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PREFACE TO THE SECOND EDITION

In the years since publication of the first editions of Basic Real Analysis and
Advanced Real Analysis, many readers have reacted to the books by sending
comments, suggestions, and corrections. They appreciated the overall compre-
hensive nature of the books, associating this feature with the large number of
problems that develop so many sidelights and applications of the theory.
Along with the general comments and specific suggestions were corrections,

and there were enough corrections to Basic Real Analysis to warrant a second
edition. A second edition of Advanced Real Analysis was then needed for
compatibility. As long as this volume was being changed, it seemed appropriate
to add the two important topics that are listed below.
For the first editions, the author granted a publishing license to Birkhäuser

Boston that was limited to print media, leaving the question of electronic publi-
cation unresolved. A major change with the second editions is that the question
of electronic publication has now been resolved, and for each book a PDF file,
called the “digital second edition,” is being made freely available to everyone
worldwide for personal use. These files may be downloaded from the author’s
own Web page and from elsewhere.

The two important additions to Advanced Real Analysis are as follows:
• Five sections on the Central Limit Theorem and an introduction to statistical
inference. This material appears at the end of Chapter IX, “Foundations of
Probability.” Four sections deal with the Central Limit Theorem itself. The
fifth section shows how the Central Limit Theorem arises in applications to
statistics as a limiting case of the t distribution of W. S. Gosset, also known
as Student’s t distribution. Gosset’s t distribution plays a fundamental role in
statistical inference.

• A chapter on the theory of wavelets, with some commentary on applications.
This material occupies Chapter X, “Introduction to Wavelets.” Wavelets
form another theory, beyond the frequency analysis of Fourier series and the
Fourier transform, for decomposing functions of one or more variables into
component parts that bring out hidden behavior of the functions. The theory
was introduced in the 1980s and 1990s to bring together disparate applications
in signal processing and related fields, and it has now reached a sufficient state
of maturity that all mathematicians might benefit from some familiarity with

xi



xii Preface to the Second Edition

it. More information about the content of the chapter appears in the Guide to
the Reader on pages xviii–xxii.
In addition, there were some minor changes to Advanced Real Analysis. First,

Sections 1–4 of Chapter IX were revised and expanded to prepare for the Central
Limit Theorem later in the chapter. Second, a third part was added to Problem 12
at the end of Chapter III to allow for an alternative approach to smoothness
questions about wavelets. Third, a small number of minor corrections, fewer
than a dozen, were made in the first eight chapters. And fourth, the References
and Index were updated and expanded. No other changes were made to the body
of the text.
As was true in the first edition, references in Advanced Real Analysis to the

text of Basic Real Analysis abbreviate the title of the latter book as Basic.

AnnKostantwas thepersonwhoconceived the idea, about2003, forBirkhäuser
to have a series Cornerstones. Her vision was to enlist authors experienced at
mathematical exposition who would write compatible texts at the early graduate
level. Theoverall choiceof topicswasheavily influencedby thegraduatecurricula
ofmajorAmericanuniversities. The ideawas for each book in the series to explain
what the young mathematician needs to know about a swath of mathematics in
order to communicate well with colleagues in all branches of mathematics in the
21st century. Taken together, the books in the series were intended as an antidote
for the worst effects of overspecialization. I am honored to have been part of her
project.
It wasBenjaminLevitt, Birkhäusermathematics editor inNewYork as of 2014,

whoencouraged thewritingof secondeditionsof the real analysis books. Hemade
a number of suggestions about pursuing them, and he passed along comments
from several anonymous referees about the strengths and weaknesses of each
book. I am especially grateful to those readers who have sent me comments over
the years. The typesetting was done by the program Textures using AMS-TEX,
and the figures were drawn with Mathematica.
As with the first editions, I invite corrections and other comments about the

second editions from readers. For as long as I am able, I plan to point to lists of
knowncorrections frommyownWebpage,www.math.stonybrook.edu/∼aknapp.

A. W. KNAPP
August 2016

The corrected version issued in 2017 incorporates six small changes to Chapter
III, one small change to Chapter IX, and approximately 80 small corrections to
Chapter X. The ones for Chapter X were kindly pointed out by Esshan Khanmo-
hammadi; one of them makes a correction to the formula in Theorem 10.10.

January 2017



PREFACE TO THE FIRST EDITION

This book and its companion volume Basic Real Analysis systematically develop
concepts and tools in real analysis that are vital to every mathematician, whether
pure or applied, aspiring or established. The two books together contain what the
young mathematician needs to know about real analysis in order to communicate
well with colleagues in all branches of mathematics.
The books are written as textbooks, and their primary audience is students

who are learning the material for the first time and who are planning a career in
which they will use advanced mathematics professionally. Much of the material
in the books corresponds to normal course work. Nevertheless, it is often the
case that core mathematics curricula, time-limited as they are, do not include all
the topics that one might like. Thus the book includes important topics that are
sometimes skipped in required courses but that the professional mathematician
will ultimately want to learn by self-study.
The content of the required courses at each university reflects expectations of

what studentsneedbeforebeginning specializedstudyandworkona thesis. These
expectations vary from country to country and from university to university. Even
so, there seems to be a rough consensus aboutwhatmathematics a plenary lecturer
at a broad international or national meeting may take as known by the audience.
The tables of contents of the two books represent my own understanding of what
that degree of knowledge is for real analysis today.

Key topics and features of Advanced Real Analysis are that it:
• Develops Fourier analysis and functional analysis with an eye toward partial
differential equations.

• Includes chapters on Sturm–Liouville theory, compact self-adjoint operators,
Euclidean Fourier analysis, topological vector spaces and distributions, com-
pact and locally compact groups, and aspects of partial differential equations.

• Contains chapters about analysis on manifolds and foundations of probability.
• Proceeds from the particular to the general, often introducing examples well
before a theory that incorporates them.

• Includes many examples and almost 200 problems, and a separate section
“Hints for Solutions of Problems” at the end of the bookgives hints or complete
solutions for most of the problems.

xiii



xiv Preface to the First Edition

• Incorporates, both in the text and in the problems but particularly in the
problems, material in which real analysis is used in algebra, in topology,
in complex analysis, in probability, in differential geometry, and in applied
mathematics of various kinds.

