THE ROLE OF BASIC CASES IN CLASSIFICATION:
Theorems about Unitary Representations

Applicable to SU(N,2)

A. W. Knapp* and B. Speh*

We propose in this paper a nontrivial subdivision of the problem
of classifying the irreducible unitary representations of semisimple
ILie groups. It is known that the classification problem comes down
to deciding which of certain standard representations induced from
cuspidal parabolic subgroups and having a unique irreducible quotient
admit a semidefinite inner product that makes the irreducible quotient
unitary. The idea of the subdivision is to separate matters into a
consideration of a small number of "basic cases" and a conjectural
reduction step.

We confine ourselves to the situation that the underlying group
G 1is linear and has rank equal to the rank of a maximal compact
subgroup K. The standard representations that one has to consider

are of the form
U(MAN,0,v) = indd (cee’e1), (0.1)

where MAN 1s a cuspidal parabolic subgroup, ¢ 1is a discrete series
or nondegenerate limit of discrete series representation of M, and

v 1is a real-valued linear functional on the Lie algebra of A in the
closed positive Weyl chamber. (When v 1is on the boundary of the
Weyl chamber, some additional conditions are imposed on v so that

(0.1) has a unique irreducible quotient. See [11].)
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also by Université Paris VII and by a Guggenheim Fellowship.
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For each such MAN we shall give an existence result for certain
o's that we call "basic cases." We construct the basic cases
explicitly when MAN is minimal. To any other o we shall assoclate
a proper reductive subgroup I with rank L = rank(LNK) and a basic

case ol of L, and a conjectural reduction step will describe the

unitarity of the o series in terms of the unitarity of the ol
series. Part of the conjecture is closely related to conjectures by
D. A. Vogan ([18], p. 408); the conjecture says also that I is large
enough for a comparison of unitarity at all A parameters.

The discussion of the basic cases and the reduction conjecture
are in §81 and 3-5. They form the core of the paper. 1In §§2 and 6-10
we give a number of theorems that can be regarded as evidence for the
conjecture or as treatment of basic cases. What these theorems have
in common is that they all give new nontrivial information about
unitarity in SU(N,2). Some of these results have been announced
by us earlier ([11], [8]).

Of particular interest are two general results in §§6-7. One way
of viewing basic cases is as minimal elements under translation of the
M parameter toward the walls of the Weyl chambers of G, in the
sense of the appendix of [13]. It follows from Conjecture 5.1 that
this operation must preserve unitarity, and we state such a result
for MAN minimal as Theorem 6.1.

In §7 we address a consistency question for the conjecture in the
situation that dim A = real-rank(L) and UL is trivial on the M
of the derived group L' of L. In this situation the trivial

representation of I' occurs for a certain parameter v =v and

0 2
parameters v with [v] > ]vol cannot lead to unitary representa-
tions of L. According to Conjecture 5.1, parameters v with

vl > 1v0| should not give unitary representations of G eilther,

and this we verify as Theorem T7.l.
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our notion of basic cases evolved from the theorems in §§6-7
mentioned above and from a detailed study of the groups SU(N,2) and
Sp(n,1). We obtained the general definition and theorem for MAN
minimal only afterward. Upon seeing our constructive proof when
MAN is minimal, Vogan was able to give an existential proof that
applies also when MAN is nonminimal. The conjectural. reduction
was adjusted to take into account some examples supplied by Vogan
for MAN nonminimal. We are grateful to Vogan for his suggestions
and for permission to include his existence proof. We are grateful
also to Welleda Baldoni Silva for highlighting her results [1] about
Sp(n,1) in various ways for us at our request so that we could guess

what the basic cases are in Sp(n,1).

Contents
1. Basic cases, minimal MAN
2. Unitarity for some basic cases
3. Basic cases, general MAN
4. Associated subgroup L
5. Conjecture about reduction
6. Preservation of unitarity under tensoring
T. Zuckerman triples
8. Unitary degenerate series
9. Series associated with cuspidal maximal parabolic
10. Duflo's method and the basic cases for SU(N,2) .

1. Basic cases, minimal MAN

To keep the ideas clear, we shall begin with the situation of a
minimal parabolic subgroup MAN of G. We shall define "basic

cases" as certain representations of the compact group M. To do so,
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we first introduce the notion of a format. Recall that we are
assuming G 1s linear and rank G = rank K.

We shall use the notation of [9], which we summarize briefly
and incompletely here. Let g and 1 be the Lie algebras of G
and K, let b <t be a compact Cartan subalgebra of g, and let
A and Ay be the sets of roots of (gc,bc) and (Ic,hc),
respectively.

Fix a sequence OysenesQy of strongly orthogonal noncompact
members of A. 1In order to arrive at a minimal parabolic subgroup

of G, we assume that

4 = real-rank(G) . (Afea)
Let
b, =L RIH
J
b_ = orthocomplement in b to b, .

Anticipating a Cayley transform, we say that a root in A 1is real if
it is carried on br’ imaginary if it is carried on b_, and complex
otherwise. Let Ar and A_ be the subsets of real and imaginary
roots, respectively. We construct a split subgroup Gr of: & from

b and the members of &r’ and we let Kr = KN Gr be its maximal
compact subgroup. Let E be the orthogonal projection of (ib)!

on (ib,)'.

We build a Cayley transform ¢ from the roots o and

120y
use it as in [9] to form MA. If m denotes the Lie algebra of M,

we can regard A_ as the system of roots of (mm,bf). In [9] we
defined
T VT (1.2)

where Me is the analytic subgroup corresponding to m and Mr is
a finite abelian group built from the real roots. Because of (1.1),

we have
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M=, (1.3)

Fix a positive system (A_)+ for A_. An irreducible
representation o of M is then determined by the highest weight
A of c[M and a compatible character y of Mr‘ By means of the
ordered bazis (1.2) in [9], we can introduce a positive system A"
in which A+p_ is A" dominant, (ib,)' dis spanned by the real
simple roots, and some other conditions are satisfied. Let u (in
(ibr)‘) be the highest weight of a fine K -type whose restriction to
Mr contains the translate of X given by (2.2) of [9]. We shall say

that A has format ({uj},a+;x,u) if the linear form
A=2n-= E(EpK) - EpKr + M (1.4)

given in Theorem 1 of [9] is A; dominant; Theorem 2 of [9] provides
checkable necessary and sufficient conditions on p for deciding

this dominance.

Theorem 1.1. Suppose the group G with rank G = rank K has
o® simply connected. Fix a format ({aj},a+,x,p) corresponding to
2 minimal parabolic MAN. Among all highest weights A with this
format, there is a unique one Ab such that any other A with this

format has A -Rb dominant for A+ and G-integral.

We call Ay (or the associated representation of M) the

basie case for the format ({aJ},A+,x,u) . . 0t

is not simply
connected, the basic case can still be defined as a member of (ib_)!'
by taking it to be the basic case for that format in the covering
group that has a simply connected complexification.

Our constructive proof of Theorem 1.1 is too long to give here.

It consists in writing down a formula for Ay and verifying all the

properties with the aid of some of the lemmas used to prove the
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theorems of [9]. However, Vogan has given a short existence proof
that does not attempt to derive the formula, and we can include that.
We shall therefore give some examples, followed by the formula for

)\b , followed by Vogan's proof.

