Intertwining operators for
semisimple groups

By A. W.KnAPpP* and E. M. STEINT

This paper contains the detailed presentation of results previously an-
nounced in [20], [21], and [22]. Our objective is to analyze the intertwining
integrals for semisimple Lie groups. To do so, it is necessary to investigate
their meromorphic character, find their normalizing factors, and obtain the
relations they satisfy. The main reason for making this study is that there is
an intimate connection between these integrals and the irreducibility of the
principal series, on the one hand, and the unitarity of the analytically contin-
ued representations (the complementary series), on the other hand. To de-
scribe these matters in greater detail, we require some notation.

Let G be a connected semisimple matrix group and G = ANK an Iwasawa
-decomposition. We write M and M’ for the centralizer and normalizer of A
in K, and V for the subgroup contragradient to N. Then for each finite-dimen-
sional irreducible representation of MAN, given by

(o, \): man — g(m)\(a) ,
‘we obtain the representation U(g, \) of G that it induces. The representations
formed this way when X\ is unitary are the principal series.

For each element w of M’ and each (o, A) we can consider the intertwin-
ing integral A(w, o, \) defined formally by

©.1) A(w, 7, F () = S fwwa)do .

vnw—1

This integral depends in an essential way only on the residue of w modulo M,
and thus in effect only on the element of the Weyl group that w represents.
A basic property of the integral (0.1) is the intertwining relation

0.2) A(w, o, \) U(a, »)y = Ulwo, w\)A(w, g, \) .

Now the integral given by (0.1) actually converges only for certain characters
A, and only for some nonunitary ones at that. (The characters of A correspond
to points in C", where r = dim A is the real-rank of G; the unitary \ corre-
spond to points with imaginary coordinates.) It can be shown that these

* Supported by National Science Foundation grants GP 7952X and GP 11767.
T Supported by AFOSR grant AF 68-1467.
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integrals may be continued analytically in A to give meromorphic functions
defined in all of C".

From our point of view the main problem is that of finding the normalizing
factors 7(w, o, \) for the integrals (0.1). Using these, one defines the normal-
ized intertwining integrals

(0.3) Q(w, a, \) = Y(w, g, \)*A(w, o, \) .

The importance of the normalization may be understood on several related
levels: (a) The factors 7 eliminate the inessential poles of A and maintain the
essential ones. As such the normalizing factors (and, more precisely, their
poles and zeros) provide decisive information concerning the irreducibility of
principal series and the existence of complementary series, together with the
“width” of the strip of complementary series. (b) With these factors the
operators @ become unitary for unitary A. (¢) The normalizing factors are:
necessary also in proving the cocycle relations that the intertwining operators
satisfy, whose relations mirror those in the Weyl group.

The study of the intertwining operators and their normalizing factors can
be reduced to a large extent to the case of real-rank one. In that case the:
operators one is led to deal with are natural extensions of the Euclidean sin-
gular integrals of Mihlin-Calderén-Zygmund, to the context of nilpotent
groups. While in the Euclidean case the L? theory can be dealt with satis-
factorily by the use of the Fourier transform, in our situation new techniques
must be used, since invoking the group Fourier transform seems to lead to
unmanageable problems. The L? theory of these singular integrals is carried
out in Part I of this paper. The main result is that the singular integral leads
to a bounded operator on L? if and only if a certain mean value vanishes.’

Part II deals with the application of the above singular integrals to the
real-rank one case of semisimple groups. After some preliminaries we isolate
in Proposition 27 a factor ¢,(2) in terms of which the normalizing factor 7,(z)
is constructed. A closely related aspect is the connection of reducibility in the
principal series with the vanishing of a certain mean value; such vanishing
happens if and only if ¢,(z) is regular at z = 0. (See Proposition 20 in § 8 and
Proposition 27 (vii) in § 9.)

The main result of Part II is the explicit determination of the factor ¢,(z).
This is given by the identity c¢,(z) = constant X p,(2)™, where p,(it)d¢ is the
measure for the nondiscrete part of the Plancherel formula for G. There are

! Once the L2 theory is established, the L? theory can be carried out in a way that
has some similarity to the classical case. This was proved by Riviere [31], Coifman and
de Guzman [6], and Kordnyi and Vagi [23].
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two steps in the proof of this. The first step relates ¢,(z) with the asymptotic
behavior of certain entry-functions of the representation U(g, \). The second
step relates this asymptotic behavior to the Plancherel measure. Since the
functions whose asymptotic behavior we consider are in reality eigenfunctions
of systems of Sturm-Liouville equations, the relationship of their asymptotic
character to the Plancherel measure follows the broad lines of a known
heuristic principle; see, e.g., Coddington and Levinson [6, pp. 255-257], Barg-
mann [1], and Harish-Chandra [12]. However, neither the existing theorems
nor the recently announced asymptotic results in Harish-Chandra [14, § 13] are
of the form where they can be applied here.* So we are compelled to derive
the needed facts in §§ 10-11 in order to complete our identification of ¢,(z) with
2,(2)~'. As a by-product we also obtain sharp error terms for the asymptotic
behavior, valid in strips.

The above can then be used to describe completely the situation concer-
ning irreducibility of principal series (§ 12) and to deal with the existence of
complementary series (§§ 13-15) for the real-rank one case. A useful notion
for the latter is the critical abscissa, which has the property that in the in-
terior of the interval it defines there is a complementary series, but on the
boundary the corresponding inner product ceases to be strictly positive defi-
nite. Again the function ¢,(2) plays a crucial role in locating the critical ab-
scissa. (See Theorem 6 and the definition that precedes it.)

In Part III the results for the real-rank one case are applied to the gen-
eral situation of higher rank. The technique of reducing matters to the real-
rank one case was begun by Kunze and Stein [26] and is facilitated by more
recent results of Schiffmann [32]. Also used in a significant way are the nor-
malizing factors of the real-rank one case determined in Part II. What we
prove is the following:

(i) If o(w)Q(w, g, 1) is not a constant multiple of the identity, then U(g, \)
is reducible for all » such that wx = \.

(ii) If o(w)@(w, o, 1) is a constant multiple of the identity and if the formal
symmetry condition obtains, then there is a complementary series. What are
lacking in general (but we show in the real-rank one case) are converses to (i)
and (ii). Finally,

(iii) The relations we prove for the (i’s allow us in principle to reduce the
conditions in (i) and (ii) to the explicitly known cases of real-rank one. Not all
the consequences of this reduction have yet been worked out, and the comple-
tion of this program appears to be at present an ambitious effort. To indicate
the promise of this kind of approach, we cite the following two results. First,

* See footnote at end of the paper.
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in § 19 we show that for any complex G there is a complementary series when-
ever the formal symmetry condition obtains. (This is not true for the general
case of real groups, as is already shown by the example SL(2, R).) Second, in
§ 20 we show that whenever » is even, there are reducible representations of
the principal series of SL(n, R), contrary to the existing claims in the litera-
ture. (See Gelfand-Graev [10].)

It should be emphasized that in these questions the special case of repre-
sentations of the principal series arising when o is trivial on M is not indica-
tive of the complexity of the general problem. For example, in that case there
is always irreducibility in the principal series, and there is always a comple-
mentary series whenever the formal conditions of symmetry obtain. More-
over many of the results derived here were known earlier in the case when ¢
is trivial on M.*

We mention here several other recent papers that have a bearing on our
work. Kunze [25] obtains in certain cases the complementary series for complex
groups. The paper by Harish-Chandra [14] containing the asymptotics of
generalized spherical functions has already been alluded to. In Schiffmann [33]
an alternative and independent derivation is given for some of the material of
§9, dealing with the analytic continuation of intertwining integrals; alsoPartIII
uses his earlier results in [32]. It is also our pleasure to acknowledge helpful
suggestions from C. Fefferman and H. Garland, which have been incorporated
into the text.
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I. SINGULAR INTEGRALS

1. Notation, statements of theorems

The Calderén-Zygmund Theorem [5] gives conditions under which a
principal-value convolution operator on R” is a bounded operator on L? for
1 < p < co. In Theorem 1 we shall give a generalization of the L? part of
this theorem to operators on nilpotent Lie groups. Theorem 2 goes in the con-
verse direction, asserting that one of the conditions in Theorem 1 is necessary
in order that some reasonable interpretation of the convolution operator (as
a principal-value integral or otherwise) be bounded.

Let X be a connected, simply-connected nilpotent Lie group. A contin-
uous one-parameter group {J,, 0 < r < «} of automorphisms of X will be
called a one-parameter group of dilations if the differentials (3,), at the iden-
tity 1 of X satisfy (0,), = »? for a diagonable transformation D with all
eigenvalues positive. This condition implies that (6,), has all eigenvalues >1
if » > 1 and that lim,_, 6,0 = 1 for all z in X.

If {0} is a one-parameter group of dilations, a norm function on X is a
C= function |2 | from X — {1} to the positive real numbers, having the three
properties

(1) o7t = |z

(ii) |o0,x| = r? || for a fixed number ¢ > 0

(iii) the measure |2 |~ dx is invariant under dilations.

In the corollary to Proposition 2 we shall see that if a function |z | satisfies all
these properties but (iii), then some positive power of it is a norm function.
The proof of the proposition and of Lemma 1 will show, for a norm funection,
that (iii) implies that the number ¢ in (ii) is the trace of D. Condition (iii) has
equivalent formulations that are given in Proposition 2.

Examples: (1) Let X = R", 9, = scalar multiplication by », ||z || = the
usual Euclidean norm, and |« | = ||« ||". Theorem 1 below for this special case
was proved by Mihlin [27] in the case ¢ = 0 and by Muckenhoupt [28] in the
case t # 0. The L? version of Mihlin’s theorem is due to Calderén and
Zygmund [5].

(2) Let X =R""' = {(x, +-+, 2, t)}, fix a positive integer m, and let
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5,,.(.’1}1, ey Lpy t) = (’I".’l)l, ey Thh, Tmt) .

Let M be a positive constant, and put |2 | = max (||« |*™, Mt?). Then | |isa
norm function, and Theorem 1 is similar to the main result of Jones in [19].
(Actually Jones’s result corresponds to the limiting case M — . But see ex-
ample (3).)

(3) Let X =R" let {d;, 1 < j < n} be positive scalars, and let

0,(Lyy o o0y ,) = (r41x,, «oo, ring,) .

Put [« |=(min{0 = 0|> a%/0*i <1})*i. Then |« | is a norm function, and
Theorem 1 for this case when ¢ = 0 is the L? part of Theorem 1 of Fabes and
Riviére in [9]. Fabes and Riviére show that Jones’s result [19] in example (2)
follows from theirs.

(4) Let X be the group of 3-by-3 real matrices

1 0 O
x, 1 O)‘ s
T, ox, 1

let 0,(w,, @3 a3) = (ray, 72, 7°2,), and put

1 2
[ (@, @y @3) | = (@] + @7)° + (ws — ?wlxz) .

Then || is a norm function. It issubstantially the same as the norm function
that will arise in Part II in the special case that the semisimple group G is
SU2,1).

Return to general X. It will be shown in observation 2 of § 2 that any
set {x|c = |x| = d} with 0 < ¢ < d is compact. Consequently the integrals
appearing in the statement of Theorem 1 are well-defined.

THEOREM 1. Let X be a connected simply-connected nilpotent Lie group,
{0,} a one-parameter group of dilations, |x| a norm function on X, H a
separable Hilbert space, and Qx) a C= function on X — {1} to the space of
bounded operators on H (with the norm topology). Suppose that Q(0,x) =
Q(x) for all r and x. Let t be a fixed real number, and suppose that one or
both of the following conditions hold:

(@) S . Q(x)dx =0 for some (or equivalently all) ¢ and d with 0<c<d.

c=|z|

B t+0.
Let fe XX, H). If (a) holds, then the limit

Tf(w) = Hm, oy S Y [ Q) f (y)dy

eslyl=m

exists in LA X, H), and f— Tf is a bounded operator on LX(X, H). If () fail.



OPERATORS FOR SEMISIMPLE GROUPS 495

but (B) holds, then the same conclusion is valid, provided that the limit is
taken over appropriate sequences of €'s and M’s tending to 0 and «, respec-
tively.

THEOREM 2. Let X, {0,}, |z|, H, and Q) be as tn Theorem 1 with
Q(0,x) = Q(x) for all r and x, and suppose that () does not hold. Then there
exists no H-valued distribution dp defined on C7(X, H) satisfying the follow-
ing two conditions:

(V) Away from the identity, dt is equal to the function Q(x)/| x |.

(0) The mapping f— Sdp(y) f(yx) defined by f in C(X, H) extends to a
bounded operator mapping L*(X, H) into itself.

2. Properties of norm functions

Throughout this section we assume that X is a connected, simply-connected
nilpotent Lie group, that {0,} is a one-parameter group of dilations, and that
|| is a function on X — {1} having all the properties of a norm function ex-
cept possibly (iii). We shall obtain some results about the measure |« |~ da
and then proceed to the proof of an important inequality (Lemma 6) used in
the proof of Theorem 1.

LEMMA 1. There is a real number h > 0 such that d(d,x) = r*dx for
all » > 0.

Proof. Since 6, is an automorphism of X, we have d(0,x) = det (d,),.dw.
Since {9,} is a continuous group, det(d,), is continuous in » and satisfies the
functional equation f(rs) = f(r)f(s). Hence det (6,), = r* for some h. Since
det (6,), — 0 as » — 0, we have & > 0.

PROPOSITION 2. The following conditions on | x| are equivalent.

(1) |a|™ dx is invariant under dilations (and therefore |x | is a norm
Sfunction).

(2) S x| de = Clogr for a fixed C and all r = 1.

1|zl sr

(3) |@ | dx s independent of k.

2k§|”]§2k+1

(4) If q is the number in (ii), then d(9,x) = r'dx.

Proof. If b is as. in Lemma 1, we show all four statements are equiv-
alent with the condition # = ¢q. For (4) this is obvious. For (1) it follows from
the identity |0,x|~"d(d,x) = r** |z | dx. For (2) and (3), define

= lertds.

18]zl sr

A simple change of variables shows that



496 KNAPP AND STEIN

2.1) SArs) = f(r) + r*"=f(s) .
Since f'is clearly continuous, (2) holds if and only if » = ¢. By (2.1),
F2) - figh = 240pe)
and thus (3) holds if and only if » = q.
CoROLLARY. Some positive power of | x| s a norm function.
Proof. In fact, ||*?is a norm function, by the equivalence of (1) and (4).

PROPOSITION 3. Let |x | be a norm function and let C be the constant in
(2) of Proposition 2. If H is a separable Hilbert space and Q(x) is a contin-
wous function on X — {1} whose values are bounded operators on H and which
satisfies Q(0,x) = Q(x), then there exists a bounded operator OM(Q) such that

2.2) | 2@s(2Dds = con@) | sy

Jor every measurable complex-valued function f on (0, ) such that either
side 1s defined.

Remark. We can regard 91(Q) as the mean value of Q over the “unit
sphere” defined relative to |z |.

Proof. Letting

S Q) |« | da forr > 1
F(’I) — 1sizl =7
—S Qx) |z | da foro<r=<1,
r<lz| =1

we obtain, just as in equation (2.1), F(rs) = F(r) + F(s). Since F is contin-
uous,

F(r) = COMQ) log r

for some bounded operator 9(Q). This proves (2.2) for functions f that are
r~' times characteristic functions of intervals. Forming linear combinations
and passing to the limit, we obtain the proposition.

If 9C is the Lie algebra of X, then the exponential mapping is a diffeomor-
phism of 9C onto X. It will be notationally convenient to identify 9C and X by
means of the exponential mapping, so that N has four operations — addition,
scalar multiplication, bracket multiplication, and group multiplication. Under
this identification, Haar measure is Lebesgue measure and 8, = (,),. The
identity will still be called 1. We have assumed that (3,), = »? for a diago-
nable transformation D with positive eigenvalues. Fix a basis {X:} of eigen-
vectors for D and define positive numbers p; by the equations
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0,(X;) = riX; .
We make some observations about the function |z |.

(1) || extends to a continuous function from X to the non-negative
real numbers under the definition |1 | = 0.

(2) {x||x|=<1}is a bounded set. Consequently the inverse image under-
| @ | of any compact set of non-negative reals is compact. [In fact, take an inner
product on X, let B be the closed unit ball, and let S be the unit sphere. Since
S is compact and is in X — {1}, |x| has a positive minimum ¢ on it. If » =¢'/s,
then || =1o0n,.S. It follows easily that {x||x| < 1} Z6,B and hence that
{x|| x| < 1} is bounded. The second statement follows from the homogeneity
property (ii) for |x].]

(3) There exists ¢(=1) such that |z +y|=<c¢(x|+|y]|) forall x and y.
[In fact, by (ii) we can assume |2 | + |y | = 1. By (2) and the continuity of |x|,
the set of (x, ) such that |« | + |y | = 1 is compact. Then ¢ can be taken as.
the maximum value of | + y | on this compact set.]

(4) If cisasin (3), then
le + e + x’nl = cn_l(|x1| + e + I’Un|)
by induction on % from (3).

LEMMA 4. If ||« || denotes a Euclidean norm on X, then there exvists ¢’
such that
(2.3) llyz| — 1] =yl
whenever |y| =1 and |z | = 1.

Proof. If 1/2 < |y| =1, the inequality is trivial. For |y| < 1/2, the
function f: X x X— R* given by f(y, ¥) = |yx| is smooth in a neighborhood
of the compact set where |y | < 1/2 and |2 | < 1, and therefore

If(yv ﬂ’/') _f(1’ 33) I =c || (y’ x) - (11 33) ” =c “y” .

LEMMA 5. There exist constants a > 0 and b > 0 with the following
properties: Whenever Y ¢, X; is such that |e¢;| = ar®'' for some i, then
|2-¢:Xi| = r. Whenever Y |cir™"!"| <b, then | c.;X:| < r.

Proof. {x||x|= 1} is compact by (2), and P;:Y_c,X;— |¢;| is contin-
uous. Thus we can choose a so that |¢; | < a for all ¢ whenever |} ¢. X;| = 1.
Also since f:Y ¢, X;— Y |c;| is continuous, > |c;| assumes its minimum,
which we define as b; b is not 0 because the identity is not in {x ||« | = 1}.
Now if |} e Xi| = », then |0,-),¢;X;| = 1, which implies that
|3 e "X, | = 1. Hence |c¢;| < ar®® and Y |cr?#| =b. The lemma
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follows.
As above, identify X with its Lie algebra by means of the exponential
map, and let X; be a basis of X such that J,.(X;) = r*X,.

LEMMA 6. Let ||x|| be the Euclidean norm on X obtained by using the
etgenvectors X; of {0,} as an orthonormal basis. There exists d > 0 such that,
Jor any M > 0,

el = e(M) x|
Jor all » in X with |x| < M.
Proof. If x =3 ¢, X, then

2] = (T ) < D' max e,
where D = dim X. Choose j so that |¢;| = |¢; | for all <. Then

1] Z (@i D0 ||| 0rs)ue
for some [, namely | = 7, and so

@] Z @D | |
by Lemma 5. Hence
x|l < aD'* [P,

and the lemma follows with d = min (p;)/q.

LEMMA 7. There exist constants ¢, and d with d > 0 such that

whenever |y | < |x| and © # 1.
Remark. The same conclusion is valid if yx is replaced by xy.

Proof. By (i) we may assume that |x| = 1. Clearly then |y | < 1. The
result then follows by combining (2.3) and Lemma 6.

3. The operators T,

Let X be a connected simply-connected nilpotent Lie group, {0,} a one-
parameter group of dilations, and |« | a norm function.

LEMMA 8. As in Theorem 1, let H be a separable Hilbert space and let
Q(x) be a C= function on X — {1} whose values are bounded operators on H
such that Q@6,x) = Q(x) for all » and x. Suppose that Q has mean value 0,
in the semse of Proposition 3. Fix f in C2(X, H). Then the limit as € — 0
and M — o« of
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Tuf@ = _ 1yl 0@y

eslylsy

ex1sts both uniformly and in L¥(X, H).

Proof. By Proposition 3 applied to |y [ |Q(¥) |, |¥ | Q(y) is in L* N L=
on the set 1 < |y | < . Consequently T, ,f converges uniformly and in L2 as
M — oo, Since Q has mean value 0,

T.f@) = | 1yl oaumdy

- S. |y 7 Q) Aye) — fl@)ldy

Let S= {9 ||yl =1, f(x) = 0or flyx) # 0}; S is bounded. Since multi-
plication is smooth, yx = = + v,,, with ||v,,|| < 4 ||y|| for (x, y) in S. Since
f is smooth, we have

f2) = flw) + ([d.f)(v.,)) + Rz, 9) ,

where d,f is a linear mapping from X to H, varying continuously with z, and
where ||y ||| R(z, ¥)| < B on S and lim,_, ||y | R(z, y) = 0. If 6 <e¢, then

| Ts,.f(2) — T, f(w) |
= S,,S,,,,ss |y |7 sup, (1Q@) {4 sup, || d.f|| + B ||y || dy .

The uniform convergence of T, f(x) as ¢ — 0 therefore follows from the finite-
ness of :

=lyl

<

Jooolvlllyliay,
o<lyl=t

which is a consequence of Lemma 6 and Proposition 3. Since the functions
T.,.f have support contained in a common compact set, the convergence is also
in L*. This completes the proof.

The next two lemmas will not be used in proving Theorems 1 and 2 but
will be used in Part II.

LEMMA 9. With notation as in Lemma 8, the operator lim,., ... T. us
defined on functions in C3(X, H), cannot be a scalar multiple of the identity
unless Q is identically 0.

Proof. Suppose the limiting operator is ¢ times the identity. In view of
the uniform convergence in Lemma 8, we then have

- ly |7 Q) f(y)dy = cf(0)

for all fin C;*(X, H). Choose f(y) = 9(| v )Q(»)*&, where & is a member of H

(3.1) 1ims—~0 S
eslyl
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such that Q(y,)Q(y,)*¢ = 0 for some ¥, and where g is a smooth function =0
vanishing in a neighborhood of 0 and non-vanishing at y,. Then the inner
product of the left side of (3.1) with & is positive, and the inner product of the
right side with £ is 0, contradiction.

LeEMMA 10. With notation as in Lemma 8, define, for s >0 and
feCr(X, H),

T = | 1y Q@)wa)dy -

Then lim,;, T.f = lim. e T..nf in L* for all f in C2, and the rate of
convergence 18 controlled by || f|l,, by the support of f, and by a uniform
Lipschitz constant for f.

Proof. First consider the difference

3.2) (ly [ = [y [T ")) flyx)dy .

Slslulsw
To see that (3.2) tends to 0 in L?, apply Proposition 3. Then the restriction of
(Jyl™ =y |"")Q(y) to 1 < |y| < o tends to 0in L?, by dominated conver-
gence, and (3.2) tends to 0 in L? since fisin L'. We are left with proving that
(3.3) lim,_, g (y™ = ly Ay ) dy

eslyl=1
tends to 0 in L* as s | 0. To do so, it is enough to prove uniform convergence
in 2, and, for any fixed x, we can assume f(x) = 0 since Q has mean value 0.
An argument like that in the proof of Lemma 8 shows that the integral (3.3)
with 0 < |y | £ 1 is absolutely convergent and that the question reduces to
showing that
(3.4 im | =y ylldy = 0.

o<lyl=1

But (3.4) follows from Lemma 6 and Proposition 3.