It is assumed that the reader has had courses in real variables and either is
taking or has completed the kind of course in Lebesgue integration that might use
Basic Real Analysis as a text. Knowledge of the content of most of Chapters I–VI
and X of Basic Real Analysis is assumed throughout, and the need for further
chapters of that book for particular topics is indicated in the chart on page xvii.
When it is necessary in the text to quote a result from this material that might
not be widely known, a specific reference to Basic Real Analysis is given; such
references abbreviate the book title as Basic.
Some understanding of complex analysis is assumed for Sections 3–4 and 6 of

Chapter III, for Sections 10–11 of Chapter IV, for Section 4 of Chapter V, for all
of Chapters VII and VIII, and for certain groups of problems, but not otherwise.
Familiaritywith linear algebra and group theory at least at the undergraduate level
is helpful throughout.

The topics in the first eight chapters of this volume are related to one another
in many ways, and the book needed some definite organizational principle for its
design. The result was a decision to organize topics largely according to their role
in the studyof differential equations, even if differential equationsdonot explicitly
appear in each of the chapters. Much of the material has other uses as well, but
an organization of topics with differential equations in mind provides a common
focus for the mathematics that is presented. Thus, for example, Fourier analysis
and functional analysis are subjects that stand on their own and also that draw
on each other, but the writing of the chapters on these areas deliberately points
toward the subject of differential equations, and toward tools like distributions
that are used with differential equations. These matters all come together in two
chapters on differential equations, Chapters VII and VIII, near the end of in the
book.
Portions of the first eight chapters can be used as the text for a course in any

of three ways. One way is as an introduction to differential equations within a
course on Lebesgue integration that treats integration and the Fourier transform
relatively lightly; the expectation in this case is that parts of at most two or three
chapters of this bookwould be used. A secondway is as a text for a self-contained
topics course in differential equations; the book offers a great deal of flexibility
for the content of such a course, and no single choice is right for everyone. A
third way is simply as a text for a survey of some areas of advanced real analysis;
again the book offers great flexibility in how such a course is constructed.
The problems at the ends of chapters are an important part of the book. Some
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of them are really theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.
This book seeks in part to help the reader look for and appreciate the unity of

mathematics. For that reason some of the problems and sections go way outside
the usual view of real analysis. One of the lessons about advanced mathematics
is that progress is better measured by how mathematics brings together different
threads, rather than how many new threads it generates.

Almost all of the mathematics in this book and Basic Real Analysis is at least
forty years old, and I make no claim that any result is new. The two books are
together a distillation of lecture notes from a 35-year period of my own learning
and teaching. Sometimes a problem at the end of a chapter or an approach to the
exposition may not be a standard one, but normally no attempt has been made to
identify such problems and approaches.
I amgrateful toAnnKostant andStevenKrantz for encouraging this project and

for making many suggestions about pursuing it, and to Susan Knapp and David
Kramer for helping with the readability. The typesetting was by AMS-TEX, and
the figures were drawn with Mathematica.
I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP
June 2005
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GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the chart on page xvii and in the abstracts that begin each of
the chapters.
Advanced Real Analysis deals with topics in real analysis that the young

mathematician needs to know in order to communicate well with colleagues
in all branches of mathematics. These topics include parts of Fourier analysis,
functional analysis, spectral theory, distribution theory, abstract harmonic analy-
sis, and partial differential equations. They tend to be ones whose applications
and ramifications cut across several branches in mathematics. Each topic can
be studied on its own, but the importance of the topic arises from its influence
on the other topics and on other branches of mathematics. To avoid having all
these relationships come across as a hopeless tangle, the book needed some
organizational principle for its design. The principle chosen was largely to
organize topics according to their role in the study of differential equations. This
organizational principle influences what appears below, but it is certainly not
intended to suggest that applications to differential equations are the only reason
for studying certain topics in real analysis.
As was true also in Basic Real Analysis, several techniques that are used

repeatedly in real analysis play a pivotal role. Examples are devices for justifying
interchanges of limits, compactness and completeness as tools for proving exis-
tence theorems, and the approach of handling nice functions first and then passing
to general functions. By the beginning of the present volume, these techniques
have become sophisticated enough so as to account for entire areas of studywithin
real analysis. The theory of weak derivatives illustrates this principle: The theory
allows certain interchanges of limits involving weak derivatives to be carried out
routinely, and the hard work occurs in translating the results into statements about
classical derivatives. The main tool for this translation is Sobolev’s Theorem,
which in turn becomes the foundation for its own theory.
Each chapter is built around one ormore important theorems. The commentary

below tells the nature of each chapter and the role of some important theorems.
Chapter I marks two transitions—from concrete mathematics done by cal-

culation to theorems established by functional analysis on the one hand, and
from ordinary differential equations to partial differential equations on the other

xviii



Guide for the Reader xix

hand. Section 2 about separation of variables is relatively elementary, introducing
and illustrating a first technique for approaching partial differential equations.
The technique involves a step of making calculations and a step of providing
justification that the method is fully applicable. When the technique succeeds,
the partial differential equation is reduced to two or more ordinary differential
equations. Section 3 establishes, apart from one detail, the main theorem of
the chapter, called Sturm’s Theorem. Sturm’s Theorem addresses the nature of
solutions of certain kinds of ordinary differential equations with a parameter.
This result can sometimes give a positive answer to the completeness questions
needed to justify separation of variables, and it hints at a theory known as Sturm–
Liouville theory that contains more results of this kind. The one detail with
Sturm’s Theorem that is postponed from Section 3 to Chapter II is the Hilbert–
Schmidt Theorem.
Chapter II is a first chapter on functional analysis beyond Chapter XII of Basic

