EPWW], which
are sections addressing examples other than analytic continuation of discrete series,
construct more sequences of this kind. The papers [Lil] and [Li2] classify a certain
kind of small representation for classical groups, and one may expect that many of the
representations shown to be unitary by Theorem 1.1 are small in the sense of those
papers.

2 Nonunitarity

In this section we prove Theorem 1.2. The method is largely from [EPWW] and
[GW2], except that the notation is different and the applicability of that method to
our situation may not be immediately apparent. We work under the assumption tha
the 6 stable parabolic algebra is of Borel-de Siebenthal type and the parameter of the
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|-dimensional [ module C; leads to the existence of a bottom-layer K type, i.e., that
A +25unp) is AT (&) dominant.

Section 3 of [EPWW] indicates a number of special facts about N (A + 26(u)). One
of these is a very complicated isomorphism

N 428(w) = U®) ®u@gne (SuNp) ® Caias) as U (€) modules, (2.1)

where S(-) denotes a symmetric algebra and the action by [ on S(u M p) has been
extended to g N & by having t N € act by 0. In (2.1), S(u N p) & Cyyasq is fully
reducible as an [ module and even as a q N € module. Hence so is the left side of (2.1).
The highest weights of the constituents are of the form o’ + A + 28(u), where o’ is
the highest weight of an irreducible summand of S(uNp), hence a sum of members of
Afunp).

Following Section 3 of [EPWW], but not in its logical order, let us examine such a
constituent. Put 7 = ¢’ + A + 28 (u). The ¢ infinitesimal character of U (8) ®ygne) Fr
isT+8(I) — 8(uNE), by Theorem 5.24 of [KnV], for example. If B is in A(u N §),
then this 7 satisfies

(t—26(uNkt), B)= (o' +1+28u)—25(unt), B)
= (o' + (A +25(unp)), B).

On the right side, by the hypotheses, A 428 (u N p) is A" (¢) dominant and ¢’ is a sum
of members of A(Np). Thus (z — 2§(uN €), B) = 0. The € infinitesimal character in
question is the sum of T —28(uNt) and 8(I) +8(uN€) = (k). Hence its inner product
withany 8 € A(unN€) is > 0, and it follows from Corollary 5.105 of [KnV] that each
U(E) ®y(gney Fr is irreducible as a U (¢) module.

Making a change of variables in the 7 variable, we summarize as follows:

N(i + 26(u)), which is defined to be U(g) ®u ) Crs+250), is semi-
simple as a U (£) module, and the irreducible summands are all of the form
NE(@ +25unt) = U®) ®u@anty (Fr ® Casune)), where 7 is an
irreducible [ module whose highest weight is of the form

=0’ +A+25uNp), 2.2)

o’ being an [ dominant sum of members of A(unp). Each such 7 is AT(B)
dominant.

The Bernstein functor IT defined above carries (g, L) modules to (g, K) modules.
There is also a Bernstein functor ITX carrying (¢, L) modules to (¢, K) modules; the
formula is TTIX(-) = R(E, K) ®re,) (), and it too is covariant and right exact.
The derived functors I1 _‘f of X have two properties that are relevant for us. One,
by (4.170) of [KnV], is that any integral parameter 7 that is AT () dominant has
nj.‘(NK(r +28(unNe)) = 0if j # S and has ¥ (VX (z + 25(u N ¢))) equal to
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an irreducible K module with highest weight t; this is an algebraic version of the
Borel-Weil-Bott Theorem. The other property, by Proposition 2.69b of [KnV], is that
Follp= ['If o F' for all j, where F is the forgetful functor from (g, K') modules to
(&, K) modules and F' is the forgetful functor from (g, L) modules to (¢, L) modules.

In conjunction with (2.2), these properties allow us to draw conclusions about the
K decomposition of (1) = I[Tg(N (A + 28(u))), namely that the multiplicity of the K
type with highest weight t in 7 (1) equals the multiplicity of the L type with highest
weight 7 —28(unNp) in SN p) @ Cyi25(u)-

The g module N (A + 28(u)) carries a natural invariant Hermitian form called the
Shapovalov form and defined, apart from an adjustment of notation, in (3.2) of [EPWW].
This descends to a nondegenerate invariant Hermitian form on the quotient g module
N'(A + 28(w)). ;

For any € module V, let VEE be the [ module of invariants under @ N . Because of
the irreducibility of each NX (r + 28(u N £)) in (2.2), it follows that

NK(x +25un £)* " = 1 ® (Fr ® Casunty)-

The Shapovalov form can be carried from N (A +28(u)) to (A) = [Ts(N (A +28(w))),
and a key result (Proposition 6.6) of [EPWW] (cf. Proposition 6.50 of [KnV]) is that
the signature on each 1® (Fr ® Cys(ung)) as an L multiplicity matches the signature on
the corresponding subspace of type 7 in 7 (A) as a K multiplicity. Roughly speaking,
the unitarity or nonunitarity of (1) can be detected from N (A + 28(1;))“”9

However, it is not m(L) = TIs(N (A 4+ 26(u))) that is of ultimate interest to us.
Instead it is the irreducible subquotient 77 (1). How to detect exact signatures on this
from signatures on N (A + 25(u))“m is unclear.

There is a substitute. The Shapovalov form makes sense on N'(X + 28(u)), and [Ig
carries the form from N'(L+28 (W) to r'(A) = [Ts(N' (L4258 (u))). Since the & module
N (X +28(u)) is semisimple, so is the € module N'(X + 25(u)). Thus the signatures of
the form on K types of 7’(A) can be related to the signatures of the form on L types
of N'(A + 28(u)) "¢, But what is the relationship between 7/ (1) and 7 (1)?

Here we use facts about ITg_j. We have seen from the algebraic version of the
Borel-Weil-Bott theorem that l'I_f | is 0 on each NE(z +25(unt))in (2.2), and it

follows from (2.2) that l'I 1(kv:r(;’\!’(l + 26(u)) = N'(A + 28(w)))) = 0. Therefore
[Ms_j(ker(N (A + 28(uw)) —> N'(h 4+ 28(u)))) = 0. By the long exact sequence of the
derived functors of I1, [Tg(N'(A + 28(u))) is a quotient of [Tg(N (A + 25(u))). Also
[Mg(N'(A + 28(u))) contains with multiplicity one the K type with highest weight
A + 28(u N p). Therefore one of the irreducible subquotients of [Tg(N'(A + 25(w)))
is (). In other words, () is the unique irreducible subquotient of 7'(A) =
Ts(N' (A + 28(w))) containing the K type with highest weight A + 28(u N p). If it
should happen that '()) is irreducible, then 7' () is isomorphic with 7 (A).

With this preparation let us turn to a consideration of the Shapovalov form on 7'(4),
following the lines of [GW2]. It is enough to consider the form on N’ (k+25(u))"m and
therefore the form on N (A + 28 (u))*“t. Write (-, -) for the form on N (A + 26 (u)) 1t
The authors of [GW2] make a computation of the Casimir operator 2 of g in terms
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of the Casimir operator €[ of [. They make a certain normalization of the root vectors
X, of noncompact roots y such that X, = X_, . Taking into account the differences
between their notation and ours, we obtain

Q= Q—2Hsw) +2 Z Xy Xy 412 Z Xy X_y.
yeAuNE) yeA(uNp)

The two sides of this formula are to be applied to a member v of N (A + 28 (1)) " that
lies in the space of 1® (F; ® Cas(une)), where T = o’ +1+28(uNp). The infinitesimal
character of N (A + 28(w)) is A + &, and the [ infinitesimal character of Fr ® Cas(une
ist 4+ 28(uN ) + 5(I). The element §(ut) has the same inner product with all weights
of Fr ® Cys(une), namely whatever the highest weight gives. Therefore

Qu = ([Ix+ 8> = 18]%)v,
Qu = (llo” + A +28w) + 8O = [18(D1*)v,
Hsyv = (8(u), o' + A +25(w))v,
X_yv=0 fory e Aunt),
and the orthogonality of §(I) and 8(u) gives
=2 ) Xy X_yv = {—lh+ 811817+l + A +25w) + SO~ 8O
yeA(uNp)
—2(8(w), o’ + X +28(w)}v
= (= IA+ 8P+ 181> + llo” + A + 8 + 8w
—2(0’ + 4, 8(w)) — 415w)[*}v
= (=[x + 8|2+ llo” + A+8]2+2(c” + A + 8, 8(u))
—2(0" + 1, 8(w) — 2[I8w)[1*}v
= {lo" + A+ 8% — 1A+ 8[*)v.