4. Proof of boundedness theorem

We turn to the proof of Theorem 1. We are indebted to C. Fefferman
for helping with the proof. Let X, {0,}, |x|, and Q(x) be as in the statement
of the theorem. The proof will be based on Lemma 11 below. For commen-
tary on the history of this lemma, see [20] and Cotlar [8].

LEMMA 11. Let ®(n) = 0 be a function on the integers —oo < n < oo
with ©® =) ()" < oo. If T, +++, Ty are linear operators on a Hilbert
space with || T¥T;|| < ¢t —J) and || T:T} || < (@ —4) for all i and J,
then || T, + «++ 4+ Ty|| £ ®, independently of N.
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Proof. Put T=T,+++++ Ty. We have || T;|’=|T}T;|| £ P(0) < Q.
Also || T||* = || T*T||. Since T*T is self-adjoint, its norm is given by its spec-
tral radius. Thus we are to estimate limsup || (T*T)"||'~. We have

(T* T)” = E(il ’’’’ igm) T: T’igTi: e TiZn 9

where each index ¢; extends from 1 to N. The assumptions of the lemma give
us the two estimates

WTET:, T Ty || < P; — 1) P(6 — To) e+ Plon — Tan—s)

T3 T3, Ty e+ Ty, || £ ©OP(4 — 1)P(Us — T4)+ + + Plgns — 202D &
The geometric mean of these inequalities is

| TxT, T« Tiy, || < ©OP(1;, — 1) 2P (5 — 1)1+ P (B — T20y)'® .
Sum on 1,,, then on 1,,_,, and so on through <,, letting each sum extend from
— o to <. Then

(T*T)" || < 38, @@~ = NO*
and so
| T|F = limsup,... [ (T*T)" [ < ®*.
Passing to the proof of Theorem 1, we consider first the case ¢t = 0. At

the end we shall indicate the changes in the argument needed for the case

t+0. The idea of the proof is to apply Lemma 11 to a sequence of operators
T, whose sum is to converge to T. Letting

Q(x) for 2F < |a| < 2F+
Qu(x) = .
0 otherwise,
we shall take as our operators
(@) T.fw) = | 1vI™ Quwfweds .

First we observe that the 7T, have uniformly bounded norms because
WTefll. = || 1y 7 Q@) ||, 1| £]l, and -

Hyl" e |, <sw. (@), vy,

ek <|y) <2k

with the right side independent of k£ by Proposition 2. In view of Lemma 11,

all we need is an estimate for || 7,7 || and || T} T, || when |j — k| is large.
Next, straightforward changes of variables lead to the formulas

1

2f@) = |l 1 Q) Aumdy

and
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T, T () = Sij(y)f(yw)dy ,

where
Gauw) = | 2y 17 127 Q) Qo) d

By Minkowski’s inequality, || 7,7 || <||Gjll.. Also T¥T, is of the same form
as T,Ty, except that the kernel Q(y) is replaced by a new kernel Q(y—)*
satisfying the hypotheses of the theorem. Thus we need estimate only || G lls
for large |j — k|. Furthermore,

Gi(y™)* = Gii(y)
from which it follows that |G |, = ||G,; || Thus we need estimate || G;, Ilx
only for large positive 7 — k.
Now, since Q; has mean value 0 and |Q,(y) | < sup [Q],

|Ginl) | < g Qyz) _ Q@) |2

|y | e 11 |y|
< (sup Q)| : —L]iyrldy
- hgiylsek+l] |y | |2 |
+ @) le| 900 - 9|1y dy
2k <)yl gek+1

Consequently, if F is the set {(x, y) [2* < |y| < 2%+, 27 < |yx | < 271, then

1Gall < Gup|@)*| | EIREL

+ sup | Q| SE |Qa‘(?/x)|x—l Q@) | _I__?lj_ldydx

= (sup |Q|)’I, + (sup |QI;, say.

Before estimating I, and I,, we shall specify a minimum size for j — k in
the estimates. By the same argument as in observation (3) of § 2, there is a
constant ¢, such that |2y | < ¢,(|2| + | ¥ |) for all x and y. In our estimates we
shall require that 2/=* > 8¢,. Under this condition, let (x, %) be in the set E
above. Then

el =ca(ly™ [+ vz = eyl + [yz]) = (@ + 27) < 46,29

and
|| = ot |yz| — |y| = eyt — 24+ = iyt — 2imro—li—kb > %crlzf .

So
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1

{4.2) 7@;‘21' < x| < 4c¢27 .

Also

(4.3) ly| < 2+ = 2-22-—k-92i < 251198 < L |,
2

We consider I,. If (z,y) is in E and 2/~* > 4¢,, then (4.2), (4.3), and
Lemma 7 show that
1 1 l: 1 ’1_ Iyxlléco(lyly 1
[y | || lya | || o]/ [ya]
< 20+ d2-A-02—i4e 29 | g |7
= Const 27¢0=9 | g |-,

Hence

1= (| v~ ay)(| [~ do) Const 244~
t= zk§|y|§zk+ll‘/| v Se i slnl s4e29 @ v)on

(4.4)
< Const 2—4—#

by Proposition 2.
For I,, we note that Q;(yx) = Q(yx) on E and hence

| Qya) — Q)| 1 Q) — Q)| 1
|| ly| || |y
:IZA+IzB-

In I,,, enlarge E to the set

dydzx

Izgg dydx+§

{Z=ivises Law <o) s 2}

{This is possible by (4.2).) On this set we have |y| < |2|/2 by (4.3). We claim
that for |y | < |z |/2,
(4.5) | Q(yx) — Q) | = Const (|y|/|=])*,
‘where d is the constant of Lemma 6.
To prove (4.5), we may assume by homogeneity that |#| =1 and |y| < 1/2.
‘Then the same style of proof as for Lemma 4 shows that
[Q(yx) — Q) | < Const ||y ||,

and (4.5) follows from Lemma 6.
From (4.5) we obtain

| Qyx) — Q) | < Const (i%)d < Const 2¢tk+0—dti—1

= Const 2-94—#
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on the enlarged set of integration. By Proposition 2
(4.6) I,, < Const 2—¢0—0 |

We consider

I, = S | Q@) — Q@) [ 1 dydz .
E Eq ly|

The integrand is 0 unless [z | < 27 or |2 | = 27*!, and we examine the set of «
for which this can happen. In any case, (x, ¥) in E implies |y | < |2 |/2 and
27 ¢'27 < || < 4¢,27 by (4.2) and (4.3). Suppose that |« | = 27+ and (z, y) is
in E. Then |yz|/|2| <1 and Lemma 7 gives

[1—2 a2 <1 |pmlllal] < ey /o) < a2
Hence
|[@] — 27+ < ¢27007P x| < 2¢,¢,27112740 0 |

and the contribution to I, from points @ with |« | = 2/+! is at most

(4.7) Zsup l @ I <Szkély|§2k+1 | Y l_ dy)(Sz“lélzl§21+1(1+2coc12—d<i—")) Ix |_ dm)
= Const log (1 + 2¢,,2799—")

by Proposition 2. Similarly if |« | < 27, then |yx|/|z| = 1 and
11— 2ol = |1—|llel| < clylal) < a2 o]
Hence
@] — 27| < ¢ /%) [ ]~ < 202027900,
and the contribution to I,; from points & with |2 | < 27 is at most
(4.8) Const log (1 — ¢2427¢6-R)~1 |

(Here we impose a further lower bound on j — k so that (4.8) is bounded.)
Combining (4.7) and (4.8), we see that

4.9) I,; < Const 2—¢U—0 |

Using the estimates (4.4), (4.6), and (4.9) and applying Lemma 11, we
"see that the partial sums

TJ‘"‘ Tj+1+ cee + T,

have norms bounded independently of j and k. Consequently, in the notation
of Lemma 8, the operators T.,, have uniformly bounded norms. Since Lemma 8
gives the convergence of 7., f for a dense set of functions f, 7., converges
strongly and the limiting operator is bounded. This completes the proof of
Theorem 1 for the case that ¢ = 0.
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Turning to the case that ¢ = 0, we begin by stating an immediate conse-
quence of Proposition 3.

LEMMA 12. If Q is as in Theorem 1 and if t = 0, then the real number
R = &*/'"! has the property that
S Qy)

REx|yIsRETL | g '

dy = 0

Jor every integer k.

We can now indicate the modifications in the proof of Theorem 1 for the
case t = 0. Choose R as in Lemma 12, let
Q(x for R* < |a| < R**!
o0 - 29 =1zl <
(0 otherwise ,

and define T, by (4.1). Lemma 12 and the same argument as with G;, in the
previous case show that it is enough to estimate

S S Q) _ Q@) || Q)
| yx |1—it | x |1—it | Y ll—it

The subsequent arguments in the previous case make no further use of the
mean value of Q, and it is enough to estimate
1

I,:S
E |y |

where E = {(z,y) | R* < |y|< R*', R" < |yx| < R"*'}. In the estimate we
can assume that R~* = 4Rc¢,. Then for (x, y) in E, computations similar to
those for (4.2) and (4.3) lead to the inequalities

dydx .

1 1

- . dydx
l yx ll—'l,t | x ll—zt ’

%cflRf < |2| < 2R¢,R’
(4.10) X

From the inequality or the argument of Lemma 7, we obtain

< Const (lLDd

(4.11) 1 - lpml™ o
|2

l € ll—it

for |y| < |«|. From (4.10) and (4.11) we obtain an inequality analogous to
(4.4), namely

I, < Const R—%—R |
Collecting results and applying Lemma 11, we see again that the partial sums

Tiw=Ti+ Tjss+ +++ + T
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have norms bounded independently of 7 and k. The argument of Lemma 8
shows that T},.f converges as j — — o, k— co, provided f is in C=(X, H).
Since the T}, have uniformly bounded norms, T}, converges strongly, and the
limit is a bounded operator. This completes the proof of Theorem 1 for the
case that ¢ = 0.

5. Unboundedness theorem
We recall the statement of the theorem in question.

THEOREM 2. Let X, {0,}, |z|, H, and Q(x) be as in Theorem 1 with
Q(0,x) = Qx) for all r and x, and suppose that Q has mean value DN(Q) (see
equation (2.2)) different from 0. Then there is no H-valued distribution dpe
defined on C(X, H) such that

(7) Away from the identity, du is equal to the function Q(x)/|x |.

(0) The mapping L given by Lf(x) = Sdﬂ(y)f(yx) for fin C>(X, H)
extends to a bounded operator mapping L*(X, H) tnto itself.

Before proving the theorem, we make two remarks. The first is that we:
can assume that H = C and that Q(x) = 1 identically. In fact, by Proposition 3.
we can write Q as the sum of a kernel of mean value 0 and a constant opera-

tor:
Q) = [Qx) — MQ)] + MQ) .

By Theorem 1 we can ignore, for the purposes of Theorem 2, the contribution
to L from the kernel of mean value 0. Thus assume that Q(z) = 91(Q) iden-
tically. If ¢ is a vector in H with (9U(Q)E, &) # 0, then the C-valued distribu-
tion dT on C;*(X) given by

[r@ata = (lan@iswe, ¢)

has the properties that [f(x) = S Sflyx)dT(y) is bounded on L*X) with
11 = |&)P|| L] and that, away from the identity, dT is equal to the function
(?)II(Q)E, 5)/ |2 |. Therefore we may assume that H = C and that Q(x) =1 iden-
tically.

The second remark is that if dy is any distribution defined on C:*(X) and
equal to 1/|x| away from the identity, then the operator L in () does map:
C(X) into L*(X). This remark follows from the fact that |« |~ is integrable
at infinity.

The first lemma below is elementary, and its proof is omitted. The second
lemma and the proof of the theorem use the notation A ~ B to mean that A
is bounded above and below by positive multiples of B independently of the
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parameters in question.

LEMMA 18. If U is a bounded nonempty open set in a Euclidean space,
then there is a sequence of real-valued C> functions f, with 0 < f, < ¥, and
with lim f, = ¥, pointwise.

LEMMA 14. Let N=max{lay|||c| <1, |y|<1}> 1. Then

1 1

PZIT
Sor all @, y, and z such that |2| = N*|x| >0 and |z| = N*|y| > 0.
Proof. We have
(5.1) ey | = Nmax{|z|, |y}
for all  and y, by homogeneity. If |b| < N~'|a|, then
la| £ Nmax{|ab|, |b~|} = max{N |ab|, N|b}

andso [a| < N|ab], or

(5.2) lab| = N~ |a]|.
Then (5.2) also holds when || < N~'|a|. By (5.1) and (5.2)
(5.3) N7'|a|Z|ax| < Nla|

whenever || < N~'|a|. Againby (5.2), |y|< N7 z|and |z| < N~*|z| imply
|yz| = N7'|2| =N |z| or |x| < N~'|yz|. That is, (5.3) applies with a = yz.
So

N~ |yz| = |yze| = N |yz| = N*|z].
But N%|z| < N7 |yz| by (56.2) with a = 27, b = y~'. The lemma follows.

For the proof of the theorem, suppose on the contrary that (2 = 1 and) L
is bounded. Let U be a bounded non-empty open set in X, which is topolo-
gically a Euclidean space, and choose f, as in Lemma 13. If x is not in the
closure U, then

(5.4) [totwa) 1y 1= dy = tim {£.w) 1y 1 dy

by dominated convergence. By (7),

(5.5) Vool o0 Ly 17y de = | Lfo) P e
S NLAIES ILIFIAIE S L IEm(D)

where m(U) is the measure of U. Passing to the limit in (5.5) and using (5.4)
and Fatou’s Lemma, we obtain
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(5.6) LA ) 1y dy| ds < L ipmew)

Let B be a fixed bounded set. Applying Schwarz’s inequality to the left
side of (5.6), we obtain

5.7) Lo\ e | dyde < | LI m(U)/m(B - O) .

We shall produce sets U = U, such that the left side of (5.7) is unbounded
while the right side remains bounded, and this will prove the theorem.
Let N be as in Lemma 14, and define

B. = {z||z|<¢}.
By Proposition 3, if m denotes Haar measure, then
(5.8) m(B,) = Ce .
Fix € > 0. As x varies over B, the sets B.x cover B,. By (the proof of)
Lemma 2.1 of [34], there is a sequence B.x; of these sets so that the B.x; are
disjoint in pairs and so that the union of the sets B.x; covers B;; here R is
any number large enough so that B,B,B, C B, and thus R is independent of ¢.
Clearly all the sets B.x; lie in B,. Let U, be the union of the “annuli”
(B.jx: — B.y)x;. If m is the number of annuli contributing to U., then (5.8)
and the covering property of the Bj.x; imply that

CRen = Y m(Bra;) = m(B) = C .
Thus
(5.9) n=R'et.
In (5.7) let B= Byand U = U.. Then (5.9) gives
m(B — U) = Y, m(B,yx;) = (R7'¢7')(CeN~*) = R'CN* .

Thus the right side of (5.7) is bounded independently of ¢.
The left side of (5.7) exceeds

Z:i Z:j*i SxeBs/Z\ﬂszi Sye (leNz_Bs/N4)“7j
= Z:i Z:J'#i S

In the right side of (5.10), we have |2 | < ¢/N*, |y| < ¢/N? and |z | =
because z; ¢ B.x; and xx;7' ¢ B.. Applying (5.8) and Lemma 14, we see tha’
the right side of (5.10) is

(5.11) YD e Sl |

If y issuch that |y | < Re and |yx;x;"| = ReN?, then |y~'| < Re and Lemmal

|ya~ |7 dyda

(5.10)
| y(xa )™ |~ dyda .

ze Be| N4 Sye (BE/NZ—-BE/NH
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gives |27 '~ |yx;a7t ™', The set of such y is contained in By, and there-
fore (5.11) exceeds

~ . € . x-x{‘ —1 d
Zz Zﬁ&z SlylgRs,lyxjxi_IDRsNz l Y; l Y
=) €) .. Y|t dy
(5.12) 2, Zﬁéz S(Bkexj)xi_l“BReN2| [
=2 ,€2.,,, (same)
2Tl oyl
Bz, —BReN2

If |;| < N, then Bax;' 2 B,y and the " term of (5.12) is
(5.13) ~ ¢ log (1/e) ,

by Proposition 3. On the other hand, if |z;| = N, then B,.x; is disjoint
from B,z as soon as ¢ is sufficiently small, by (5.2). If n,is the number of x;
with |x;| £ N, then (5.8) and the covering property of the Bj.x; imply that

CRen, = Zlnlsl/N M(Bgr;) = m(By ) = CN~2.

Thus n, ~ ¢! and it follows from (5.13) that (5.12) is ~ log (1/¢). In other
words, the left side of (5.7) exceeds a multiple of log (1/¢). This contradiction
proves the theorem.

II. SEMISIMPLE GROUPS OF REAL-RANK ONE

6. Non-unitary principal series

Let G be a connected semisimple Lie group of matrices with Lie algebra
g, let g =f + p be the Cartan decomposition of g with respect to a Cartan
involution 64, let a be a maximal abelian subspace of p, and let K and A be the
analytic subgroups of G with Lie algebras f and a. The dimension of A is called
the real-rank of G. The content of Part II will be largely a study of a family
of linear operators (the intertwining operators) naturally associated with some
infinite-dimensional representations of G, under the assumption that G has
real-rank one. As consequences of this study, we obtain

(1) explicit information about the principal series and complementary series
of unitary representations of groups G of real-rank one and
(ii) machinery needed in Part III for the investigation of groups G of higher
real-rank.

We shall use the following notation in both Parts II and III. ([15] and [26]
are general notational references.) Under ad a, g decomposes as

g=aPmOnDv,
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where m is the centralizer of ain ¥, n =3 _ g, is the sum of eigenspaces of
the restricted roots that are positive relative to some ordering on the dual of
a, and b is n. Let

© = half the sum of the positive restricted roots with multiplicities
m(a) = e*'e® ag a positive character on A

N, V = analytic subgroups corresponding to n and b

M, M’ = centralizer and normalizer of A in K

wh(a) = Mw™aw) for w in M’ and \ a character of A

wo(m) = o(w™mw) for w in M’ and o a representation of M.

Then K is compact (since G is a matrix group), 4 is a vectof group, Nand V'
are simply-connected nilpotent, M and M’ are compact, M’/M is a finite group
(the Weyl group), and G has a global Iwasawa decomposition G = ANK:

x = exp H(x)n-k(x) .

The set MAN is a closed subgroup of G whose finite-dimensional (contin-

uous) irreducible unitary representations are all of the form
man — N(a)o(m) ,

where ) is a unitary character of 4 and o is an irreducible unitary representa-
tion of M. The principal series of unitary representations of G is paramet-
rized by (g, )) and is obtained by inducing these representations of MAN to
G. Thus in the “induced picture” the continuous functions in the representa-
tion space are functions f on G with

(6.1) f(manx) = (a)'"Ma)o(m)f(®) ,
and G operates by right translation; the values of fare in the finite-dimensional
space E, on which ¢ operates.

These representations may be viewed as operating on a space of functions
on K by restriction. To describe this “compact picture,” we let H° be the
closed subspace of L*K, E,) of functions f such that for each m in M

(6.2) Sfimk) = a(m)f(k)
for almost all £ in K. The representation on H’ is given by
(6.3) U(a, \, 2)f(k) = e \(exp H(kx))f (£ (kx))

for z in G. If H’ is given the L? norm, then U(g, X, %) is unitarily equivalent
with the member of the principal series corresponding to the pair (o, \).

The definition (6.3) of a continuous representation in the Hilbert space H°
makes sense also when X\ is a not-necessarily-unitary character of A. In this
case, U(o, \, @) is a bounded operator with norm <sup;.x | Mexp H(kx))|. We
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call these representations the non-unitary principal series. Let C=(o) be
the space of smooth functions in H°; then C=(¢) is dense and is exactly the
space of C= vectors for the representation U(o, N, ). If k is in K, then
U(o, \, k) operates as right translation by k&, independently of . Let D be an
irreducible unitary representation of K and let H; be the subspace of func-
tions in H’ that transform under right translation by K according to D. The
space Hj is finite-dimensional and is contained in C~(0), and Y, H} is dense
in H°. Itis a simple matter to check also that > Hj is dense in C=(0) in the
usual topology on C= functions. Later we shall be working with operators on
C=(0) or on ), Hj that preserve each HjJ but are unbounded on H°. We shall
allow ourselves some freedom with the notation of adjoint for such operators,
using * for operators that are not the strict adjoints. Namely if A is such an
operator, then A* will denote either an operator on C=(o) with the formal
adjoint property or an operator on ), H; defined on the spaces H; one at a
time; the exact meaning will always be clear from the context.

There is a third realization, the “noncompact picture,” of the principal
series. Before describing this realization, let us agree to normalize Haar
measures so that

dk on K has total mass 1

dm on M has total mass 1
dv on V has S ey = 1.
-
From the Gelfand-Naimark-Bruhat decomposition of G [4], every element g in
G except for a set of lower dimension has a unique decomposition

g = m(g)a(g)nv(g), m(g)e M, a(g)e A, neN, v(gecV.

By means of this decomposition, we can extend representations of M and char-
acters of A to almost-everywhere-defined functions on G. For example, let

o(manv) = a(m) and A(manv) = \Ma) .
The third realization of the principal series is obtained by restricting to V the

functions in the induced picture. The Hilbert space is therefore L*(V, E,), and
the representation is given by

(6.4) U'(o, M 9)fi@) = p'¥(wg) Mxg) o(29) f(v(g)) -

In this formula if ¢ is fixed, then xg is in MANYV for almost every ¢ in V, and
thus (6.4) makes sense. We shall write xg for v(xg) henceforth when xzisin V'
and ¢ is in G.

The representation U’(a, \, g), for A unitary, is unitarily equivalent with
U(o, \, 9), and a unitary mapping W(a, \) from the noncompact picture to the
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compact picture such that
(6'5) U(O', A, g) W(O', )") = W(Ur 7\') U,(U! A, g)
is given by

Wfik) = (k) ME) o(k) f(v(k))
W-f(x) = e \(exp H(x))f(k(x)) .

For the rest of Part II we shall assume that G has real-rank one. Then
M’/M has order 2; we denote by w a representative of the nontrivial coset of
M'/M. We know that w*® is in M. Frequently we shall use the parametriza-
tion M\(a) = e*?'s® for the characters of A; here z is any complex number. It
is known that the positive restricted roots are of one of the forms {a} or
{a, 2a}. In either case, « is the smaller positive restricted root. Let p = dimg,
and ¢ = dim g,,, so that p = (1/2)(p + 29)a.

Recall that 25 = v(xg) for « in V. Since M’/M has order 2, there is at
most one member x of V such that 27 is not defined. In fact,

G = MAN U MANwMAN .

If 2,9 is not in MANV = MANwNw™, then «,gw is not in MANwMAN and
hence is in MAN. If also 2,9 is not in MANYV, then

22 = (xgw)(@,gw) e MANNV = {1} .

(6.6)

Hence 27 is undefined for at most one x. Let V, be V with this exceptional
value of x deleted.
Let the character A of A be not necessarily unitary. Then (6.4) defines
U'(o, N, 9) as a mapping of C(V,, E,) onto C,(V,-, E,), and (6.5) holds.
Observe that V, = V — {1}. In particular, the kernel

¢ (zw) o (xw)
is a smooth function of x in V for # + 1. Similarly
#(1/2) (l—z)(kw)o-Hl(kw)

is a smooth function of & in K for k¥ not in M.

For later reference we recall from [12, p. 290] that e"**¢¥® ig an inte-
grable function of 2 in Vif Re(z) > 0 and that ¢ *#® = 1. The latter fact will
be reproved in the course of Lemma 29.