Real Analysis, with emphasis on a simple case of the Spectral Theorem. The
result in question describes the structure of compact self-adjoint operators on a
Hilbert space. The Hilbert–Schmidt Theorem says that certain integral operators
are of this kind, and it completes the proof of Sturm’s Theorem as presented in
Chapter I; however, Chapter I is not needed for an understanding of Chapter II.
Section 4 of Chapter II gives several equivalent definitions of unitary operators
and is relevant for many later chapters of the book. Section 5 discusses compact,
Hilbert–Schmidt, and trace-class operators abstractly and may be skipped on first
reading.
Chapter III is a first chapter on Fourier analysis beyondChaptersVIII and IX of

Basic Real Analysis, and it discusses four topics that are somewhat independent of
one another. The first of these, in Sections 1–2, introduces aspects of distribution
theory and the idea of weak derivatives. The main result is Sobolev’s Theorem,
which tells how to extract conclusionsaboutordinaryderivatives fromconclusions
about weak derivatives. Readers with a particular interest in this topic will want
to study also Problems 8–12 and 25–34 at the end of the chapter. Sections 3–4
concern harmonic functions, which are functions annihilated by the Laplacian,
and associatedPoisson integrals, which relate harmonic functions to the subject of
boundary-valueproblems. These sectionsmaybeviewedas providingan example
of what to expect of themore general “elliptic” differential operators to be studied
in Chapters VII–VIII. The main results are a mean value property for harmonic
functions, a maximum principle, a reflection principle, and a characterization
of harmonic functions in a half space that arise as Poisson integrals. Sections
5–6 establish the Calderón–Zygmund Theorem and give two applications to
partial differential equations. The theorem generalizes the boundedness of the
Hilbert transform, which was proved in Chapters VIII–IX of Basic Real Analysis.
Historically the Calderón–Zygmund Theorem was a precursor to the theory of
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pseudodifferential operators that is introduced inChapterVII. Sections 7–8 gently
introduce multiple Fourier series, which are used as a tool several times in later
chapters. Chapter III makes connections with complex analysis in Sections 3–4
and 6, but complex analysis is needed only for examples and problems.
Chapter IVweaves together three lines of investigation in the area of functional

analysis—one going toward spaces of smooth functions and distribution theory,
another leading to fixed-point theorems, and a third leading to full-fledged spectral
theory. The parts of the chapter relevant for spaces of smooth functions and
distribution theory are Sections 1–2 and 5–7. This line of investigation continues
in Chapters V and VII–VIII. The parts of the chapter relevant for fixed-point the-
orems are Sections 1, 3–6, and 8–9. Results of this kind, which have applications
to equilibrium problems in economics and mathematical physics, are not pursued
beyond Chapter IV in this book. The parts of the chapter relevant to spectral
theory are Sections 1, 3–4, and 10–11, and spectral theory is not pursued beyond
Chapter IV. Because the sections of the chapter have overlapping purposes, some
of the main results play multiple roles. Among the main results are the charac-
terization of finite-dimensional topological vector spaces as being Euclidean, the
existence of “support” for distributions, Alaoglu’s Theorem asserting weak-star
compactness of the closed unit ball of the dual of a Banach space, the Stone
Representation Theorem as a model for the theory of commutativeC∗ algebras, a
separation theorem concerning continuous linear functionals in locally convex
topological vector spaces, the construction of inductive limit topologies, the
Krein–MilmanTheorem concerning the existence of extreme points, the structure
theorem for commutative C∗ algebras, and the Spectral Theorem for commuting
families of bounded normal operators. Spectral theory has direct applications to
differential equations beyondwhat appears in Chapters I–II, but the book does not
go into these applications. Section 10 makes serious use of elementary complex
analysis, and complex analysis is used implicitly in Section 11.
Chapter V develops the theory of distributions, and of operations on them,

without going into their connection with Sobolev spaces. The chapter includes a
lengthy discussion of convolution. The main results are a structure theorem for
distributions of compact support in terms of derivatives of measures, a theorem
saying that the Fourier transforms of such distributions are smooth functions, and
a theorem saying that the convolution of a distribution of compact support and
a tempered distribution is meaningful and tempered, with its Fourier transform
being the product of the Fourier transforms. One theorem in Section 4 observes
that theFourier transformof a distributionof compact support is an entire function,
but complex analysis otherwise plays no role in the chapter.
Chapter VI introduces harmonic analysis using groups. Section 1 concerns

general topological groups, Sections 2–5 are about invariant measures on locally
compact groups and their quotients, and Sections 6–7 concern the representation
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theory of compact groups. Section 8 indicates how representation theory sim-
plifies problems concerning linear operators with a sizable group of symmetries.
One main result of the chapter is the existence and uniqueness of Haar measure,
up to a scalar factor, on any locally compact group. Another is the Peter–Weyl
Theorem, which is a completeness theorem for Fourier analysis on a general
compact group akin to Parseval’s Theorem for Fourier series and the circle group.
The proof of the Peter–Weyl Theorem uses the Hilbert–Schmidt Theorem.
Chapter VII is a first systematic discussion of partial differential equations,

mostly linear, using tools from earlier chapters. Section 1 seeks to quantify
the additional data needed for a differential equation or system simultaneously to
have existenceanduniquenessof solutions. TheCauchy–KovalevskayaTheorem,
whichassumes that everything is holomorphic, is stated ingeneral andgives a local
result; for special kinds of systems it gives a global result whose proof is carried
out in problems at the end of the chapter. Complex analysis of course plays a
serious role in this section; it is used a little after Section 1, but its role thereafter
is a minor one. Section 2 mentions some other properties and examples of
differential equations, including the possibility of nonexistence of local solutions
for linear equations Lu = f when f is not holomorphic. Section 3 contains
a general theorem asserting local existence of solutions for linear equations
Lu = f when L has constant coefficients; the proof uses multiple Fourier
series. Section 5 concerns elliptic operators L with constant coefficients; these
generalize the Laplacian. A complete proof is given in this case for the existence
of a “parametrix” for L , which leads to control of regularity of solutions, and for
the existence of “fundamental solutions.” Section 6 introduces, largely without
proofs, a general theory of pseudodifferential operators. To focus attention on
certain theorems, the section describes how the theory can be used to obtain
parametrices for elliptic operators with variable coefficients.
Chapter VIII in Sections 1–4 introduces smooth manifolds and vector bundles