We apply (-, v) to both sides, and the resulting formula

2 Y Kopu X = (o' +A+8P - A +8Pw ) @3)
yeA(unp)

is to be regarded as an inductive formula for (v, v).

In fact, if v is in N(A + 28(u))* ¢, then so is each X_yv for y € unp, since
uN&unp] = 0. We can regard v as in 1 ® (S(u N p) ® Cy1250) under the
isomorphism (2.1), and the same thing is then true of each X_, v. The index for the
induction becomes the degree in S(uNp), which shows up in o’ + A + & as the number
of times that the expansion of ¢’ in terms of simple roots involves the noncompact
simple root c.

For Theorem 1.2 we compute the signature of (-, <) on 1 ® (SN p) @ Cy125(u))
one degree at a time. The expression o’ is a highest weight occurring in S(u N p),
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according to (2.2). The base stage of an induction is that the degree of the subspace of
type o’ within S(u N p) is 0. Then o’ = 0, and the form is positive definite for degree
0. For degree 1, o’ has to be 0’ = e; + ;41 since L acts irreducibly on u N p, and
this highest weight occurs in §(u M p) with multiplicity one. If we take v in (2.3) to be
a vector of this type, the formula tells us that the signature at degree 1 is therefore the
sign of

lo'+ A+ 812 — [I» + 8112
=t =1Fh+1,t =240t —m+hl—m—=1+h+1, ... 0
=1 =0 h .t —mthl—m=1FEh, . k)
=2t —1+4+1—m++2h)
>2(2m — 1 +2h" —2h) — 1 +1 —m + 2h)
from Section 1 since A + 28(u N p) is AT (£) dominant
=2(m — 14 2h").

This is positive, and the form is therefore positive definite for degree 1.

We show for some o’ of degree 2 that ||o” 4+ A + 8|2 — ||A + 6|2 is < 0. Takingv
to be in the corresponding space of degree 2 and applying (2.3), we conclude that the
Shapovalov form is not semidefinite on the subspace of interest, and then the proof of
Theorem 1.2 will be complete.

For B; and Dy, L is locally U(m) x SO(n) with n equal to 2(! — m) + 1 and
2(l — m) in the respective cases. The action on u N p is isomorphic to the action with
U(m) on the left and SO(n) on the right of the matrix space M,,, (C). Then we take
symmetric tensors. It is classical (see, e.g., [GoW], p. 256) that when U (m) x U(n)
acts on M,,,(C), the action on S(M,,,(C)) decomposes with multiplicity 1 into the
sum of all outer tensor products 71®12, where 1, has an arbitrary nonnegative highest
weight of depth at most min(m, n) and 7 has the highest weight of the contragredient
of ; except that its number of variables is changed from m to n. We take 7; to be the
representation of U (m) in holomorphic polynomials in m-variables homogeneous of
degree 2. Its highest weight is 2e|. The restriction of the corresponding 2 to SO(n)
contains the trivial representation of § O (n). Thus the representation of L with highest
weight o' =1(2,10, .7 .3:040, 05 0) occurs in S(u N p), and we have

llo” + A+ 811 — [ + 811
= t=14+h+2.t—2+h, ..ot —mthil—m—1+%h,...J008
== b by 2k Byedogt=met pad—m= Tk, v mie
= 4(t + h).

This is negative for r < 0 since & is  or 0, and hence the form is not semidefinite for
B; or D; whent < 0. §

For Cy, L is locally U (m) x Sp(I —m). The action on uNp is isomorphic to the action
with U (m) on the left and Sp(! — m) on the right of the matrix space M, 2¢—m)(C).
We view Sp(l — m) as a subgroup of U(2(I — m)). Then we form the representation
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11®1; of U(m) x U(2(I —m)) as above with t; the representation of U (m) on /\2@".
Its highest weight is e; + e3. The restriction of the corresponding 73 to Sp(l — m)
contains the trivial representation of Sp(I — m). Thus the representation of L with
highest weight o'=(,1,0,...,0;0,...,0) occurs in S(u N p), and, since h = 1,

o' +A+812 = A +812= ¢+ 1, 6,6 —2,....t —m+1;1—m,..., |
@ =1t =2 t=mit 1l e, S Y
= 4t.

This is negative for # < 0, and hence the form is not semidefinite for C; whent < 0.

3 Tools for unitarity

Cohomological induction is defined relative to a @ stable parabolic subalgebra q' =
@y’ in g, v’ being the nilpotent radical. We use primes here to distinguish q” from the
subalgebra q in Section 1. For a general development of cohomological induction, see
[KnV]. For a summary of some important properties, with references, see Section 3 of
[Kn3].

Part of the definition of @ stable parabolic is that q" has a Levi factor [' that is the
complexification of [; = I' N go. For our G, if L” denotes the corresponding analytic
subgroup, then L’ is closed connected reductive, and L' N K is maximal compact in it.
Let g’ = I' @ 1’ be the opposite parabolic, which is the complex conjugate of q'.

Let ' = dim(u’ N €). Cohomological induction carries (I, L’ N K)-modules into
(g, K)-modules. If Z is an (I', L' N K)-module, define

(L8 i@ = MEE ) iS5 T (Z @ NPu)).

Here ng‘f'nx is the Bernstein functor given by tensoring over R(g, L' N K) with

R(g, K), the index j refers to the j™ derived functor, and ind refers to the tensor
product over U (§') with U (g).

In our situation, [; will contain the compact Cartan subalgebra by that we started
with, and the positive system A (g) of roots will not change. Since b C I, the sets
AT(') and A(w') are well defined.

The Vogan Unitarizability Theorem consists of several results that appeared orig-
inally in [Vo]. Wallach [Wa2] obtained a simplified proof, which is what appears in
[KnV]. The theorem is applicable to infinite-dimensional (I', L' N K') modules, but we
abstract from the exposition [Kn3] only the results that we need; these concern only
finite-dimensional (I, L’ N K)-modules.

Theorem 3.1 (Vogan Unitarizability Theorem). Let F, be an infinitesimally unitary
irreducible finite-dimensional (U, L' N K)-module with highest weight v.

(a) If v is in the weakly-good range, i.e., (v +38,y) > Oforall y € A(W'), then
(Ef, )5 (Fy) is infinitesimally unitary.
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(b) If F, is 1-dimensional and v is in the weakly-fair range, i.e., if
(v+4o),y) =0
forall y € AQW), then (Lg‘u,)_gi(Fu) is infinitesimally unitary.

(¢) Suppose that F, is 1-dimensional and that, for each number ¢ = 0, the only
AT (") dominant sum w of members of A(W') such that

v p+8+cd) =wv+8+cs))

for some w in the Weyl group W (g, b) is u = 0. Then (ﬁﬁ.ur)y(f’u) is infinitesi-
mally unitary.

The interest is in v = A 4+ @ with A and w as in the paragraphs before Theorem L.1.
When q equals the Borel-de Siebenthal parabolic subalgebra q of Section 1, conclu-
sion (a) gives the unitarity of 7 (A + @) when A + @ + & is dominant. Dominance
in this situation implies that 7 (A 4+ @) is a discrete series or limit of discrete series
representation, and the conclusion of unitarity tells us nothing new. Still with q’ =g,
conclusion (b) applies only when @ = 0. Conclusion (b) does say in this special case
that unitarity persists while A + §(u) is dominant. This amount of unitarity is nearly
what [EPWW] detects, as will be pointed out in Section 6a, but it is not close to what
Theorem 1.1 asserts.

The approach in the present paper is to map (Cfu) s(F, ® C;) into a certain
(Eg_u,) s'(F\) with F,y 1-dimensional, so that conclusions (b) and (c) are available, but
with v and q replaced by v’ and q'. Conclusion (b) will be enough to prove Theorem 1.1
when @ = 0, but we need conclusion (c) for general @. Unfortunately conclusion (c)
is difficult to verify. The theorem that produces the desired mapping is Theorem 5.1 of
[Kn3], whose notation we change so that the theorem reads as below. In the statement,
q will be allowed to be fairly arbitrary, but in our application it will be the Borel
—de Siebenthal parabolic of Theorem 1.1.