Examples.
1) G of real rank one. Denote the real positive root by a.

The fine X -type u is 0 or +%a or -%a, and it determines ¥ .
Often two different formats (one with u = +%a and one with
M =-2%20) will lead to the same basic case.

a) S0(2n,1), n) 2. Here M= 80(2n-1) . The basic
cases (as representations of M) are the trivial representation and
the spin representation.

b) su(m,1), n) 2. Here

M= { =2 , weU(n-1) and total determinant = 1} .

o160

The basic cases are o(this) = e with k| {n.

¢) Sp(n,1), n) 2. Here M= SU(2)x Sp(n-1). The
basic cases are ¢ = (kx fundamental)®l with 0{ k{ 2n-1.

d) Real form of F,. Here M= S0(7) . There are five
basic cases—the trivial representation, the first three multiples
of the spin representation, and the Cartan composition of the spin
representation with the standard representation. 1In classical
notation their highest weights are (0,0,0), (%’-,-]g',%), (1,1,1),
(323), ad G37) -

2) SU(N,Q) 2 N 2_ 3 . Here
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, weU(N=-2) and total determinant = 1} .
o1

eie

The basic cases are o (this) = ei(m3+rrp) with |m] {N-1 and
[n] { N-1.

Formula for 7\b . We define ?\.b by giving its inner product
with each A" simple root £ . Namely

0 if B real or imaginary
(N, 5 B
|ﬁ|2 Y 2( p_s B :
- _|;-8-]—2—_ + correction(g) if B complex. (1.5)

Here correction(p) is always O, %, or 1, depending on the form

of B. Let e denote a member of (ib_)'. Then
(1 if p=e-%2a., [B] = |a.l
2 37" I 7
a-ndHJ.aJ
%(1-sgn(u,v>) if p=c-%ay, [p = loyl ,
7] Zc:,i , and a sign + is fixed
correction(g) =4 so that y = s::l-.%aj is compact
%+ —g—ei“i ) ifﬁ=e—aj with |ﬁ[2=2|&5|2
g
2¢u,y) : = =
—l'ﬁé— 1fJB"'e -%ai_%aj’ “3["31,

= ]ajl , and a sign + is fixed

so that y=¢ —%aii«baj is

\ compact .
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Proof of Theorem 1l.l. Uniqueness is trivial. For existence, fix

some A corresponding to the format ({aj},a+,x,u). By adding
suitable fundamental weights for G to A, we may assume A+p_
is nonsingular with respect to all nonreal roots. Let o be the
representation of M determined by A and %X , and form the unitary
principal series representation U = U(MAN,0,0). The p in the
format picks out one minimal K-type A of U by (1.4), and Theorem
1.1 of [17] says that A 1lies in a unique irreducible constituent

ot 1l For each non-real simple root B for A+, let A be the

fundamental weight corresponding to g and define njB to ie the
greatest integer
2ZN+p_, B
8 T

Then )\-+p_<-nﬁhJB is A" dominant and we can apply the Zuckerman ¥
functor [19] to w, obtaining

A+p_

¥arp_-mgh o () - (1.6)
Define né by
=ih {njB if (1.6) is not 0
P ng-1 1f (1.6) 1s 0.

Then

Ap

*h+p:_nénﬁ(w)

is not 0. Ry Theorem 6.18 of Speh-Vogan [15],

Ap_ () (1.7)
dF' - 1 T *
Ap_ Enﬁnﬁ

is not 0. Put Ay = A - L nénﬁ.

(1.7) is contained in an induced representation Uy = U(MAN,0,,0)

Theorem B.1l of [13] shows that



127

and that the infinitesimal character of o is obtained by moving

b

the infinitesimal character A+p_ of ¢ by —Elnéh The

g "
parameter X 1s not changed. The highest weight of %y therefore

has to be A\ and so kb is (ﬁ_)+ dominant. We have arranged

'b’
that A +p_ 1s A" dominant and that
AN, +p_5 B
‘b g
I8l
The minimal K-type of (1.7) is easily seen to be A —E:néhﬁ.
Now let A' correspond to the format ({GJ}:&+,X:H) . Itiiginot

hard to see that A!' =A

can fail to be A" dominant is if some simple 30 has

b is G-integral. The only way that k‘-hb

AN +p_ 5 B 2{A" +p_, B
b p'2 B0 9o ania p_2 O = o (1.8)
18, 18]

So assume (1.8). We do not affect the definition of Ay, if we add

enough fundamental weights for G to our initial A so that A-=A?

is A" dominant. The first equality in (1.8) implies that

n! =n, -1. Hence (1.6) is 0 for B=p.. The second equality
Bo Bo 0
in (1.8) allows us to compose (1.6) with a further ¥ functor to

obtain

A¥p
*7\14'.0__(?) =0. (1-9)

If the form A' obtained by using A' in (1.4) were AE

we could construct a nonzero element in the space for (1.9) from the

dominant,

A K-type of w. Hence A' is not AE dominant, and (1.8) has led

us to a contradiction.
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2. Unitarity for some basic cases

We define the Langlands quotient

J(MAN,o,V) (2.1)

to be the unique irreducible quotient of (0.1l) under the conditions

on the (real-valued) element v in the introduction. For the basic
cases 0 in the examples of §1, we shall describe those v for which
J(MAN,o,v) is infinitesimally unitary. Our description will be
complete except for certain undecided isolated points in the case of
SU(N,2).

For groups of real rank one, the classification of irreducible
unitary representations is known, with the final work appearing in
[1] and [2]. 1In the notation of the examples of §1, denote the
parameter on the Lie algebra of A by v = tgc(a), t > 0, with the
understanding that c(a) is a positive restricted root, and let p,
be half the sum of the positive restricted roots with multiplicities
counted.

a) %(En,l) 5 nZ 2. Here corresponds to t=n-2. TFor

Py
¢ trivial, the unitary points are 0< t{n-%. For o equal to
the spin representation, no t > 0 gives a unitary point.

corresponds to t =%n. For

b) SU(n,1), n» 2. Here Pa
0 e ¥ yitn |k] < n, the unitary points are 0< t < %(n-|k[).
e) Sp(m,1)-s n _}_'_ 2. Here p, corresponds to t =n+%. For

o trivial, the unitary points are 0<{ t{ n-% and t=n+%. For
o = (kx fundamental)®1 with 1< k< 2n-1, the unitary points are
0<t£ %¥(2n-1-k).

d) Real form of Fy - Here Pa corresponds to t f‘%%. For
o trivial, the unitary points are 0< t g_% and t = %}. For o©
equal to k +times the spin representation with 1 g k g 3, the

unitary points are 0< t { 3(3-k). For o equal to the Cartan
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composition of the spin representation with the standard representa-

tion, no t » 0 gives a unitary point.

We turn to SU(N,2), N> 3. With the notation for M as in

§1, we have

and we let fl and f2 of the Lie algebra matrix here be s and ¢,

respectively. We write v = a.fl+bf2

chamber to be a > b > 0. Then p, has a =N+1 and b=N-1.

and choose the positive Weyl

The basic cases have 0 <« B m| { N-1 and
In]| { N-1. sSince complex conjugation is an outer automorphism of
SU(N,2) fixing A and sending (m,n) to (-m,-n), it is enough to

understand m > n.