over them, particularly the tangent and cotangent bundles. Readers who are
already familiar with this material may want to skip these sections. Sections
5–8 use this material to extend the theory of differential and pseudodifferential
operators to the setting of smoothmanifolds, where such operators arise naturally
in many applications. Section 7 in particular describes how to adapt the theory
of Chapter VII to obtain parametrices for elliptic operators on smooth manifolds.
Chapter IX is a stand-alone chapter on probability theory. Although partial

differential equations interact with probability theory and have applications to
differential geometry and financial mathematics, such interactions are too ad-
vanced to be addressed in this book. Instead four matters are addressed that are
foundational and yet at the level of this book: howmeasure theory is used tomodel
real-world probabilistic situations, how the Kolmogorov Extension Theorem
constructs measure spaces that underlie stochastic processes, how probabilistic
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independence and a certain indifference to the nature of the underlying measure
space lead to a proof of the Strong Law of Large Numbers, and how the measure-
theoretic techniques of the book yield a proof of the Central Limit Theorem. The
material on the Central Limit Theorem occupies about half of the chapter and
makes extensive use results fromBasic Real Analysis about the Fourier transform.
A final section introduces the subject of statistical inference and makes use of
complex analysis in one calculation. In the simplest case the subject of statistical
inference seeks to deduce themean and variance of awhole population from those
of a small sample. The probabilities in question are captured by the t distribution
of W. S. Gosset. The main theorem calculates the t distribution, and it is seen
under suitable hypotheses that the t distribution tends to the normal distribution
as the sample size tends to infinity.
Chapter X introduces wavelets. In the simplest case a wavelet is a function of

one variable such that the dilations by powers of 2 of the integer translates of the
function form an orthogonal basis of the space of square integrable functions.
Square integrable functions may be regarded as signals to be used as input.
Associated to any wavelet is an analysis of all signals that is quite different from
Fourier analysis via frequencies. Namely for each resolution, i.e., for each power
of 2 determining a dilation, the function is decomposed into one function giving
a rough approximation and another function providing some detail. The exact
decomposition depends on the original wavelet and is regarded by people who do
signal processing as the result of passing the signal through two complementary
filters. After the decomposition the function giving the rough approximation is
processed at successively higher resolutions, while the function giving the detail
is retained as a component of the given function. The result is that the given
signal is decomposed into infinitely many functions giving details. In practice,
the detail functions for all the coarsest resolutions are lumped into a single
function, a first approximation to the given signal, and the components giving
the higher-order detail may be regarded as improving on the first approximation.
Chapter X studies a mechanism called a multiresolution analysis for carrying
out this decomposition systematically. Several of the main theorems construct
concretewavelets and families of wavelets, progressivelymore sophisticated, that
have been found useful in applications. The last section of the chapter addresses
the question of using wavelet analysis to decompose functions in practice, and
it provides commentary on a number of applications. Chapter X intermittently
makes use of complex analysis, mostly by directly applying results in Appendix
B of Basic Real Analysis. Beyond that, Sections 7 and 9 prove and apply two
further theorems in complex analysis, namely a formula for the sum over integers
n of (z − n)−2 and the classical Paley–Wiener Theorem.



NOTATION AND TERMINOLOGY

This section lists notation and a few unusual terms from elementary mathematics
and from Basic Real Analysis that are taken as standard in the text without further
definition. The items are grouped by topic. Complex analysis is not included.

Set theory
∈ membership symbol
#S or |S| number of elements in S
∅ empty set
{x ∈ E | P} the set of x in E such that P holds
Ec complement of the set E
E ∪ F, E ∩ F, E − F union, intersection, difference of setsS

α Eα,
T

α Eα union, intersection of the sets Eα

E ⊆ F, E ⊇ F E is contained in F , E contains F
E × F, ×s∈S Xs products of sets
(a1, . . . , an) ordered n-tuple
{a1, . . . , an} unordered n-tuple
f : E → F, x 7→ f (x) function, effect of function
f ◦ g, f

Ø
Ø
E composition of f following g, restriction to E

f ( · , y) the function x 7→ f (x, y)
f (E), f −1(E) direct and inverse image of a set
countable finite or in one-one correspondence with integers
2A set of all subsets of A
BA set of all functions from B to A
card A cardinality of A

Number systems
δi j Kronecker delta: 1 if i = j , 0 if i 6= j°n
k
¢

binomial coefficient
n positive, n negative n > 0, n < 0
Z, Q, R, C integers, rationals, reals, complex numbers
F R or C, the underlying field of scalars
max maximum of finite subset of a totally ordered set
min minimum of finite subset of a totally ordered setP
or

Q
sum or product, possibly with a limit operation

xxiii
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[x] greatest integer ≤ x if x is real
Re z, Im z real and imaginary parts of complex z
z̄ complex conjugate of z
|z| absolute value of z

Linear algebra and elementary group theory
Rn , Cn , Fn spaces of column vectors with n entries
x · y dot product
ej j th standard basis vector of Rn

1 or I identity matrix or operator
det A determinant of A
Atr transpose of A
diag(a1, . . . , an) diagonal square matrix
Tr A trace of A
[Mi j ] matrix with (i, j)th entry Mi j
dim V dimension of vector space
0 additive identity in an abelian group
1 multiplicative identity in a group or ring
∼= is isomorphic to, is equivalent to

Real-variable theory and calculus
R∗ extended reals, reals with ±∞ adjoined
sup and inf supremum and infimum in R∗

(a, b), [a, b] open interval in R∗, closed interval
(a, b], [a, b) half-open intervals in R∗

lim supn , lim infn infn supk∏n in R∗, supn infk∏n in R∗

lim limit in R or R∗ or RN

|x |
°PN

j=1 |xj |2
¢1/2 if x = (x1, . . . , xN ), scalars

in R or C
e

P∞
n=0 1/n!