Theorem 3.2. Fix a compact Cartan subalgebra by of go and a system A™(g) of
positive roots relative to b. Let q = @ uand q = I @ v be two 0 stable parabolic
subalgebras of g containing b and compatible with A (g). Suppose that L is compaci,
U'Ntis contained in |, and L' /(L' N\ K) is Hermitian symmetric in a fashion compatible
with AT (U'). Let v € b* be the highest weight of an irreducible finite-dimensional
representation F, of L such that A = v + 28(u N p) is AT (€) dominant, and put

v = v+ 28I Np).
Suppose that V' is orthogonal to the roots of . Then
(a) there exists a 1-dimensional (I', L' N K) module C,» with unique weight ',

(b) the K type with highest weight A has multiplicity 1 in both (‘C'Eu)S(F") and
(LY )s(Cy), and
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(c) there exists a (g, K) map
(L2 )s(Fo) = (L] )s(Cy)
that is one-one on the K type with highest weight A.

Consequently if (Eff s/ (Cy) is infinitesimally unitary, then the unique irreducible

subquotient of (L‘E s (Fy) having the K type with highest weight A is infinitesimally
unitary.

4 Combinatorial tools

In this section we prove three propositions that allow one sometimes to verify the
combinatorial hypothesis in Theorem 3.1c. The main result is Proposition 4.8, which
we shall use in Section 5 to prove Theorem 1.1. Proposition 4.8 ultimately reduces
1o a special case that is proved separately as Proposition 4.6. In turn the proof of
Proposition 4.6 reduces to a version of Proposition 4.8 given in Proposition 4.3 that
can be used to prove unitarity for the analytic continuation of holomorphic discrete
series in su(m, [ — m). We shall use Proposition 4.3 in Section 6h to correct a proof in
[Kn3].

Throughout this section, r, s, and / denote integers with 1 < r < s < [. We
work in R', and e, ..., ¢; denotes the standard basis. The i entry of a member v =
(v, ..., v;) of R! may be written as v; = (v, ¢;). A permutation p on (1, ..., [} acts
on the basis vectors e; by pe; = ep(i), and this action extends linearly to members v
of R! in such a way that (pv, ¢;) = (v, ple) = (v, €p-ti):

Lemma 4.1. If n = (i1,..., ) is a sum of expressions e; — ej with i < j and if
ity = 0 for some k, then p is a sum of expressions e; — ej in which i < j and neither
i nor j is equal to k.

Proof. Let the expressions ¢; — e; with i < j that contribute to p and involve entry
k, including repetitions, be the following: e;; — ek, ..., e, — ex with iy, ..., iy less
than k, and ex — ej,, ..., ex — ej, with ji, ..., jy greater than k. The entry ¢ is then
—u + v, and we have assumed g to be 0. Thus © = v. We can therefore rewrite the
contribution to w from these expressions as coming from e;; —¢jy, ..., €, — ¢j,, and
index k has been eliminated.

Lemma 4.2. Leto = {ay, ..., a;) be a member ofR" such that i — a; is at most two-
to-one. Fix a permutation p, and have p act on R'. Then there exists a permutation
t of order 2 such that to = o and such that p' = pt has the following property:
whenever (o, e;) = (o, p'"'e;), then p’ fixes i.

Proof. If i and j both map to x in R under i +> a; and if i # j, we introduce the

transposition 7;,j of i and j. The various transpositions defined in this way commute,

and each has 7; jo = o. Now suppose that (0, ¢;) = (0, p‘le,-}. Write p‘le,- =e;. If
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i # j, we shall adjust p by 7; ;. Namely let  be the product, without repetitions, of
all the transpositions 7; ; such that (o, ¢;) = (o, e;) and ple; = ej. Then 1o =
o, and we define p’ = pr. Suppose that (0,¢;) = (o, p'"'e;). Then (o, ¢)
(o, p~'e;) because (o, p'~le;) = (pto,e;)) = (po,ej)) = (o, p~le;). Therefore
T p-lj is defined, and there are two cases. One is that p_'e,- = ¢;, and then 7 fixes ¢;
in this case, p’"le; = t!'p~le; = t7'e; = ¢;. The other is that p~le; equals some
ej not equal to ¢;, and then Te; = ¢;; in this case pPle=1t"1ple = r"ej =g,
This proves the lemma.

1

Proposition 4.3. Let o = (a1,...,ar—1,ar, ..., a5, ay41,...,a) be a tuple of redl
numbers such that, to the extent the terms are defined, the following conditions hold:
(Al) a1 > --->a,_] > agy] > -+ > a,
(A2) ay > -+ > ay,
(A3) ar-1 > ay,
(Ad) ar > agyg.

Suppose that the equation
o+ U= wo 44
is satisfied in such a way that

(Bl) p = (w1, ..., ) is in R with entries satisfying u, > -+ > s,
(B2) w is a sum of expressions e; — e; with i < J,

(B3) w is a permutation on {1, ...,1}.
Then p = 0.

Proof. Tt follows from (Al) and (A2) that the map i > ga; is at most two-to-one.
Let us apply Lemma 4.2 to the permutation w. The lemma produces a permutation u'
such that w'oc = wo and such that whenever ¢ and w'c agree in the i™ entry, then
w'e; = e;. Changing notation, we may assume from the outset that whenever o and
wo agree in the i™ entry, then we; = e;.

Let us prove that ; = 0 for all indices i for which a@; > a,. By (Al), (A2), and
(A4), all such indices i have i < r — 1. If there are any such indices, let u be the largest

one; otherwise let u = 0. We are to show that u; = .-+ = p, = 0. Assuming the
contrary, let i < u be the smallest index with p; # 0. By (B2) this smallest index has
i > 0ifi # 0. By (Al), (A2), and (A4), the largest i entries of o are @y, .. ., a;. Then

the largest sum of i entries of o is @)+ - - +a;, and the sum a; +- - - +a; 1 + (a; + )
exceeds the largest sum of i entries of 0. But (4.4) and (B3) say thata; + -« - +a;_| +
(a; + ;) must match a certain sum of i entries of o, and we have a contradiction. We
conclude that there is no such i and that therefore ) = --- = u, = 0.

Similarly, use of (A1), (A2), and (A3) shows that p; = 0 for all indices i for which
ay > a;. All of these indices have i > s + 1. If there are any such indices, let v be the
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largest one; otherwise let v = [ + 1. Then the same kind of argument as in the previous
paragraph yields puy = -+ =y = 0.

Thus (4.4) shows that (o, ¢;) = (w0, ¢;) = (o, w~'e;) fori <wuandi > v. Since the
fibers of i — @; over values > a, and < a, have just one element, we; = ¢; fori < u
and i > v. It therefore makes sense to regard w as a permutation of {u + 1, ..., v —1}
and to restrict (4.4) to the corresponding entries. Inductive use of Lemma 4.1 shows
that 41 can be regarded as a sum of expressions e; —e; in whichu+1 <i < j <v—1L

Changing notation, we may assume from the outset that (A1) through (A4) hold and
also that the inequalities @; < a, and a; > a; hold for all i. From (4.4) and (B3), we
must have i, < 0 and p, > 0. By (B1), we conclude that pt, = -+ - = p; = 0.

Then (4.4) shows that (g, ¢;) = (wo,¢) = (o, w™le;) for r < i < 5. By the
normalization of w in the first paragraph of the proof, we; = ¢; forr < i < s. It
therefore makes sense to regard w as a permutationof {1,...,r —1,s+1,..., [} and
to restrict (4.4) to the corresponding indices. Inductive use of Lemma 4.1 shows that
can be regarded as a sum of expressions ¢; — ej in which i < j and the indices i and
jarein{l,...,r—1,s+1,..., 1}

On this set of indices, o is dominant in the traditional sense, and hence wo = o —v,
where v is a nonnegative linear combination of positive roots. We therefore obtain
¢+ u = wo = o — v, from which we see that u + v = 0. Since p and v are
each equal to nonnegative linear combinations of positive roots, 1+ and v are 0. This
completes the proof.

Lemma 4.5. If & = (i1, ..., 1) is a sum of expressions e; — ej with i < j and
expressions e; with 1 <t <1, and if ux = O for some k, then p is a sum of expressions
¢ — ej and e, in which i < j and none of i, J, and t is equal to k.

Proof. Let the expressions e; — e and ¢; that contribute to p and involve entry k,
including repetitions, be the following: e;, — ek, ..., €, —ex Withiy, ..., iy less than
MeiEE— €y Cb =€), with ji, ..., jy greater than k; and ¢, ..., e, withi£1,....,In
all equal to k. The entry 44 is then —u + v + n, and we have assumed p; to be 0.
Thus # = v +n. We can therefore rewrite the contribution to 1 from these expressions

as coming from e;, — ejy,..., e, — €j, and €;,,,, ..., €,,,, and index k has been
eliminated.
Proposition 4.6. Let 0 = (a1, ..., Qr—1,qr,...,Qy, Gy41s ..., Q1) be a tuple of real

numbers such that, to the extent the terms are defined, the following conditions hold:
(Al), (A2), (A3), (A4),

(AS) g =0 ifl >, or a,—1 20 if l =5,
(A6) a, > 0.