We now collect a list of identities that will be used in Part II. The proofs
take only one or two lines apiece and are omitted. In the identities, a, and m,
are in A and M respectively, x and 2’ are members of V, and g is in G.

(6.7) de = p~'(a,)de’ when & = a@’a;”
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(6.8) £(m.g) = mk(9)

6.9) a(k(@)) = [exp H(x)]™
(6.10) m(k@) = 1

(6.11) (xg)g =« for eV,
(6.12) m(k(@)w) = m(xw)
(6.13) a(m,a.g) = aa(g) = a(gm.a,)
(6.14) a(mami w) = a(xw)
(6.15) a(awa; w) = aia(rw)
(6.16) - a(zw) = a(x™'w)
(6.17) m(a,ea; w) = m(xw)
(6.18) (e (@)w) = =" p(zw) .

LEMMA 15. On V the change of variables y = tw has t = yw™" and
dy = p(tw)dt.

Proof. The inverse relation is ¢t = yw™, by (6.11). The equation for the
change of measure follows directly from the fact that the operator U’(g, A, w)
with o and \ both trivial is unitary.

7. Intertwining distributions

This section is devoted to showing that intertwining operators for the non-
unitary principal series are of a special form. At present the results will be
set in the noncompact picture, the passage to the compact picture being in § 9.
The first lemma is substantially due to Bruhat [4] (except that Bruhat dealt
with the induced picture and stated his final results only for unitary represen-
tations); we therefore omit the proof.

LEMMA 16. Let dT(y) be a Hom (E,, E, )-valued distribution on C>(V, E,),
and let Ay C2(V, E,) — C=(V, E,) be the operator defined by

(SV A = [aTsws) -
Suppose for each g in G that A, satisfies
(7.2) AU (0, N, 9)f(@) = U'(a', N, 9)Auf()

Sor all fin C2(V,—, E,) and all x in V,. If dT(y) is supported not only at
the identity, then o’ is equivalent with wo and N equals wx = A~'. If o’ =
wo (so that E,, = E,) and if N = w\, then there is a constant ¢ such that
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dT(y) = e *(yw)\~(yw)o~ (yw)dy
away from the identity.
LEMMA 17. Let dT(y) and A, be as in Lemma 16, and suppose (7.2) holds
for all g in MA. Suppose that, for a in A, N(a)h(a)™* is not of the form
e "8 for an integer n > 0. If dT(y) is not identically 0 and is supported

at the identity, then M = N and o s equivalent with o'. If, in addition,
o = o', then A, 1s a scalar multiple of the identity.

Proof. By a right-invariant vector field on V, we understand an operator
of the form Xf(x) = d/dt{f((exp tX)'x)|.—}. Since dT(y) is supported at 1,
it follows from known properties of distributions that A, is a right-invariant
matrix-valued differential operator on V. If g is in MA, put f,(x) = f(g"'xg9)
For X in b,

X)) = gt—f(g”l(exp £X)~gg"20) |10 = (Ad (67)X)F(g29) -

Thus
(Auf) (@) = (Ad (97)A)f(g7'xg) -
Since g in MA implies
U'(a, N, 9)f(@) = (*(g9)Mg) 0(9) fl9™'%9) ,
it follows from (7.2) that

L (9)M9)(Ad (97) A (o (9)f) (97 29)

= p*(g)N(9) 0'(9) (A f)(97'2g)
or
(7.3) Mg) Ad (97)A0(9) = N(9) ' (94, .
Take ¢ = a in A. If a basis of b is chosen consistently with the decomposition
D= g_, + G then Ad (a) is diagonalized by the basis of monomials in the
universal enveloping algebra of b, and the eigenvalues are e~"*'*¢“ with n an
integer >0. Then (7.3) shows that 4, = 0 or M\(a)M(a)™ = e™*'** for some
n = 0. In view of the assumption in the lemma, we may suppose that » = 0.
The monomials belonging to the eigenvalue 1 are the constants and it follows
that A,f = Cf for a constant matrix C. By (7.3), A,0(m) = o’(m)A, for allm
in M. Thus the rest follows by Schur’s Lemma. This completes the proof.

In our later applications of these lemmas, we shall need the following ele-
mentary fact, which is due to A. H. Clifford. (Cf. [36, § 5.8].)

LEMMA 18. Let H < H’ be compact groups with [H': H] = 2, let h’ be an
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element of H' not in H, and let R be a continuous irreducible unitary rep-
resentation of H on Vy such that R and 'R are equivalent. (Here h'R(h) =
R(W*hh').) Then it is possible to define R(k') as an operator on Vy in exactly
two ways, differing by a minus sign, such that R extends to a unitary rep-
resentation of H' on V.

In the applications in Part II, we shall take H= M, H = M’, b’ = w,
and R = o. Then we can define o(w) if and only if ¢ is equivalent with wa.

8. Irreducibility theorem, preliminary form

We are now in a position to apply Theorems 1 and 2 to the question of
irreducibility of the principal series for semisimple groups of real-rank one.
The main result of this section, Proposition 20, is only a preliminary form of
the final irreducibility theorem, which is given in § 12 as Theorem 5. (See also
§ 16.)

LEMMA 19. If Vis regarded as a simply-connected nilpotent Lie group,
then the mappings x — axa™ for a in A provide a one-parameter group of
dilations (in the sense of § 1), and x — p~'*(xw) is a norm function, invari-
ant under x — mam=" for m in M. Moreover, the function x— g(xw) 1s of
class C= away from x = 1 and has the homogeneity property

o((axa)w) = o(zw)
Jor x = 1 and for all a in A.

Proof. The mappings X — Ad (a) X are diagonable, and it follows that A
does provide a group of dilations. Next, & — g(xw) is of class C~ away from
& =1 because V, = V — {1}, and it has the required homogeneity property
by (6.17). Finally we show that |z | = g#'*(xw) is a norm function, the M-
invariance following from (6.14). The property |2 | = |x~*| follows from (6.16).
For the homogeneity of | | relative to dilations, we apply (6.15) to obtain
8.1) p ' axa'w) = p (@) pH(aw)
which is of the required form. For the invariance of |« |~ dx under dilations,
we combine (8.1) and (6.7). If x = aa’a™?, then (6.7) says that de = p¢(a)dz’.
By 8.1), |z|=p¢"(a)|2’|. Hence |z|"'dx=|a'|"*da’, and || dx is invariant
under dilations. Since V,, = V — {1}, |«| is nonvanishing for « # 1. Thus |z |
is a norm function.

PROPOSITION 20. If N is unitary, then the principal series representa-
tion U'(a, N, g) is reducible if and only if

(i) o is equivalent with wa,

(ii) x =1, and
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(iii) the mean value of o(xw)™ (in the sense of Proposition 3) is 0.
Remark. The necessity of (i) and (ii) was first proved by Bruhat [4].

Proof of necessity. If U’(c, \, g) is reducible, then there exists a bounded
linear operator A,, not scalar, on L*(V, E,) such that

(8.2) AU (o, N, 9) = U'(a, N 9) 4,
for all g in G. Taking ¢ to be in V, we see that 4, commutes with right trans-

lations, and it follows from the Schwartz Kernel Theorem that the restriction
of A, to C= is given by convolution with a distribution:

8.3) afia) = [aT@fwe) -
Restrict (8.2) to C,>. Then
(8.4) AU (o, N, 9)f (@) = U'(0, N, 9)Auf()

at all simultaneous points of continuity of the two sides of (8.4). Thus (7.2)
holds. Since A, is not scalar, Lemmas 16 and 17 imply that o is equivalent with
wo and that » = A7, ie., M= 1.

So suppose (i) and (ii) hold. By Lemma 18, it is possible to define o(w).
Fix such a definition, and let B, = o(w)'A,. Then (8.4) becomes

B, U'(0,1, g)f(x) = o(w)"*U'(0, 1, g)o(w)B.f(x) .

But o(w)—*U (0,1, 9)o(w) = U'(wo, 1, 9), and thus
B, U (0,1, 9)f(x) = U'(wo, 1, 9)B,f(®) .

By Lemma 16, away from the identity we have

dT(y) = ep*(yw)o(w)o~ (yw)dy

for a nonzero constant ¢. By Lemma 19, we are in a position to apply Theorem 2
to dT(y). Theorem 2 says that A, does not extend to a bounded operator on
LX(V, E,) unless o(w)o~'(yw) has mean value 0. Since o(w) is nonsingular,
o(w)o~(yw) has mean value 0 if and only if o~'(yw) does. This proves the
necessity of (iii).

Proof of sufficiency. Let o be equivalent with wo, so that o(w) exists by
Lemma 18. Suppose o~'(xw) has mean value 0; then o(w)o~'(zw) has mean
value 0. By Lemma 19 and Theorem 1, we can use the kernel

¢ (yw)o(w)o™ (yw)
to define a principal-value bounded “convolution” operator A, on L*(V, E,).

A, is not scalar, by Lemma 9. A, will therefore exhibit the reducibility of
U'(s,1, g) if we show that the operator B, = g(w)™A4,, whose kernel is
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LA yw)o~ (yw), satisfies
B, U (0,1,9) = U(wo, 1, 9)B, .
For 0 < s < 1land fin C(V, E,), let T, be the operator defined by

T, f) = | po = )o~ o)fya)dy -

v
The kernel for T, is locally integrable, by Proposition 3; thus there is no prob-

lem with convergence. Fix ¢ in G. If f has compact support in V,, then
Lemma 23 and Theorem 2 of [26] show that

(8.5) T,.U' (o, 1'%, 9)f(x) = U'(wo, =", g) T, f()

forxin V,.

Let s decrease to 0 in (8.5). By Lemma 10, lim,,, T,/ = B,f in L%
Choose a sequence s, | 0 so that this convergence occurs almost everywhere.
If the convergence occurs at a point « in V,, then

lim U'(wa, p=*", g) T, f() = lim [p=**(xg)] lim [ (xg)wo (xg) ™' T, f(xg)]

(8.6) = U'(wo, 1, 9)B.f(®) .

We claim that
8.7 lim T, U’ (o, ', 9)f = B,U'(0, 1, 9)f

in L*. To prove this, we write the difference of the left side of (8.5) and
B,U'(0,1, g)f as

(T, — B)U'(0, £, 9)f + B)[U' (o, *", 9) — U'(0, 1, 9)1f .

The second term tends to 0 in L* because B, is a bounded operator and f is
compactly supported in V,. The first term tends to 0 in L* by Lemma 10 be-
cause the functions U’(g, 1, g)f have uniformly bounded L' norms and uni-
formly bounded uniform Lipschitz constants, f being supported in V,. This
proves (8.7). Combining (8.5), (8.6), and (8.7), we obtain

8.8) B,U'(0,1, 9)f = U'(wa, 1, g9)B.f

for a dense set of functions f. Since all the operators in question are bounded,
(8.8) holds for all fin L*. Since g is arbitrary, this completes the proof of the
proposition.

As a corollary of the proof, we have the following

COROLLARY. Ifthe principal series representation U'(c, 1, g) is reduc-
1ble, then the intertwining operators are all of the form aA, + bl, where A,
18 the principal-value operator
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4.5@) = | @w)ow)o= o) fudy -

We might point out that, once ¢ has been extended to M’, the operator A4,
is independent of w. In addition, we shall see later that some real multiple of
A, is self-adjoint and unitary.

9. Intertwining operators and their analytic continuation

Recall from § 6 that the representation U(o, \, x) of the non-unitary prin-
cipal series operates in the subspace H° of L*(K, E,) of functions f such that,
for each m in M, f(mk) = o(m)f(k) for almost every k in K. The group action
is

U(o, N, o) f(k) = e \(exp H(kx))f (£ (kx))

with notation as in § 6. Recall that C=(o) is the subspace of C> functions in
H’ with the C~= topology. We say that the representation U(g, )\, x) is a mem-
ber of the complementary series if there exists a positive definite continuous
inner product <., -> on C=(o) x C=(0) such that

(9.1) {U(a, N, a)f, Ulo, N, 29> = LS, 9

for all  in G and all fand ¢ in C=(0). If there is a non-trivial positive semi-
definite continuous inner product on C=(s) x C=(¢) such that (9.1) holds, we
shall say that U(o, ), x) is in the quasi-complementary series.

Notice that our definition admits the (unitary) principal series as part of
the complementary series. Notice also that our definition is closely related to,
but not identical with, the condition that U(o, \, x) be infinitesimally unitary
in the sense of Harish-Chandra.

The most general character of A is of the form )\ = p**, where 2 is an
arbitrary complex number. The character is unitary exactly when z is purely
imaginary. Following Kunze and Stein [26], we introduce for Re (z) > 0 an
operator on C=(o) that we shall denote A(w, g, \) or A(w, 0, 2):

9.2 A(w, 0, Nf (ko) = SKﬂl’z(kW)N‘l(kW)G“‘(kW)f(kko)dk .

It is proved in [26] that the kernel of A(w, o, ?) is an integrable function of &
for Re (z) > 0 and hence that A(w, g, ) extends to a bounded operator on H*.
Moreover, A(w, g, z) maps C=(0) continuously into C=(wo) and satisfies

9.3) A(w, a,\)U(g, \, ©) = U(we, wn, ) A(w, g, \)
for all z in G.

LEMMA 21. Fiz o, o', M = %, and N, and suppose Re (z) > 0. Let
7
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L: C=(0) — C=(0’) be a mon-zero continuous linear operator such that
9.4) LU(o, N, ) = U(d’, N, )L
Jor all x in G. Then there are just two possibilities:

(i) o 1s equié:alent with o and N = N. In this case, if o' = o, then
L ts scalar.

(ii) o' is equivalent with wo and N = \"'. In this case, if ¢’ = wa,
then L is a scalar multiple of A(w, o, \).

Proof. Recall the mapping W(a, \) of (6.6). Restrict it to a mapping of
C2(V, E,) into C=(0), and restrict W(c, \)™ to a mapping of C=(g) into
C=(V, E,). Define A,:C3(V, E,)— C=(V, E,) by

A, = W(d’', N)'LW(o, \) .
‘Then A, satisfies (7.2). To prove 4, is of the form (7.1), we first prove that
J— A, f(Q1) is continuous. In fact,

Af1) = W(a', N)"'LW(a, \)f(1) = LW(a, M)f(1);
since W(o, ), L, and evaluation at 1 are continuous, f— A4,£(1) is continuous.
‘Thus

4,50) = [aTw)sw)

for a distribution dT(y). Applying (7.2) with  in V, we obtain (7.1).

If dT(y) = 0, then A, = 0. This means that L = 0 on the image of
W(o,\). But the span of the right K-translates of this image is C~(¢), and L
commutes with right translation, by (9.4) for « in K. Thus L = 0.

If dT(y) is not 0 and is supported at the identity, Lemma 17 implies that
.0’ is equivalent with ¢ and N = A. Also if ¢’ = o, then A, is scalar. By the
-‘uniqueness proved in the preceding paragraph, L is scalar.

If dT(y) is not supported at the identity, Lemma 16 implies that ¢’ is
-equivalent with wo and M’ = A", Let ¢’ = wo. In view of (9.3), Lemma 16
implies that there is a constant ¢ such that the distribution on V corresponding
‘to L — cA(w, g, \) is supported at the identity. By the result of the previous
‘paragraph either x= = N =\ or L — ¢cA(w, 0,2) = 0. The former alterna-
tive is ruled out since Rez > 0, and thus L = cA(w, o, 2). This proves the
lemma.

LEmMMA 22. U(o, N, x) is in the quasi-complementary series if and only
4f there exists a nom-zero continuous positive semidefinite hermitian linear
operator L: C~(c) — C=(c) such that

49.5) LU@, N, %) = U@, \, z)*L
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forall x in G. U(o, N, x) is in the complementary series if and only if there
exists a one-to-one such L.

Proof. Let P be the orthogonal projection of L*(K, E,) on the closure of
C=(o). Then P carries C~(K, E,) into C~(0) and is continuous on C=(K, E,)
since P commutes with right translation by K. Thus <., -) extends contin-
uously to C=(K, E,) x C(K, E,) under the definition {f, 9> = {Pf, Pg)>. Let
Jj: E,— E} be the conjugate linear mapping such that (u, v);, = jv(u) for
all w and v in E,, let (Jg)(k) = j(9(k)), and let B be the continuous bilinear
form on C=(K, E,) x C~(K, E}) given by B(f, g) =<{f, Jg>. By the Schwartz
Kernel Theorem

B(, 9) = [aSt, 1)) ® 9(k))

for an E* ® E,-valued distribution dS on K x K. Then (9.1) for « in K implies:
that dS(kk,, k'k,) = dS(k, k). Hence dS(k, k') = dT(k'k~")dk’ for an E}Q E,-
valued distribution d7 on K x K. If L is defined by

L) = \aTwh-)s00)

then (Lf, g9) = <f, 9> fof all fand g in C~(K, E,). The lemma follows readily
from this identity and (9.1).
For future reference we quote Lemmas 20 and 24 of [26].

LEMMA 23. U(g, \, )* = U(o, V7, 7).
LEMMA 24. Let v = ¢* with Re (2) > 0. On C=(0),
A(w, o, \)* = A(w™, wa, N) .

PROPOSITION 25. Flix 0 and M = p/* with Re () > 0. Unless o is equiv-
alent with wo and z is real, U(o, N, x) is not in the quasi-complementary

series. If o is equivalent with wo, so that o(w) is defined, and if z is real,
then

(9.6) o(w) A(w, 7, \)

18 hermitian on C=(g). Moreover, U(a, N, x) s in the complementary series
if and only if (9.6) is positive or negative definite on C=(0), and it is in the
quasi-complementary series if and only if (9.6) is semidefinite.

Remarks. In the statements of the proposition, C=(g) can be replaced by
the K-finite subspace ) Hj. In fact, if (9.6) is semidefinite or definite on C=(0),
then it has the same property on }_ Hj. Conversely, if it is semidefinite on
2 Hj;, it is semidefinite on C=(o) since Y, Hj is dense in C=(0); if it is definite
on Y Hjp, it cannot vanish on any f# 0 in C=(o) because it would have to

.
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vanish on the projection of fin each Hg.

Proof. By Lemma 22, it is equivalent to consider operators L = 0 satisfy-
ing (9.5). By Lemma 23, we are to look for operators L = 0 satisfying

LU(o, N, ) = U(o, N 2)L

We apply Lemma 21. Alternative (i) is ruled out because » = X' requires that
Re (2) = 0. Thus (ii) holds, and o is equivalent with wo and X~ = A7, i.e.,
z is real. Using (ii) and the same device as in the proof of Proposition 20, we
find that L is a scalar multiple of (9.6). Thus the proof will be complete if we
show that (9.6) is hermitian for z real. If Re (2) > 0, then Lemma 24 shows that

[o(w)A(w, 0, 2)]* = A(w, 0, 2)*0(w)* = A(w™, wa, Z)o(w)™"
= o(w)'[o(w)A(w™", wo, Z)o(w)™']
=o(wNAw", 0,7) .
But the right side is independent of the representative in M’ and thus equals
o(w)A(w, o, Z). The proof is complete.

The proposition shows the importance of the intertwining operator
A(w, 0, 2) for complementary series, and we have seen in effect that A(w, o, z)
is the basic operator for studying irreducibility of the principal series. In order
to proceed further, it is necessary to study the analyticity of A(w, o, 2) in the
parameter z.

As preparation for the next theorem, we discuss homogeneous functions
on V. Weregard V, the conjugations £— axa~" for a in 4, and |2| = L (xw)
as an instance of the theory of Part I, as Lemma 19 permits. We say that a
funection f(x) is a-homogeneous of degree n if

flawa™) = e="5f(x) ,
where « is the smaller positive restricted root. There are two sources of «-
homogeneous functions, for our purposes. Identify V with its Lie algebra
D = g_, + g_s by the exponential map, and let p = dimg_, and ¢ = dimg_,,.
Let X,, -+-, X, and Y, +++, Y, be bases of g_, and g_,,, and let w,, ---, x,,
Yi, *++, Y, be coordinates in the resulting basis of . Then the monomial
Tie. .x;pyi’l. . .y’;q

is a-homogeneous of degree (a, + -++ + a,) + 2(b, + «++ +b,). It follows
that any polynomial on V' is the sum of polynomials a-homogeneous of positive
integral degrees. For another example, we have

#~L(a) — e~2ploga — e—(p+2q)aloga;

here p is half the sum of the restricted roots, counted with multiplicities. By
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(8.1), p'*(zw) is a-homogeneous of degree p + 2g.

THEOREM 3.* Let f be in C={0). As a mapping into C=(0), the function
z— A(w, 0,2)f, initially defined only for Re (z) > 0, has a meromorphic ex-
tension to the whole complex plane with singularities only at the nonnegative
integral multiples of —(p + 29)~'. The singularities at these points are at
most simple poles. Moreover, for each complex number z,, there is a neigh-
borhood N(z,) of z, such that the mapping (z,f) — (2 — z)A(w, 0, 2)f of
N(z,) x C={(g) into C=(0) is continuous.

Remarks. The point z = 1 corresponds to the character £/ or the linear
functional 0. Therefore z = (p + 2¢)~* corresponds to the linear functional
a/2, where « is the smaller positive restricted root. Not all multiples of
— /2 give rise to poles, as the more detailed analysis in § 15 will show.

Proof. Write A(2) for A(w, g, z). For most of the proof we shall examine
the vector-valued mapping (2, f) — A(2)f(1). Let ¥ be a fixed left M-invariant
C= function on K with values in [0, 1] such that ¥ = 1 in a neighborhood of
M and v = 0 in a neighborhood of wM. We shall specify + shortly. Write
f=vf+ @ —¥)f. Then

&, f) — AR1L — VD)
extends to be defined for all z, is continuous, and is entire as a function of z;
the extension is

9.7 ARAL — ML) = SK#“’”““"(kW)ll — v(k)]o~ (kw)f(k)dk ,

and it has the required properties because the only singularities of the kernel
occur for k in M.

We consider (2, f) — A()¥f(1). From [12, p. 287] we have the change of
variables formula

9.8) SKF(k)dk - S SMF(m/:(y))ez-"”“’)dmdy

-
for our normalization of the Haar measure dy on V. (See § 6.) Taking intc

account the transformation laws for z, 4, &, and f under left translation by
M, we have

A@VfQ) = SV’“‘W) 0= (ke () ) O (e () o= (e (W) w) £ (£ () )
since Sdm = 1. By (6.18) and (6.13), the formula simplifies to

A(Z)"/ff(l) — Svﬂ‘“z’“‘”(yw)o“‘(yw){«/f(x(y))e“*”P”“”f(lc(y))}dy .

* In connection with the statement of this theorem, compare Helgason [16], Schiffman
[32], [33], and our work [21].
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We can now specify v. Let @ be a function in C([0, <), [0, 1]) equal to 1
in a neighborhood of 0. Put

o(y|) ~if k = mk(y) for some me M, ye V
0 otherwise.

() = |
Then ¥ is of the correct form and

(9.9) A=) = Svﬂ“’”’““"(yWW(I y o~ (yw){e" e f (£ (y)))dy .