exp x , sin x , cos x , tan x exponential and trigonometric functions
arcsin x , arctan x inverse trigonometric functions
log x natural logarithm function on (0,+∞)
@ f
@xj partial derivative of f with respect to j th variable
Ck(V ), k ∏ 0 scalar-valued functions on open set V ⊆ RN

with all partial derivatives continuous through
order k, no assumption of boundedness

C∞(V )
T∞

k=0 Ck(V )
f : V → F is smooth f is scalar valued and is in C∞(V )
homogeneous of degree d satisfying f (r x) = rd f (x) for all x 6= 0 in RN

and all r > 0 if f is a function f : RN−{0} → F
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Metric spaces and topological spaces
d typical name for a metric
B(r; x) open ball of radius r and center x
Acl closure of A
Ao interior of A
separable having a countable base for its open sets
D(x, A) distance to a set A in a metric space
xn → x or lim xn = x limit relation for a sequence or a net
SN−1 unit sphere in RN

support of function closure of set where function is nonzero
k f ksup supx∈S | f (x)| if f : X → F is given
B(S) space of all bounded scalar-valued functions on S
B(S, C) or B(S, R) space of members of B(S) with values in C or R
C(S) space of all bounded scalar-valued continuous

functions on S if S topological
C(S, C) or C(S, R) space of members of C(S) with values in C or R
Ccom(S) space of functions in C(S) with compact support
C0(S) space of functions in C(S) vanishing

at infinity if S is locally compact Hausdorff
X∗ one-point compactification of X

Measure theory
m(E) or |E | Lebesgue measure of E
indicator function of set E function equal to 1 on E , 0 off E
IE(x) indicator function of E at x
f + max( f, 0) for f with values in R∗

f − −min( f, 0) for f with values in R∗
R
E f dµ or

R
E f (x) dµ(x) Lebesgue integral of f over E with respect to µ

dx abbreviation for dµ(x) for µ=Lebesgue measureR b
a f dx Lebesgue integral of f on interval (a, b)

with respect to Lebesgue measure
(X,A, µ) or (X, µ) typical measure space
a.e. [dµ] almost everywhere with respect to µ
∫ = f dµ complex measure ∫ with ∫(E) =

R
E f dµ

A× B product of σ -algebras
µ × ∫ product of σ -finite measures
k f kp L p norm, 1 ≤ p ≤ ∞
p0 dual index to p with p0 = p/(p − 1)
L p(X,A, µ) or L p(X, µ) space of functions with k f kp < ∞ modulo

functions equal to 0 a.e. [dµ]
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f ∗ g convolution
f ∗(x) Hardy–Littlewood maximal function, given by

the supremum of the averages of | f | over balls
centered at x

dω spherical part of Lebesgue measure on RN ,
measure on SN−1 with dx = r N−1 dr dω

ƒN−1 “area” of SN−1 given by ƒN−1 =
R
SN−1 dω

0(s) gamma function with 0(s) =
R ∞
0 t s−1e−t dt

∫ ø µ ∫ is absolutely continuous with respect to µ
Borel set in locally compact set in σ -algebra generated by compact sets in X

Hausdorff space X
B(X) σ -algebra of Borel sets if X is locally compact

Hausdorff
compact Gδ compact set equal to countable intersection of

open sets
Baire set in locally compact set in σ -algebra generated by compact Gδ’s in X

Hausdorff space X
M(X) space of all finite regular Borel complex

measures on X if X is locally compact Hausdorff
M(X, C) or M(X, R) M(X) with values in F = C or F = R

Fourier series and Fourier transform
cn = 1

2π
R π

−π f (x)e−inx dx Fourier coefficient
f (x) ∼

P∞
n=−∞ cneinx Fourier series of f , with cn as above

sN ( f ; x) =
PN

n=−N cneinx partial sum of Fourier series
bf (y) =

R
RN f (x)e−2π i x ·y dx Fourier transform of an f in L1(RN )

f (x) =
R

RN
bf (y)e2π i x ·y dy Fourier inversion formula

F Fourier transform as an operator
kF f k2 = k f k2 Plancherel formula
S or S(RN ) Schwartz space on RN

1
π
limε↓0

R
|t |∏ε

f (x−t)
t dt Hilbert transform of function f on R1

Normed linear spaces and Banach spaces
k · k typical norm in a normed linear space
( · , · ) typical inner product in a Hilbert space,

linear in first variable, conjugate linear in second
M⊥ space of vectors orthogonal to all members of M
X∗ dual of normed linear space X
∂ canonical mapping of X into X∗∗ = (X∗)∗

B(X,Y ) space of bounded linear operators from X into Y



Advanced Real Analysis





CHAPTER I

Introduction to Boundary-Value Problems

Abstract. This chapter applies the theory of linear ordinary differential equations to certain
boundary-value problems for partial differential equations.
Section 1 briefly introduces some notation and defines the three partial differential equations of

principal interest—the heat equation, Laplace’s equation, and the wave equation.
Section 2 is a first exposure to solving partial differential equations, workingwith boundary-value

problems for the three equations introduced in Section 1. The settings are ones where the method of
“separation of variables” is successful. In each case the equation reduces to an ordinary differential
equation in each independent variable, and some analysis is needed to see when the method actually
solves a particular boundary-value problem. In simple cases Fourier series can be used. In more
complicated cases Sturm’s Theorem, which is stated but not proved in this section, can be helpful.
Section3 returns to Sturm’sTheorem, giving a proof contingent on theHilbert–SchmidtTheorem,

which itself is proved in Chapter II. The construction within this section finds a Green’s function for
the second-order ordinary differential operator under study; the Green’s function defines an integral
operator that is essentially an inverse to the second-order differential operator.

1. Partial Differential Operators

This chapter contains a first discussion of linear partial differential equations. The
word “equation” almost always indicates that there is a single unknown function,
and the word “partial” indicates that this function probably depends on more than
one variable. In every case the equation will be homogeneous in the sense that it
is an equality of terms, each of which is the product of the unknown function or
one of its iterated partial derivatives to the first power, times a known coefficient
function. Consequently the space of solutions on the domain set is a vector
space, a fact that is sometimes called the superposition principle. The emphasis
will be on a naive-sounding method of solution called “separation of variables”
that works for some equations in some situations but not for all equations in all
situations. This method, which will be described in Section 2, looks initially for
solutions that are products of functions of one variable and hopes that all solutions
can be constructed from these by taking linear combinations and passing to the
limit.