Suppose that the equation
o+ pu=wo 4.7)

is satisfied in such a way that (B1) holds and also
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(B2') w is a sum of expressions e; — e jwithi < j and expressions e,

(B3') w is in the group generated by permutations and sign changes of the standard
basis ey, ..., ey (the Weyl group of the system B;).

Then jv = 0.

Proof. Write w = gp with g a sign-change element and p a permutation. Summing
the entries of (4.7) and writing g(¢;) for the effect =1 of ¢ on ¢;, we have

Yo Oe)+ ) (me) =) (wo,e) =) (qpo,e) =) (po,qe)
=Y qle)lpoe) <Y (po,e) =) (o,e),

with the inequality holding since g(e;) = +£1 and (po, e;) > 0. Thus }_ (i, ¢;) <0
Since each term of p, by (B2'), has sum of entries > 0, we obtain )_ (i, ¢;) = 0. Then
it follows from (B2') that all the terms contributing to u are of the form ¢; — ¢;.

Returning to the displayed inequality and substituting > (i, ¢;) = 0, we see that
the end terms are equal. Since g (¢;)(po, e;) < (po, e;) for all i, we must have equality
for all i. Consequently (gpo, ¢;) = (po, e;) for all i, and we have gpo = po.

In other words, g plays no role in (4.7), and we may replace w by the permutation p.
Taking into account Lemma 4.5, we are now reduced to the situation in Proposition 4.3,
and thus Proposition 4.6 follows from Proposition 4.3.

Proposition 4.8. Leto = (ay,...,a,—1,ar, ..., a5, a5+1, ..., q;) be a tuple of redl
numbers such that, to the extent the terms are defined, the following conditions hold:
(Al), (A2), (A3), (A4), (AS), and

(A6) a, > |ayl.
Suppose that the equation
o+ p=wo 4.9

is satisfied in such a way that (B1), (B2'), and (B3') are valid. Then j. = 0.

Remark. Hypotheses (A2) and (A6) together imply (A6), and therefore Proposi-
tion 4.6 is a special case of Proposition 4.8.

Preliminary reduction. We can always discard indices i for which |a;| > a, and then
renumber accordingly. Let us see this. Write w = gp with g a sign-change element
and p a permutation, and write g (¢;) for the effect &1 of g on ¢;. The hypotheses force
all indices i with |a;| > a, to have i < r — 1. If there are in fact any such indices, let
u be the largest one; otherwise let u = 0.

We show first that 4y = ...u, = 0. Assuming the contrary, let i < wu be the
smallest index with p; s 0. This smallest index has p; > 0. By the hypotheses the
largest i entries of o in absolute value are ay, . . ., a;. Then the largest sum of absolute
values of i entries of 0 isa; + - - - + a;, and the sum a; + - - - + a; + (a; + ;) exceeds
this. But (4.9) and (B3') say that a; + - - - + a; + (a; + ;) must match some sum of
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i entries of o, each adjusted by a sign, and we have a contradiction. We conclude that
==, =0.

For 1 <i < u, (4.9) then gives (wo, ¢;) = (0, €;), so that g(e;) (0, €,-1;) = (o, e;).
Since any entry of o larger in magnitude than a, is positive, we see that g(e;) = +1
and hence that (0, ¢,-1;) = (0, ;). Since the fibers of i — a; over values > a, have

just one element, p_li = i. Thus w fixes indices 1, ..., u. Taking Lemma 4.5 into
account, we can discard indices 1, ..., u from the given data, and we can renumber
accordingly.

Proof of Proposition 4.8 in the special case p, = -+ = py = 0. We shall do an

induction on the number of indices i with r < i < s such that a; < 0. The base case
for the induction is that the number of such indices is 0, and this case follows from
Proposition 4.6.

Reduction of the number of indices from 1 to 0 involves a problem with hypothesis
(A3), which says that a,_; > a;, since a, will increase to something > 0 at this stage.
From (A1) and (A5) we know that a,—; > 0, but this inequality does not ensure that
a,—| > ay once a, gets to be > 0. Here is one way that this problem can be handled.
First suppose that a,—; > 0. If there is already an index ip between r and s with
aj; = 0, then (A2) shows that a; will be 0 once it gets to be > 0, and hence (A3)
presents no problem when ay gets to be > 0. If there is no such index ip, we insert
one in its proper position, defining a;, = 0, p;, = 0, and we;;, = e;,. Again (A3)
presents no problem when a, gets to be > 0. Now suppose that a,—) = 0. In this case,
(Al) and (AS) force s = [. The thing to do in this case is to move index r — | into
position s + 1 = [ + 1, afterward renumbering the indices. This move is valid when
iy = -+ = py = 0, though not in general, and the effect is to reduce matters to the
situation where a,_1 > 0. Verifying that this move is valid involves verifying that (A3)
plays no role in the proof below for the special case i, = --- = puy = 0.

We turn to the general case of our induction. Let w be given, and write w = gp,
with ¢ a sign-change element and p a permutation. Write g (e;) for the effect -1 of ¢
on ¢;. Applying Lemma 4.2 to p, we may assume that

(0,ei) = (0,¢,-1;) implies pi = i. (1)
For each i with y; = 0, including those i’s with r <i < s, we have
(0, i) = (0, &) + (ui, &) = (wo, &) = (qpo, &) = q(ei) (o, ep-1;).  (2)

If g(e;) = +1, then (1) shows that pi = i. Then we; = ¢;. Since p; = 0, we can drop
index i if we want to, in view of Lemma 4.5. We choose to do so for all the cases where
q(e;) = +1 and (o, ¢;) < 0, and we adjust notation accordingly. The hypotheses of
Proposition 4.8 and of our special case remain valid, and therefore any such dropping
of indices completes our induction. We may therefore assume that g(e;) = —1 for
every index i with (o, ¢;) < 0 and that there is such an index.

Let s5; be the sign change transformation in the i t entry, defined by s;(e;) = —e; and
si(ej) = ej for j # i. Suppose i is one of the indices with r <i < s and (o, ¢;) <0,
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so that g(e;) = —1 and p~'i # i. Define t = SiSp=1;Ti p=1i» where t; ,-1; is the

iti,p
transposition of i and p~'i, and consider w. This satisfies

P

Two — o = (two —wo) + (wo — o) = (two — wao) + WK.
Since r_]ej = e; for all j other than i and p~li, (two —wo, ej) = 0 forall j except

possibly i and p~!i. For these indices we have

(two — wo, ¢) = (wo, —e,-1;) — (wo, &)
= —((0’, ep—[j) s ()u'! ep—lf)) = (Gv ep—lj) = _(PL: gp—ll'}
and, in similar fashion,
(TUJU — wa, ep"f) = {wUI —Bf) T (w(}", ep—if} — '—(I,U(, ep—lf').
This proves:

Ifihasr <i <sand (0, ¢) <0,andif (t,e,-1;) =0, theno + p = 0
Two.

In other words, (4.9) remains valid when w is replaced by Tw. The expressions o and
w have not changed, and the hypotheses of Proposition 4.8 and the special case are still
satisfied.

Let us see in the situation of (3) that

gle,-1;) = —1 and p'lp_li =I. (4)
In fact, in the situation of (3), we have

(o,e) = (0,e;) + (u, &) = (Two, ¢;)
4 €, €, (5)

= (wo, v ') = —(wo, ep-1;) = —qep-1;)(0, €,-1,-1;).
If, instead of (4), we have g(e,,-1;) = +1, then we have

(o,e,-1;) = (0,€,-1;) + (i, €p-1;) = (WO, €)-1;)

= q(ep_u,-)(a. ep_1p_|i} = (o, ep—lp—ll-}.
This says that (0, ej) = (0, e,-1;) for j = p~ i, and (1) allows us to conclude that
p~'p~ti = p~li, hence that p~—'i = i. But (2) shows that pi = i is impossible when
(o, e;) < 0. We have arrived at a contradiction, and hence q(e,-1;) = =L Substituting
into (5), we see that (0, ¢;) = (0, €,-1,,-1;). Since (0, ¢;) < 0 and since j — (0,¢j)
can take on a given negative value only once, p~! p~!i = i. This proves (4).
Continuing with the situation in (3), write Tw = ¢’ p’ with ¢” a sign-change element
and p’ a permutation. Since the map of {sign changes}{permutations} to the second

factor is a homomorphism, p’ = 7; ,-1; p. Therefore (4) yields

(O‘; ep"‘-;') = (C’r! ep_lrf.p_li(i)} =R (J! ep"]p_li} ™~ (U‘ ei:)
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Since (o, ¢;) < 0 and since j +> (o, ¢;) takes on a given negative value only once,
p'~'i = i. Thus if we use Tw in place of w, we can eliminate index i and reduce to a
more primitive case in the induction. The upshot is as follows:

Ifi hasr <i <sand (o, ¢;) < 0, and if (1, Ep—lf) = 0, then use of Tw
in place of w allows index i to be eliminated, and the case is therefore  (6)
handled by induction.