Theorem 2.1. In SU(N,2) the unitary points v = (a,b) in the
positive Weyl chamber for the basic cases o Hei(m9+rrp) with m 2 n
are as follows:

() If |m| { N-2 and |n| { N-2, the unitary points within the

closed rectangle
0{a{N-1-|m|] , 0{bN-1-|n] (2.2)

are exactly the points
(1) in the triangle a+b {m-n+2
(ii) in any of the triangles
a-b)y)m-n+2k, a+b{m-n+2k+2

for an integer k > 1.
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(iii) on any of the lines
a-b=m-n+2k
for an integer k > 1.
(b) If |m| <K N-2 and |n| { N-2, the only possible unitary point

outside the closed rectangle is
(a,b) = (N+1-|m|,N-1-]|n]). (2.3)

This can be a unitary point only if m=n or O >m > n. If
m=n=0, this point corresponds to the trivial representation.
(¢) If |m] =N-1 or |n| =N-1 and if m > n, there are no
unitary points in the positive Weyl chamber.
(d) If |m| = N-1 and m = n, the unitary points in the positive
Weyl chamber are exactly the points a+b g 2%,

This theorem will be proved in §10. Pictures of the unitary
points for the cases (m,n) = (0,0), (0,-1), and (2,2) appear in
[11] and [8]. In situation (d) in the theorem, as well as in
situation (¢) when n = =(N-1), the axis b =0 is disallowed
since U(MAN,oc,v) does not have a unique irreducible quotient.

Vogan has shown us some computations indicating that at the
undecided isolated points in (b) the representation J(MAN,o,v) has
a highest weight vector. The unitary representations with a highest
weight vector are known ([4] and [6]), and N. Wallach has given us
information that suggests that these isolated points actually do

correspond to unitary representations.

3. Basic cases, general MAN

Only minor modifications are needed to define "basic cases" for
a general cuspidal parabolic subgroup MAN. The notation of [9]

needs little adjustment. The system of strongly orthogonal noncompact
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roots {aj] no longer need satisfy (1.1). The group M# in (1.2)
no longer need be all of M, but every discrete series or limit of
discrete series o of M is induced from a representation c# of
the same type for M*.

Such & representation ¢ of M is therefore determined by a
triple (RO,C,X), where (ko,c) is a Harish-Chandra parameter of
¥

g and ¥ is the scalar value of ¢ on Mr c ZM'
+

for A_ determines (A_)", and the Blattner parameter (minimal

The chamber C

(kN M)-type) of °#|M is given by
e
N o= ?\O = P—,C At p-’n. (3.1)

We can define a* and 4 as in §1, and we say ko has format
([aj},f,x,u) if the linear form A in (1.4) is Ay dominent.
(observe that we have switched from the highest weight to the

infinitesimal character AO as reference parameter.)

Theorem 3.1. Suppose the group G with rank G = rank K has
Gm simply connected. Fix a format ({aj},a+,x,p) corresponding to
a general cuspidal parabolic subgroup MAN. Among all infinitesimal
characters lo of discrete series or limits (degenerate or
nondegenerate) with this format, there is a unique one Kb,o such
that any other ko with this format has k0<-kb,0 dominant for
A" and G-integral.

We call Kb,o (or its associated ¢ = cb) the basic case for
the format ({aj},A+,x,p) . Again Rb,o still makes sense if ¥
is not simply connected.

The proof of Theorem 3.1 is the same as the proof we gave of
Vogan's for Theorem 1.1 except for minor modificatlons. The o4 that
results is often, but not always, a limit of discrete series

representation if MAN is not minimal. In fact, Oy may even be
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degenerate as a limit of discrete series, and the theorem will fail if

we look for kb only among nondegenerate cases.
E

0

4. Associated subgroup L

Fix an infinitesimal character KO for M and a format
([aj},A+,X,p) for it. Let lb,o be the basic case for this format
glven by Theorem 3.1, and let q = Iceu be the 8-stable parabolic

subalgebra of gm defined by the AT  dominant form AO—-Rb 0"
2

¢ is built from »®

and all peA with {Ag=2Ny 5B 2 0,
1® 1s butlt from b¥ and all pea with (A j-n, .8 =0, (4.1)
2

u 1is built from all B eA with (A -2, ,, B >0

Here & is the complexification of 1 = 1n g . The analytic
subgroup of G corresponding to [ will be denoted L; it is the
centralizer in G of a suitable torus.

From the definition, bc is contained in Im, and the root

system of (lm,bm) is
ab=fpeal| (g-ny s B =0},

Moreover, each aj in our strongly orthogonal sequence of noncompact
roots is in A". Hence g3,S 1 and ACS L. We shall assoclate to
the Ianglands quotient J(MAN,o,v) for G, given in (2.1), a

Tanglands quotient
JE((MN T)A(NN L) ,05,v) (4.2)

for L. For brevity we shall write JG(U,v) and JL(UL,v) for such

a corresponding palr of representations of G and L.
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To specify (4.2) we need to define UL, and we do so by giving

its infinitesimal character kg and a compatible format
({aj},&-l-nAL:XL;u) . (.’.{.._3)
With superscripts "L" referring to objects in L and to the

positive system at n AL for L, we define

]

p(u) = p - pT
0
PK Pxr
p(u) - p(un1®.

The form p(u) is orthogonal to every root in aL, and p(unt

%
and p(u npc) are orthogonal to every root in A%.
Because of this orthogonality, E(2p(u nxm)) is the differential

of a one-dimensional representation of Kr’ and we can define

x¥ = x-[exp E(2p(n 1)1l - (1. 1)
T
Let
AL = Ay - o) - (1.5)

These definitions are motivated by the theory of [15] and [18] in a
way that we shall describe in §5.

Proposition 4.1. The definitions (4.4) and (4.5) of & and kg
consistently define ol, and (4.3) is a compatible format. The

corresponding form (1.4) for ol is given by
Al = a - 2p(unp?) . (4.6)

Proof. It is clear that hg is dominant for (A§)+. Writing

the formula of Lemma 3 of [9] for G and for L and subtracting,

we have
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L

2o(unt® - 2p_ o + 2% = p(u) - p_ + pC + E(2p(un1®)) .

c

Therefore the Blattner parameter (3.1) for 7\%’ can be transformed as

R ITE . L
RS =R o BRI

[Ng-p()] + [2p(n1®) -E(2pn1%) -p(u) +p_ 1 -p_ ]

A - 20(u) + [2p(unt®) - BE(2pmn1®))]. (%.7)

Each of the terms on the right is analytically integral on exp b_,
and hence J\L is analytically integral on exp b_. We shall prove
that

(AL,JB) = (A, B) forﬁe(aicﬁ, (4.8)

and then it follows that 7\%' is the infinitesimal character of a

discrete series or limit of discrete series of (MN L)e .

Thus let B be in AE’ o+ Then {2p(u) , By = 0 since B is in
]
AL, and (E(2p(u m“:)) »B)=0 since B 1s in A_. Thus we are to

show that

(2p(unt®,p) =o0. (4.9)
. €
If B 1is compact for g, (4.9) is clear. If B is noncompact for
QC » then B 1is orthogonal but not strongly orthogonal to some member
a of the sequence {aj} . Then f+a and B -a are in &KL’ and
the product s, s, . Of two reflections fixes 2p(uf 1%) . But then
C C
2p(unNt™) = sﬁ+asﬁ_a(2p(uﬂ 3%3)
[
= sasﬁ(Ep(u Bl 2=
C C
= 2p(u N TC) _X2p(unt”),a a _22p(unt™),s 8,

2
lal® |8

and (4.9) follows. This proves (4.8).