As in the discussion before the theorem, identify V with the Lie algebra
b. Let X, -+, X,, Y, .-+, Y, be a basis of b compatible with the decompo-
sition v = g_, + g_... By Taylor’s Theorem write

e(1+z)pH(y)f(,§(y)) = fQ) + fi® Yy) + ++ + fuZ ¥) + R,(2, )
with each term entire as a function of z, with f; a homogeneous polynomial of
degree j in y, and with R,(z, v)/|| ¥ ||**' and (d/dz)R.(2, v)/||¥ ||"** bounded
for z in any compact set and y in the support of ®(|»|). Rearrange the
monomials appearing in the Taylor expansion so that

e(1+z)PH(y)f(K(y)) =fQ) + 0.2, Y) + +++ + 9z, ¥) + R,.(2, )

with g, entire as a function of z and @-homogeneous of degree j as a function
of y. If g,(z, y) = f(1), then (9.9) gives

A@HAD = T2, | e w)e( v Do~ w)ase, vy
(9.10) 4

+ Svﬂulz) = (yw)p(l y )o (yw)R,.(2, y)dy .

If we fix a right half plane of z’s, then % can be taken large enough so
that the last term is analytic in the half plane. In fact, we are to prove that
each z in the half plane has a neighborhood in which the z-derivative of the
integrand is dominated by a single integrable function of y; then analyticity
follows by dominated convergence. Lemma 6 shows that ||y || < cy~?*(yw) on
the support of #(| ¥ |), where d is a positive constant. Thus on this support

lﬂ“’”“‘” (yW)o“‘(yw)%Rn(z, v) ’ = pt?0=F? (yw) Const ||y ||***
é Const #(1/2)[(1—Rez)—d(n+1)](yw)

and similarly

|-& (o= qu)lo=u) Rute, v

é COHSt [log #_1/z(yw)]#(1/2)[(1—Rez)—d(n+1)](yw) .
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The assertion follows from Proposition 3.
With # fixed, consider one of the other terms

.11 |, om0 (| y o~ g vy

in (9.10). We know that g '/*(yw) is a-homogeneous of degree p + 29. Thus
Qe H20) (y4p) is a-homogeneous of degree —j, and

hi(z, y) = pICPHEO (yw)o~ (yw) g (2, Y)

is a-homogeneous of degree 0. Then there is a vector 91(,(k;) such that
9.12) | FyDhie, vy = con) | Foar
14 0

for every measurable complex-valued function F' on (0, «) such that either
side is defined; here C is the constant of Proposition 3. (This fact follows from
Proposition 3 by defining Q(x) to be a diagonal matrix whose entries are the
entries of h;(z, x) and by restricting (2.2) to functions f(r) = F(r)e, where e is
a vector.) Write (9.11) as

SV#<1/2)<1—z~j<p+2qu> yw)e (| y DO, (h;)dy

| oo ey Dl — ONLh)dy -
14
The second term is 0 by (9.12), and the first term, by Proposition 3, is
9.13) C[S r‘“""j"’“‘”‘”@(r)dr]@]l,(hj) :

Since ®(r) =1 near » = 0 and since ® has compact support, the term in
brackets is the sum of an entire function and a multiple of 1/(z + j(p + 2¢9)7').
This gives the extension of (9.11).

Going back over the argument, we can check on the continuity of
(2, f)— AR)Vf(1). Itiseasy tosee that (z, f)— (2 — 2)A(2)¥f(1) is continuous
in N(z) x C=(0). Hence the same thing is true of
(9.14) (, f) — (2 — 2)AR)Q) .

To complete the proof, we must consider A(2)f. Let f; be the right trans-
late of f by k in K, and define

AR)f(k) = ARQD) .

This definition is consistent for Re (z) > 0 by (9.3). Also
(9.15) =, fo k) — (2 — 2) AR)S(k)

is continuous, being the composition of (f, k) — f; and of (9.14). Then near z,
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(0.16) (c —~ 2)A@S = T,z (2 — 2)fn
where

L1 £ G- 2)AQSRE
©.17) £ul) = 1= § EHEONOE

Formula (9.17) and the continuity of (9.15) prove that the convergence in (9.16)
is rapid enough to take place in C=(¢). The theorem is proved.
As a corollary of the proof, we have the following.

COROLLARY 1. Let 9 (c) be the mean value of o~ (xw), in the sense of
Proposition 3, and let C be the constant of Proposition 2. Then

(9.18) lim,_, zA(w, g, 2)f = CON(0)f
Sor all fin C=(o).

Proof. We want the residue of A(z)f(1) at z = 0. We trace through the
proof of Theorem 3, dropping analytic terms. The residue at z = 0 of A(2)f(1)
is the same as that of (9.11) for 5 = 0, which is computed in the course of the
proof and found to be CON,(k,). But

ho(0, ¥) = o7 (Yw)go(0, ¥) = o~ (yw)f(1)
and

NMy(he) = Mo~ (yw))f(1) = M(o)f(1) .

Since the operators on each side of (9.18) commute with right translation by
K, the result follows.

COROLLARY 2. As meromorphic functions of z in the complex plane,
A(w, 0,2)U(o, 2, ) = U(wo, —z, v)A(w, 0, 2)
and
A(w, 0,2)* = A(w™, wo, ) .
Proof. Apply (9.3) and Lemma 24.

Before stating the third corollary, we comment on the result at the begin-
ning of this section. Lemma 21, which was a result about uniqueness of
intertwining operators, was proved under the assumption that Re (z) > 0.
Corollary 2 shows that the same proof applies at any point z where A(w, 0,2)f
has no pole for any f in C~(¢) and where \(a)® = t*(a) is not of the form
e "*'%s¢ for i an integer >0, i.e., 2% — n(p +2¢)~'. That is, Lemma 21 is still
valid at all points z = — n(p + 2¢)~* for n an integer =0, and one can carry
this result through the consequences of the lemma. At z = 0, the lemma is
valid, provided A(w, o, z)f has no pole. If there is a pole, the lemma is valid,
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provided lim,, zA(w, g, 2) is used in place of A(w, g, 2) in (ii).

COROLLARY 3. If 0 is mot equivalent with wa, then the mean value
M(0) = M(0~*(xw)) satisfies M(o) = 0.

Proof. The constant operator 9 (o) satisfies

M(o) U(o, 0, x) = U(wa, 0, )M (o)

by Corollaries 1 and 2. In view of the above remarks, Lemma 21 and its proof
are applicable. The distribution d7T'(y) (in the proof of the lemma) associated

to 9 (o) is clearly supported at the identity, and the proof then shows either
that ¢ is equivalent with wao or else that 91 (c) = 0.

LEMMA 26. If o is equivalent with wa, then the mean value
o(w)IM(0) = M(o(w)o(zw))
18 a scalar matrix independent of w.
Proof. It is independent of w because o(w)o~*(xw) is independent of w.
By Schur’s Lemma, it will be scalar as soon as we show that it commutes with
o(m,) for each m, in M. With m(g) as the M-component in MANYV, if zw =
manv, then (maem;")w = mymanvw'm; w and so
m(mxm; w) = mm(Ew)w'm; w .
Thus
o(m)o(w)o (@w)o(m,) ™ = o~ (mem(zw)wm;")
= g(w)o~(mm(zw)w " m; w)
= g(w)o((mami*)w) .
Now we use Proposition 3. Substituting and making the change of variables
&’ = m,axm;*, we can bring the m,-dependence into the norm function p~'*(xw).

But this norm function is invariant under conjugation of x by members of M.
Thus

IM(o(w)o~ (mexms w)) = M(o(w)o(zw)) ,
and the lemma follows.

PROPOSITION 27. There exists a meromorphic complex-valued funmction
¢.(2) such that '
Aw™, wo, —z)A(w! 0,2) = ¢,(»)1.
The function c,(z) has the following properties:
(1) e¢,(2) is independent of w.
(ii) c¢,(2) depends only on the equivalence class of o, not on o itself.
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(iii) cy.(2) = ¢,(—2).
(Vi) () = ¢,(—2).
(v) ¢,(2) = 0 for z purely imaginary.
(vi) At z = 0, either c,(?) has exactly a double pole or ¢,(z) is regular; at
other points c,(z) has at most simple poles, and the poles occur only for z real.
(vii) lim,, 2%,() is finite. It is 0 if and only if O (o) = 0.
Proof. By Corollary 2
Aw™', wo, —2)A(w, 0,2)U(0, 2, x) = A(w™', wo, —z) U(weo, —z, ) A(w, g, 2)
= U(o, 2z, x) A(w™, wo, —2)A(w, 0, ?)
as meromorphic functions. In particular, this equation holds for z purely imag-
inary and nonzero, where there are no poles. Lemma 21 and the remarks be-
fore Corollary 3 of Theorem 3 say that, for such z, A(w™, wo, —2)A(w, 0, ?)
is scalar. Thus
(9.19) A(w™, wo, —2)A(w, 0, 2)f = ¢,(?)f
for these z and for all f in C=(0). Fix f = 0 and take the L? inner product of
both sides of (9.19) with f. The left side is meromorphic in 2, and the right
side is ¢,(2) || f|2. Thus ¢,(2) extends uniquely to a meromorphic function in
the plane. If we take the inner product of both sides of (9.19) with g in C~(0)
and apply the same argument, we find by the uniqueness of the extension of
¢,(2), that (9.19) holds for all z. Since f is arbitrary and the extension of ¢,(z)
is unique, (9.19) holds for all fand all z.
To prove (i) and (ii), we collect some identities; these hold initially for
Re (2) > 0 and then extend to all z by analytic continuation. We have
A(wm, o, 2) = o(m)""A(w, 0, )
for m in M, by direct computation. Replacing m by w'mw, we obtain
A(mw, g, 2) = wa(m)™ A(w, o, z) .
Again by direct computation
(9.20) A(w, EcE~, 2) = EA(w, 0,2)E~" .
For (i), these identities give
A((wm)™, wmo, —z)A(wm, 0, 2)
= wH(wmo)(m™)"A(w™', wmo, —z)o(m)" A(w, o, 2)
= o(m)A(w™, wmo, —z)o(m)~"A(w, 0, 2) .
Now wmo is equivalent with wo by o(m)~, and so the above expression is
= o(m)o(m)"*A(w™, wo, —z)o(m)o(m)~A(w, o, 2)
= Aw™, wo, —2)A(w, 0, ?) .
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This proves (i). Property (ii) is immediate from (9.20).
To prove (iv) and (v), we use the identity

A(w, 0,2)* = A(w™, wo, ?)
from Corollary 2. We have
(9.21) ¢, = A(w™, wo, —2)A(w, g, 2) = A(w, o, —2)*A(w, 0, 2) ,
and (v) holds. Apply * to both sides (the operators being globally defined on
C~(0)) to get
¢,(&)I = A(w, 0, 2)*A(w, 6, —7)
or
c,(—2)] = A(w, 0, —2)*A(w, 0, 2) = ¢,(»)I .

This is (iv).

Except for the part about z = 0, (vi) is immediate from Theorem 3. At
2 =0, A(w, 0, 2)f has at most a simple pole. Thus ¢,(z) has at most a double

pole. The pole cannot be simple, by (v). This proves (vi).
For (vii), Corollary 1 and the joint continuity in Theorem 3 give

lim,_, 2%,()I = — C*OMYwo (zw) )M (o (zw)™) .

By Corollary 3 the right side is 0 if ¢ is inequivalent with wo. Thus we may
suppose ¢ is equivalent with wo. So o(w) exists. Then

M(wo (@w))M(a(@w)™") = o(w™)M(o@w")~)a (w) Mo (xw) )
= [o(w)ON (o (xw) )] .

By Lemma 26, o(w)9N(o(xw)~") is scalar; hence its square is 0 if and only if it
is 0, and it is 0 if and only if 91 (¢) is 0. This proves (vii).

We are left with (iii). Let z be purely imaginary and not 0, and fix a K-
finite subspace Hj5. Each operator 4 has no pole at z or —z, and each leaves
H} stable, by Corollary 2. We have A(w,o,2): Hi— Hy° and A(w™',wo, —z):
Hp° — Hp with their respective compositions equal to ¢,(2)I and c¢,,(—2)I on
their domains. Since these spaces are finite-dimensional, the scalars are equal.
The proof of the proposition is complete.

10. Asymptotic expansions

Our goal in this section and the next will be to connect ¢,(2) with the
Plancherel measure of G. After we have completed this identification, the main
results about the real-rank one case will follow quickly.

The first step is to prove an asymptotic expansion for the matrix coeffi-
cients of the representation U(o, 2, x) that is valid in a full strip about the
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imaginary axis. The motivation for proving such an expansion lies in Lemma 28
below and in the fact that the right side of the equality in the lemma is the
kind of expression that arises as a coefficient in asymptotic expansions.

LEMMA 28. If 4 and 1 are in C=(0) and if Re () > 0, then
(A(w, a, 2y (w), 77(1)),;0 = Sve(uz)pmx)(qu(/c(x)), 7)(1))Eadx .

Proof. We use (9.8), (6.13), (6.10), and (6.9). The left side in the state-
ment equals

S 1201292 () (0 (kw) ¥ (ew), 7(1)) .z, de
0 ) o Ry (), (L)),

V SM 201202 (g ()7 (0 (ke () ¥ (e (), (D)), dm s
w2 =2 (g ())e2 ™= (0 (k () W (£ (), 7(1))5,d

e(+20H (@) (’l/f(li(x)), p(l))Eadx .

I
Camry ) ) ey
~ =

R

LEMMA 29. The function p~'(xw) is a polynomial on V a-homogeneous
of degree p + 2q. Moreover, there exist monconstant polynomials
P(x), -+, P,(x) all =0, a-homogeneous of degree <p + 2q, such that

e i) = 1 4 P(x) + -+ + P(2) + £ ' (xw) .
Consequently

(10.1) et <1 and € < p(ww)

for all x. To each bounded set in V there correspond constants d > 0 and c,
and ¢, such that

(10.2) i@ — 1 < ¢ |[@]] = et aw)
for x in that bounded set.

Remark. Recall from Lemma 19 that g~'(xw) is the square of a norm
function on V.

Proof. (Cf. [12], p. 280.) The lemma is valid for G if and only if it is
valid for the simply-connected cover G of G, and it is valid for G if and only if
it is valid for the largest quotient of G admitting a faithful matrix represen-
tation. This means that we can assume at the outset that G is contained in a
simply-connected group GC having Lie algebra g€, the complexification of g.
It is known that u = f + ¢p is a compact form of g€ and that aC extends to a
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Cartan subalgebra §) of g¢. Choose a compatible order on the roots. From
page 248 of [18], one knows that half the sum of the positive roots is dominant
integral. Choose an irreducible representation B of GC on a space E with it
as highest weight, and introduce an inner product so that u acts by skew
hermitian transformations. Lump together the weight spaces whose weights
agree on a, and let the resulting orthogonal decomposition of E into “restricted
weight spaces” be E = @, E;. Say R(H)X = A;(H)X for H in aand X in
E;. The highest restricted weight A, is 0, and one can show that the lowest A, .,
is —p. Each E; is stable under M.

Fix X in the highest restricted weight space E, with ||v|| = 1. If g = ank,
then R(n™)X = X and R(k™) is unitary; hence

I REHX | = g™ || X[ = g,
Let P;(g9) be the norm squared of the E; component of R(g~")X. Then
e = Py(g) + Pi(g) + +-+ + Py(9) + P.ii(9) -
If g=a isin V, then P(x) = 1. If g = 2 is in V and z~'w = manv, then

R(w)X is in E,,,, R(v) leaves it fixed, and its image under R(n) has the same
E,., component. Thus, if || - ||,;+, denotes the norm of the E,., component,

I B@™)X [ = || B(manv) Rw™) X [ = e || R(w™) X |3y, = £ (@™ 'w) .

By (6.16), p7'(@7'w) = p~'(xw), and thus P,,,(x) = p¢~'(2w).
Each P;(x) is a polynomial since V acts by unipotent transformations. For
the homogeneity, we have

Pilaxa™) = e**i=1 18 P(x)
by an easy computation. The rest of the lemma follows from this homogeneity
and from Lemma 6.

Fix an irreducible representation D of K such that HS == 0. In our nota-
tion we shall often suppress w, o, and D, understanding that they are fixed.
We write D(k) for the operator on Hj of right translation by & in K. Define
linear transformations E and I'(z) mapping Hj into HZ° by
(10.3) Evr (k) = v(w™k)

(10.4) I'(z) = A(w, 0, 2) |us .

E is unitary; I'(z) is meromorphic in the whole plane, by Theorem 3. Define
linear transformations P, T'.(2), I.(2), and ®(z, g) mapping Hj into HS by
(10.5) Py, ) = (vA), 1))z,

(10.6) I'.(2) = PE*T(2)



OPERATORS FOR SEMISIMPLE GROUPS 531
10.7) I(2) = D(w)™'T,(2)*D(w)
(10.8) ((I)(zy g)“/fy 77) = (U(O', 2, 9)V, 77) .

I'.(z) and T(2) are meromorphic in the whole plane, and ®(z, g) is entire as
a function of z. Also P is not 0. [In fact, if P were 0, we would have
D(k)y(1) = 0 for all £ in K and all v in H3, by (10.5), and this would mean
that Hj = 0.]

LEMMA 30. If ¥ and 7 are in Hy and if Re (2) > 0, then

10.9) (C@b, 7) = | e+ (@), 7(D)s 0
and
(10.10) (Tu@)y, 1) = gye(“’“”““’(«k(x), (k@) w))s,de .

Proof. By (10.6),
(T.(2)v, 1) = (PE*T @)y, 1) = (E*T@vy (1), 7(1)z,
= (T@y(w), n(1))s, »
and (10.9) follows by Lemma 28. Also
(Fz(z)"/” 7]) = (Fr@)*D(w)"/’: D(W)’?)
= (T.@) D(w)7n, D(w)y)
- Sye“““”“”’(D(w)r](lc(x)), D(w)y (1)), dev

and (10.10) follows.

LEMMA 31. There exists 0 > 0 such that, in the strip |Rez| < 8, T'(2)
(and hence T',(2) and l"l(z)) has its only possible singularity a simple pole at
2z = 0 and 27'T'(2) is bounded as | Im z | tends to infinity.

Remark. z can be any positive number less than the number d of (10.2).

Proof. We inspect the proof of Theorem 8. The term (9.7) is harmless.
In the Taylor series expansion of e®+2¢#w (£(y)), we choose n = 0, so that

e(1+’)"’H(”)f(IC(y)) = f(l) =+ RO(Z, y) .

Then R,(z, y) is bounded, and the estimate for the contribution to A(R)yf(1)
from the remainder term is < Const|1 — z| for z in any closed half plane
contained in Re (2) > —d. The contribution from the main term is (9.11) with
J = 0, in which 91, (h,) = ‘:)]l(a‘l(yw)) is independent of z; except for the pole
at z = 0, this term is bounded in any vertical strip.

PROPOSITION 32. There are constants 6 > 0 and ¢ such that for all z with
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|Re (2) | < 6 and for all a in the positive Weyl chamber of A
| z
(—1)
Proof. Fix 4 and 7 in Hj. First we show that

|(I)(a,, z) . e—(l—z)plogar\r(z) . e—-(l—(»z)plogal‘\l(_z)l § Ce—(1+5)ploga .

(<I>(a, Z)’l//‘, 7]) — g—(1—?ploga S e(1+z)pI{(x)eu—z)pH(aaua—l)
v

X (v(£@)), (£(aza™)))s, de .
In fact, by (9.8), (6.8), and (6.7),

(@@ 2y 7) = | e (g (i), 7)), Ik

(10.11)

— SVS e(x+z)p[H(xa>—H(x)]esz(x>(w(ﬁ(mﬁ(x)a))’ n(mﬁ(x)))Eqdmd:v

— S/'e(1+z)pll(xa)e(l—z)pH(a:)(Q#(E(E(x)a))’ W(K(x)))Eadx

( % ) — pllt2lologa SVe(lJrz)pH(a—‘lxa)e(l—z)pH(x)(q//\(K(Ii(x)a))’ W(K(x)))Eud-’C

_ 6—(1—z)ploga§ e(1+z)pH(y)e(l—z)pH(aya-l)
|4

X (v((e(@ya™)a)), n(k(aya™)))sz dy
and (10.11) follows. Second we claim that

(D(a, —2)p, 7) = emt=oeee |
X (p(e(@ra=)w), N(£@)w))s,d .

In fact, starting from () with z replaced by —z, we make the change of vari-

? - -1
e(H-z)pII(au)e(l 2) pH (axa™1)

(10.12)

ables y = tw, for which Lemma 15 gives ¢t = yw™ and dy = p(tw)dt. The
resulting expression then simplifies to the right side of (10.12).

The third part of the proof will be clearer if we introduce these notations:
2*=aqaxa forainAd andxin V, |z| = ¢7*(xw) for xin V. Then |2°| =
e~*"e? x| by (8.1). The set {|«| < 1} is a bounded subset of V; by (10.2), we
have

0 é e—ZpH(a:) _ 1 é c led

for || < 1. Next fix a, in the positive Weyl chamber of A such that
ce—zdplogao < 1 .

We need work only with members a of A such that aa;* is in the positive Weyl

chamber. If |a*%'| <1, then |2*| <1 and so

(10.13) eI 1 < oot |t = cemtoionon | eyt |4 < | gonyt|d

Hence
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(10.14) 0 < g2l 1 <1,
Now if 0 <Re(?) £1and 0 < F < 1, we have

(10.15) |1+ B)-w»u-2 _ 1| < %E 11— z].

If |¢*0 | <1, (10.14) shows that we can apply (10.15) with E = e~27= 1,
By (10.13) and (8.1),

|gu—2elEn _ 1| < % [1— 2] |;1;‘“’o_l |4

(10.16) .
< (_ezdplogao) | 1 — 2z l e—zdploga lx Id .
2

If 0 < Re (2) < 1, then Lemma 30 gives

le(l—z)plogaq)(a’ z) _ Fr(z) l — H e(l+z)pH(a:)[e(l—z)pH(axu_'I)
v

X (y(£(@), n(K(@va™))s, — (v(£()), 7QD))e,ldz

< g1 +Re (2) pH (2) eu-:)pH(axa—l) —1lda
<l lleli7ll | | |

+ SV6(1+Re(z))pH(z) l (w(x(x))’ 7](/6(0,:190,_1)) _ 77(1))120 l dzx
= l[vll«ll7]le1+ II, say .

Break each of the integrals I and II into the sum of an integral over |2 | < 1,
an integral over 1 < |x| < e*'**% ", and an integral over e'°ses’' < |2].
Call the six resulting integrals IA, IB, IC, IIA, IIB, IIC. We estimate each
separately.

In IA and IB, we have |x| < e*'s*%’ or |a*% | <1. Thus (10.16)
applies to both IA and IB. Also e¢'*F#e#® < 1 by (10.1) and e +Resef@ <
| ¢ [~"+R? by (10.1). By Proposition 3

IA < S (iezdploga0> | 1—2 l g—%iologa lx |d dax
lgls1\ 2
< Const |1 — z| g~rloea

with the constant independent of a, and, if Re (2) < d,

IB < S | o [~OFRe "”(ie””“’“")I 1 — z|eelose | g |4 dy
2

1=]z] se?0 log aay™!