Observe that the interpretation of (1) will be different at the next stage of the induction
since w gets replaced by wr, but this change is not a problem since the above proof
arranges for (1) to hold only after the stage of the induction is fixed.

Now, with a given positive number of indices i between r and s such that (o, ¢;) < 0
and g(e;) = —1, we do a further induction. Namely we induct on the number of indices
outside the interval from r to s. If there are no such indices, then = 0 and we are
done. If there are some, then the smallest such index will be 1 or s + 1; we write 1 for
it in any event, to simplify the notation, and its position relative to » and s will make
no difference.

Since 1 is the first index for which p; could conceivably be nonzero, hypothesis
(B2') shows that

py > 0. )
Formula (4.9) gives
p1 = (wo, e1) — (0, e1) = g(e1)(0, €,-11) — (0, €1). (8)

Here (0,e;) > 0 by (Al) and (AS). In order to carry out the inductive step, we
distinguish two cases.

The first case is that p~'1 is outside the interval from r to s. If p~i1 > 1, then
hypotheses (A1) and (AS) show that 0 < (0, ¢,-1) < (o, e1). It follows from (8) that
#1 < 0, in contradiction to (7). We conclude that p"l can be outside the interval
from r to s only if p~'1 = 1. In this case,

1 = (g(e1) — 1){o, e1). ©)

If (0, e1) > 0, then g(e;) = —1 would force p; < 0, in contradiction to (7). Thus
(0,e1) > 0 implies g(e;) = +1, and we obtain w(e;) = e;. Since (9) yields ) =
0, index 1 can be dropped, in view of Lemma 4.5. In other words, we are done by
induction when p~'1 = 1 and (o, e;) > 0. If, on the other hand, (o, e} is 0, then (4.9)
remains valid when we adjust w to make g(e;) = —1. Because of (9) this adjustment
makes w(e;) = e; and p; = 0, and index 1 can be dropped. In other words, we are
done by induction when p~'1 = 1 and (o, €;) = 0. This completes our discussion of
the case that p~'1 is outside the interval from r to s.

The remaining case is that p~'1 is inside the interval from r to 5. To have p; >
0, we must be in one of the following situations, since (8) holds and we know that
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(0,e1) = 0
(Gs €|} = {0’, ep—ll) = Ov (10}
(0,e1) 20, (0,e,-1;) >0, and g(e1) =+1, (11)
{o,e1) =0, (o, ep_11} <0, and g(e)) = —1. (12)

Situation (10), by (1), forces p~'1 = 1, a contradiction to the fact that p~'1 is inside
the interval from r to s.
For situations (11) and (12), application of (2) withi = p_' 1 gives

(o, ep-11) = q(e,-11)(0, €)1 -1} (13)

If g(e,-11) = +1, then (1) allows us to conclude that p~'1 = p~'p~'1 and hence
p~'1 = I, contradiction. So q(e,-11) = —1in both (11) and (12).
Let us now specialize to situation (11), with (o, ep-11) > O and g(e;) = +1. Then

(13) gives (0, e ) < 0, whence p_]p"' 1 is between r and s. Application of (2)

p7ipl
withi = p~! p~11 gives

(0, €,-1p-11) = q(ep-1p-11)(0, €1 -1 -11). (14)

Referring to (6) with i = p~!p~'1, we see that if p~!p~!p~!1 is between r and s,
we can reduce to an earlier case of the outer induction, and we are done. So we may
assume that p~! p~! p~!1 is not between r and 5. By (A1) and (A5) we have

0<({o,e,

p=1p-1p-11) < (0, e1}.

But then (13) and (14) give

](Jv ep_ll)] = |(U! ep""p“i[}l = HO-! ep“lp—lp“ll)l = (O', el)'

If the inequality is strict here, then (8) yields 1 < 0, contradiction. So equality must
hold, and (0, e,-1;), being > 0, must equal (o, e;). Then (1) yields p~l1 =
contradiction since p~!1 is between r and s.

Thus either we have reduced matters to a previous stage of the induction, or we are
in situation (12), with (o, ep_11) < 0and g(e;) = —1. From (o, ep_”) < 0, we know
that q(epql) = —1. Formula (13) is still valid, and we see that (o, ep_1p_11} > 0.
Using (6) for index p~'1, we see that if p~! p~!1 is between r and s, we can reduce
to an earlier case of the outer induction, and we are done. So we may assume that
p~1p~'1is not between r and s. By (Al) and (AS5) we have

0 = (0', ep'lp'll) = (0’, 81)'
But then (13) gives

(o, e,-11)] = l{0, €p-1,-11)] < (0, 1)
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If the inequality is strict here, then (8) yields 1| < 0, contradiction. So equality must
hold, and (o, e ), being > 0, must equal (o, e;). Since j — (o, ;) is one-one

p=tp=tl
on the indices not between r and s, we obtain p~!p~!1 = 1. Also the equality in
(8) forces g(e;) = —1, since (o, ep_”} < 0 for situation (12). Since p; = 0 and

pl = p~'1, we can apply (6) with i = p1 to reduce to an earlier case of the outer
induction.

Thus in all situations we can reduce to an earlier case of the induction. This com-
pletes the proof of the special case of Proposition 4.8 in which p, = -+ = py = 0.

Proof of Proposition 8 in the general case. Write w = gp with g a sign-change
element and p a permutation, and abbreviate the effect g (e;) of g on ¢; as g;. Applying
Lemma 4.2 to p and changing notation, we can arrange that

(0, i) = (0,€,-1;) implies pi =i. (15)

Next apply the “Preliminary reduction™ that follows the statement of the proposition.
This step allows us to eliminate certain indices and afterward to have

(o, ei)| < (o, er) (16)

forall i.
Because of (16) the identity i, = (wo, e;) — (o, e;) obtained from (4.9) implies
that
.u'r 5 ](UJO', en")' 1 {Jv ef} = |(09 ep"r}l G (a: er} 5 0

If we can show that p; > 0, then hypothesis (B1) implies that p, = -+ = py = 0,

and we are reduced to the special case that has just been proved.
Arguing by contradiction, we suppose that sty < 0. Then

Z,u.,- = Z (wo, ej) — Z (o, ¢e) = Zq;{oﬂ ep-1i) — Z(U' €i)
=Y gpiio.e) =Y (o, e) =) (@piy — Doy ei).

The individual terms of the right side of (17) need not all be < 0. However, we shall
show that it is possible to group the terms into disjoint blocks in such a way that the
sum of the terms in each block is < 0 and that some block, because of the assumption
s < 0, has sum < 0. This finding will give us a contradiction to the inequality
Y pi = 0 that we have seen follows from (B2'), and the proof will be complete.
Write the permutation p as a product of disjoint cycles. Each block within the right
side of (17) will consist of a subset of terms corresponding to consecutive elements of
a single cycle. Every term for which (o, ¢;) > 0 will be the start of a block, and the
remaining terms of the block will have (o, ¢;) < 0. In the case of a cycle that has no
term with (o, ¢;) > 0, the entire cycle is to form a block, and any term can be used to
start the block; in this case we shall see that the sum of the terms for the block is 0.