L

Next we show that exp AL and x agree on (exp b_)N (exp br) 5

so that we obtain a well defined representation of (MN L)* » then of
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MANL. In view of (4.7) and (4.4), we are to show that the character

S 2p(u)®[2p(un 1€)-E(2p(un 1€))] (4.10)
of exp b_ and the character
EE(2p(u N 1€)) (4.11)

of exp b  agree on (exp b_)N (exp b, . The first factor of (4.10)
is well defined on all of exp b and is trivial on exp br. The
second factor of (4.10) and the character (4.11) are the respective
restrictions of the character g2p(uf1t®) of exp b. The required
consistency is therefore proved.

To see that (4.3) is a compatible format, we check that the

representation T of K. with highest weight pn contains

)

x L. exp(E(E*p%) -E‘pKr)]Mr . (4.12)

Using (4.4), we see that (4.12) equals

X'exp(E(EPK) _QPK )1M ]
r r

and Tu contains this by assumption.

Finally we combine (1.4) and Lemma 3 of [9] to write
J'L:?\O+p—pr—2pK+2pKr+u. (&.13)

Writing the corresponding expression for &L and subtracting, we have

AT - b= (AF-ng) - (p-p) + (2o -20Y)

5

-p(u) = p(u) + 2p(nt

Il

-2p(u N %) .

This proves (4.6) and completes the proof of the proposition.
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The group L is reductive, not necessarily semisimple, and we
have to adjust the definitions of §§1-3 to speak of "basic cases" for
L. Let us agree that a basic case for I is one whose restriction
to the semisimple part of L is basic. In terms of a comparison of
infinitesimal characters with a glven format, one therefore fixes the

restriction to the central torus of L.

Proposition 4.2. The infinitesimal character kg given in (4.5)

is a basic case for the format (4.3) for L.

[

Proof. We may assume that G is simply connected. Proposition

4.1 shows that )g does correspond to a nonzero representation with
(4.3) as format. Suppose kg
*  dominant integral £ not orthogonal to QL such that

is not a basic case, i.e., that there
is some A
xg - § corresponds to a nonzero representation with (4.3) as format.
For each A+ simple B in A outside AL, let AB be the
fundamental weight, and let mn be the sum of such Aﬁ. Then we

claim that

'-— -
Ag=Ag+tmm -8

corresponds to a nonzero representation with ({aj},a+,x,u) as
format, provided n 1is sufficiently large.
In fact, the integrality condition is no problem. The other

conditions are that certain inner products of A! or its translates

0
with certain members of A+ are to be 2 0. When these members are
in AL, we have the same inner product as for kg - E . TWhen they

are outside QL, the n dominates (if n is sufficiently large) and

makes the inner product » 0.

L

Now choose B simple for A so that (§,8) > 0. Then

(Ag=Pp,00 B = {hg=2p s BY = (8, B)

= (B, ) <0,

Il
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and we have a contradiction to the fact that lb o is basic for G.
»

The proposition follows.

5. Conjecture about reduction

Conjecture 5.1. Let o be a discrete series or nondegenerate

1limit of discrete series representation of M, given by the

infinitesimal character A. and a compatible format ({aj},a+,x,p).

0
Let I be defined from (4.1), and let ol be defined as in (4.b)
and (4.5). If v 1is real-valued, then the Langlands quotient
1%@,v) for G is infinitesimally unitary if and only if the

Ianglands quotient JL(cL,v) for L 1is infinitesimally unitary.

If true, the conjecture reduces the classification question for
irreducible unitary representations to a consideration of J(o,v)
with o Dbasic and v real-valued, under the assumption that G 1is
linear and rank G = rank K. (This follows from Proposition 4.2.)

The conjecture is true if G has real rank one. For
G = SU(N,2) , there are two proper cuspidal parabolic subgroups MAN
to consider: When dim A = 1, the conjecture is true at least when
¢ is a discrete series representation of M and L has real rank
one; this follows essentially from Proposition 9.1 below. When
dim A = 2, the conjecture is true inside a certain rectangle of w's
(by Propositions 8.1 and 8.2 below), and it is often true also outside
a slightly larger circle of wv's (cf. Theorem T.1l), but in general
the conjecture is not settled.

Actually the conjecture should be regarded as suggesting more
than just a correspondence of unitary parameters. It should suggest
that certain functors going back and forth between representations of
I, and representations of G preserve unitarity. These functors in
many situations coincide with the ones of Vogan ([17],[18]) and
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Speh and Vogan [15], and the choice of parameters in (4.4), (4.5),

and (4.6) is in fact motivated by the Vogan and Speh-Vogan functors.
The correspondence between our work and that in [15], [17], and

[18] is not immediately evident, since the orderings are different.

The ordering in [17] is obtained by associating to the minimal K-type

A a form A via Proposition 4.1 of [17]. Then one builds a smallest

permissible @-stable parabolic subalgebra for the theory from

{(Bea | (X,p 2 0}. The point is that ? is just the infinitesimal

character A so that our gq 1is indeed a permissible 8 -stable

o.’
parabolic subalgebra.

It is implicit in §7 of [17] that A = A., and we shall here

0’
write out a direct proof. From (4.13) we have

A+ 20 =25+ (p-p,) + (p-+2pK Vs (5.1)
r

We introduce a new positive system (&+)' by changing the notion of
positivity on A (and only there) so that u +2p 1s (A:)'
r

dominant. With "primes" referring to objects in the new ordering, we

have
ﬁ;,r = (Qg’r)' and  Af = (4p)'
i pﬁr (ol SN
=T, SR = (5.2)
By Proposition 4.1 of [17], we can write
p...epKr-p;_:'?'\'“—%Zﬁi, (5.3)

where the B; are in (A;)' and have certain properties listed in
the proposition. Since p is fine and "fine" is equivalent with
"small" ([18], p. 294), Kp = 0. Combining (5.1), (5.2), and

(5.3), we obtain
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A+ 20 -p' =h, - 3Zp,. (5.4)

The claim is that A +2p, is dominant for (A")' and hence that
X = A, by the uniqueness in Proposition 4.1 of [17].

In fact, let B be simple for (a™)'

. If p ismot in (a})',
then (B,p') > 0 and (B,p;) { O forall i. Also g isin A",
and hence (KO,B) 2 0. Thus (A‘+2pK, BY > 0 by (5.4). on the
other hand, if B 4is in (A;)‘, then B 1s orthogonal to the first
two terms on the right of (5.1) and has inner product 2 0 with the
third term by construction. Thus (A~+2pK, BY 2 0.

Hence A = ko, and our q 1is permissible in the theory of [15],
[17], and [18]. Conjecture 5.1 is thus closely related to the two
conjectures on page 408 of [18]. One additional thing that Conjecture
5.1 says is that our L 1is large enough to capture all the unitary

points in @G.