é COI’ISt | 1 —_ zl (d — Re (z)) —1 —deloga[,r —Re (z)] 2p10gaa
< Const |1 — 2| (d — Re (2)) et losg2d—Re eheloge
= Const | 1 -2 l (d — Re (Z)) —lg—2(Rezjploga
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In IC and IIC all the factors in the integrand are bounded, and (10.1)
gives g tRe@elle) | g |=U+Re2) - By Proposition 3

IC + IIC < Const S

l € |—(1+R9 (2)) dx
—1
|z| =e20 log aa,

< Const (Re z)~lg=2Re =r 1ogea ™
< Const (Re z) ¢ 2®e e losa

In ITA and IIB, |2*| <1, and 7(£(x)) satisfies a Lipschitz condition on the
unit ball. Also for IIA, et+Re@ieli® <1 by (10.1). Thus for the constant d
above and in (10.2), Lemma 6 gives

ITA < Const S [| || de < Const SI | 2° | da
=1

2] z| =1

= Const ¢4 1s° ‘ |@|? de = Const e 82,
Jlzl=1

Similarly for IIB, we have e+ReeH® < |4 |~0+R@) hy (10.1). By the
same kind of argument as for ITA, we obtain, for Re z < d,

IIB < Const S |22 || | @ |~9+Re@) dy

1< 2| e2P lc»gauo_1

< Const (d — Re (z))—le—zme @)ploga
If 0 <Re(2) =0 <d, then we can conclude from our estimates that
(10.17) | D(a, 2) —e~""¢*= T (2) | < Const[| 1 — 2| + (Re (2)) e +Re @ tosa
Fix a and put

F(z) — (z—il_}_z[q)(a/’ z) — e—-(l—z)plogal"r(z) _ e-—-(l+z)plogal"l(_z)] .

By Lemma 31, F'(z) is bounded and analytic in some strip |Re ()| < ¢ < d.
Then (10.17) and Lemma 31 together give

I F(B —|— ’Ly) | § Const 6—-(1+6)ploga

with the constant independent of a and .
Starting from (10.12), we can give a similar argument for

| ®(a, 2) — e~ 5T (~ ) |
when Re (2) < 0 and arrive at the conclusion
| F(—0 + iy) | < Const g=“F9elose |
By the maximum modulus theorem
| Fi(z) | < Const g='*2elose

for |Re(z) | < 0, with the constant independent of z and a. This completes the
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proof of the proposition.

Remark. In the proof é can be any positive number less than d, and in-
spection of Lemma 6 shows that d is (p + 29)~".

11. Role of the Plancherel measure

Our objective in this section is to give an explicit formula for ¢,(z) in terms
of the Plancherel measure for G. So far, what we have shown is that the
matrix coefficients of U(o, 2, a) admit an asymptotic expansion in the variable
a such that the coefficients I'.(z) and I';(—z) of the leading terms are related
in a simple way to the intertwining operator A(w, o, 2). As we shall see in
Lemma 35, this simple relationship will allow us easily to relate ¢,(z) to the
Hilbert-Schmidt norm of T'.(z) and T',(—2). Thus the remaining step is to use
the asymptotic expansion to relate the norms of T',(2) and I')(—2) to the
Plancherel measure. The core of this last identification lies in a property of the
Plancherel formula of G. The Plancherel formula for G says that the mapping
of L*G) into a direct integral of Hilbert-Schmidt operators is an isometry;
what we need is an explicit identification of the image of this isometry. We
therefore begin with a brief discussion of the abstract Plancherel formula and
then pass to the explicit identification of the image, which is a result implicit
in the work of Naimark [29].

Let G, be a separable locally compact unimodular group. Fix a normaliza-
tion of Haar measure. We shall suppose that G, is of type I. This property
implies that G, has a Plancherel formula in the following sense: The space
II = {7} of classes of irreducible unitary representations of G, (or of a repre-
sentative from each class) admits a measure dyv(r) such that, for each f in
LGy N L¥G,),

11 = | 170 s de)

where 7(f) refers to w(x) averaged by f and where HS refers to the Hilbert-
Schmidt norm.

For the semisimple matrix group G of real-rank one, the Plancherel formula
is known explicitly. (Knowledge about this formula is the only reason for
restricting attention to matrix groups in Part II.) We shall describe the for-
mula more explicitly in § 12, but for the moment we give only a few features
of it. The representations contributing to the formula are all in the discrete
series and the principal series, and the formula is

ALY (11 = Teeg 17 s 2@ + T, |11 TG0, it 1) s putit)i
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where 7, is a discrete series representation, 9 is a countable (possibly empty)
set, p(d) is bounded below by a positive constant, o extends over all equiva-
lence classes of irreducible unitary representations of M, and p,(it) is a con-
tinuous function that extends to a meromorphic function p,(z) in the whole
plane without singularities on the imaginary axis and without zeros on the
imaginary axis except possibly at z = 0. All the representations that appear
in (11.1) are irreducible (with the understanding that ¢t > 0).

LEMMA 33 (NAIMARK). With o fized, let t — T, be a measurable func-
tion from (0, ) to the Hilbert-Schmidt operators on H° such that

S: || T, || p.(it)dt < oo. Then there exists a function fin L*G) such that

(11.2) [ feF@ s = S:Tr (T, U(o, it, b)*)p.(it)dt
for all h in C2(G) and such that

(113 [, 170 1 ds = | 11 Telf ) -

Formula (11.1) says that the mapping f— {m.(f), U(o, it, f)} defined on
the dense subspace L'(G) N L&) of L*G) is an isometry into the obvious L* -
space, and the lemma says substantially that the continuous extension of this
map to all of L*(G) is an isometry onto. Actually Naimark [29] stated and
proved a result only for complex semisimple Lie groups. But the proof that
he gives can be adjusted to yield the above lemma if one replaces the Hilbert-
Schmidt kernels there by the actual Hilbert-Schmidt operators and makes other
minor changes.

There is one detail that needs checking. For fin L'(G), it must be shown
that the continuous function = — 7(f) (for m occurring in (11.1)) vanishes in
norm at infinity. It is enough to consider a dense set of such f, say an f in
C=(G@) that transforms under K on both the left and the right by a finite-
dimensional representation of K. For this f, ||7.(f) || £ ||7a(f) [lus— 0 by
(11.1) and the fact that p(d) is bounded below. Furthermore U(o, it, f) = 0
unless o occurs in the reduction of D under M; hence U(a, it, f) = 0 for all ¢
except for finitely many o. For the exceptional ¢’s, only finitely many entries
of U(o, it, f) are nonzero. Thus we are to show, for fixed o, that each entry
of U(a, it, f) tends to 0 as ¢ tends to infinity. That is, we are to show that

(11.4) SGSKe“‘f“"’”""’(w(lc(kx)), 7(8)) 5, (@) Al de

has limit 0 as ¢t — oo, if 4»and 7 are in H3. Since f has compact support, (11.4)
in local coordinates transforms into a finite sum of terms
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(11.5) S ¢ g(z)das
X

where X is a bounded open subset of a euclidean space, F'(x) is a nonconstant
real analytic function on the closure of X, and g(x) is a bounded measurable
function on X. Defining a measure on the line by

T(F) = SF E)g(x)dx ,

—1¢

we see that (11.5) equals
(11.6) Sw iedz(s)

If the Lebesgue measure of E is 0, then F~'(E) has measure 0, since F' is non-
constant and real analytic. Thus 7(E) = 0, and dz is absolutely continuous.
Since ¢ is bounded, dz is a finite measure, and the Riemann-Lebesgue Lemma
shows that (11.6) tends to 0 as t— . Hence (11.4) tends to 0. This completes
the verification of the detail needed for Lemma 33.

We shall now apply this lemma. Asin § 10, let D be an irreducible unitary

representation of K such that H3 == 0. Then we have defined ®(¢t, ) mapping
H3 into itself by

(@@, @)y, 1) = (Ulo, it, @)y, 1) .

Let B(t) be a real-valued smooth function of compact support in the open
interval (0, «=). Since p,(it) vanishes only for ¢ = 0, we obtain

L7 |, 16801 paGiat < = .
Define

(g, 5) = | BOV(, 2)7dt .

0

LEMMA 34.
[ 106, 01l dz = @im Hyy | (80) F p.667dt -
G 0
Proof. Let {y;} be an orthonormal basis of Hj, express @ in this basis,
and let T}/ be the Hilbert-Schmidt operator on H° defined by
T#n = BA)P.(t) (1, Vi)V
Since p,(¢t) is real,

Ti*n = BP0, V)V
and
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TETE*n = | BQ) P 0,(58) 2 (1), yra)r -
Thus
(11.8) | Té |lis = | BQ) I po(it)
Let k be in C(G). We have
(T U(o, ity )yra 1) = BED)(U(0, it, Wiy ¥5) iy v0)
and so
(11.9) Tr (T Uo, it, k)) = BO)P.()(U(o, it, B)yri ¥r5)

By (11.7) and (11.8), T}/ satisfies the hypothesis of Lemma 83. Choosing f =
f* as in the lemma, we obtain

[, Fo@heds = | T (15U, i, W)t by (11.2)
= rg BB ()Y (it, x)dudt by (11.9)
= SNS B (x~")D¥ (it, ") drdt under 2 — 2!

= || sor@ 0t o*avs
0vYG

= S ®¥(B, ®)h(x~")dx after interchanging integrals.
G

Since h is arbitrary, f¥(x) = ®¥(g, «) almost everywhere, and (11.3) and (11.8)
give
[, 1098, ) Fdo = | I T2l pitindt = |1 50) P ot
[ 0
Summing on 7 and j, we obtain the lemma.

We continue to assume that D is an irreducible representation of K such
that H3 # 0. Recall the definitions (10.5)-(10.7) of the operators P, T',(z), and
I';() mapping Hj into itself. We have seen that P is not 0.

LEMMA 35. Ift is real and if HS refers to Hilbert-Schmidt norms, then
IT,@0) [fius = [ To(—152) s = || P fiss co(32)
Proof. By (10.6),
I T.(it) [as = Tr (T, @)T,(i8)*)
= Tr (PE*T(@t)['(it)* EP*)
= ¢,(it) Tr (PE*EP*) by (9.21)
= ¢,(it) Tr (PP¥)

since E is unitary. The rest follows from (10.7).
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THEOREM 4. There exists a constant c; # 0 depending only on the nor-
malization of Haar measure in the Plancherel theorem of G such that
¢,(2) = ¢ || Plus (dim Hp)*p,(2)~*
for all complex z.
Proof. We shall compute S [|D(B, x)||4sdx asecond time, this time using
(4]

the asymptotic expansion of Proposition 32. Write G = KA+K, where A" is
the positive Weyl chamber of A. Since U(o, 2, k) preserves HS when k is in
K, we have

(D(z7 klakz) = D(kl)q)(z9 a)D(kz) .

Fix H, in the Lie algebra of A such that o(H,) = 1, and introduce a real para-
meter s = 0 by a = exp sH,. Then it is known [15] that Haar measure for G
decomposes as

de = A(s)dk,dsdk, ,

where A(s) is a linear combination of exponentials in which the dominant ex-
ponential is ¢**. Define ¢, by the condition that the coefficient of ¢** in A(s) is
(2meg) .

The form of the asymptotic expansion that we shall use is that

D(it, @) = e=U=00 18T (i) 4 g=C+ivelosal,(_4t) + Ry(it, a) ,

where | R, (it, a) | < Const e~"+?¢15¢ on any compact set of numbers ¢ not
containing ¢ = 0. With our parametrization of a, this equation becomes

(11.10) O(it, exp sH,) = e~*[¢"T,(it) + e "*T'(—1t)] + R(it, s) ,

with | R(it, s) | < Const e~"+”* on compact sets of t’s excluding 0.
Put

B = | empta,

so that || 8| = 2= [|Bl;. Fix t,>0 and let E, ---., E, denote error terms to
be computed later. Since D(k) is unitary and Sdk = 1 and g is real, we have

(11.11)
L | (8, 2) |[hs dir = r 1| ®(8, exp sH,) |[4s Als)ds

= S:A(s)e‘z“

r [T, (i) + e—Ty(—it)] ,G(t)dt”; ds + E,

—oo

— (27¢0)" S“

S” [T (it) + e"““Fl(—it)],B(t)dt”;ds +E +E,

—oo
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2

Hsds + E + E, + E;

= (2meo)™ S

[ Eerait) + eTu—itals@ys

= @ne) | {1BO@ I IIT (6t s + 1B(=5) P I Ti(—ito) lis

+ 2Re B(s)B(—s) Tr [I‘,(ito)I‘l(—ito)*]}ds + E, + E, + E,
— (2ze) || Pllioc.itd | |B@ P ds + By + B, + By + B,
= 'l Pllisc,itd | 18O Fdt+ B+ B+ B+ B,
Let 8 run through a sequence of functions 3, each with L? norm equal to
1 and with B, vanishing off the set |t — ¢,| < 1/n. On one hand, Lemma 34
gives

lim, .. | 1| @(80 2) s do = (@im Hyyp, (it~
G
and on the other hand, (11.11) gives
1imn—~°° S H (D(Bm 93) ”%IS dx = c(_}l ” P”%{S C,(’&.to) + llm (E1 + Ez + Es + E4) .
G

We obtain the conclusion of the theorem for z = it, if we show that each

error term tends to 0. For general z, the theorem then follows by analytic

continuation, since both sides in the conclusion are meromorphic functions of z.
For E,, we have

B, = [ 86(16) + 76 s = 1170 1),

where
76) = = |l (it) + e T~ i)]g. )
r0) = | Rt 9s.0d .
Then
15,1 = [ 2 Re Tr [0 @)*] | A + ' 11760) s A
< 21560 s 1769 s @ + 1176 lfis AE)ds

< 2(17156 o 2@ds) ({71170 I A@s) " + | 1760 s A6

Now A(s) < ce*, and it follows readily from the Plancherel theorem for the
line and the local boundedness of TI.(it) and T,(—it) away from t=0
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that SN | f(s) ||is A(s)ds is bounded as % — . Consequently E,— 0 if
S Il r(so) |lis A(s)ds — 0. Using the known estimate for R(it, s), we have
0

)
=

S;Bn(t)R(it, s)dt”;A(s)ds
(1 1.0 16, ) s de) o

—oc0

—oco

< Const r(r | 8.(0) | e‘“”“‘dt)zA(s)ds

< Const || 8. |I2 S“’e—mds
0

< Const || 8. | .

By the Schwarz inequality
(11.12) Balli = 207 || Bulli = 2/ —> 0,

and thus £, — 0.
Next, F, is a finite linear combination of terms

S e—-CS
0

= | e ll gl ds = ceoll 84t

0

r [¢°T,(it) + e“i“’l“,(—it)],en(t)dt”; ds

—c0

where ¢, is a bound for || ¢*T',(it) + e~***T',(—4t) || on the common support ot
the functions B,. Thus E, — 0 by (11.12).
Next, | E, | is (2m¢c;) ™" times

T U608, @ + (Tuibs—0) Gl
— T @) B B) () + (=it Bal =) (6) ||as}ds|
:|||I||2 — || IL|?| ds

[T = NIL T+ (1 I ds

T = IL[{ILTIF + 11T}

= (| _nr—meas)™ (1" nnieas)” + ({7 nieas)™}

By the Plancherel theorem for the line and by the fact that 5,(t) and g.(—t)
have disjoint supports, we have

X

= | 1 - e ds
|
|

S I TP ds = 2m{suDic—spsi/m | T, (20) fs + SUD|e—sq11/m || To(—18)|[his} = Const ,
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and similarly for r [|I1||* ds. Also similarly

[ 1T = T ds < 228upiay cum | T (it) — T(it s
+ SUDt—tgisirn [| Ty(—1t) — Ti(—to) [}

which tends to 0 by the continuity of I', and I',. Hence E, — 0.
Finally Lemma 35 shows that E, is given by

E, = 2rey)™ rz Re {B.(5)B.(—s) Tr [T, (it) T, (—it,)*]}ds .
Thus it is enough to show that
r@n(s),@,,(—s)ds —0.

If H denotes the Hilbert transform, then
2 Bu@Bu(—5)ds = | Bu@Bu(—ds + | (san ())8.6B.(—sds
Now (B8.*8,)(0) = 0 as soon as 1/n < t,/2. Also as soon as this happens,

H(B,+B)(0) = %Slw—f_ﬁ(@da@ .

The support of 8, *B, remains in a fixed compact set on which 1/x is bounded,

and || 8.*B.[li—0 by (11.12) since || 8,8, |l < || 84 |f. Thus E,— 0. The
proof of the theorem is complete.

12, Irreducibility theorem

Let p,(it)dt be the contribution to the Plancherel formula (11.2) by the
principal series representation Ul(o, it, g), 0 < ¢t < c. Combining Proposi-
tions 20 and 27 (vii) with Theorem 4, we obtain the final form of the irreduci-
bility theorem for the principal series of a semisimple matrix Lie group of
real-rank one.

THEOREM 5. The principal series representation U(o, it, 9) is reducible
if and only if

(i) o is equivalent with wo,

(ii) t =0, and

(iii) »,(0) = 0.

Proof. By Proposition 20, it is enough to show that if ¢ is equivalent
with wo, then 9M(o(xw)™) = 0 if and only if p,(0) # 0. By Proposition 27
(vi-vii), 9M(o(@w)~*)=0 if and only if c,(?) is regular at z = 0. By Theorem 4,
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¢,(?) is a constant multiple of p,(z)~'. Thus ¢,(2) is regular at 0 if and only if
P,(2) is nonvanishing at 0, and Theorem 5 follows.

The decisive fact for applying Theorem 5 is that the Plancherel measure
is known so explicitly for the groups in question. For the proof of the formula
see [30], [13], and [17]. We shall describe the result of these papers, but be-
fore doing so, we introduce some notation. Let )~ be a maximal abelian sub-
space of m; since M is compact, h~ is a Cartan subalgebra of m. Then § =
b~ @a isa Cartan subalgebra of g. Form roots of gC with respect to . We
introduce an ordering in the usual way in the dual of i)~ @ a so that positive
elements on i~ are bigger than positive elements on a. Let Q be the set of
positive roots in this ordering. Extend o, defined on a, to a functional p* on
b by setting o*(f) = 0. Let o~ be half the sum of the members of Q that
vanish on a. Let us assume temporarily that G is simple.

Except when G is locally SL(2, R), M is connected. (The case of SL(2, R)
is well-known and will be excluded from the discussion for most of the rest
of the section.) When M is connected, the representation o is determined by
its highest weight A~ on h~. Extend A~ to all of § by setting A—(a) = 0.
Put

w@) = [I,..<a, 20" + A=+ 0> .
Then there are three cases:
Case 1: rank G > rank K. Then
p.(2) = co)(2)
for some constant ¢ independent of z.
Case 2: rank G = rank K and ¢ = dim g,, is 0. Then

D.(?) = cw(z) tanh (7piz/2)
or

2,(2) = cw(z) coth (7piz/2) .
The decision between tanh and coth is done roughly as follows. There is a
distinguished element 7 of exp b~ of order at most 2 (see [30, p. 121]). Select
H in h~ such that v = exp H. Then exp {(A~ + po7)(H)} = +1. The coth is
used when the sign is +, and the tanh is used when the sign is —.

Case 3: rank G = rank K and ¢ = dim g,, is not 0. Then

Do(2) = cw(z) tanh (7(p + 2q)iz/4)
or
P.(2) = cw(z) coth (7(p + 2¢)iz/4)

with the decision between tanh and coth made as in Case 2.
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In Case 1, G is covered by Spin (2n + 1, 1), and we shall see in § 16 that
every representation of the principal series is irreducible.

In Cases 2 and 3 there is always irreducibility at z = 0 in the tanh case.
But in the coth case, w(z) will vanish either to order 1 or order 3 at z = 0,
and irreducibility at z = 0 will occur exactly when the vanishing is to order 3.
Order 1 is generic, and thus most representations in the coth case are reduc-
ible when z = 0. Some of these facts had been noted earlier by the authors in
the examples of [20].

For SL(2, R) there are two representations of M, one trivial and one not.
The Plancherel measures in the two cases are multiples of z tanh (7iz/2) and
z coth (712/2). Irreducibility occurs at z = 0 in the first case, and reducibility
occurs in the second case. This fact was of course already well known.

13. Normalizing factor for intertwining operators

We return to the question of complementary series. We shall now find it
necessary to normalize the intertwining operators A(w, o, ) by a meromorphie
scalar factor 7,(2) with certain properties.

LEMMA 36. If ¢(2) is a meromorphic function in the plane such that
(i) ¢(@) = ¢(—2) for all z
(ii) ¢(®) = 0 on the imaginary axis,
then there exists a meromorphic function Y(z) in the plane such that
(13.1) c(z) = 7(@)7(—%) .
The function 7(z) can be chosen so that all its zeros are in the closed right
half plane and all its poles are in the closed left half plane. If also c(z)
satisfies
(iii) e(z) = e(—=z) for all z,
then Y can be chosen to be real for real z.

Proof. In the special case that c(z) is entire and non-vanishing, take 7(2)

to be one of the two versions of ¢(2)'%. Then

YAT(—F) = @) "e(—BT = @ [e(—A]" = [T = (@)
with the sign continuous for all z and positive for z = 0. Thus (13.1) holds in
this case. If also (iii) holds, then (i) shows that c(z) is real on the real axis.
By (ii), ¢(z) > 0 on the real axis. Hence 7(z) is real on the real axis.

In the general case, the zeros and poles of ¢(z) are symmetric about the
imaginary axis by (i), and the ones on the axis occur with even multiplicity by
(ii). Construct 7,(z) as the quotient of two Weierstrass canonical products, so
that 7,(z) has the zeros of c(z) that lie in the open right half plane, 7,(z) has
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the poles of ¢(z) that lie in the open left half plane, 7,(2) has zeros and poles
of half the orders of those for ¢(z) on the imaginary axis, 7,(z) has no other
zeros and poles, and 7,(2) is real on the real axis if ¢(?) is real on the real axis.

Then we can apply the special case to ¢(2)7,(2)~*7,(—2)~" and obtain a func-
tion 7,(z). If we put 7(2) = 7,(2)7.(2), then 7(z) has the required properties.

PROPOSITION 37. It is possible to choose stmultaneously for all irreducible
unitary representations  of M functions 7,(z) meromorphic in the whole
plane such that

(1) 7,(2) depends only on the equivalence class of o

(ii) 7,(z) has no poles in the oven right half plane and no zeros in the
open left half plane.

(i) 7,(2)7,(—2) = ¢,(2)

(V) Yuo(?) = 7, @)-

Proof. Since w?is in M, we can partition the set of equivalence classes
of representations of M into a number of one-element sets and a number of
two-element sets, with each set closed under the operation [¢] — w[c]. To
each one-element set {0}, we apply the full version of Lemma 36 to ¢,(z). In
Proposition 27, part (ii) shows that c¢,(z) depends only on the class of o, part
(iii) shows that condition (iii) in the lemma is satisfied, (iv) shows (i), and (v)
shows (ii). The lemma produces 7,(z) with the four required properties.

If {0, wo} is a two-element set, we apply just the first half of Lemma 36
to ¢,(2). Again Proposition 27 (ii) shows ¢,(z) depends only on the class of o,
(iv) shows (i) holds in the lemma, and (v) shows (ii). The lemma produces 7,(z)
satisfying properties (i), (ii), and (iii) of the present proposition. Define

Yuo(?) = 7,@) .

Then (iv) follows for o, and (i) and (ii) follow for we. For (iii) with wo, we
have

71,,,,(2)7,”(—2) = 'YU(E)VU(—Z) = C,,(—Z) = cwa(z) ’
the last step following from Proposition 27 (iii). Finally for (iv) with wo, we
have
7w{w0)(z) = 7uv2a(z) = '7,,(2) = '77”(5) ’
the middle equality following from (i) for o, since w*® is in M. The proof is
complete.