(17)
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Let us prove, by induction on n, the following formula, in which p carries iq to i,
ip to iz, ..., 0iy—] to iy, and i, to iy4. It is assumed that ig, ..., i, are distinct, but
in+1 1s allowed to equal ip:

(giy — 1)(0, eip) + (gi, — 1){0, i) + - - - + (Gipyy — 1){0, €0,)
= (0, €io) @i, ** * Giyy — 1)+ (1 — Gip -+ Gipy )15 €3)) (18)
+ (1 =Gis iy )1 €i) + -+ (1 = gi )12, €)-
The base case of the induction is the case n = 0. In this case the formula in question is

(i, — 1){o, eiy) = (0, €;y)(gi; — 1) and is trivial. Assume the formula with n replaced
by k — 1, namely

(fh‘| o= l){ﬂ', ef[}) -+ (qu = 1)(09 el'|) 5 pachiks g {qfk = ]-){Ur e.l‘,e;..|)
= (0, €ip)(qiy -+~ qiy — 1) + (1 — qiy - -~ i )1, €iy)
ok (]- _qf3 R 'qu)()u‘! efz} G AT (l _‘h‘;‘){#, el}..|}'

We add (g;,,, — 1)(o, e;,) to both sides, and we see that we are show that

(QE,[-+| = l)(av ei};) = (0‘, Efg)Qh sy (QQH = l) = qizio~ qfk(l "qu.u)(.u's ef|}
+ iy gi (L —=qip )1y i) + - -+ qiy (1 —gi ), €3y )
+ (1 —qgi Ky €5)-

Thus we are to show that

(o, €i) = qi, -+ qi (O, €ig) — Gip -+ Gi (14, €i))

(19
— i+ i (s i) = -0 = qi (K ey ) — (1, €3y

We do so by induction on k, the base case being k = 0. Assume (19) for k = m — 1.
We begin from

(0, €i,,) + (1, €i,,) = (wo, €i,) = Gi, (0, €,-1,) = qiy, (0, €i,,_, )

We substitute for (o, ¢;,,_,) using (19) with k = m — 1, and (19) follows for k = m.
This completes the induction for (19), and the proof by induction of (18) is therefore
complete.

Now let us consider an entire block of terms on the right side of (17), expanded as
in (18). First assume that (o, ¢;,) > 0 and that (o, ei;) < O0for 1 < j < n. The indices
ijmusthave r <i; <sforl < j <n,and therefore (u, ¢;;) < (i, e,) < 0by (Bl).
Consequently every term of the right side of (18) is < 0, and (18) itself is < 0.

This proves that every cycle containing some index i with (o, ¢;) > 0 makes a total
contribution < 0to ) ;. Let us see what must happen for a cycle to fail to have some
index i with (o, ¢;) > 0. Suppose that (j; j» -+ Ju)isacycleof p withn > 1,
p(in) = j1,and (o, ej,) < Ofor all k. In notation that takes k modulo n, we have

0> (0,¢ej) = (wo,ej) — (1, ej) = (wo, ej,) =g (o, ej_,).
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Since (o, ej,_,) < 0, we must have ¢;, = +1. Thus all signs g, for the cycle must be
+1. Expanding as in (18) the sum of terms of the right side of (17) for the entire cycle
and letting any index in the cycle be iy, we see that every term of the right side of (18)
is0. Thus a cycle in which every index i has (o, ¢;) < 0 contributes 0 to ) ;.

This completes the proof of Proposition 4.8 except for the demonstration, under the
assumption that (i, e;) < 0, that some block has a strictly negative sum. This will be
the block that contains index s. Since (i, e;) < 0, we have

f}'.v(o': ep"l,g') = {UJO', e.\'} = {'-71 e.\') + (,!'..L, e!) < (O'. e.\')'

If g, = +1, then (o, ep_n,,) < (o, e;), in contradiction to the fact that the s entry
of o is the unique smallest if a; < 0: if @, = 0, Proposition 4.8 already follows
from Proposition 4.6. Thus we may assume that g = —1, and we see as well that
(0,€,-1,) > 0. Hence p~'s begins a block. Let us write out the terms of this block
as on the right side of (18), abbreviating the product of signs g;, - - - g, as go = £1.
The sum for the block is

= (0, €,-1,)(gsq0 — 1) + (1 — go)(u, e5) + (terms < 0)

with each term < 0. If go = —1, the term (1 — go) (1L, e) is < 0. If go = +1, the term
(o, €,-15)(gsq0 — 1) is < 0. In either case the sum for the block is < 0. This completes
the proof of Proposition 4.8.

5 Unitarity

In this section we shall combine Proposition 4.8 with the theorems of Section 3 to
prove Theorem 1.1. Let q = [ & u be the Borel-de Siebenthal parabolic subalgebra
of g defined in Section 1, let A and w be as in the theorem, and define v = A + w.
By hypothesis A 4+ 28(u N p) is AT (¥) dominant and w is AT (g) dominant. Therefore
428 (unp) is AT (8) dominant. The first step is to define another parabolic subalgebra
q' of g so that we can apply Theorem 3.2.

We have defined ig and jj so that ig is as small as possible, jo is as large as possible,
and wi, = Wjp+1 = - = Wjo+1. Then we defined 19 = | — (jo — io + 2), so that
0 <ty <l —2. Lett be an integer satisfying

t > max{tg, 2m —1 + 1 —2h, 2m — 1 +2h" — 2h}. (5.1)

We are to prove unitarity of (Ly)s(Fy). If t > | — 1, then v + & is dominant, and
unitarity follows from Theorem 3.1a.

Thus we may assume that t < [ — 2. Since tg <t <[ —2, we can find integers i and
jwithig <i <m,m < j < jo,and

R s (52)
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Thenwehave | <i <m < j <land w; = wj41 =+ = wj41. Define a 6 stable
parabolic subalgebra ¢’ = I' @ v’ so that b C [, q’ is compatible with AT (g), and the
simple roots contributing to [ are e; —e; .1, €i+1—€j42, ... ,ej—ej+1. The Lie algebn

[' N £ is spanned by b, the root vectors for the roots #=(ex — ep) with k < k' < m, and
the root vectors for the roots +(ef) —eprpy) withm <k < k. Thus'NEC L In
addition, the semisimple part of I is simple of type A;_; |, and e, — ey, is the only
noncompact simple root of I'. Therefore L'/(L’ N K) is Hermitian symmetric.
Following the prescription of Theorem 3.2, we define v/ = v + 28(' N p). The
noncompact positive roots of I’ are e — ep; withi <k <mandm < k' < j. Thus

280Np)=(—m+1)ei+:-+emn)—(m—i+1)(emp1 + - +ejs1).

To be able to apply Theorem 3.2, we are to check that v’ is orthogonal to the members
of A(l'). Since A, w, and §(I' N p) are all orthogonal to ¢; — ;115 ... , ém—1 — & and
0 eém+1 — em+2, --- » €j — €j+1, we have only to check orthogonality with e,, — ep41-
We compute that

{v’, em —em+1) = (A, em — emy1) + (@0, em — €my1) + (26([’ Np), em — emtl)
==+ 1)+ 0+ ((ji—m+ 1) +(m —i+1)),

and this is 0 by (5.2). Thus v’ is orthogonal to A(I').

Then C, is well defined as a 1-dimensional (', L’ N K') module, Theorem 3.2 ap-
plies, and the result is that (L ) s (F,,®C, ) will have been proved to be infinitesimally
unitary for A = (=I+1)(e; +- - - +ep) if we show that (Ly ) s (C,y) is infinitesimally
unitary. To show this latter unitarity, we shall apply Theorem 3.1c.

PutdX’ =1+28('Np)ande =v' +84e6W) =X +68 + (w + c5()). Weare
going to check that o = (ay, ..., q;) satisfies the hypotheses (A1) through (A6') of
Proposition 4.8 withr =i ands = j + 1.

Let us begin by considering these hypotheses when w = 0 and ¢ = 0, and afterward
we shall restore the general values of w and ¢. For the moment, then, we have ¢ =
M 48 = (ay,...,q), and the entries are given by

t—k+h fork<i—1
t—k+j—m+1+h fori<k<m
l—k+i—-m—-1+4+h form+1<k<j+1
l—k+h forj+2<k<l.

(5.3)

ajp =

Let us check that o satisfies the hypotheses in this special case.
(Al) ay > -+ > a—1 > ayy1 > --- > a. This is obvious except for
Qr—| > Gy41,1.€., aj—1 > ajy2, which follows from (5.3) and (5.2):

agi1—ajpp=0t—i+1+h)—-(0(—j-24+h)=t—(0-(—-i+2)+1=1>0

(A2)a, > -+ > ay, i€, a4; > --- > ajy. This is immediate since A’ is orthogonal
to A(l') and 8 is dominant.
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(A3) and (A4) a,—| > a; and a, > ag41, 1€, a1 > aji and @; > aji2. These
follow from (5.3) and (5.2):

a;_]—aj+1={t—i+l—i—h)—(f—j—1+f—m—1+h)=m—f+l>0,
gy =ajyy=t—ij—m41+h)=({=j-2+4h)=j=m+1>0.