6. Preservation of unitarity under tensoring

In [19] and the appendix of [13], G. Zuckerman began a systematic
investigation of one technigue for moving a parameter by a discrete
step through a series of representations of a connected semisimple
Iie group. The technique consists of tensoring with a suitable
finite-dimensional representation and projecting according to a
particular value of the infinitesimal character. This is done in two
distinet ways—Dby & ¢ functor that makes the parameter smaller and
by a ¢ functor that makes the parameter larger.

Since finite-dimensional representations are generally not
unitary, this technique need not carry unitary representations to
unitary representations in general. However, Conjecture 5.1 predicts

that unitarity will be preserved for Langlands gquotients when ¢ or
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@ moves only the M parameter. (For example, Ag - kb,o is the
highest weight of a finite-dimensional representation that moves the
parameter this way.) The point of this section will be to verify this
prediction under the additional assumption that MAN dis minimal.

Let G be a linear connected semisimple group with maximal

compact subgroup K. TFor this section only, we do not assume

rank G = rank K. Let MAN be a minimal parabolic subgroup of G,

and let g, 1, m, a, and n be the various Lie algebras
corresponding to our Lie groups. Let b_C m be a maximal abellan
subspace (so that a®b_ is a Cartan subalgebra of g), let
B

A_<S A be the roots of (mc,bf) . A positive system At for a

Il

exp b_, let A be the roots of {gc, (a&éh_)c) , and let

will be said to be compatible with a positive system (A_)+

LOXaAY

if ()t e aT. (No compatibility of At with n is assumed.)
If (A_)+ is specified, let p_ denote half the sum of the

members of (A_)+ . An irreducible unitary (finite-dimensional)

representation o of M is determined by a pair (A,x), where

AN is a dominant analytically integral member of (ib_)'

o is a character of MN exp la that agrees with eh

on B_N exp ia,
the correspondence being that A 1s the highest weight of o‘]M and
e

% 1s the scalar value of ¢ on MNexpile < ZM . We call ¥ the

central character of o .

Suppose v in {n')c has Re v 1n the closed positive Weyl
chamber of a' determined by n. (We do not need to assume v is
real-valued.) Theorem 1.1 of [11l] recalls a necessary and sufficient
condition for the induced representation U(MAN,o,v) to have a unique

irreducible quotient, which we define to be J(MAN,o,v) . For an
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application in Proposition 8.2, we note now that J(MAN,o,v) is
always defined if Re v 1is in the interior of the positive Weyl
chamber.

The two theorems to follow concern the effect on unitarity of
moving the o parameter of J(MAN,o,Vv) . In the notation of [19],
Theorem 6.1 deals with the § functor and Theorem 6.2 deals with
the ¢ functor.

Theorem 6.1. Let MAN be a minimal parabolic subgroup of G,
fix a positive system (A_)+ for M, and let ¢ and o' be
irreducible unitary representations of M with respective highest
weights A and A' and with a common central character X . Let v
be in (a')e with Re v in the closed positive Weyl chamber, and
let A" be a positive system of roots of (ge, (u&!b_)c) compatible
with (A_)". Suppose that
(1) J(MAN,c',v) is defined
(i1) AN +p_+Rev and A+p_+Rev are A" dominant
(iii) A' -r is A" dominant and G-integral.

Then

(iv)  J(MAN,o,v) is defined

(v) J(MAN,o',v) infinitesimally unitary implies J(MAN,o,v)
infinitesimally unitary.

Theorem 6.2. ILet MAN be a minimal parabolic subgroup of G,
fix a positive system (6_)+ for M, and let o and o' be
irreducible unitary representations of M with respective highest
weights A and A' and with a common central character ¥ . Let Vv
be in (a')m with Re v in the closed positive Weyl chamber, and
let AT Dbe a positive system of roots of (gm, (a&)b_)c) compatible

with (a_)*. Suppose that
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(1) J(MAN,0',v) 1s defined

(11) Al'+p_+Rev and A+p +Re v are At dominant and are
equisingular (i.e., singular with respect to the same roots
of (g%, e®5_)% )

(1ii) A-A' is AT dominant and G-integral.

Then

(iv) J(MAN,c,v) is defined

(v) J(MAN,0',v) infinitesimally unitary implies J(MAN,c,V)

infinitesimally unitary.

These theorems will be proved on another occasion. Each proof
consists in tracking down what happens to the relevant intertwining
operator and seeing that positivity is preserved. From Theorem 6.1
and the results for the basic cases listed in Theorem 2.1, we can
exclude many representations in SU(N,2) from being unitary; we

state a precise result in this direction as Proposition 8.2.

7. Zuckerman triples

In this section we give a general theorem applicable when G 1is
linear and rank G = rank K that says that J(MAN,o0,v) cannot be
infinitesimally unitary for real v outside a certain radius, for a
wide class of o . Motivation for the theorem in terms of a
construction of Zuckerman appears in [8] and will not be repeated
here.

Thus let b < 1 be a compact Cartan subalgebra of g, and let
A be the set of roots of (gm,bm). we say that (a',Z,x) is a

Zuckerman triple if
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At = a positive root system for A
Z = a root system in A generated by At simple roots
X = an analytically integral form on bc orthogonal to I

with X-p&-FQpZ dominant for at.

Let QK and EK be the subsystems of compact roots in A and IZ.

We let Pa,k’ Pa,n’ Pg,x? and Ps,n denote the half sums of the

indicated positive compact or noncompact roots, and we let Wer and

We ¥ denote the long elements of the Weyl groups of ¥ and EK’
t

respectively. We say that (A+,E,X) is nondegenerate if X-—pﬁ-+2pz

is nonorthogonal to every root wzﬁ with B in AK.

Theorem 7.l. With rank G = rank K, suppose that a Langlands
quotient J(P,0,v,) 1s such that there is a Zuckerman triple (a',Z,x)

for which J(P,o0,v has the real infinitesimal character

o)
+ -

X -p,y+2p; end a (&K dominant) minimal K-type X —Qpﬂ’KvFsz,K.

Suppose further that (a+,z,x) is nondegenerate; this condition is

satisfied in particular if ¥ +2pz is nonsingular. Then

-0,
J(P,o,v) is not infinitesimally unitary for any real v with

vl < Ivl.

Remarks. This theorem was our first clue about basic cases. Its
relevance is as follows: Under the assumptions in the theorem if also
X —pA-+292 is nonsingular, then the group I attached to ¢ by §4

often has aL essentially equal to I .

The proof will use the Dirac inequality in the following form.
See §4 of Baldoni Silva [1] for a proof of this inequality.

Lemma 7.2. If At

is any positive system for A and if =m is
an irreducible unitary representation of G with real infinitesimal

character ¥(w) and a minimal K-type A, then
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Ii(ﬁ)] g |W(&'Pa,n) + pA,KI ] (7'1)

where w 1s chosen in the Weyl group of A to make w(A - be

K pA,n)

&E dominant.

Proof of Theorem 7.l. It is enough to prove that equality holds

In (T 1) for T = J(MAN,d,vO). We proceed in several steps.
(1) Wy g Tixes X —2pA,K~+2pz,K.

In fact, we have

ws,kPA,K = Pa,k T 2Pg,k (T+2)
2,5,k T T Pk
wz,ﬁx =X,

and (1) follows.