1



2 I. Introduction to Boundary-Value Problems

For the basic existence-uniqueness results with ordinary differential equations,
one studies single ordinary differential equations in the presence of initial data
of the form y(t0) = y0, . . . , y(n−1)(t0) = y(n−1)

0 . Implicitly the independent
variable is regarded as time. For the partial differential equations in the settings
that we study in this section, the solutions are to be defined in a region of space
for all time t ∏ 0, and the corresponding additional data give information to be
imposed on the solution function at the boundary of the resulting domain in space-
time. Behavior at t = 0 will not be sufficient to determine solutions uniquely;
we shall need further conditions that are to be satisfied for all t ∏ 0 when the
space variables are at the edge of the region of definition. We refer to these two
types of conditions as initial data and space-boundary data. Together they are
simply boundary data or boundary values.
For the most part the partial differential equations will be limited to three—the

heat equation, theLaplaceequation, and thewave equation. Eachof these involves
space variables in some Rn , and the heat and wave equations involve also a time
variable t . To simplify the notation, we shall indicate partial differentiations by
subscripts; thus uxt is shorthand for @2u

±
@x@t . The space variables are usually

x1, . . . , xn , but we often write x, y, z for them if n ≤ 3. The linear differential
operator1 given by

1u = ux1x1 + · · · + uxnxn
is involved in the definition of all three equations and is known as the Laplacian
in n space variables.
The first partial differential equation that we consider is the heat equation,

which takes the form
ut = 1u,

the unknown function u(x1, . . . , xn, t) being real-valued in any physically mean-
ingful situation. Heat flows by conduction, as a function of time, in the region
of the space variables, and this equation governs the temperature on any open
set where there are no external influences. It is usually assumed that external
influences come into play on the boundary of the space region, rather than the
interior. They do so through a given set of space-boundary data. Since time and
distance squared have distinct physical units, some particular choice of units has
been incorporated into the equation in order to make a certain constant reduce
to 1.
The second partial differential equation that we consider is the Laplace

equation, which takes the form
1u = 0,

the unknown function u(x1, . . . , xn) again being real-valued in any physically
meaningful situation. A C2 function that satisfies the Laplace equation on an
open set is said to be harmonic. The potential due to an electrostatic charge is
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harmonic on any open set where the charge is 0, and so are steady-state solutions
of the heat equation, i.e., those solutions with time derivative 0.
The third and final partial differential equation that we consider is the wave

equation, which takes the form

utt = 1u,

the unknown function u(x1, . . . , xn) once again being real-valued in any physi-
cally meaningful situation. Waves of light or sound spread in some medium in
space as a function of time. In our applications we consider only cases in which
the number of space variables is 1 or 2, and the function u is interpreted as the
displacement as a function of the space and time variables.

2. Separation of Variables

We shall describe the method of separation of variables largely through what
happens in examples. As we shall see, the rigorous verification that separation of
variables is successful in a particular example makes serious analytic demands
that bring together a great deal of real-variable theory as discussed in Chapters
I–IV of Basic.1 The general method of separation of variables allows use of a
definite integral of multiples of the basic product solutions, but we shall limit
ourselves to situations in which a sum or an infinite series of multiples of basic
product solutions is sufficient. Roughly speaking, there are four steps:

(i) Search for basic solutions that are the products of one-variable functions,
and form sums or infinite series of multiples of them (or integrals in a
more general setting).

(ii) Use the boundary data to determine what specific multiples of the basic
product solutions are to be used.

(iii) Address completeness of the expansions as far as dealing with all sets of
boundary data is concerned.

(iv) Justify that the obtained solution has the required properties.
Steps (i) and (ii) are just a matter of formal computation, but steps (iii) and (iv)
often require serious analysis. In step (iii) the expression “all sets of boundary
data” needs some explanation, as far as smoothness conditions are concerned.
The normal assumption for the three partial differential equations of interest is
that the data have two continuous derivatives, just as the solutions of the equations
are to have. Often one can verify (iii) and carry out (iv) for somewhat rougher

1Throughout this book the word “Basic” indicates the companion volume Basic Real Analysis.
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data, but the verificationof (iv) in this casemaybe regarded as an analysis problem
separate from solving the partial differential equation.
The condition that the basic product solutions in (i) form a discrete set, so that

the hoped-for solutions are given by infinite series and not integrals, normally
results from assuming that the space variables are restricted to a bounded set and
that sufficiently many boundary conditions are specified. In really simple situa-
tions the benefit that we obtain is that an analytic problem potentially involving
Fourier integrals is replaced by a more elementary analytic problem with Fourier
series; in more complicated situations we obtain a comparable benefit. Step (iii)
is crucial since it partially addresses the question whether the solution we seek is
at all related to basic product solutions. Let us come back to what step (iii) entails
in a moment. Step (iv) is a matter of interchanges of limits. One step consists
in showing that the expected solution satisfies the partial differential equation,
and this amounts to interchanging infinite sums with derivatives. It often comes
down to the standard theorem in real-variable theory for that kind of interchange,
which is proved in the real-valued case as Theorem 1.23 of Basic and extended
to the vector-valued case later. We restate it here in the vector-valued case for
handy reference.

Theorem 1.1. Suppose that { fn} is a sequence of functions on an interval with
values in a finite-dimensional real or complex vector space V . Suppose further
that the functions are continuous for a ≤ t ≤ b and differentiable for a < t < b,
that { f 0

n} converges uniformly for a < t < b, and that { fn(x0)} converges in V
for some x0 with a ≤ x0 ≤ b. Then { fn} converges uniformly for a ≤ t ≤ b to
a function f , and f 0(x) = limn f 0

n(x) for a < x < b, with the derivative and the
limit existing.