(AS)a; = 0ifl > s,ora,_; > 0ifl =s. Thatis,a; > 0ifl > j+ l,ora;—; =0
ifl =j+1.1fl > j+1,(53) givesay =1 —1l+h=0.1fl = j+ 1, (5.3) gives

g =t—i+1l+h=1-(—i+2)—i+1l+h=1—-j—1+hh=0.

(A6') ar > |asl, ie.,ai = aj41 and @; > —aj4y. In fact, we have a; = ¢t —i +
j-—m+1+h=1—-—m—1+4+handajy =1t —m+ h. The inequality a; = a4
says [ — 1 > t, and this holds since we have arranged that t < | — 2. The inequality
aj > —aji sayst > 2m — [l + 1 — 2h, and this we have assumed as part of (5.1).

Thus the hypotheses of Proposition 4.8 are satisfied in the special case. Let us
consider them when the general values of @ and ¢ are restored. The table in (5.3)
needs to be adjusted by adding (@ + ¢8(w')); to the value of ay. Since  + c8(v) is
dominant and nonnegative, each of (A1) through (A5) remains true when (w+ed ()i
is added to ai. Thus we have only to verify (A6"). With @ and c in place, we have
gi=l—-m—1+h+@+csw));andaji = t—m+h+(@+cdW)) ;1. We have
seen that! —m—1+h > |t—m-+h|, and we have also (w+cd(W)); > |(@+cd(W))j+1]-
Adding these inequalities gives a; = |ajy1].

Thus the hypotheses of Proposition 4.8 are satisfied for ¢ = v/ + & + ¢é(u'). The
proposition tells us that the equation v/ + & + ¢d(0') + p = w(v' + 8 + cd(u')) has
no nonzero solutions u of the type mentioned in Theorem 3.1c, and Theorem 3.lc
therefore says that (Ly w)s(C,) is infinitesimally unitary.

6 Complements

a. Scope of unitarity in [EPWW] for line-bundle cases. In both Section 13 of
[EPWW] and the Vogan Unitarizability Theorem as stated in Theorem 3.1, it is proved
that 7t (1) is infinitesimally unitary if N (A +c& 428 (u)) is irreducible for all real ¢ > 0.
All three conditions in Theorem 3.1 are designed to check this. The test that [EPWW]
uses for this irreducibility is slightly more sensitive for this purpose than the weakly-
fair test of Theorem 3.1b. In fact, the [EPWW] test is exact, and a table in [EPWW]
identifies the smallest number @ > 0 so that, in our notation, N (A + 248 (u)) is reducible
when A = (=l +1t)(e; +---+en) and # = [ — 1 — a. The number @ can be an integer
or half integer and differs from [ — [%] by an amount that is bounded independently
of [ and m. The weakly-fair test of Theorem 3.1b says that the required irreducibility
occurs if A 4 &(u) is A*(g) dominant, and we check from the formulas in Section 1
that this means that ¢ > % — h. Thus Vogan’s test proves irreducibility for ¢ from
| — 1 down to some number | — 1 — a’, where a’ differs from [ — [’~’2i] by an amount
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that is bounded independently of / and m. Consequently Vogan'’s test misses being best
possible by an amount that is bounded independently of / and m.

Our development for the line-bundle cases assumed that A + 28(u N p) is AT(F)
dominant in order to be able to isolate one particular irreducible subquotient of (i)
to study for unitarity. But there is no need to isolate one particular subquotient if all
of m(X) is infinitesimally unitary, and indeed this can happen sometimes even when
A+ 28(un p) fails to be AT () dominant.

There is no assumption in the above-mentioned tests of [EPWW] and the Vogan
Unitarizability Theorem that A28 (uNp) be A* (&) dominant. For an example of what
can happen, consider A = (—! +t)(e; + --+ + ey) in D;. The weakly-fair condition
of Theorem 3.2b is that A + §(u) is dominant, and this means that ¢ > "’T"‘l On the
other hand, A™(€) dominance of A + 28(u N p) is the condition that t > 2m — [. Itis
possible for the first of these to succeed and the second to fail. A particular example
occurs withm =7 and ! = 9 and r = 4, in which case "’T“" =4 and 2m — [ = 5. Thus
t > 2 butr < 2m — 1.

When [EPWW] yields, for a particular group, a number a such that / — 1 —a is
< the smallest ¢ in Table 2 for which A + 28(u N p) is AT () dominant, [EPWW] is
saying that unitarity persists for all cases in the present paper for that particular group.
In particular unitarity holds for all cases under study in D9 when m = 7. Thus the
work of [EPWW] settles some of the cases that Table 2 has marked as undecided.

b. Condition for nonunitarity of 7(1). We mentioned in Section 2 that 7 (1) is an
irreducible subquotient of 7'(1) and hence is isomorphic to 7'(A) if /(L) is irre-
ducible. When this happens, the nonunitarity that is asserted in Table 2 becomes the
desired nonunitarity of 7 (1).

If we look at the calculations in Section 2, we can see that the desired nonunitarity
might be deducible in an easier way—without addressing irreducibility of 7'(}). For
the groups of type B; and Dy, the conclusion of Theorem 1.2 follows because the
Shapovalov form has opposite signature on the K types of 7’(A) with highest weights
A = L+ 285(unp) and A + 2e;. Each of these K types occurs in zr'(1) with
multiplicity 1, and the first of them occurs by definition in 7 (1). It therefore will follow
that 77 (1) is not infinitesimally unitary if it is shown that 7 (A) contains the K type with
highest weight A + 2e.

Similar remarks apply to the groups C;, except that A and A +2e; are to be replaced
by A and A 4 e) + es.

c. Nonunitarity results for vector-bundle cases. In giving nonunitarity results, The-
orem 1.2 sticks to line-bundle cases. But nonunitarity results for vector-bundle cases
can be obtained in the same way. For an example consider D; with m = 3. Take w =
(w1, ®2,0;0,...,0) withw; = wy > 0. Following the prescription in Theorem 1.1 to
see what unitarity is assured, we find that ip = 3, jo =1 — l,and 7o = 2.

We can hope for nonunitarity when ¢ < 2. Thus take r = 1 and consider 7 (A + @)
with A = (=l +1)(e; +e2+e3) = (=l + 1)(e; + ez + e3). The key thing to compute
in Section 2 is |lo’ + @ + A + 8||2 — |l@ 4+ A + &||%, where ¢’ is a weight of some
representation F,, of L that occurs in S(uNp) such that ¢’ 4+ w is dominant and F,y,
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oceurs in Fy ® F,,. We want this difference to be < 0.

We use 0 = (2,0,0;0,...,0) just as in Section 2. If wy > 2, we can take gli=
(0,0,2;0,...,0), and a little computation shows that the difference is indeed < 0. If
wy = 1 and w; > 2, we can take 0’ = (0, 1, 150, ..., 0), and again the difference is

<0.Ifw; = wy = 1,wecantakeo’ = (1,0, 1;0, ..., 0), but this time we find that the
difference is 0. Thus we find nonunitarity for ¢ = 1 for all cases except w; = wz = 1.
For the case that @; = w3 = 1, one could perhaps succeed with another highest weight
in place of (2,0, 0;0, ..., 0), but we have not tried to do so.

d. Insufficiency of “weakly-fair” condition in Section 5. In Dg with m = 2, consider
h=(—8+1t, -8+ 0,...,0)andw = (b, 0;0, ..., 0). First suppose that b > 0. In
the notation of Theorem 1.1, we find that ig = 2 and jy = 7, so that top = 1. Thus the
theorem shows that 77 (A + @) is infinitesimally unitary for r = fo = 1, and it does so
by making use of A(U') built from {e; —e3, ..., €7 — es}. But the weakly-fair condition
of Theorem 3.1b does not apply. In fact, v/ = (=7 + b, —1; —1,...,—1). Thus
v 4+ 8(') = (b,2;2,...,2), and this is not dominant for b = 1. This example shows
why we were forced to work with the more difficult condition (c) in Theorem 3.1.

This argument shows also that had b been 0, we could not have handled unitarity of
7(h) att = 1 by usingi = 2 and j = 7 and by applying the weakly-fair condition.
However, a little calculation shows that the weakly-fair condition does show unitarity
of 7(\) att = 1 if weuse i = 1 and j = 6. In this same way, as we shall see in
the next subsection, one can handle all the line-bundle cases of Theorem 1.1 with the
weakly-fair test. Such a proof, however, seems unnatural since the choices of i and j
cannot be arbitrary.