Fix a choice of functions 7,(2) as in Proposition 37, and define normalized
intertwining operators by

Qw, 0,2) = 7,(2)A(w, g, 2) .
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@(w, 0, z) maps C=(0) into C=(wo), and the z dependence is meromorphic.

PROPOSITION 38. The operators G(w, g, 2) have the following properties
(i) Qw™, wo, —2)Q(w, 0,2) = I
(ii) Qw, 0,2)* = Q(w™, wo, Z)
(iii) Q(w, o0, 2) is unitary for imaginary z
(iv) If o is equivalent with wa, so that o(w) is defined, then
[o(w)C(w, g, 2)]* = a(w)R(w, o, 2)
for z real.
Proof. (i) follows from the definition of ¢,(z) and from the equality
Yuo( = 2)Y6(R) = 7o(=2)7,() = ¢ (?) ,

which follows from parts (iii) and (iv) of Proposition 37. Next, (i) follows
from Corollary 2 of Theorem 3 and from Proposition 37 (iv), and (iii) is a con-
sequence of (i) and (ii). Finally (iv) follows from Proposition 25 and from Prop-
osition 37 (iv).

14. Existence of complementary series

If 0 is an irreducible representation of M and \ = y*/* is a character of A,
we have made the definition (in § 9) that U(o, z, x) is in the complementary
series if there is a positive definite continuous inner product on C(¢) x C”(o)
with respect to which U(o, 2, x) is unitary. If there is a nontrivial positive
semidefinite continuous inner product of this kind, then U(o, #, ) is in the
quasi-complementary series. In considering which ¢ and z lead to such repre-
sentations, there is substantially no loss of generality in restricting attention to
Re(z) > 0, because, except on an isolated set, @(w, o,2) exhibits U(s, 2, ) and
U(wo, —z,x) as equivalent representations on C~(0) and because, as we shall
see, the z for which U(o, 2, z) is in the quasi-complementary series form a closed
set.

We assume then that Re (2) > 0. By Proposition 25, U(o, z, ) is not in the
quasi-complementary series unless o is equivalent with wo and z is real. There
is a further necessary condition. As will be implicit in the proof of Theorem 6,
there is no quasi-complementary series near z = 0 unless the Plancherel
measure satisfies p,(0) = 0 (see §§ 11-12 for a description of p,).* We shall
have the condition p,(0) = 0 as an assumption in our existence theorem.

Recall that »p = dimg, and ¢ = dim g,,. By Theorem 3, the only possible
poles of the intertwining operator A(w, o, z) are simple poles at non-negative

3 In the cases of Lorentz groups and their two-fold covers and in the case of the
hermitian Lorentz groups SU(n, 1), there is no quasi-complementary series at all for Re ()>0
unless p,(0) = 0.
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integral multiples of —(p + 2¢)~'. (However, not all of these multiples do give
rise to poles; this point will be discussed further in §15.) Also from the explicit
formulas for the Plancherel measure p,(z) in § 12, we see that p,(z) has at most
simple poles and poles can occur only at integral multiples of (» + 29)~".

LEMMA 39. The only zeros of p,(z) other than at z =0 are stmple and can
occur only at integral multiples of (p + 2¢q)~".

Proof. By Theorem 4, zeros of p,(z) come from poles of ¢,(z), which in turn
come only from poles of A(w, g, 2) or A(w™, wo, —z). The lemma follows
from Theorem 3.

Suppose ¢ is equivalent with wo. Then o(w) exists, and the operator
o(w)@(w, g, 2) maps H° into itself (see § 13 for definition of &). Since A(w,d,z)
commutes with right translation by K, o(w)@(w, g, 2) maps each Hj into
itself. Now Hj is finite-dimensional since H° < LK) Q E,. Hence there is a
system of orthogonal finite-dimensional invariant subspaces for o(w)Q@(w, g, ?)
whose sum is dense in C”(g). This fact will be of crucial importance in what
follows. The next lemma is elementary.

LEMMA 40. Let F(x) be a continuous function from a space X to the
vector space of n X n hermitian matrices such that F(x,) is positive definite
Jor some x, and such that det F(x) is non-vanishing for x in a dense connected
subset Y. Then F(x) is positive definite for xin Y, and F'(x) is positive semi-
definite for all x in X.

If the Plancherel measure for ¢ satisfies p,(0) = 0, we define the critical
abscissa z, for o to be the least positive integral multiple of (p + 2¢)~* such
that either of these conditions holds:*

(1) po(2e) = o=
(ii) A(w, o, 2) does have a pole at z = —z,, and p,(z,) = 0.

THEOREM 6. Let o be an irreducible unitary representation of M such
that the Plancherel measure satisfies p,(0) = 0, and let 2z, be the critical ab-
scissa. Then U(o, (% x) 1is in the complementary series for 0 <z < z, and
18 1n the quasi-complementary series but not the complementary series for
zZ=z,.

Remark. It can happen that the unitary representation that arises at z,
is the trivial representation of G.

Proof. By Corollary 3 of Theorem 38, by Proposition 27 (vii), and by

* An examination of the argument below gives the following equivalent characterization
of the critical abscissa z.: A(w,s,2) has its only singularities at integral multiples of
(p+29)~1, and z is the least positive integral multiple z=n(p+2¢)—! such that either A(w,os,2)
or A(w,s,—2z) has a pole at z.
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Theorem 4, ¢ is equivalent with wo. Form the normalizing factors 7,(z) and
the normalized operators @(w, o, z) of § 18. Since o is equivalent with wa,
o(w) exists. From the identities

U(wo, —z, v)A(w, 0, 2) = A(w, 0, 2) U(o, 2, ©)

and
o(w)"U(e, —z, x)o(w) = Ulwo, —z, x)
we obtain
(14.1) Uo, —z, x)[o(w)@(w, 0, 2)] = [o(w)A(w, g, 2)]U(o, 2, ®) .

Now o(w)®w, ¢,0) is unitary by Proposition 38 (iii). Since p,(0) =0,
Theorem 5 shows that U(o, 0, «) is irreducible. By (14.1), o(w)G@(w, o, 0) is
scalar. By Proposition 38 (iv), the scalar is real. Hence o(w)&(w, 0,0) = *=1I.
Since the definition of ¢(w) involves an ambiguous sign, we may suppose that

(14.2) o(w)@(w, 6,0) = I.

Proposition 38(iv) shows that a(w)@(w, 0, #) is hermitian for0 <z <=z.. In
view of Proposition 25 and the orthogonality of the Hj, it is enough in proving
the theorem to show that each o(w)@(w, 0, ?)| »9 is finite and positive definite
for 0 < z < z, and to show that o(w)A(w, 0, 2) is positive semidefinite at z = z,
for all D and not definite for some D.

For 0 < z < z,, we know that p,(z) is finite and that p,(z) = 0 if A(w, o, —2)
has a pole. (Lemma 39 and the remarks before it account for z = n(p + 29)7%,
and the definition of 2, accounts for the remaining values of z) Theorem 4 and
the definition of v,(z) show, for 0 < z < 2,, that 7,(2) # 0 and that v,(z) = - if
A(w, 0, —2) has a pole. That is, o(w)Q(w, 0, 2) = 7,(2)"'o(w)A(w, 0, ?) is
regular for |z| < z,, hence continuous.

Also o(w)®(w, 0, 2) is nonsingular on Hj for |z| < 2, because

[o(w)@(w, o, —2)][o(w)R(w, 0, 2)] = [c(w)A(w™, 0, —2)o(w)]@(w, o, ?)

14.3
( ) = Q(w™, wo, —2)&(w,0,2) =1,

by Proposition 38(i).

On the other hand, o(w)@(w, o, 0) is positive definite on each Hj by (14.2).
Applying Lemma 40, we find that o(w)Q(w, 0, 2)[x9, is positive definite for
0<z2<z,. Forz, —e=<z=z, o(w)A(w, g, 2|y is continuous, and it is non-
singular and definite for z, — ¢ < z < 2,. By the lemma, it is semidefinite at z..

Finally we are to show that o(w)A(w, 0, 2.)|n9 fails to be definite for some
D. There are two possibilities. If p,(2,) = o, then ¢,(2,) = 0 by Theorem 4
and ¢,(—2,) = 0 by Proposition 27(iv). Now

(14.4) A(w, 0, 2,)A(w™, wo, —2,) = c,(—2,)] =0.
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Also A(w=, wo, —z,) is not identically 0, by the proof of Theorem 3. Then
A(w=, wo, —z,)h # 0 for some h, and we may suppose that % is in some Hj
since Y Hj is dense in C”(0). If f = A(w™, wo, —z,)h, then f is in Hj, and
(14.4) shows that A(w, 0, 2,)f = 0. The second possibility is that A(w, o, —%.)
has a pole and p,(z,) # 0, and the proof is completely analogous.

15. The critical abscissa

There are two questions suggested by Theorem 6. At exactly which
multiples of (p + 2¢)~" does A(w, 0, 2) have a pole? To what extent does the
complementary series extend to the right of the critical abscissa?

We shall give some partial results about the poles of A(w, o, z) for general
G and then examine the groups SO(n, 1) and SU(n, 1) in more detail. We begin
by defining the element v of §12 that plays an important role in the Plancherel
formula. With « as the smaller positive restricted root, let 8 be the larger
positive restricted root (a or 2a). Let Y be in g;. Then

R(OY)+ a+ RY
is a subalgebra of g isomorphic to 8I(2, R). Choose H in a such that B(H) = 2,
and let v be the element of G¢ defined by
(15.1) v =expitH.
Then 7 is in G because it is the image in G of the 2 x 2 matrix (-1, 0; 0, —1)
under the homomorphism of SL(2, R) into G corresponding to the Lie algebra
inclusion 81(2, R) = g.

LEMMA 41. If g,, = 0, then v is in the center of G. If @, # 0, then v 1s
in the center of M, Ad(7) operates as —1 on g, and §_,, and Ad(Y) operates as
1 on g:x and §_sa-

Proof. It is clear that
(15.2) Ad(M)X = grikfD X = ik X
for X in g;s. If g, = 0, then 8 = @ and g = g_, + g + g.. Thus (15.2) says
Ad(7) is the identity, and 7 is central in G. If g,, # 0, then 8 = 2o and Ad(v)
is —1on g, and g_, and is 1 on g,,, g,, and g_,,. Since ¥ isin K and Ad(7v) =1
on gy, v is in M and commutes with nm. Since M is connected whenever g,, = 0,
v is in the center of M.

LEMMA 42. If 0 has the property that

olexp (— X + Y)w) = o(exp (X + Y)w)
Jorall X in g_, and Y in g_,,, then A(w, g, 2) has no poles at odd multiples
of (p + 29~
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Proof. There will be such poles if, when j is odd, the function
(15.3) hi(z, y) = ptPileR0(yw)o~ (yw)g,i(z, v)
in the proof of Theorem 3 has mean value 0. Here g; is a polynomial a-
homogeneous of degree 7, thus odd in the g, variables. The hypothesis is that

o0~'(yw) is even in the g, variables, and it follows readily from Proposition 3
that h;(z, y) has mean value 0.

PROPOSITION 43. If g, #= 0, then A(w, g, z) has no poles at odd multiples
of (p + 29)".

Proof. Let v be as in (15.1) and let v = exp (X + Y) as in Lemma 42.
Notice that v* = 1. Then by (15.1),

w™YT'w = wlexp (—itH)w = expitH = v = v,
Since, by Lemma 41, v is in the center of M, we conclude

m(yvy~'w) = ym(vw)w v 'w = ym(vw)y™ = m(vw) .
The proposition therefore follows from Lemma 42.

We shall now consider the poles of A(w, g, z) for special groups. Fur-
ther information about special cases will be given in §16. For the Lorentz
groups SO,(n, 1), V is isomorphic with R~ and conjugation by a member of
A is just a dilation in the ordinary sense. The norm function is a scalar
multiple of ||z ||*~, and M is the rotation group SO(n — 1). For the standard
representation g, of M, g,(xw) is of the form ||« ||2P(x) for a matrix of homo-
geneous polynomials of degree 2. Since g, separates points of M and is real,
it follows that o(xw) is an even function of « for every ¢. By Lemma 42,
A(w, 0, 2) can have poles at only the even multiples of —1/p. (Noteq¢ =0
here.) If p,(0) = 0, then o¢~'(yw) has mean value different from 0. Thus in
(15.3), we can choose as a polynomial

9i(z, v) = ||yl
if j is even and obtain from it a pole of the operator A(w, o, 2) at z = —j/p.

We can summarize as follows.

PROPOSITION 44. For the Lorentz groups SO,n, 1), if »,(0) = 0, then
A(w, g, 2) has poles at every monpositive integral multiple of 2/p and only
there.

In the case of the hermitian Lorentz groups SU(n, 1), the Lie algebra of
V is isomorphic with the Lie algebra of matrices
0 0 O
X 0 0],
#Y X* 0
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where X is a column vector in C*~' and Y is in R. The norm function is a
multiple of
(X + Y P

By Proposition 43, A(w, o, z) has poles only at even multiples of (p + 2)~'.
(Note g=1 here.) On the other hand, we can argue with powers of || X||*+|Y|%,
just as in the Lorentz case, to show that if there is a pole at —z, then there
is another pole at —z — 4(p + 2)~'. And, of course if p,(0) = 0, then there is
a pole at 0. In addition, it is possible to relate the behavior of A(w, o, z) at
2 = —2(p + 2)~" with the behavior of two operators A(w, o,, 2) and A(w, g,, ?)
at z = 0; in this way the existence or non-existence of a pole of A(w, o, 2) at
z = —2(p + 2)7' again can be obtained from the Plancherel measure by in-
spection. This relationship is described as follows: M is the group of matrices

ew

ei[)

with @ in the unitary group U(n — 1) and with ¢**’ det @ = 1. Let o, be the
one-dimensional representation o,(¢”, w, ¢’) = €', and define ¢, = 0 Q g, and
0, = 0 ® 7,. Then A(w, g, 2) has no pole at z = —2(p + 2)~* if and only if
0,,(0) = 0 and p,,(0) = 0. We omit the simple proof. This completes our dis-
.cussion of the poles of A(w, o, ?).

For the second question about the critical abscissa, one may guess that
there is no complementary series to the right of z,. As evidence for such a
conjecture, we have the following proposition.

PROPOSITION 45. Let G = SO(n, 1) or SU(n, 1). If p,0) # 0, then
Ulo, t£"%, x) is not in the quasi-complementary series for any z with Re z > 0.
If p,(0) = 0, then U(o, p£%, x) is not in the quasi-complementary series for
any 2 > z.

The proof begins with two lemmas, the first of which is due to Kostant
[24]. (See also [21], which shows how Lemma 46 is implied by our present
Theorem 6 and Lemma 42.)

LEMMA 46. Let G = SO(n, 1) or SU(n, 1). If o isthetrivial representa-
tion, then U(o, (£, x) is in the complementary series for 0 < z < 1.

For the purposes of the second lemma, recall that a function ¥ in
L'(K, Hom E,) is positive definite if

15.4) [[(Fa e, pw)sdrdy = 0

for all » in C(K, E,). Let {e,} be an orthonormal basis of E,. In case F is
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continuous, (15.4) is equivalent with the condition that, for any finite set {x;}
in K, the matrix

Cirit = (F(xi_le)ek’ 31)
is positive semidefinite.

LEMMA 47, Let 1 <p < o andlet p' = p/(p — 1). If F in L*(K, Hom E,)
and fin L* (K, C) are positive definite, then fF is positive definite.

Proof. For ¥ in C(K, C), define

(15.5) Fy(z) = SS«F(S)WF(S‘lxt)dsdt ,

and define f, similarly for 6 in C(K, C). Then f;, and F'y are continuous positive
definite. If {x;} is given, it follows that the matrices (Fy(zi'w;)e, e) and

Jfo(x7'x;) are positive semidefinite hermitian. Then we can find a unitary matrix
U.; such that

fa(xi_lxj) = EmUzm(_jﬂmDmm
for suitable numbers D,,,, = 0. If constants ¢;, are given, the result is that
Zcik—c—jl(fﬂF"/’(xi_lxi)ek’ 31)
= Zm Dmm{zcik Uimcjl Ujm(Fﬁk(xrlxj)eky el)} g 0.
Therefore f,Fy is continuous and positive definite. Passing to the limit in v
and then 0, we see that fF is positive definite.

Proof of Proposition 45. For Re (z) > 0, the operator o(w)A(w, o, 2)
extends to a bounded integral operator on L% K, E,) with values in H°. Since
the operator is hermitian, it is 0 on the orthogonal complement of H° in
LYK, E,). Therefore o(w)A(w, o, 2) is semidefinite on C”(o) if and only if it
is semidefinite on L*K, E,). In view of Proposition 25, this means that
U(o, #, 2) is in the quasi-complementary series if and only if
(15.6) pHR =2 (kw)o(w)o~ (kw)
is a positive definite function.

Let U(o, z, ) be in the quasi-complementary series and suppose
max {0, z, — 1} < 2, < z,. Write

pHR == (ko (w)o~ (kw)

— {#(1/2)(1—(1—zl+zz))(kw)}{#(llz)(1—z1)(kw)o-(,w)0-—1(kw)} .
The first factor is positive definite by (15.6) and Lemma 46, and the second
factor is positive definite by (15.6). By Lemma 47, the product is positive

definite. Therefore the set of z > 0 such that U(o, 2, z) is in the quasi-com-
plementary series forms an interval with 0 as left endpoint.

If there is any quasi-complementary series for z > 0, then it follows that
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o(w)®(w, g, 0), which is known to be unitary, is also semidefinite. Then it
must be scalar, and p,(0) must be 0.

If p,(0) = 0 and U(o, 2, x) is in the quasi-complementary series for some
z > z,, then it follows from the above discussion and from the nonsingularity
of Q(w, o, 2) at points z = n(p + 2¢)~* that U(o, 2z, + ¢, x) is actually in the
complementary series for some ¢ > 0.

Let

F(k) = p0o120=20=0 (k) (w)o = (kw)
f(k) — #(1/2)(1—(1—6))(kw) ,

and define Fy and f; as in (15.5). The function f, is constant and not 0; call
the constant 7. Fix an irreducible representation D of K such that HS =+ 0,
and let @ be a nonzero member of H%. If y is the product of the degree of D

and the character of D, then y*® = . Since U(o, 2, + ¢, ®) is in the com-
plementary series,

SS(f () F(@)p(xy), P(y))z,dedy

(15.7) = | (Fer)P)@, )W) dzdy
= v(o(w)A(w, 0, 2, + &)P, ) > 0.

Since U(o, z,, x) is in the quasi-complementary series,
(15.8) | F@@y), p@)sdvdy = 0.

If 61 =0 and ¥ =0, then f,,, = f, + fi and Fy.; = Fy + F;. Adding (15.7)
and (15.8) and changing notation, we conclude that

|\ Py@p@y), o)z dedy

= v(o(w)A(w, 0, 2, + )P, P) > 0

whenever the projection of 4 in the space of constant functions is 1 and the

projection of + in the space of D is ¥. Passing to the limit as # and + peak at
the identity, we see that

(e(w)A(w, 0, 2)P, P) >0 .
That is, U(o, 2., ©) is in the complementary series, in contradiction with
Theorem 6. This completes the proof.
16. Examples of intertwining operators

In some of the groups we have been considering, the intertwining operators
are known in more classical settings. For instance, in SL(2, R), the operator
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in L*(V) that exhibits the reducibility of the one member of the principal series
that is reducibleis the Hilbert transform on the line. In this section, we shall
give the form of the kernels of the intertwining operators for the other classical
groups'of real-rank one, and we shall examine special properties of these groups.

1) Unimodular group SL(2,C). This is the group of 2-by-2 complex
matrices of determinant one. We can choose

0 0 1 x 10
(o ) =Gl M=o =)
0 e 0 et 01 y 1

with 6 and ¢ real and with « and y complex. We shall use the letter y am-
biguously to mean either the complex number y or the matrix (1, 0; y, 1).
Let w = (0, 1; —1, 0). Then an easy calculation gives

_(lyl™ 0 _(lyI7 0
alyw) = ( 0 lyl)’ ) = (o [y]) !
where [y] = y/|yl. Thus p~"*yw) = |y[*. Let

e’ 0
— pind
0n<0 e‘i”) =e",

Then o,(yw) = [y]=". Thus the kernel of A(w, o,, 2) is

7 ]

For this group, p = 2 and ¢ = 0. By (15.8), A(w, 0., 2) has a pole at —j/2 if
and only if there is some polynomial P;(y, #) homogeneous of degree j such
that

(16.1) [y~ [y]"P;(y, )
has mean value different from 0.

PROPOSITION 48. In SL(2, C), A(w, 0,,2) has no poles for |z| < |n|/2.
The mormalized operator Q(w, g,,2) has no poles and is nonsingular for
lz] < (In]| + 2)/2.

Proof. The first statement follows from the fact that (16.1) has mean

value 0 if j < [n], by an integration in polar coordinates. Next, except for a
constant factor, the Plancherel measure is

Pa,(2) =~ — 2.
4

Therefore 7, (2) has no zeros, and its first pole is at z = —|n|/2. This pole

4 There is only one non-classical simple Lie group of real-rank one, and it is a real form
of Fy. It has rank G = rank K and gza # 0.
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cancels the first pole of A(w, g, 2), and thus @(w, g, 2) has no poles until the
second pole of A(w, g, 2), which does not occur before —(|n| + 2)/2, by (16.1).
Thus Q(w, 0,, 2) is regular for [z| < (|n| + 2)/2. Since

Qw™, 0_,, —2)Q(w, 0,,2) =1,
A(w, o0,, 2) is nonsingular for |z| < (jn]| + 2)/2.

2) Isometry groups of quadratic forms. Let K be the reals, the com-
plex numbers, or the quaternions H. Let G be the identity component of the
group of all automorphisms of K"+ preserving the hermitian quadratic form
e, P+ o« + |2, — |%us. ]’ In case K = C, we consider only automorphisms
of determinant 1 (the condition determinant 1 being automatic in the other
two cases). We supposethat n =3 if K=Rand n=2if K=Cor H. A
Cartan decomposition of the Lie algebra of G is g = t + p with

(Xl 0 0 Y
I= y P=1 5 ’
0 Xz) (Y‘ 0)

where X, is an n-by-n skew hermitian matrix with entries in K, X, is a skew
member of K, X, + Tr(X,) = 0if K = C, and Y is a column vector in K*. In
each case the Cartan involution 6 is negative conjugate transpose. A maximal
abelian subspace of p is obtained by letting Y be an arbitrary real number in
the first component and be 0 in the other components. Let us write matrices
symbolically in 9 blocks, corresponding to a partition of the n + 1 coordinates
of K**' into blocks of 1, n — 1, and 1. Instead of considering g, we consider

gg9~"', where
2—1/2 O 2—1/2
g = 0o I 0.
__2—1/2 O 2—-1/2
Then A and M become
e 00 w 0 0
A=|0T0 ), M=|0 w 0],
00 ¢ 00 u

with ¢ real and M described as follows: If K = R, v = 1 and w isin SO(n — 1);
if K= C, u=e¢"and @ is unitary and e**detw = 1; if K = H, % is a unit
quaternion and ® is in the quaternionic unitary group Sp(n — 1). With an
appropriate choice of ordering on the restricted roots, we obtain

0 Xt 0 0 0 C
g.=10 0 X] and g.=[X ¢ 0] with Xin K",
0 0 0 0 Xt 0
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0031Y 0 00
G =100 O) and g..,=[ 0 00) with YinK,Y=-7Y.
00 O 3Y 00

If K = R, notice that g,, = g« = 0. For w, we can choose

001 002 001
w:(ObO , {010}, and (OIO
100 100 100

in the cases K = R, C, and H; here b is an orthogonal matrix with detd = —1.
If X and Y also denote the matrices in g_, and g_,, listed above, then
a(exp (X + Y)w) has

et = —(IXI+ | TP

For m(exp (X + Y)w), we have
w=1 and o~ = (1- 22X ) if K=R
X
XA g o (1 2XIE DERY g
([ X+ Y P X[+ [ Y
_ X+ Y o 2 X(| X"+ )X . _
U = and o' =(I-— if K=H.
X+ 1ype ( X+ [ Y] >
2a) Lorentz groups SO,(n, 1) with n odd and =3. Thisis the special case
of the above analysis in which K = R and #» is odd. Here M = SO(n — 1) and
the action of the group element w is by conjugation of M by b. The action
is therefore of the orthogonal group operating on the rotation group. An
irreducible representation ¢ of M is specified by its highest weight, which here

can be regarded as a sequence of —%—(n — 1) integers with

jl 2.72 = e = Ij(l/Z)('n—l), .