Another step in handling (iv) consists in showing that the expected solution has
the asserted boundary values. This amounts to interchanging infinite sums with
passages to the limit as certain variables tend to the boundary, and the following
result can often handle that.

Proposition 1.2. Let X be a set, let Y be a metric space, let An(x) be a
sequence of complex-valued functions on X such that

P∞
n=1 |An(x)| converges

uniformly, and let Bn(y) be a sequence of complex-valued functions on Y such
that |Bn(y)| ≤ 1 for all n and y and such that limy→y0 Bn(y) = Bn(y0) for all n.
Then

lim
y→y0

∞X

n=1
An(x)Bn(y) =

∞X

n=1
An(x)Bn(y0),

and the convergence is uniform in x if, in addition to the above hypotheses, each
An(x) is bounded.
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PROOF. Let ≤ > 0begiven, andchooseN large enoughso that
P∞

n=N+1|An(x)|
is < ≤. Then

Ø
Ø
Ø

∞X

n=1
An(x)Bn(y) −

∞X

n=1
An(x)Bn(y0)

Ø
Ø
Ø =

Ø
Ø
Ø

∞X

n=1
An(x)

°
Bn(y) − Bn(y0)

¢ØØ
Ø

≤
NX

n=1
|An(x)| |Bn(y) − Bn(y0)| + 2

∞X

n=N+1
|An(x)|

< 2≤ +
NX

n=1
|An(x)| |Bn(y) − Bn(y0)|.

For y close enough to y0, the second termon the right side is< ≤, and the pointwise
limit relation is proved. The above argument shows that the convergence is
uniform in x if max1≤n≤N |An(x)| ≤ M independently of x . §

In combination with a problem2 in Basic, Proposition 1.2 shows, under the
hypotheses as stated, that if X is a metric space and if

P∞
n=1 An(x)Bn(y) is

continuous on X × (Y − {y0}), then it is continuous on X × Y . This conclusion
can be regarded, for our purposes, as tying the solution of the partial differential
equation well enough to one of its boundary conditions. It is in this sense that
Proposition 1.2 contributes to handling part of step (iv).
Let us return to step (iii). Sometimes this step is handled by the completeness

of Fourier series as expressed through a uniqueness theorem3 or Parseval’s Theo-
rem.4 But thesemethodswork in only a few examples. The tools necessary to deal
completely with step (iii) in all discrete cases generate a sizable area of analysis
known in part as “Sturm–Liouville theory,” of which Fourier series is only the
beginning. We do not propose developing all these tools, but we shall give in
Theorem 1.3 one such tool that goes beyond ordinary Fourier series, deferring
any discussion of its proof to the next section.
For functionsdefinedon intervals, the behavior of the functions at the endpoints

will be relevant to us: we say that a continuous function f : [a, b] → C with a
derivative on (a, b) has a continuous derivative at one or both endpoints if f 0 has
a finite limit at the endpoint in question; it is equivalent to say that f extends to a
larger set so as to be differentiable in an open interval about the endpoint and to
have its derivative be continuous at the endpoint.

Theorem 1.3 (Sturm’s Theorem). Let p, q, and r be continuous real-valued
functions on [a, b] such that p0 and r 00 exist and are continuous and such that p

2Problem 6 at the end of Chapter II.
3Corollaries 1.60 and 1.66 in Basic.
4Theorem 1.61 in Basic.
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and r are everywhere positive for a ≤ t ≤ b. Let c1, c2, d1, d2 be real numbers
such that c1 and c2 are not both 0 and d1 and d2 are not both 0. Finally for
each complex number ∏, let (SL) be the following set of conditions on a function
u : [a, b] → C with two continuous derivatives:

(p(t)u0)0 − q(t)u + ∏r(t)u = 0, (SL1)
c1u(a) + c2u0(a) = 0 and d1u(b) + d2u0(b) = 0. (SL2)

Then the system(SL)has a nonzero solution for a countably infinite set of values of
∏. If E denotes this set of values, then themembers∏ of E are all real, they have no
limit point inR, and the vector space of solutions of (SL) is 1-dimensional for each
such ∏. The set E is bounded below if c1c2 ≤ 0 and d1d2 ∏ 0, and E is bounded
below by 0 if these conditions and the condition q ∏ 0 are all satisfied. In any
case, enumerate E as ∏1, ∏2, . . . , let u = ϕn be a nonzero solution of (SL) when
∏ = ∏n , define ( f, g)r =

R b
a f (t)g(t) r(t) dt and k f kr =

° R b
a | f (t)|2 r(t) dt

¢1/2

for continuous f and g, and normalize ϕn so that kϕnkr = 1. Then (ϕn, ϕm)r = 0
for m 6= n, and the functions ϕn satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series

P∞
n=1(u, ϕn)rϕn(t) converges absolutely

uniformly to u(t) on [a, b],
(b) the only continuous ϕ on [a, b] with (ϕ, ϕn)r = 0 for all n is ϕ = 0,
(c) any continuous ϕ on [a, b] satisfies kϕk2r =

P∞
n=1 |(ϕ, ϕn)r |

2.

REMARK. The expression converges absolutely uniformly in (a) means thatP∞
n=1 |(u, ϕn)rϕn(t)| converges uniformly.

EXAMPLE. The prototype for Theorem 1.3 is the constant-coefficient case
p = r = 1 and q = 0. The equation (SL1) is just u00 +∏u = 0. If ∏ happens to be
> 0, then the solutions are u(t) = C1 cos pt+C2 sin pt , where ∏ = p2. Suppose
[a, b] = [0, π]. The condition c1u(0)+ c2u0(0) = 0 says that c1C1+ pc2C2 = 0
and forces a linear relationship between C1 and C2 that depends on p. The
condition d1u(π) + d2u0(π) = 0 gives a further such relationship. These two
conditions may or may not be compatible. An especially simple special case is
that c2 = d2 = 0, so that (SL2) requires u(0) = u(π) = 0. From u(0) = 0,
we get C1 = 0, and then u(π) = 0 forces sin pπ = 0 if u is to be a nonzero
solution. Thus p must be an integer. It may be checked that ∏ ≤ 0 leads to no
nonzero solutions if c2 = d2 = 0. Part (a) of the theorem therefore says that any
twice continuously differentiable function u(t) on [0, π] vanishing at 0 and π
has an expansion u(t) =

P∞
p=1 bp sin pt , the series being absolutely uniformly

convergent.