¢. Sufficiency of “weakly-fair” condition in line-bundle cases. The unitarity of all
the line-bundle cases in Theorem 1.1, i.e., the unitarity of 7(X) as in Table 2, can
be proved using the “weakly-fair” test in Theorem 3.1b. The combinatorial tools in
Section 4 are therefore not needed for the line-bundle cases, and the proof of unitarity
is considerably shorter for them. The drawback of this approach is that a certain aspect
of a proof via Theorem 3.1b is unnatural, in a way that we explain in a moment.

Let us sketch the argument. We begin as in Section 5 except that @ = 0 and hence
v=A=(=l+t...,—l+1;0,...,0). Since w = 0, the definitions of Section 5
yield ip = 1, jo = [ — 1, and to = 0. When the integer ¢ defining A is as in (5.1), we
are to prove that (Ly,,)s(C,) is infinitesimally unitary. As in Section 5, Theorem 3.1a
is applicable if 7 > [ — 1, and thus we may assume thatt <[ —2.

Let i and j be integers with 1 < i < m < j < [ such that (5.2) holds, and define
g = '@’ as in Section 5. The argument in Section 5 shows that it is enough to prove
that (L )s'(Cy) is infinitesimally unitary when 1 is defined by

A =Ar4+28('Np).

Section 5 used Theorem 3.1c to prove this unitarity for any pair (i, j) satisfying the
above conditions. Theorem 3.1b can be used to show this unitarity, but only under
additional odd-looking conditions on (i, j). It happens that there are enough pairs
(i, j) satisfying these additional conditions that all cases in Table 2 are handled by
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Theorem 3.1b. The need for ad hoc choices of pairs (i, j) is the sense in the which the
proof using Theorem 3.1b is unnatural.

The condition for unitarity from Theorem 3.1b is that A’ + 8 (') is A™* (g) dominant,
hence that

(A +8),a) >0 (6.1)
for every simple root «. Here
NV+s)=24+6—-60)=14+6+25(' Nnp)— ()

with
8(0) = (B e + (5 )ein1 4+ (= B )ejm

and
2‘5"([F Np) = (.)' —m+1)(e+---+em)—(m—i+ l)(em-l—[ —fieee +8j+[).

We need to check (6.1) for o equal to ¢;_1 — ¢; ifi > 1,ej41 —ej2if j <1 =12
em — em+1 always, and all simple roots involving e;. For the remaining simple roots e,
we readily check that (6.1) equals 1. Computation gives

(M +8), ey —e) =m— G+ j)+ 3 ifi > 1
(' +8(), ejy1 —ejp2) =—m+ 3G+ )+ 3 <11

(J\-I T E(u’), em —emy1) =0 always
(A +o(), g1 —e)=0 ifj=1-1
W +80), et —er) =—m+ 3G+ )+ % if j=1-2
A48, ey —e) =1 ifjiel=2
N +8W), e)=-m+ 3G+ j)+h—5 ifj=1-1
A+, e)=h if j <1—1.

Therefore (6.1) holds for all simple « if and only if all three of the following conditions
hold:
m—3(+j)+5=0 ifi>1
—m+%(i+j)+%20 if j<l—1
—m+ 3G+ )+h—5>0 ifj=I-1

The first two of these inequalities are together equivalent with
lm— 3G+ I < 3.

In other words, if i > 1 and j < [ — 1, then Theorem 3.1b applies to the pair (i, j)
if and only if e,; — e, 1 is centered, as much as parity will allow, between the end
simple roots ¢; — ;1 and ¢j — e of AT,
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Briefly let us indicate that each case of unitarity in Table 2 has some pair (i, j)
satisfying the above inequalities. First choose i = m —r and j = m +r with 0 <
r<min(m —2,! —m —2),sothati > 1 and j < [ — 1. The above inequalities
are satisfied, and t = [ — (j — i +2) =/ — 2r — 2. Thus Theorem 3.1b handles ¢ if
t=lmod2and || —2m|+2 <t <l-2.

Nextchoosei =m —r—land j =m~+r withO <r <min(m —2, [ —m —2), so
thati > 1 and j < [ — 1. The above inequalities are satisfied, andt =1 —(j —i+2) =
| —2r — 3. Thus Theorem 3.1b handles ¢t if t £/ mod 2and || —2m|+1 <t <[ —3.

So far, all cases with [ —2m|+1 <t <[ — 2 have been handled. For the remaining
cases we treat 2m < [ and 2m > [ separately. The case that 2m < land 1 <t <
[ —2m + 1 is handled by taking i = l and j <[ —2,sothatt =1 — (j + 1). The
case that 2m < [ and t = O is handled by taking i = 1 and j = [ — 1; in this case the
condition for Theorem 3.1b to apply is that (h — ulz—) + %(t‘ — 2m) = 0, which holds
except for D; when | = 2m. For the case that 2m > [, Table 2 asks only that we
consider ¢’s in B; and C; with t = 2m — [ and ¢’s in D; with 7 > 2m — [. The only
one that we have not considered yet is t = 2m — [ for B; and Cy, and this is handled
bytakingi =2m —[+land j =1 —1.

f. Further vector-bundle cases—the example of B;. Theorem 1.1 of the present
paper is a systematic extension of the techniques used in the last section of [Kn3] to
study the example of B4 with m = 2. In terms of our present notation, [Kn3] worked
with A+w = (—4-+1+b, —4-+1; 0, 0) when b is an integer > 0. The value t = 3 yields
a limit of discrete series representation, and the values 1 = 2 and t = 1 correspond to
building A (I') in Section 5 from {e2 — e3} and {e2 —e3, e3 —e4}, respectively, and then
using Theorem 1.1.

For t = 4 the method of the present paper is applicable only when b = 0, and it
gives unitarity. For b > 0, [Kn3] quotes from [BaK] to show that there is unitarity for
b = 1 and nonunitarity for b > 2. This is a completely different pattern of unitarity
from what comes out of Theorems 1.1 and 1.2, and we have no tools for addressing it
in any generality.

For t = 5, Theorem 1.2 is applicable when b = 0 and gives nonunitarity. For
b > 0, the method of proof of Theorem 1.1 can be tried with A(l') built from {e; — e3,
e3 — e4, e4). One finds that the method succeeds and yields unitarity for b > 2.
Whatever the outcome for b = 1, the result is yet another completely different pattern
of unitarity from what comes out of Theorems 1.1 and 1.2.

The extra unitarity obtained for # = 4 and ¢ = 5 raises the question of where to stop
in considering vector-bundle candidates for the analytic continuation of discrete series.
We do not have a definitive answer for that question but have chosen to consider only
those cases that point to a related line-bundle case for a lower-dimensional group G.

g. Examples in connection with Section 4. These examples show the need for some
of the conditions in Propositions 4.3 and 4.8. In all of them, we take [ = 4.
1) Withr =2 and s = 3,

(za 3‘0t 1) +(ly'—]-v l! _l) — (3!2! 1!0) =_w(2!3!0! 1)
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for a permutation w. For this example condition (B 1) does not hold in Proposition 4.3,
2)Withr =1 ands = 3,

2,1,0,3)+(1,0,0,-1)=(3,1,0,2) = w(2, 1,0,3)

for a permutation w. For this example condition (A4) does not hold in Proposition 4.3.
3)Withr =1lands = 4,

(1,0,-1,-2)+(1,1,1,1) = (2,1,0,-1) =w(1,0, -1, —-2)

for w equal to the product of an even sign change and a permutation. For this ex-
ample condition (A6’) does not hold in Proposition 4.8. In the notation of Section 3,
(1,0, -1, =2) is ' + & for so(4,4) whena = —4,i.e.,t = 0.

h. Correction to a proof in [Kn3].

The paper [Kn3] gives prototypes for some of the arguments in the present paper. In
particular Theorems 6.1e and 6.2e of [Kn3] reprove in the present style the assertions
from [Wal] about the analytic continuation of holomorphic discrete series, but just for
groups G that are linear and have simply laced Dynkin diagrams. The arguments for all
go except su(m, n) use the weakly-fair condition of the Vogan Unitarizability Theorem
to address unitarity, and they are fine. For go = su(m, n), the argument extends from
the bottom of page 425 to the bottom of page 427; it is meant to invoke the present
Theorem 3.1c, but it does so incorrectly. Specifically, four lines after (6.9), it gives the
wrong value for (A + 6, e,—1 — e,).

To correct the argument, one applies Proposition 4.3 of the present paper. The
expression for o to which the proposition is to be applied is ¢ = A + & + fd(u) in
the notation of [Kn3]oro = v/ +8+cd(u') = X +8 + (w+ (1)) in the notation of
the present paper. The hypotheses of Proposition 4.3 are readily verified, the argument
being completely similar to the one given in the present Section 5, and then the proof
goes through.
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