]

(2) wy gz (X -py+2pg) = (X=2p, £+2pp g) = Wy gPp n + Py k-

In fact, the left side is

+

=X - Wy ¥ (py - pg) + Wy g¥eey

=X - Wy plpp-pg) - Wy xPp
=X - Wy gPp

S = W plnn ~ NelxPALn

X = Pakt %P,k Y, xPAn (7.2)

]

(X = 2py gt 292,3:) = "5, 5kPa,n * Pak

(3) Ix=py+2pgl = |wg p((X=2p) x+205 §) = Pp n) + Pp,l -
In fact, we can take the magnitude of both sides of (2) and apply (1).
+

() Cwg p((X=2p, x+2p5 g) =Py p) s B) 20 for pelp

In fact, the left side by (1) is
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(X -2pp g+2pg, g+ B + Cppy s ~Wy yB)

+
(p&’n, -Wz,Kﬁ) by the assumed Ap dominance

NIV

0

since "WE,Kﬁ is in E; and PA is &g dominant.

(5) (¥ ((x=2p, ¢+2p ) =p, o) ,8) 2O for peaf.

+
K

By (1) and (2), we have

In fact, we may assume that g 1s A, simple, and by (4) we may

assume B is not in EE.
<WE,K((X "QP&’K'FQPE,K) 'PA’n) +PA,K, ﬁ>

= —pA-kEpE ’WEWE,KF) . (T3

Since B 1is in &E but not I, Wer KB is in AE but not T . Then
-

WE(WE,KQ) 1s In A+, and the dominance of X-—p&-Fsz implies that

(7.3) is 2 0. since wg g 1is in ok
»

K’ the assumed nondegeneracy

implies (7.3) is # 0. Therefore

2wy g((X =2p, g+2pg ) =Py n) +Pp 2 B 51, '
|8l° =

since B is simple for AF, 2l 8Y/|18]1%2 = 1. Then (5) follows.

(6) Comparing (3) and (5) with the statement of Lemma 7.2, we see

that equality holds in (7.1) for J(MAN,o,v and the theorem is

)
0
proved.

Remark. For any nondegenerate Zuckerman triple, it is automatic

+ . +
thHat Y ~2p6’K-+2pz’K is AK dominant. In feect, If £ is in X -

then (X - 20, g*+2pp g, B =0. If B 1isin AY but not =

K K’
we have
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(X =2p, x+205 s B =X -2p) +20p p=Vp pr ns B + (g ypr s B

(X =2p) g+2pg g~ W3 xPa,n’ B * {Pp,ns A"

2 (X -2p, p+20p - 5, kPA,n’ B 2

and this is » O by the same calculation as in (5).

8. Unitary degenerate series

We turn now to results that we shall formulate specifically only
for SU(N,2), N 2 3. In this section we shall identify some unitary
representations attached to the minimal parabolic subgroup. The new
ones will be degenerate series, induced from a finite-dimensional
representation of a noncuspidal maximal parabolic subgroup, and they
have the striking feature that the finite-dimensional representation
of the M of the maximal parabolic is usually nonunitary.

For SU(N,2) with N 2 3, we have already fixed a choice of the
M and the A of a minimal parabolic subgroup in §§1-2, and we
defined linear functionals fl and f2 on the Lie algebra of A.

We continue to write v = afl-kbfz, and we return to the assumption
that v 1s real-valued. The positive Weyl chamber is given by

a 2 b 2 0. An irreducible representation ¢ of M can be written

(nonuniquely) as

where o, 1is an irreducible representation of U(N-2). If o, has
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N_
highest welght A cjej, then the infinitesimal character of
J=1
U(MAN,o,v) is
§-2 m n
le(cd +3(N-2)-1))e; + pley g +eyp) + eyt eyp1)
b
+ pley_1 - eyup) +3leg-ey) - (8.1)

We shall define a "fundamental rectangle" in the v space. If
we restrict o +to the subgroup of M where ® = 0, Wwe obtain a
representation o4 of the M for a subgroup SU(N-1,1) of
SU(N,2) . The corresponding A for this SU(N-1,1) has b= 0.
Let a, be the first point > 0 such that the infinitesimal
character of the representation of SU(N-1,1) induced from o, and
afl is integral and fails to be singular with respect to two linearly
independent roots. Operationally a, 1s the first value >0 of a
in n-1-m+2%Z such that %(m+a) and %(m-a) do not both appear
among the numbers ¢ +3(N-2j-1) for 1< j<{ N-2. similarly the
condition 6 = O leads us to a different subgroup SU(N-1, 1) and
to a representation Jd, of its M, and we define D relative to

0
95 and bfe. The fundamental rectangle is then given by

0{agla; and 0<Db<by.

Tn this section we shall identify some points in the fundamental
rectangle that correspond to unitary representations. In Proposition
8.2 we shall see that the remaining points in the fundamental
rectangle do not correspond to unitary representations. Because of
Theorem 2.1, Conjecture 5.1 would imply that there is at most one Vv
(for fixed o) outside the fundamental rectangle that corresponds to

a unitary representation unless ag = bo =0 and m=n.
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LT ay =0 or bo = 0, then there are no unitary points at all
unless m =n (cf. [1], Theorem 6.1), and in this case the points
with b = 0 do not have well defined Langlands quotients. Thus we
shall assume a, > 0 and b, > 0 in our analysis.

We can determine which U(MAN,o,v) are reducible as in [10] by
decomposing the standard intertwining operator for the large element
of the 8-element Weyl group. The result is that the only reducibility

within the fundamental rectangle occurs on the lines

a+b

Il

Im-n| +2¢, 4 an integer > 1

Im-n| + 2k, k an integer > 1.

a-=>b

In view of Proposition 3.1 of [11], the representation U(MAN,c,v) at
b=0 with 0 g a i 2y is unitarily induced from a complementary
series of SU(N-1,1) and hence is unitary. Since the standard
intertwining operator is the identity at v = 0, it follows from a
familiar continuity argument that the following wv's 1in the positive
Weyl chamber within the fundamental rectangle correspond to unitary

representations:
(1) the triangle a+b < |m-n| + 2 (8.2)

(ii) the triangles
a-b> Im-n| +2k, a+b{ |m-n|] +2k+2 (8.3)

for each integer k ) 1.

These unitary points had been recognized earlier. (Cf. Knapp-Stein
[12] for (i) and Guillemonat [5] for (ii).) Further unitary points
are given in the following proposition, which was announced in [11].
Some of these points were recognized independently by Schlichtkrull
[14].
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Proposition 6.1. Within the fundamental rectangle when ag 50

and b, > 0, the points v on the lines
a-b=|m-n| +2k, kan integer > 1, (8.4)

correspond to unitary representations.

Proof. On any line (8.4), the argument with the intertwining
operator that detected reducibility of U(MAN,0,v) shows also, just
as in [10], that the Langlands quotient is an irreducible degenerate
series representation as long as v is in the interior of the
fundamental rectangle and y 1is not at a point where the line (8.4)

crosses a line

a+b=|m-n| +2¢t, 1 an integer ) 1. (8.5)

The idea is to show that the irreducibility of the degenerate series
persists at the crossing points. Then it follows by a continuity
argument that the unitarity established by (8.3) at one end of the
line (8.4) extends along the line to the other end at the edge of the
fundamental rectangle.

Fix k and &4, and let us reparametrize the lines (8.4) and
(8.5) about the crossing point by

I

(a,b) = (|lm-n| +k+2 +s,2-k+s) in the case of (8.4)

1]

(a,b) = (lm-n| +k+2 +t,2-k-1t) in the case of (8.5).