Taking b to have diagonal entries 1, ---,1, —1, we see that wo has the highest
weight {7, 72 ***y —Jwnm-n}. Thus ¢ and wo are equivalent if and only if
Jamm—n = 0. From [17], we have, up to a constant factor,

p@) = {IL[(Z - D —r+35.) - (T - 1e) ]}
A0 8) ~ (G- i)

Then p,(0) = 0 if and only if j,;u_y = 0. Combining these results with
Theorems 5 and 6 and with Propositions 44 and 45, we obtain
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PROPOSITION 49. If n is odd and =3, then every representation of the
principal series of SO,(n,1) is irreducible. If o has highest weight
{Ju = s Jumm-} and if 1 is the greatest index such that j, # 0, then the
interval of complementary series for U(o, z, x) in the right half-plane is
exactly 0 <z <1 —2l/(n — 1).

2b) Lorentz groups SO,(n, 1) with n even and =4. Again K = R. We
can choose b = — I to determine the element w. Then w commutes with each
element of M = SO(n — 1), and o is always equivalent with wo. The highest
weight of ¢ can be regarded as a sequence of integers with

j1 Z.?z = e Zju/z)(n—z) =0.

In the Plancherel measure the distinguished element v (cf. § 12) is the identity,
by Lemma 41. It follows that the choice of tanh or coth depends only on «,
not on o. It is then easy to verify that the correct choice is tanh. Combining
Case 2 of §12 with the results of [17], we see that the z-dependent part of
D,(2) is

z{H[(—;— m—1)—r+ 3) - (%(n - 1)z>2]}tanh(7r(n ~ 1)izf2) .

We therefore obtain

PROPOSITION 50. If m is even and =4, then every representation of the
principal series of SO,n,1) is irreducible.* If o has highest weight
{90 * s Jupmot and of 1 1s the greatest index such that j, = 0, then the
interval of complementary series for U(o, 2z, x) in the right half-plane is
exactly 0 <z <1 —2l/(n — 1).

2¢) SU(n, 1) with n = 2. This is the case that K = C. In M we have

u = ¢, w unitary, and ¢*’det w = 1. The irreducible representations of M
are of the form

O-(ew9 0)) = eimgo'o(w) ’
where m is an integer and o, is an irreducible representation of U(n — 1); this
decomposition of ¢ is not unique, because of the condition ¢*’detw = 1. The
element w commutes with every member of M. The distinguished element «v
(cf. §12) in the Plancherel formula has ¢’ = —1 and ® = I. From this fact
one verifies that the trivial representation of M goes with coth if » is even
and tanh if n is odd. It follows immediately that ¢ = (m, 0,) goes with coth if
and only if m = nmod 2. As a result of Theorems 5 and 6 and Proposition 43,

5 This result for n» =4 is claimed by Takahashi in [35], but the proof he gives is in-
correct.
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we obtain

PROPOSITION 51. In SU(n, 1) with n =2, let 0 = (m, 0,). If m % n mod 2,
then the principal series representation U(o, 0, x) is irreducible and U(o,z,x)
18 in the complementary series at least for 0 < z < 1/n.

Remark. It can be shown for “generic” ¢ with m % nmod2 that the
critical abscissa is exactly 1/n. Proposition 45 shows that for such o there is
no complementary series to the right of 1/n. The resulting interval 0 <z < 1/n
of complementary series should be compared with the interval 0 < z < 1 arising
in Lemma, 46 for the case that o is trivial on M.

The proposition deals with the tanh case. In the coth case one can use
the Plancherel measure to decide on irreducibility. But it is instructive also
to use the mean-value criterion of Proposition 20: If ¢ = (m, 0,), we know
that the kernel of the intertwining operator at z = 0 is a constant times

IXIP+ ¥ )" (p X]+ VXRY

(X + 1Y ==
<(||X||"+ | Y[ X+ [ Y]

Since the mean value of this is a scalar matrix (Lemma 26), the mean value

is 0 exactly when the mean value of the trace is 0. By Proposition 3, we are

to consider

2(| X+ Y)XX¢
X+ (Y]

(X + Y)—mTroo<I — )dXdY.

Sc;||X||4+|Y|2§d

The matrix o,(—) in the integrand is conjugate by a suitable o,(w) for m =
(¢, w) in M to a matrix o,(—) with || X ||'X the column vector (1, 0, -+, 0).
Making this change in the integral and performing the obvious substitutions,
we can reduce the integral to a positive radial factor times
ezw

(16.2) Sfe—imﬂ Tro 1. |sin6de .

! .1
The reducibility condition is that (16.2) is 0. By Proposition 51, (16.2) is not
0 if m = n mod 2. However, if m = n mod 2, then the integrand is a trigono-
metric polynomial of period 7, and the integral, for fixed o, is 0 if |m| is suf-
ficiently large.

2d) Sp(n, 1) with n > 2. This is the case that K = H. M is the product
of the group SU(2) = {u} of unit quaternions and the group Sp(n — 1) = {w}
of quaternionic unitary matrices. A representation o of M is uniquely of the

form
o(u, ®) = R™(w) Q 0,(®) ,
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where R™' is the irreducible representation of SU(2) of degree m + 1. The
element w commutes with every member of M.

The distinguished element v (cf. § 12) has v = —1 and w = I, from which
one verifies that the trivial representation of M goes with tanh for every n.
It follows immediately that ¢ = (m, 6,) goes with coth if and only if m =1
mod 2, and we obtain

PROPOSITION 52. In Sp(n, 1) withn = 2, let 0 = (m, 0,)). If m = 0mod 2,
then the principal series representation U(o,0,x) is irreducible and U(o, 2, )
18 11 the complementary series at least for 0 < z < 1/(2n + 1).

With ¢ = (m, 0,), the kernel of the intertwining operator at z = 0 is a
constant times

(||XH4 _|_ IY|2)—(1/2)(27L+1)R(m)(

X[ — Y 7 2 X(X[P+ V)X
e @l - EE )

As with SU(n, 1), the mean value of the trace of this matrix is a positive
radial factor times a spherical integral, namely

—2i0

#/2 e’ 0 .
(16.3) S Tr R™ 0 ,0)Tr o, cos™*0 sin’6 d@ ,
0 e .
1
where e is the quaternion cos26 — isin26. The reducibility condition is
that (16.3) is 0. If m is odd, (16.3) is never 0, but if m even, (16.3) is 0 for

fixed o, as soon m is sufficiently large.

3) Spin groups, Spin(n, 1), n = 3. These are the only remaining classical
simple groups of real-rank one, except for quotients of groups we have already
considered. These are the simply-connected double covering groups of SO,(n,1).
Since M must be connected and contain the center of G, it follows that M =
Spin(n — 1).

If » is odd, the highest weight of a representation of M is, just as with
SO.(n, 1), a sequence

jx Z]z 2 e Z lju/z)(n—nl ’

except that the j,’s are half-integers for the faithful representations of M.
The Weyl group action sends j s (ny) iNt0 —J 5 (ney. SINCE J 19y (neyy is @ half
integer and not 0, we have

PROPOSITION 53. Ifm is odd and =3, then every representation of the
principal series of Spin(n, 1) is irreducible. If o is a faithful representation
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of M, then no U(o, 2, x) is in the complementary series for Rez > 0.

If n is even, the highest weight of a faithful representation of M is a
sequence

jz g jz ; M g j(1/2)(n—-2) ; 0

of half-integers and ¢ is always equivalent with wo. Choose w to be one of
the two lifts of the element w chosen for SO,(n, 1). Recall that the Clifford
algebra of dimension 2"~ has generators {¢, = 1, ¢, +++, ¢,_,} and relations

( ;:11 we;) = — (35 a%)e,
and that the group Spin(n — 1) is a certain subgroup of the group of invertible
elements in this algebra. We omit the proof of the following lemma.

LEMMA 54. For Spin(n, 1) with n even, one of the choices of w has the
property that

(16.4) m((exp X)w)™ = —[| X [|7(]2; @ies)(eses -+ €ns)
Soriall X = {x;} in g_, = R

COROLLARY 1. For Spin(n, 1) with n even, let o, be the left regular rep-
resentation of M = Spin(n — 1) on the Clifford algebra. Then the entries
of 00“1((exp X )w), as functions on R"™, are homogeneous polynomials of degree
1,""divided by || X||.

Proof. A basis of the Clifford algebra is fhe set of 2" elements
{1y €1y 2%y €y_1y) €163y €163y ** %y €o€3y 200, € 00 en—l}

and the linear transformation of left multiplication by (16.4), when expressed
as’a matrix in this basis, has some entries equal to x,/| X ||~ and the rest equal
to 0. This proves the corollary.

From the proof of Corollary 1, we see that the kernel of the intertwining
operator A(w, o, 0) has some ;/|| X ||*’s in its nonzero entries. Thatis, A(w,a,0)
is a matrix operator composed of classical Riesz transforms in R"'.

COROLLARY 2. For Spin(n, 1) with n even, let o be a faithful irreducible
representation of M. Then there exists an odd integer d such that the entries
of o7 ((exp X)w) are || X ||~ times homogeneous polynomials of degree d.
Consequently, the mean value 9N (o) is 0 for all such o.

Proof. o is the Cartan composition of the spin representation o, and some
representation of SO,(n,1). For the latter, the entries are normalized homo-
geneous polynomials of even degree. The first statement follows. The second
statement is an immediate consequence of the first.
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PROPOSITION 55. In Spin(n, 1) if n is even and =4 and if o is a faithful
representation of M, then the principal series representation U(o, 0, x) is
reducible and no U(o, 2, x) is in the complementary series for Rez > 0.

For n = 4, this result is due to Takahashi [35].

III. SEMISIMPLE GROUPS OF HIGHER REAL-RANK

17. Intertwining integrals

As in Part II, let G be a connected semisimple Lie group of matrices with
Lie algebra g, and let the standard subgroups and subalgebras of G and g be
defined as in §6. We no longer assume that G has real-rank one.

The principal series and the non-unitary principal series in the compact
picture are defined as in equations (6.2) and (6.3); complementary series will
be defined in §19. The main results of Part III are as follows:

(i) We study intertwining integrals for general G, show how to normalize
them, and prove the relations among them.

(ii) We obtain complementary series whenever a formal symmetry condi-
tion obtains and a certain operator (19.1) is a scalar multiple of the identity.
For a complex semisimple group, (19.1) will automatically be scalar, and the
formal symmetry condition therefore implies the existence of complementary
series. For general real groups, this is not so, as we have seen already in the
real-rank one case (SL(2, R), for example).

(iif) We obtain reducible representations of the principal series whenever
a symmetry condition obtains and the operator (19.1) is not scalar.

To each restricted root « there corresponds a member H, of a such that
a(H) = B(H, H,) for all H in a, where B is the Killing form. The Weyl group
M'/M contains the reflection of a that is —1 on H, and is + 1 on the orthogonal
complement; we denote this reflection by p,. It is well-known that every
element of the Weyl group is the product of simple reflections (i.e., members
p. such that « is a simple restricted root); the least number of simple reflec-
tions required in such a decomposition of a member p of the Weyl group is
called the length of p.

The main technique in Part III is to use this decomposition of a member
of the Weyl group into the product of simple reflections in order to reduce
questions about G to questions about groups of real-rank one. Significant prog-
ress in this direction was made by Schiffmann [32, 83], whose results we
shall summarize presently.

First we discuss the real-rank one groups that will arise from G. Let «
be any simple root, and let G, be the analytic subgroup whose Lie algebra is
the smallest subalgebra of g containing g_,., §_a» g.» and g... Then G, is simple,
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and 6 is a Cartan involution. Thus K,= K N G,. Wecan take a, = RH,, 1, =
Ge + Gews Do = Goo + G_2ay and M, = M N G,. In particular, G, has real-rank -
one. If w, is a representative in M/ of the nontrivial element of the Weyl
group M,/M,, then w, is in M’ and w,M = p,. That is, the simple re-
flection p, for G has a representative in G,. Finally o, = 0l., and p, = ftla,
by [26, p. 399].

With « simple we have defined intertwining operators A, (w., o, \) for G, -
if ¢ is an irreducible representation of M,, and this definition extends im-
mediately to the case that the representation of M, is a finite direct sum of
irreducible representations. To connect our work with Schiffmann’s, we need
the following lemma.

LEMMA 56. Let o be a representation of M, and let Re(z) > 0. If fisin
C%(0) and k, is in K, then

A Wey 0 sy 159 F (Re) = S eI £ (i (v)wg ko) dv

o

provided dv s normalized so that S eiVdy = 1.
Va

Proof. The left side by definition equals

[ aem o= Gow o= (w,) f (ke = | 000 k) 0= (0) f (ko el
Ka

a

= SV S” #(1/2)(1—-2)(mh'('1)))32f)11(v) 0“(ml£(v))f(mx(v)w;lko)dmdv by (9.8)
= [, ) o) Ao
— SV PREDFEAD) f(lf(v)w;'lko)dv

by (6.9) and (6.10).
We come to Schiffmann’s results, which are announced in [32] and proved

in his thesis [33]. For w in M’, define

Vo= VNw'Nuw.
Clearly V,, depends only on the coset wM, and it is easy to see that V,,, = V.,
if « is a simple restricted root. Normalize the Haar measure on each V, so
that

S ey = 1,

Vw

and consider the formal integral

17.1) Aw, 0,0 f(k) = S "\ (exp H(v))f (£(w)w=k)dv ,

Vw
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where o is an irreducible representation of M, \ is a character of A, and f is
in C=(0). Schiffmann proved the following: Let wM = p, and let p decompose
into a product p,, « -+ p,, of simple reflections in as short a fashion as possible.
If w decomposes as w = MW, *+* W, With m, in M and w,; in M, and
wa;M = p,; and if {ReA, a> >0 for every positive restricted root a such
that wa < 0, then the integral (17.1) for A(w, a, exp A) converges absolutely,
each integral

17.2) A(w,,, w

converges absolutely, and A(w, g, exp A) is the product

-+ s W, (0,exp A))

Xi+1

17.3) A(w,o0,expA)= a(mo)“A(wal, Wa, * * * We, (0, €XP A)) cor A(w,,,0,expA) .
Moreover, A(w, g, exp A) is in C=(wo), and

(17.4) A(w, o, exp A)U(o, exp A, x) = U(wo, wexp A, x)A(w, o, exp A)
for all « in G. Notice that if m is in M, then

(17.5) A(w, o,exp A) = o(m)™ .

On smooth functions or K-finite functions,

(17.6) A(w, 0, \)* = A(w™, wo, wh™) .

From (17.3) Schiffmann obtains the further identity

a7.7) A(w,w,, 0, exp A) = A(w,, w,0, w, exp A)A(w,, g, exp A)

under the assumptions that the length of w,w,M is the sum of the lengths of
w,M and w,M and that (Re A, a» > 0 for every positive restricted root « such
that w,w,a < 0.

From the decomposition (17.3) and from the identification given in Lemma
56 with the real-rank one case, it follows that A(w, o, \) extends to a global
meromorphic function of . Then (17.4), (17.6), and (17.7) hold for the ex-
tensions as well. The main point of § 18 will be to describe a normalization of
the extended operators A(w, o, \) so that (17.7) holds without any restriction
on the lengths of w, and w,.

Let us emphasize the connection between the general intertwining opera-
tors just defined and the operators in the real-rank one case. Let p, be a
simple reflection, let w, be an element of M. such that w,M = p,, and let f
be in C”(0). If f, denotes the restriction to K, of the right translate of f by
k, then the key formula is

(17.8) AWas 0, N) [ (k) = Ad(Was O |3y Ma) feD) -

This formula follows by analytic continuation from equation' (17.1) and
Lemma 56.
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18. Normalization of intertwining operators

Let Z,(C) denote the centralizer of Cin B. We begin by stating a lemma
whose proof can be given in the spirit of [2] by first showing that M =
MPB>Z,.°

LEMMA 57. If a is a simple restricted root, then
M= M, Z.,(M,) .

COROLLARY. Let ¢ be an irreducible representation of M, and let a be a
simple restricted root. Then the restriction o|y, is primary (i.e., is equiva-
lent with the sum of the same irreducible representation a number of times).

Proof. Let B be an operator on E, in the center of the ring of operators
on E, that commute with all o(m,). Then B commutes with ¢(m,) since B is
in the ring, and B commutes with ¢(2) for z € Z,,(M,) since B is in the center
of the ring. By Lemma 57, B commutes with all ¢(m), and by Schur’s Lemma,
B is scalar. Thus o|,, is primary.

The corollary enables us to normalize the intertwining operators A(w, o, ).
First let w, be a member of M/ such that w,M is the simple reflection p,. By
the corollary, if o is an irreducible representation of M, then o, is equivalent
with a multiple of a single irreducible representation ¢ of M,. With the nor-
malizing factors of Part II fixed once and for all, define

(18.1) Q(Way 0, N) = Ys(log M) A(Wey 0, N) ©

This definition is unambiguous by Proposition 37(i). For a general element w
in M, decompose A(w, o, \) as in (17.3), obtain the v-factor for each component
operator, and use the product of these v-factors as a normalizing factor for
A(w, o,\). Call the normalized operators @(w, g,\). We must show that the
normalizing factor does not depend upon the decomposition of w, and we shall
do so in the next lemma. Then we obtain from (17.4) the following identity
of meromorphic functions:

(18.2) Q(w, o, \)U(o, \, ) = U(wa, wn, 2)A(w, 0, \)
for all « in G. Also from (17.1) we obtain
(18.3) Q(w, EcE~, \) = EQ(w, o, \)E™

for any unitary operator E on E,.

LEMMA 58. The normalizing factor that defines Q(w, g, \) is independent
of the particular decomposition w = MW, *** Wa, Used 1N (17.3).

6 We are indebted to Howard Garland for bringing such a proof of the lemma to our
attention.



OPERATORS FOR SEMISIMPLE GROUPS 565

Proof. For each restricted root 8 such that (1/2)8 is not a restricted root,
define G, to be the analytic subgroup corresponding to the smallest Lie algebra
containing g_,s, g_s, s, and g.;, and let M, be the M for G,. Since Ad(w)g; =
8.5, We have the identity M,, = wMw™".

In the decomposition w = mw,, *++ w,,, one knows that the set of re-
stricted roots {8;} with

BJ’ = w“nw“n—l e waj+1(aj)
is intrinsic to w and does not depend on the decomposition. (The B; are the

positive restricted roots such that (1/2)8; is not a restricted root and wg; < 0.
See [3, p. 158] and compare with [33].) Now

= LN )
Wajy *** WanO g, = Wajy " WapO g, oways

= cee o . _
w“j—H wan ’waj-H'"wanMﬂjwa;"'wa}+l ’

and the right side is canonically identified with ¢/, 5yt Similarly w,;,, +** wa,
N4, is canonically identified with \ |, e This means that the set of v-factors
needed for (17.3) is canonical, and so the product of the v-factors is canonical.

By an argument similar to the one in Lemma 58, we see from (17.7) that
whenever the length of w,w,M is the sum of the lengths of w,M and w.,M,

(18.4) A(w,w,, 0, N) = Q(w,, w0, WN)A(W,, 0, N)

The next lemma is implicit in § 15.1 of [11], and its proof is consequently
omitted.

LEMMA 59. Let H' be an abstract group, let H be a normal subgroup,
and suppose H'|H is given by generators t, with relations r4(t,). For each a
let s, be a representative in H' of the coset t,in H'|H, and let hs be the element
of H given by hy; = ri(s,). Define a group F by generators and relations as
Sfollows: The generators are an element h for each h in H and an element 3,
for each representative s,, and the relations are
(18.5) 1, (b)) hihy, 5.h57'(shsz)", hi'rs(S.) -

Then the homomorphism @ of F into H' given by ¢(h) = h and P(5,) = s, is
an isomorphism onto.

THEOREM 7. For any w, and w, in M’,

Q(w,w,, 0, \) = Q(w,, w,0, WA)A(w,, 0, \)
as an identity of meromorphic functions.’
Proof. It is known [37, p. 160] that the Weyl group M’/M can be given

7 For complex G, compare with Theorem 5 of [26].
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by generators and relations as follows: The generators are the simple reflec-
tions p., and the relations are p? = 1 and (p,ps)" = 1 for a # B, where » is
an integer depending on « and B and is equal to 2, 3, 4, or 6.

For each simple «, let w, be a member of M, such that w,M = p,, and
let m,s = (w,ws)". Shortly we shall apply Lemma 59 with H = M, H' = M’,
and s, = W,

The main step is to verify that the relations (18.5) are satisfied by the
intertwining operators. The identities
(18.6) A, o,\) =1
(18.7) Q(m'm, mm,o, N)R(m,, m,o, mN)R(m,, 0, N) = 1
are immediate from (17.5). Next we show that
Q(Way mwz (wem=wz*) (g, N)) X Q(m, wz'w.m™wz' (o, \))

X Q(wzt, wm™wz (o, N) X Qw,m™w', o,8) = I.

By (17.5) the left side of (18.8) is

Q(Wa wr'o, wyN)o(wm w)R(w3', w.m™ w3 (o, N))o(wmwz?) .

(18.8)

Applying (18.3) to the last three factors of this expression, we see that the
left side of (18.8) reduces to
Qwy wi'lo, wy V(w3 o, N) .

