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Abstract. A further study is made of the intertwining operators for the
representations of the simple Lie groups of real rank one. We extend and apply
this to the higher rank case, obtaining various results dealing with reducibility
of principal series and existence of complementary series.

In two earlier notes,1 2 we dealt with theorems concerning existence of repre-
sentations of the complementary series and irreducibility of the principal series
of any connected semisimple Lie group of real-rank one. In the present note
we give further theorems about the rank one case, and we show how this gives
information about semisimple groups of arbitrary rank.
Our results are as follows. (a) For the general case we study the intertwining

integrals, show how to normalize them, and prove the relations among them.
(b) For a complex semisimple group, whenever the formal condition of sym-
metry obtains, there is a complementary series. This is not so for the real
groups, as we have already seen in the real-rank one case. (c) The situation
for the real groups is much more complicated, but there is always a close connec-
tion between irreducibility of principal series and existence of complementary
series. As a particular result we point out there are reducible representations
of the principal series of SL(n, R), whenever n is even.3
We use the following notation: G = KAN is an Iwasawa decomposition of a

connected semisimple Lie group of matrices, 0 is the Cartan involution of G
corresponding to K, M and Ml' are the centralizer and normalizer of A in K, and
W = M'/M is the Weyl group. Let o be an irreducible unitary representation
of the compact group M, and let X be a unitary character of A. Form the repre-
sentation of ® X ® 1 of the closed subgroup MAN. The principal series of
unitary representations U'x of G is parametrized by (a, X) and is obtained by
inducing these representations of MAN to G.
There is an equivalent way of defining the principal series that allows X to be

nonunitary; the resulting representations are not unitary unless X is unitary.
Namely, if V, is the space in which a operates, let Ha be the set of all square-
integrable functions on K with values in V, such that, for each m in M, f(mk) =
a(m)f(k) for almost every k in K. These functions extend to G under the defini-
tion4

f(anx) =(a)'/X(a)f(x)
and then UUX(g)f(x) = f(xg). Roughly, U',x is in the complementary series
if the inner product in Ha can be redefined on a dense subspace so that Uax
becomes unitary.
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Let rn' be in Ml' and define m'u(m) = o(m''mm') and m'X similarly. Let
Nm, = N n m'(GN)m'-', and, for fin HW, consider the formal integral'

Ao(m',a, X)f(x) = fNjf(m'-'ux)du. (1)

Formally we have the identity

A(m' a, X)U'x(x) - Um'Gm'X(x)A(m', a, X) (2)

for all x in G. We call A (m', a, X) an intertwining operator.
For the moment suppose that dim A = 1; this is the real-rank one case.

Here W has two elements and we suppose that m' is a representative of the non-
trivial element. As we showed earlier,2 the integral (1) converges for X in a half
plane, thereby defining A (m', a, X) in such a way that (2) holds. A (m', a, X)
extends to a global meromorphic function of A = log X as an operator on smooth
functions, and (2) holds for the extension. Moreover,

A (mn'-, m'or, m'X)Ai(m', o-, X) = c,(A)I (3)

for a meromorphic complex-valued function cz(A) that is independent of m' and
the representative of the equivalence class of a.
We shall identify c,(A). This is a basic step in our work. Fix a normaliza-

tion of Haar measure on G. The representations UaX that contribute to the
Plancherel measure for G are those with X unitary, i.e., X = exp it A0 for a fixed
real-valued AO. The contribution to the Plancherel measure is of the form
p,(it Ao)dt. Here pa extends to a global meromorphic function p,(A).
THEOREM 1. There is a positive constant K depending on a but independent of

X = exp A, such that c,(A) = Kp(A)-1.
The Plancherel measure is known explicitly for the groups in question.' The

importance of the theorem is that it gives an explicit formula for the function
c,(A), which carries most of the information concerning irreducibility of principal
series and existence of complementary series. For instance, the irreducibility
criterion is now as follows:
COROLLARY. If G has real-rank one, then Uix is reducible if and only if X =

1, uf is equivalent with m'a, and pa(0) id 0.
The technical device for using the functions c, is to construct suitable mero-

morphic functions 'y(z) such that c,(z) = y,(z)'y,(-2) and 'Ym'q(Z) = ze(2)
Fix a choice of these functions, and define ct(m', a, X) = -y,(A)-1A(m', a, X).
Then a(m', a, X) is unitary for unitary X, and also (3) gives

a(m'-', ma-, m'X) (in', 0-, X) = I. (4)

Now drop the assumption that dim A = 1. The main idea in the general case
is to write any element of the Weyl group as a product of simple reflections, re-
ducing the questions to the groups of real-rank one. In this connection a sig-
nificant advance was made by Schiffmann,7 who proved that it is possible to
normalize simultaneously the Haar measures on all the N.'m, so that the following

n
theorem holds: Let p = m'M, write p III pi as the product of simple re-

i=1
flections in as short a fashion as possible (call n the length of p), and let mn' = Hm'j
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be a corresponding decomposition of m'. If (ReA, a) > 0 for every positive re-
stricted root a, then the integral (1) converges absolutely, each integral A (mi',
M,+, . .. m'n(a, X)) converges absolutely, and A (m', a, X) is the product

A(m', a, X) = A(m'1, M'2 . . . rnMn(o, X)) ... A(m', a, X). (5)

From this follows the further identity

A (M'Im'2, a, X) = A (m'1, m'2u, m'2X)A (M'2, a, X) (6)

under the assumption that the length of m'1M'2M is the sum of the lengths of
m'1M and m'2M.
From the decomposition (5) and the real-rank one case, it follows that A(m',

a, X) extends to a global meromorphic function of X. Then (6) holds for the ex-
tensions as well. We wish to describe how to normalize the extended operators
A (m', a, X) so that (6) holds with no restriction on m', and M'2. The role of
Theorem 1 is to make this normalization explicit.