We denote the respective full induced representations along these
lines by UI(S) and Ui(t), the sign referring to the slope of the
line. For any admissible representation w, let @(m) denote the
global character.

We treat only m > n. Use of the intertwining operators
(including knowledge of decompositions in SL(2,€) and the fact that
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the image of the Langlands intertwining operator is irreducible)
implies in deleted neighborhoods of s =0 and t = 0 that we have

8 (uy(s))

8 (U(t))

@(DI(S)) + 8 (Uy(s)) (8.6a)

8 (p1(t)) +0(Uy(t)) , (8.6b)

with the characters on the right irreducible. Here D{(s) and Di(t)
are degenerate series induced from finite-dimensional representations
of a noncuspidal maximal parabolic subgroup, and U,(s) and U3(t)

are induced from the minimal parabolic subgroup with data as follows:

Ue(s) : same o_ but [m,n,a,b] replaced by

[m+k , n-k , m-n+l+s , L+8]

U3(t) : same o, but [m,n,a,b] replaced by

[m+L , n-4 , m-n+k+t , k+t] .

The decompositions (8;6) persist for s =0 and t =0, but the
characters on the right may become reducible.

Similar analysis of the intertwining operators for Ug(s) and
Ué(t) in neighborhoods of s =0 and t =0 (including O this
time) shows that

@(Uy(s)) is irreducible for s # O
®(U3(t)) is irreducible for all t
8 (U,(0)) = @(De(o)) + B(U3(0)) irreducibly . (8.7)
Let J(0) be the Langlands quotient of UF(0) = U7(0) .
We shall show shortly that the only irreducible composition
factors that can occur in UI(O) are J(0), D,(0), and U3(0), and

we know J(0) occurs with multiplicity one. Consideration of

Gelfand-Kirillov dimension (see Lemma 2.3 of [16]) then shows that
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8(p7(0)) = ©(3(0)) + W (D,(0)) (8.8)

for an integer u 2 0. We are to show that u = 0.

Let ¥ denote the effect on characters of tensoring with the
finite-dimensional representation of SU(N,2) with extreme weight
ken+2 and then projecting according to the infinitesimal character

given by the sum of (8.1) and ke Direct computation with the

N+2 °
ald of Corollary 5.10 of Speh-Vogan [15] shows that

¥8(U7(0)) = 48 (Upy(0)) = @ (up(0)) (8.9)
¥8 (U3(0)) =@ (u3(0)) »

where Ué(o) and Ué(o) are induced from the minimal parabolic

subgroup with data as follows:

Ué(o) : same 0, but [m,n,a,b] replaced by

[m+k , n , m-n+L , L-k]
Ué(O) : same o. but [m,n,a,b] replaced by

[m+t , n-4+k , m-n+k , 0] .
Just as in (8.7), we have
®(us(0)) =®(p5(0)) + @(Ué(o)) irreducibly (8.10)

with Dé(o) # 0. Applying % to (8.6a) at s = 0 and using (8.9),
we see that $®(DI(0)) = 0. But then % applied to (8.8) shows that
w® (D4(0)) = 0 (and also #@(J(0)) = 0) . Since D,y(0) # 0, we
conclude u = 0.

We are left with showing that the only irreducible composition
factors that can occur in U{(O) are J(0), Dy(0), and U3(0).
If the infinitesimal character is integral at our crossing point, then

the fact that the crossing point is inside the fundamental rectangle
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implies the infinitesimal character is orthogonal to four mutually
orthogonal roots. Four is too meny singularities for any representa-
tion attached to G or to the cuspidal maximal parabolic subgroup,

and four implies that eN-1°’ oy’ Oys1° and et participate in
the singularities in the case of the minimal parabolic subgroup. Then
it follows that J(0) , DE(O), and U3(O) are the only irreducible
representations with the same infinitesimal character as Ui(o).

When the infinitesimal character is not integral at the crossing point,
then it i1s so far from being integral that it is not the infinitesimal
character of any representation attached to G or the cuspidal
maximal parabolie subgroup. Moreover, the only way it can be the
infinitesimal character of a representation attached to the minimal
and e

parabolic is if the coefficients of are

°N-1’ °m’ Sm1’ N+2
merely permuted among themselves (in which case we are led to J(0),
DQ(O?, and U3(O)) or if N 6. TFor N 4 there are no crossing
points under study, for N =5 only o +trivial is of concern and it
is handled by inspection of the integrality, and for N = 6, inter-
change of the first 4 entries of the infinitesimal character with the

last U entries leads to a nontrivial change of the representation on

the 8-element center. Proposition 8.1 follows.

Applying Theorems 6.1 and 2.1, we immediately obtain the

followling complementary result.

Proposition 8.2. For SU(N,2) with the minimal parabolic, with

o such that the fundamental rectangle has ag > 0 and b, > 0, and
with v real, no points v within the closed fundamental rectangle
and the closed positive Weyl chamber correspond to unitary representa-

tions except those listed in (8.2), (8.3), and Proposition 8.1.
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9. Series associated with cuspidal maximal parabolic

Let MAN be the cuspidal maximal parabolic subgroup of SU(N,2) ,
N 2 SHE Let b c 1 be a compact Cartan subalgebra, let A Dbe the
roots of (gc,bc), and suppose that A is constructed by Cayley

transform ¢ from a noncompact root a.

Proposition 9.1. Let ¢ ©be a discrete series representation of

the M of the cuspidal maximal parabolic subgroup of SU(N,2), N Z 3,
and let RO be its infinitesimal character. Let to 2 0 be the
least number such that h0-+toa is integral and fails to be
orthogonal to at least one compact root and one noncompact root. For
t> 0, J(MAN,0,tc(a)) is infinitesimally unitary for 0< t < t,

and not otherwise.

Sketeh of proof. Either RO-+§a is integral (the "tangent
case") or xo is integral (the "cotangent case"). We sketch the
proof only in the tangent case.

Fix (A_)+ to make g dominant for it. Replacing a by -a

if necessary, we can arrange that A +t.o is nonsingular with

0 0
respect to the noncompact roots in A. Then we can introduce
At = (A+)1 as in §3 so that AO is AY dominant and « is simple.
Letinr = t0—+%. For 1< J < r, we shall introduce recursively
positive systems (A+)j, subsystems Ej generated by simple roots,
and forms X4y SO that ((A+)J,EJ,XJ) is a Zuckerman triple (see §7)
with parameters corresponding to J(MAN,0, (j-3)c(a)) and so that
((ﬁ+)r,2r,xr) is nondegenerate. Theorem 7.1l then says that unitarity
does nct extend beyond tog(a).