Thus (18.8) follows if we show that
(18.9) A(wty WoOy WN)R(Wey 0, N) = T .
By (17.8),
Qw3 Weo, W AR (Way T, M) f (L)
= Qwz", Wa0 i,y WA i [ A(wey 7, M F(D)
Since [@(w., 0, M) fli(ke) = Qu(w, 0 |y s N a,) 1, (1) and since @, commutes with
right translation by k., the right side of (18.10) equals

Au(wz"s Wa0 s, Wk a1, JA(War O a0 Ma ) f1(1)

and this is £(1) by Proposition 38(i). Applying this result to the right translate
of f by k and using (18.2) for = in K, we obtain (18.9). This completes the
proof of (18.8). ‘

We come to the main relations mz}(w,w;)" = 1 with a possibly equal to 8.
In the product of 2n factors (p.p;)", let us assume temporarily that the product
of the first n factors (and therefore the product of the last n also) has length
n. Let us write w; for the j* factor in (w,w;)". By (17.3)

(18.10)

Ci"(?'U'n+1’ wn+2 e wZn(7 >")) e a(wz'n! O" x') = &(wn+l b wZn’ 07 )\4)
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and
Qw7 Wity o« Mas(0y X)) + o+ A(Mgpy 0, N) = QW3+ +» WT'Mgsy 04 N) -

Combining these expressions with (18.9) and the identity mzi(w,ws)" = 1, we
obtain

Q(mz3, wy « s Wya(0, N)) ++ « RWsay 0, \)
= Q(Mys, 0, M) Qw7 wy(o, M) o« @(w3t, Wity «+ + Mas(d, N))
X @(wn+17 Woyte = wZn(O’ )")) °° a(wzm g, )")

= QW+ * W Mgy 0y N) T AWy +*+ Wany O, N)
= @(wn+1 * 0 Wy O, X)_la(wnﬂ *e Wiy O, )")
=1I.
Thus to complete the verification that the relations (18.5) are satisfied by the
intertwining operators, we are to show that the product of first n factors of
(pps)"” haslength n. In doing so, we may assume that # is the smallest integer
=1 for which (p.p;)" = 1, and we are to show that the product of the first
n factors maps at least n restricted roots ¢ (such that (1/2)¢ is not a re-
stricted root) into negative restricted roots. (See [3, p. 158].) We do so case-
by-case.

For n = 1, p, maps « into —a. For n = 2, p,p; maps « into —« and B
into — 8. For n = 3, we have

Ka, By _ 2la, B> - 1
ayap B, B

so that p,8 = a + 8 = ps;«; then a + B is a restricted root, and p,p:p, maps
«a into — B, B into —a, and @ + B into —a—B. For n = 4, we may assume

K, B _ o KB _ 4
{a, @y T BB

so that p.8 = B8 + 2a and p;a = a + B; then «, 8, a + B, and 2a + B are
restricted roots, and p,p;0.0s maps each of them into its negative. Forn = 6
we may assume

(18.11)

b

,

K, By _ o4 HKa, By
= -3, = —1
la, B la, B
so that p.8 = 8a + g and p;a = a + B; then a, B, @ + B, 2a + B, 3 + B and
3a + 28 are restricted roots, and p,p:0.0s:P.0s maps each of them into its

negative. This completes the proof of (18.11).
To finish the proof, we observe by (18.4) and (18.9) that

(18.12) Q(w, o, M)t = Q(w™, wa, w\) .

’
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Therefore we are to prove that

Qwywi?, w,w,0, w,wN)Q(w,, w,o, WwAN)R(w,, oy N) = T
Expanding each of the factors on the left side according to (17.3), we see that
it is enough to prove that if w, --+ w, = 1 in M’ with each w; either lying in
M or equal to some w', then
(18.13) Q(wy, Wy +» Wa(0, X))+ * RWayy WaGy WN)R(Way 0, N) = I

Consider the word 4, « - - 0, in the free group on {m, @,}. Since w,++-w, =1
and since the map ¢ of Lemma 59 is one-to-one, , - « - @, is a relation. That is,
Wy ++» W, = [1;9;R;97"
as elements in the free group, where R; is one of the relations (18.5) or its
inverse. Two words in a free group that represent the same element can be
transformed into one another by inserting and deleting pairs @&~ or @,
for various generators . In view of (18.9), we can insert or delete correspond-
ing pairs of operators in the left side of (18.12) so that the decomposition in
(18.13) corresponds to I1,(9;R;97"). If g =g® ++v g™ and R = R" -+ R"?,

then the piece of the decomposition corresponding to gRg™ is

a(gu)’ g(z) e g‘"”Rg‘l(o’, 7\,')) cee a(g(m), Rg—l(o.l’ )\’/))
(18.14) x Q(R™, R® ++« RPg™(0’,\)) «+- Q(R™, g~*(¢’, \))

X @(g(m)—i’ g(m—l)—l cee g(1>—1(0./, )\/)) cee a(gu)_l’ 0", 7\/) .

The product of the middle factors, corresponding to R, is the identity by
(18.6), (18.7), (18.8), or (18.11). Now R = 1in M’ and so the remaining factors
of (18.14) match in pairs and contribute I, by (18.9). Thus (18.14) is the identity
operator. The proof of the theorem is complete.

PRropPosITION 60. If w is in M’', then
(18.15) Q(w, o, M)* = Qw™, wa, wx™)
on K-finite functions or smooth functions. Consequently

(i) Q(w, o, ) is unitary &f 1 is_unitm'y

(i) Q(w, a,N\)* = Q(w™, wo, \) if wx = X~ and wM has order 2 in the
Weyl group.

Proof. Once (18.15) is proved, (i) follows immediately from Theorem 7
since A~ = A, and (ii) is just a special case of (18.15). To prove (18.15), we
decompose w minimally as w = m,w, -+ w, with m, in M and each w; in some
M;, for a; simple. Let | denote an appropriate restriction of a representation
of M or A. In view of (17.6), we see that (18.15) will follow if we prove that

’sz..-w,nﬂ(wz cee w”>\4|) cee 7w”g|(w">\: |)70|()\‘ ])
= 7wnal(wn)\,_1 D’Yw,,_lw”.,;(w"_lwni—l D cee 7w1---wn0)(w1 eee WA D .

(18.16)
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There are n factors on each side of (18.16), and we claim that k* factor on the
left equals the (n + 1 — k)*™ factor on the right. That is, we claim that

7wk+l~uwnale(wk+l M wn)"IAk) = 7Wk"'wn”[Mk(wk °c wn-):—llAk) .

Since ¢ and ) are arbitrary, it is enough to show that

7U|Mk()\‘|Ak) = 7wkaIMk(wk—):’_1‘Ak) .

But w,\[,, = \|4,, and so this identity follows from Proposition 37(iv). This
proves (18.16) and the proposition.

19. Complementary series

Let » = wM be an element of order 2 in the Weyl group M’/M, and let
M, be the subgroup of M’ generated by M and w. Then M is of index 2 in
M,. If the irreducible representation o of M is equivalent with wo, then it
follows from Lemma 18 that it is possible to define g(w) and thereby extend
o to a representation of M, on E,; moreover, o(w) is determined up to a sign.
Therefore we can form the operator

(19.1) o(w)@(w, g, 1) .
LEMMA 61. The operator a(w)Q(w, o, 1) s unitary and hermitian.
Proof. It is unitary by Proposition 60(i). It is hermitian because
[e(w)@(w, o, 1)]* = G(w, o, 1)*c(w)™*

= Q(w™, wo, 1)a(w)™ by Proposition 60(ii)
= o(w)R(w, g, 1) by (18.3)
= o(w)A(w*w, o,1)
= o(w)o(w?)R(w, o, 1) by Theorem 7 and (17.5)
= o(w)@(w, g, 1) .

The critical question about the intertwining operators is whether (19.1)
1s scalar. If it is scalar, then there will be complementary series associated
to w and o, in the sense described below. If it is not scalar, then there will
be reducible representations of the principal series. The rest of Part III will
be devoted to verifying these conclusions and to producing techniques for
deciding whether (19.1) is scalar. In the present section we deal with the
alternative that (19.1) is scalar.

As in §9, we say that the representation U(o, )\, 2) is a member of the
complementary series if there is a positive definite continuous inner product
{+, +> on C=(0) x C=(o) with respect to which U(o, \, ) is unitary.

LEMMA 62. If p = wM is an element of order 2 in the Weyl group such
that wo 1s equivalent with o and ph = N, then the operator
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(19.2) - o(w)Q(w, g, \)

18 hermitian. If, in addition, (19.2) is finite and positive or negative definite

on the K-finite space Y, Hj, then U(o, \, x) is in the complementary series.
Remark. For the extent to which the existence of p as in the lemma is

necessary for U(o, \, z) to be in the complementary series, see [4, p. 196].

- Proof. Since p* = 1 and wo is equivalent with ¢ and p» = X', we can
conclude from a computation similar to the one in Lemma 61 that (19.2) is
hermitian. If it is finite and definite on ) H, then its (continuous) extension
to C%(o) will be finite and definite, by the argument in the remarks with
Proposition 25. Thus we can define a positive or negative definite continuous
inner product on C”(¢) by

8> = (o(w)@(w, o, \)f, g) .
By Lemma 20 of [26] and by (18.6),

{U(a, n, 2)f, Ulo, N, £)g) = (o(w)Q(w, o, \) U(o, N, 2)f, Ulo, N, x)g)
= (U(o, ¥, x7)a(w) U(wo, wn, 2)R(w, o, N) f, g)

= (U(o, wx, 27) U(g, wh, x)o(w)Q(w, o, N)f, g)

= (o(w)&(w, o, \)f, 9)

= <.f ’ g> .

THEOREM 8. Let p = wM be an element of order 2 in the Weyl group.
If \ is any charactor of A sufficiently close to 1 such that pr» = X' and if ¢
18 any irreducible representation of M with o equivalent to wo and with
(19.1) scalar, then U(o, N, x) is in the complementary series.

Remark. We need prove only these two statements: (1) If A, can be
connected to 1 through characters » with pA = X~ and with (19.2) finite and
nonsingular, then U(g, \,, ) is in the complementary series. (2) There is a
fixed neighborhood of the trivial character of A such that Q(w, o, \) is non-
singular for all A in the neighborhood and for all ¢.

Proof of (1). The operator (19.1) is unitary, hermitian, and scalar, hence
equal to 1. By redefining o(w) if necessary, we may assume (19.1) is +I.
The operator (19.2) on each Hj is then a continuous function into nonsingular
matrices that is positive definite for » = 1. By Lemma 40, o(w)Q(w, g, \,) is
positive definite, and by Lemma 62, U(c, \, 2) is in the complementary series.

Proof of (2). Decompose p as a product []». of simple reflections in as
short a fashion as possible. Let w, be an element of M with p, = w.M, and
write w = my([Jw.) for some m,in M. Applying Theorem 7 to this decomposi-
tion and using the continuity of the action of the Weyl group on the characters
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of A, we see that it is enough to show that @(w., g, \) is finite and nonsingular
if n\ is sufficiently close to 1 (with the neighborhood independent of ¢). But
@(w,, 0, \) has the same behavior as the real-rank one operator

@(1’0(19 o IMa7 x’I,/-la) b

which is known from § 14 to be finite and nonsingular if [Relog \q_| is closer
to 0 than (1/2)a is. This completes the proof of the theorem.

The next lemma is useful for concluding in some cases that (19.1) is scalar.
In Theorem 9 we shall apply the lemma to complex semisimple G.

LEMMA 63. Each element p of order 2 in the Weyl group decomposes as
a product

D = Po **° Da,
of distinct commuting reflections, where each a; is a (not necessarily simple)

restricted root. Furthermore, any character . of A for which PN = N\ has
paszxforlgjgn.

Proof. Since p operates orthogonally as an involution on a, we have the
orthogonal decomposition a = P, N,, where P, and N, are the eigenspaces
for the eigenvalues +1 and —1, respectively. The proof will be by induction
on the dimension of N,. If N, = 0, then p = 1 and the lemma is trivial.

In the general case when dim N, = 1, we claim that ker « 2 P, for some
restricted root a. If not, then P, — ker « is an open dense subset of P, for
each a. Consequently the intersection ), (P, — ker @) is not empty. Every
member of the intersection is a regular element of a and is left fixed by ».
Hence »p = 1 or we have a contradiction. Thus kera« 2 P, for some « if
dim N, = 1.

For this «, form p,p. The elements p, and p commute because ker « 2 P,
and thus p.p has order 2. Also P, 2 P, says that the orthogonal complements
satisfy N, & N,. Let N be the orthogonal complement of N, in N,, and let
Pbe the orthogonal complement of N in a. Then p,is 1 on N and p is —1 on
N, whence NS N, ,. Since P,, 2 P,, P, , 2 P,; also P, ,2 N, N N, = N,,_.

a? =

Thus P,,, 2 P, N, = P. Thatis, N= N, ,and P= P, ,, so that
Np = Npa®Npap .

Consequently dim N, , < dim N, _, and by induction p,p = p,, *** Pa,_, With
the N spaces for the p,, orthogonal and contained in N,,,. Then

D = Da; *** Da,_,Pa

with the N spaces for the elements on the right orthogonal and contained in
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N,. This establishes the decomposition.

Finally let pA» = \, and let » = exp A. Using the identification of a with
its dual by means of the Killing form, we can regard A as an element of a.
Then pA = A,Aisin P,, AL N, AL N,,aj for each j, A is in Pva,- for each j,
and p,A = A for each j. This proves the lemma.

THEOREM 9. Let G be a complex semisimple group, p = wM an element
of order 2 of the Weyl group, ¢ an irreducible representation (necessarily
one-dimensional) of M, and N = exp A a character of A. Suppose that the

symmetry conditions po = o and pA = — A are satisfied. If
(19.3) IKReA, D]
{a, @y

for every root a, then U(o, \, x) is in the complementary series.

Remarks. 1. Since G is complex, we have m = ia and M = expm. Thus
M is abelian and its irreducible representations are one-dimensional. For one-
dimensional representations, equivalence becomes identity, and we can replace
unambiguously the usual condition “o is equivalent with wo” by the condition
“po = ad.”

2. Roots in the statement of the theorem are understood relative to the
Cartan subalgebra a + ia, and the inner product is the one induced by the
Killing form.

3. For some earlier results related to Theorem 9, see Kunze [25]. Kostant
[24] dealt with the case that o is trivial and G is real.®

Proof. By Lemma 63, decompose p as the product p,, -+ p., of distinct
commuting reflections. Since m = ia, the second half of the lemma shows that
po = o implies p,;0 = o for each j. Write w = [J w. ; With w,, M = p,;. By
Theorem 7,

Aw, 0,1) = A(Wayp Py * * * P, 05 1) ++» AW, 0, 1)
= QW 0,1) +++ A(Wa,, 0, 1) .

We shall show each factor in (19.4) is scalar. In fact, consider the factor
Q(w,, 0,1) with w,0 = 6. Here a is conjugate to a simple restricted root 3,
and it follows that p, = s~'p,s for some s in the Weyl group. Let w,M = p,
with w, in M}, and let w,M = s. Then w, = muw; wsw, for some m, in M, and
w,o = o implies ws(w,0) = w0 since g(m,) is scalar. By Theorem 7

(1'9.4)

8 The result for G real and ¢ trivial given in [24] concerning the existence of the com-
plementary series can also be derived by the use of the present methods, as an examination
of the proof of Theorem 9 shows.
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Q(w, 0, 1) = a(m,)'C(wyt, wew,o, 1)Q(w;, w,o, 1)R(w,, o, 1)
= o(my)~'Qw; ", w,o, 1)Q(w;, wyo, 1)A(w,, g, 1) .

The factor Q(w;, w0, 1) is essentially an operator for the real-rank one group
G;, which is locally isomorphic to SL(2, C) since G is complex. Since w(w,0) =
wyo, it follows from facts about SL(2, C) that w.o is trivial on M,. Then
Q(ws, w,o, 1) is scalar by Proposition 49. But Q(w;*, w.o, 1)@(w,, 0, 1) = I by
Theorem 7, and o(m,)~" is scalar since ¢ is one-dimensional. Thus Q(w,, o, 1)
is scalar. By (19.4), G(w, g, 1) is scalar, and the one-dimensionality of ¢ im-
plies that (19.1) is scalar.

Therefore by Theorem 8 and its remarks, the proof of Theorem 9 will be
complete if we show that Q(w, g, exp A) is finite and nonsingular as long as
(19.3) holds. Write w as the product of an element of M with a product of
elements w,, where « is a simple restricted root and w, is in M/, and decompose
Q@(w, g, exp A) accordingly, as in (18.4). Since the condition (19.3) on A is in-
variant under the Weyl group, a typical factor in the decomposition is
(19.5) @(w,, 0’y exp A) ,
where A’ satisfies (19.3). Now (19.5) has the same behavior as the operator
for SL(2, C) given by

QoW 0" |3, €D (A']g,)) -
This operator is finite and nonsingular, by Proposition 48, provided

(19.6) [<Re A las Oapel < KOs PaDec -

Thus the proof will be complete if we show that any A’ satisfying (19.3) satis-
fies (19.6). But (-, ->, is proportional to the restriction of {-, ->, and o, = &
since «a as a restricted root has multiplicity two. Thus (19.6) follows from
(19.3) applied to the simple root &. The proof of the theorem is complete.

20. Reducible principal series

We turn to a discussion of the alternative that the unitary hermitian
operator o(w)®@(w, o, 1) of (19.1) is not scalar.

THEOREM 10. Let p = wM be an element of order 2 in the Weyl group,
and let o be an irreducible representation of M with o equivalent to wo. If
(19.1) ¢s mot scalar, then the principal series representation U(o, N, x) s
reducible for every unitary n such that pn = \.

Proof. By (18.2),

o(w)Qw, o, ) U(a, N, x) = o(w) U(we, pn, x)E(w, o, N)
= o(w) U(wo, N, x)@(w, g, \)
= U(o, N, x)o(w)Q(w, o, \) .
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Therefore it is enough to prove that (19.2) is not scalar. Now (19.2) is in any
event hermitian and unitary by an argument similar to the one in Lemma 61,
since pn = A = WL If (19.2) is scalar for some N = A, then it is +1, and we
may take it to be + I by adjusting o(w).

The restriction of (19.2) to any Hj is a continuously varying hermitian
unitary operator that is I at ),. Its characteristic polynomial has coefficients
that are integers (because hermitian unitary matrices have only +1 as eigen-
values) varying continuously with A, hence constant. That is, the characteristic
polynomial is (x — 1) for all » with pA» =\, where » is the dimension of Hj.
Since (19.2) is hermitian, this characteristic polynomial determines the restric-
tion of (19.2) as the identity. Hence (19.2) is scalar for all A with pA» = A, in
contradiction with the assumption about A = 1. This contradiction proves the
theorem.

The next lemma is useful for concluding in some cases that (19.1) is not
scalar. After the lemma, we shall apply the result to SL(2n, R), and we shall
comment on some other examples. )

LEMMA 64. Let p=wM be an element of the Weyl group, let D=1Dpq, *** Da,
be a minimal decomposition as the product of (not mecessarily commuting)
simple reflections, and let w = w, -+ w, be a corresponding decomposition
wn M’. If there is no j such that

(20'1) @(wjv Wigy o W,O, 1)

is a constant operator (i.e., a constant matrix operating on E,) then Q(w, g, 1)
18 not a constant operator.

Remark. If o is equivalent with w,, the lemma gives a sufficient condition
for o(w)@(w, o, 1) not to be scalar. The condition is one that can be verified
easily, since (20.1) is essentially an operator in the real-rank one case. By
Theorem 5, (20.1) will be nonconstant if and only if the Plancherel density
p.(z) for the representation 7 = w;,, +++ w,0| W, is nonzero at 0.

Proof. The assumption is that the normalizing factor for each operator
Q(w;y Wiy, *++ W0, Wiy, - W,A) has no pole at A = 1. Consequently the nor:
malizing factor for G(w, o, \) is regular at » = 1, and Q(w, o, 1) is a finite
constant multiple of A(w, o, 1). It is therefore enough to exhibit a functior
f in C=(o) such that f(1) = 0 and A(w, o, 1)f(1) == 0.

Let € > 0. Then p/* = exp (¢p) and {ep, @) > 0 for every restricted roo.
a with @ > 0 and wa < 0. From Schiffmann’s results quoted in § 17, we knov
that the integral defining A(w, o, p*®) is absolutely convergent. Moreover
since A(w, g, \) is regular at » = 1,
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(20.2) Aw, 0, 1)f = lim A(w, o, 1)

for all f in C”(0). Also |

(20.3) Aw, 7, ) f (k) = S ¢+0PH £ (i (v)wF)dv .
VNw~lnw

The mapping of V into M\K given by v — Mk(v) is a diffeomorphism onto an
open set. Choose a compact neighborhood C of the identity coset that lies in
the image, and let ® be a smooth function on M\K such that ¢ = 0 off Cw™
and (Mw™) = 0. Write ® also for the lift of this function to a left M-
invariant function on K. '

Fix F in C”(o) and let f be any smooth left M- invariant scalar function
on K. Then f@F is in C”(0), and

f(e@)w™)p(k(w)w™)F(r(v)w™)

is a function of compact support on V. By (20.2), (20.3), and dominated con-
vergence, we have

A(w, 0,1)fPF(1) = li{rol A(w, o, pr») fpF(1)

et +9H ) fo F(k(v)w™)dv

elo SVﬂw"'le

eZO f(k(v)w™)PF(£(v)w™)dv .

(20.4) = lim

SVﬂw"‘le

If the lemma were false, then the equality F(1) = 0 would imply that both
sides of (20.4) were 0. Now the facts that v — Mk (v) is a diffeomorphism onto
an open set and that V' N w~"Nw is smoothly imbedded as a euclidean subspace
of V imply that f(£(v)w™) can be an arbitrary function of » (on ¥V N w™'Nw)
that is supported near v = 1. Therefore if the lemma were false, we would
have @(k(v)w™)F(£(v)w™) = 0 whenever F(1) =0. Since p(w)+0, this means
that F(w™) = 0 whenever F(1) = 0.

Thus the lemma will be proved if we produce F in C”(s) with F(1) = 0
and F(w™) = 0. Let b(k) be a member of C”(s) with b(k,) = 0, say: Then
U(o, 1, wk,)b is not 0 at w™. Since Mw™ % M, we can choose a function on
M\K that vanishes at M but not at Mw™; let ¥ be the lift to K of such a
function. Then y U(o, 1, wk,)b is a member of C”(g) that vanishes at 1 but
not at w='. The proof of the lemma is complete.

We shall apply the results of this section to the group SL(2n, R) of all
real 2n-by-2n matrices of determinant one to obtain reducible members of the
principal series. Compare this assertion with the paper [10] by Gelfand and
Graev, where the contrary is suggested.
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PROPOSITION 65.° In SL(2n, R) choose M as the group of diagonal matrices
with diagonal entries €; = +1. Define

o(&, ++ -, €om) = E€18s€5 *** Egpey »
and let p be the permutation
(20.5) »p=(12)(34)56)---2n —1,2n) .

Then the principal series representation U(o, N, x) is reducible for every
unitary character » of A such that prx = .

Proof. The element p is in the Weyl group, and po is the product of
the even-numbered entries. Since the members of M have determinant one,
po = o. Let p = wM. Since o(w) is scalar, Theorem 10 shows that it is
enough to prove that @(w, o, 1) is not scalar.

Now (20.5) is a minimal decomposition of p as a product of simple reflec-
tions, and Lemma 64 shows that Q(w, g, 1) is not scalar if each operator

(20.6) A2 —1,29), (25 + 1,2 + 2) --- (2n — 1, 2n)a, 1)

is not scalar. The associated real-rank one group for this operator is the copy
of SL(2, R) obtained from the 25 — 1°* and 25" entries. Also the representa-
tion of M in (20.6) is

€183 + v € 1€05+2C05+4 Ean »

and its restriction to the M of this SL(2, R) is ¢,,_,, i.e., the nontrivial rep-
resentation of the M. Thus the real-rank one operator associated to (20.6) is
a Hilbert transform and is not sealar. The proof is complete.

By similar methods one can exhibit reducible representations in the
principal series for all the groups Sp(n, R) for n = 1, SO(n, n) for n = 2, and
SO@2n + 1, 2n) for n = 1.

* (Added in Proof.) J. Arthur has shown that a strong enough version
of the asympotic expansion can be obtained by combining the proofs given by
Harish-Chandra in Amer. J. Math. 80 (1958), 576 and 582, and Acta Math.
116 (1966), 71.
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