First let m' in M' be such that m'M is a simple reflection pa,. Let Ga be the
real-rank one group associated to the simple restricted root a, and let Ma and
Aa be the M and A of Ga; we shall suppose m' is in Ga. There is a well-known
way8 of viewing U""X as operating on functions on ON. If we regard ON as the
product of m'-1Nrm' and the group ON n (m'-1ONm'), then it is easy to see
that A (m', a, X) decomposes as

A(m' a, X) = A(n', al Ma XI Aa)(I. (7)

Now it is known that M = MaZM(Ma),9 and it follows that the restriction
al Ma is equivalent with a multiple of a single irreducible representation a of
Ma. Put a(m, a, X) = 'ya(log XI Aa) 1A (m, a-, X).
For a general element m' in Al', decompose A (m', a, X) as in (5), obtain the -y

factor for each rank-one operator, and use the product of these ey factors as a
normalizing factor for A(m', a, X). Call the normalized operator a((m', a, X).
One can show that this normalization is independent of the particular decomposi-
tion m' = urm'j. Combining (4), (6), (7), and a supplementary argument, we
obtain the following theorem:
THEOREM 2. For any m'1 and M'2 in M',

a(rn'lrn'2, a, X) = t(M'1, M'2a, M'2X)a(M'2, a, X).

Fix p in W with p2 = 1. Suppose p = m'M, and let a- be an irreducible uni-
tary representation ofM such that m'ao and a- are equivalent. Then it is possible
to extend a (in exactly two ways, differing by a sign) to a representation (on the
same vector space) of the group generated by M and m'. Thus form the opera-
tor

a(Mr')t(m', a, 1) (8)

This operator is hermitian and unitary. The critical question is whether it is
scalar.
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If (8) is scalar, adjust a(m') so that the scalar is one. For those X such that
pX = X-1, the operator

(rm')((m'a, X) (9)

is hermitian, and it is positive definite for X = 1. Thus (9) remains positive
definite on any connected set of such X containing 1 on which (9) is nonsingular
on every K-finite subspace of functions. Writing p as a product of simple re-
flections and decomposing (9) accordingly, we see that the nonsingularity of (9)
reduces to the real-rank one case. Explicit information about the nonsingularity
of (9) is therefore available from Theorem 1 and from our earlier results.2 In
any case the operator is nonsingular at least for X in a small neighborhood of 1.
Consequently (9) is positive definite if X is sufficiently close to 1 and if pX =
X-1. For such X it follows from standard arguments that Uc X is in the com-
plementary series. (On the other hand if (8) is not scalar, then it follows from
(2) that UWl is reducible.)
Thus we get either existence of complementary series or reducibility of a

member of the principal series, depending on whether (8) is scalar or not. In
order to decide whether this operator is scalar, one makes systematic use of the
following two facts: (a) In a factorization of a(m', a, 1) according to a minimal
decomposition p = Hp, with the Pa simple reflections, if each factor is non-
constant, then a(m', a, 1) is nonconstant. (b) Every element p of W with p2
= 1 is the product of commuting reflections in hyperplanes.
Examples: (1) SL(n, R), n = 2k. This is the group of real nonsingular

matrices of determinant one. M can be taken as the diagonal matrices with
ei = 1. Define a(El,.. .,en) = E1I3E5...En-, and a permutation p = (1 2)
(3 4) (5 6) ... (n - 1, n). Then p2 = 1 and pa = a since I~I = 1. Applying
Theorem 2, we can see that (t(m', a, X) is not constant if pX = X. Thus Uax
is reducible, for these a and X.3

(2) Complex semisimple groups. Suppose p is in W, p2 = 1, and pa = o.
Decompose p, by the fact (b), as the product of distinct commuting (not neces-
sarily simple) reflections pee. For such a group, one can show that paO = a for
each pat. When paU = a, the fact that (Pa, o, 1) is scalar follows from Theorem
2 and from the theory for SL(2, C). Thus by a second application of Theorem
2, a(p, oA, 1) is scalar; together with an additional argument, the above dis-
cussion leads us to the following conclusion.
THEOREM 3.10 Let G be a complex semisimple group, p a member of the Weyl

group such that p2 = 1, a- a character of M, and X = exp A a character of A. Sup-
pose that the following necessary conditions for a representation to be in the comple-
mentary series are satisfied: pa- = a, pA = -A. If

j(ReA, a) <1
(a, a)

for every root a, then U "' is in the complementary series.
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