In addition, each EJ will correspond to a subgroup of G of
real rank one, 23+1 will be generated by EJ and the roots

orthogonal to ko-f(j-é)a, and the members of (a*)j not in Ej+1
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will remain in (A+)J+l. Since }O-bta can be orthogonal to roots
only for t in Z + % and cannot be orthogonal to more than two
distinet roots (up to sign) if t > 0, it follows that (Ag +ta, B
is nonzero for 0 ¢ t < t, and g in ﬁ: but not E_. sSince

(10: BY > 0, we see that
(Ag+ta, B 20 for 0 t< tyend p in AL but not .. (9.1)

Let L be the subgroup of G corresponding to Br. Since L has
real rank one, any nonunitary principal series representation of L
that is orthogonal to two linearly independent roots is irreducible.
Combining this fact, the inequality (9.1), and the theory of [15],
we see that U(MAN,o0,tc(a)) is irreducible for 0< t < t,. Then
a standard continuity argument shows that J{MAN,G,Qs(a)) is unitary
for 0 € € ty -

Thus the whole issue is to construct ((A+)J,Ej,xj) and verify
1ts properties. We define X; = {*a} and choose (A+)j to make
K0-+(j -1-¢)a dominant (for e » 0 small). The (;Q"L)'j positive

roots that are orthogonal to A,+(j-%)a are (a™) simple, and

J
33+1 is taken as the root system generated by Ej and these roots

if j< r. We define X by
Xy - p(a_,_)J ¥ szj = Ay + (- $)a.

Then we can verify all the asserted properties.
The tricky step (and here we use real-rank(G) £ 2), is to

check recursively that the minimal K-type is given by

i i R

In passing from Sj to IZ we adjoined two simple roots, one

J+17’
compact (say ﬁj,c) and one noncompact (say ﬁj,n)' The fact that

the real rank is g 2 enters the proof of the identity
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2923+l,n = EPE_’n = ﬁj,n 5 ﬁj,c + O T o sl i Shtd ho

which is proved at the same time as the fact that I corresponds

J+1
to a group of real rank one. Then it follows easily that Aj = ﬁj+1
for 1< j< r, and one shows that A, 1is the minimal K-type by

using Theorem 1 and Lemma 3 of [9]. As we remarked at the end of §7,

: -
A, is necessarily (AK)r dominant.

10. Duflo's method and the basic cases for SU(N,?2)

Duflo [3] succeeded in proving that certain nonunitary principal
series representations in some complex groups are not unitary by
computing some determinants associated to an intertwining operator
explicitly and finding two K-types on whose sum the operator is
indefinite. In [11] we indicated how Duflo's method can be adapted
to real groups. 1In this section we shall apply the method to the
basic cases in SU(N,2) in order to prove Theorem 2.1. We are
indebted to P. Delorme for a useful suggestion that helped us in
this analysis.

We have already established in §8, especially in Proposition 8.1,
that the representations asserted to be unitary in Theorem 2.la are
indeed unitary. For the representations in part (d) of the theorem,
the unitarity follows from the standard continuity argument for the
intertwining operator, which is scalar at v = 0.

Also in §8 we noted that (c) of the theorem follows from results
about minimal K-types. The claimed nonunitarity in (d) follows from
the Dirac inequality (Lemma 7.2); A" 4is taken either from the
standard ordering given by indices (1,2,...,N+2) or from the

ordering (N+1,N+1,1,2,...,N). The remainder of Theorem 2.1 consists



156

of assertions of nonunitarity that we shall prove with Duflo's method
and supplementary applications of Lemma 7.2.

Sample detailed calculations appear in the case of 8U(2,2) in
[10]. 1In dealing with SU(N,2), we must replace SL(2,R) in that
kind of calculation by SU(N-1,1). Thus we need to know the
scalar value of an SU(N-1, 1) intertwining operator on a K-type
in a nonunitary principal series representation. We shall give that
information, then say what intertwining determinants arise from
certain K-types of SU(N,2), and finally tell what nonunitarity is
established by each of the K-types. The actual calculations of the
intertwining determinants, which are carried out in the style of [10],
will be omitted.

In Gy = SU(N-1,1), write

and let o, “—3 eipa

with |p| { N-2. The minimal K,-type is one-
dimensional, and we normalize the intertwining operator to act as 1
on it. The Kl—types in the induced representation are the ones of the
form

N-1 1
u

iqgb
( eie) T w(k,O,---,o,L)(“)r (10.1)

where k> 024 and g=p-k-4. Let the A; parameter be af,,
where Efl is the real root. Reformulating some identities of Klimyk
and Gavrilik [7] suitably, we find that the intertwining operator is

given on the K,-type (10.1) by the scalar
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1 2y~ (a+b-K+1) 2j+(a-p-N+1)

0
[TT (23+(a_p+N_l))M T (23_ (a+p+N_l))_J . (10.2)

J=0 J=t+1

The denominators are nonvanishing for a _)_v_ 0 and for our purposes can
be discarded.

Returning to SU(N,2) , consider the basic case ¢ <> ei(m9+rrp)
with m Z n, and form the representations of K glven by

N 2
W

o By i
r(* Yoy | o) = (aetm)TrY Thace2).
0 B Wor Z5 Wi Zy

We now give the functions of v = af‘l+bf2 that arise as intertwining
determinants from certain K-types. We neglect global constants and

also irrelevant denominators like the ones in (10.2).
1) Fix an integer ¢ > 0, let r=m+4, let {P} = ¢, and

let {Q} be the holomorphic polynomials of degree m-n-+2L. Then

the intertwining determinant works out to be

(a+b+n-m-23j)(a-b+n-m-23) .
AL

=

J

2) Assume m-n > 1. Let r =m, let {P} be the holomorphic
polynomials of degree 1, and let {Q} ©be the holomorphic

polynomials of degree m-n-1. The intertwining determinant is

b-n-(N-1).

3) Assume m-n > 1. Let r=m-1, let {P} be the
antiholomorphic polynomials of degree 1, and let {Q} ©be the
holomorphic polynomials of degree m-n-1. The intertwining
determinant is

a+m- (N-1) .
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4) et r=m-1, let {P} be the antiholomorphic alternating
tensors of rank 2, and let {Q} be the holomorphic polynomials of

degree m-n. The intertwining determinant is

[a+m-(N-1)][b+n- (N-1)] .

5) Let r=m+1, let {P} be the holomorphic alternating
tensors of rank 2, and let {Q} be the holomorphic polynomials of

degree m-n. The intertwining determinant is

[2-m-(N-1)][b-n-(N-1)].

We can use these determinants to exclude many representations
from being unitary. If such a determinant has one sign in a region
where unitary points occur, then no points are unitary in the region
where the determinant takes on the opposite sign. From the
determinants (1) it follows that no points with a-b £ m-n+2k for
an integer k 2 1 are unitary except those in the triangles listed
in Theorem 2.la. If m» 0 and m-n > 1, then (2) and (3) exclude
all points outside the fundamental rectangle if n { -m, and (3)
suffices by itself if n > -m.

If m=n, then either (4) or (5) excludes points in the interior
of the region to the right or above the fundamental rectangle (but not
both), and one can exclude all the remaining points outside the
fundamental rectangle except (2.3) by using a suitable Dirac inequality
(Lemma T7.2). For the Dirac inequality one forms Q+ from the standard
ordering (1,2,...,N+2) or from the ordering (N+1,N+2,1,2,...,N).

Finally if 0 > m > n, then (2) excludes points strictly above
the fundamental rectangle, and (5) excludes any other points to the
right of the fundamental rectangle except those on the same horizontal
as the top edge. One can then exclude all the remaining points outside

the fundamental rectangle except (2.3) by using a suitable Dirac
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inequality (Lemma 7.2). For the Dirac inequality one forms At from

the standard ordering (1,2,...,N+2). This completes the proof of
Theorem 2.1.
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