The first partial differential equation that we consider is the heat equation
ut = 1u, and we are interested in real-valued solutions.
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EXAMPLES WITH THE HEAT EQUATION.
(1) We suppose that there is a single space variable x and that the set in

1-dimensional space is a rod 0 ≤ x ≤ l. The unknown function is u(x, t), and
the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),
u(0, t) = u(l, t) = 0 (ends of rod at absolute 0 temperature for all t ∏ 0).

Heat flows in the rod for t ∏ 0, and we want to know what happens. The
equation for the heat flow is ut = uxx , and we search for solutions of the form
u(x, t) = X (x)T (t). Unless T (t) is identically 0, the boundary data force
X (x)T (0) = f (x) and X (0) = X (l) = 0. Substitution into the heat equation
gives

X (x)T 0(t) = X 00(x)T (t).

We divide by X (x)T (t) and obtain

T 0(t)
T (t)

=
X 00(x)
X (x)

.

A function of t alone can equal a function of x alone only if it is constant, and
thus

T 0(t)
T (t)

=
X 00(x)
X (x)

= c

for some real constant c. The bound variable is x , and we hope that the possible
values of c lie in a discrete set. Suppose that c is> 0, so that c = p2 with p > 0.
The equation X 00(x)/X (x) = p2 would say that X (x) = c1epx + c2e−px . From
X (0) = 0, we get c2 = −c1, so that X (x) = c1(epx − e−px). Since epx − e−px

is strictly increasing, c1(epx − e−px) = 0 is impossible unless c1 = 0. Thus we
must have c ≤ 0. Similarly c = 0 is impossible, and the conclusion is that c < 0.
We write c = −p2 with p > 0. The equation is X 00(x) = −p2X (x), and then
X (x) = c1 cos px + c2 sin px . The condition X (0) = 0 says c1 = 0, and the
condition X (l) = 0 then says that p = nπ/ l for some integer n. Thus

X (x) = sin(nπx/ l),

up to a multiplicative constant. The t equation becomes T 0(t) = −p2T =
−(nπ/ l)2T (t), and hence

T (t) = e−(nπ/ l)2t ,
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up to a multiplicative constant. Our product solution is then a multiple of
e−(nπ/ l)2t sin(nπx/ l), and the form of solution we expect for the boundary-value
problem is therefore

u(x, t) =
∞X

n=1
cne−(nπ/ l)2t sin(nπx/ l).

The constants cn are determined by the condition at t = 0. We extend f (x),
which is initially defined for 0 ≤ x ≤ l, to be defined for −l ≤ x ≤ l and to be
an odd function. The constants cn are then the Fourier coefficients of f except
that the period is 2l rather than 2π :

f (x) ∼
∞P

n=1
cn sin nπx

l with cn = 1
l
R l
−l f (y) sin

nπy
l dy = 2

l
R l
0 f (y) sin

nπy
l dy.

Normally the Fourier series would have cosine terms as well as sine terms, but the
cosine terms all have coefficient 0 since f is odd. In any event, we now have an
explicit infinite series that we hope gives the desired solution u(x, t). Checking
that the function u(x, t) defined above is indeed the desired solution amounts
to handling steps (iii) and (iv) in the method of separation of variables. For
(iii), we want to know whether f (x) really can be represented in the indicated
form. This example is simple enough that (iii) can be handled by the theory
of Fourier series as in Chapter I of Basic: since f is assumed to have two
continuous derivatives on [0, l], the Fourier series converges uniformly by the
Weierstrass M test, and the sum must be f by the uniqueness theorem. Another
way of handling (iii) is to apply Theorem 1.3 to the equation y00 + ∏y = 0
subject to the conditions y(0) = 0 and y(l) = 0: The theorem gives us a certain
unique abstract expansion without giving us formulas for the explicit functions
that are involved. It says also that we have completeness and absolute uniform
convergence. Since our explicit expansion with sines satisfies the requirements
of the unique abstract expansion, it must agree with the abstract expansion and
it must converge absolutely uniformly. Whichever approach we use, the result
is that we have now handled (iii). Step (iv) in the method is the justification
that u(x, t) has all the required properties: we have to check that the function in
question solves the heat equation and takes on the asserted boundary values. The
function in question satisfies the heat equation because of Theorem 1.1 and the
rapid convergence of the series

P∞
n=1 e−(nπ/ l)2t and its first and secondderivatives.

The question about boundary values is completely settled by Proposition 1.2. For
the condition u(x, 0) = f (x), we take X = [0, l], Y = [0,+∞), y = t ,
An(x) = cn sin(nπx/ l), Bn(t) = e−(nπ/ l)2t , and y0 = 0 in the proposition;
uniform convergence of

P
|An(x)| follows either from Theorem 1.3 or from the



2. Separation of Variables 9

Fourier-series estimate |cn| ≤ C/n2, which in turn follows from the assumption
that f has two continuous derivatives. The conditions u(0, t) = u(l, t) = 0 may
be verified in the same way by reversing the roles of the space variable and the
time variable. To check that u(0, t) = 0, for example, we use Proposition 1.2
with X = (δ,+∞), Y = [0, l], and y0 = 0. Our boundary-value problem is
therefore now completely solved.
(2) We continue to assume that space is 1-dimensional and that the object of

interest is a rod 0 ≤ x ≤ l. The unknown function for heat flow in the rod is still
u(x, t), but this time the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),
ux(0, t) = ux(l, t) = 0 (ends of rod perfectly insulated for all t ∏ 0).

In the sameway as in Example 1, a product solution X (x)T (t) leads to a separated
equation T 0(t)/T (t) = X 00(x)/X (x), and both sides must be some constant−∏.
The equation for X (x) is then

X 00 + ∏X = 0 with X 0(0) = X 0(l) = 0.

We find that ∏ has to be of the form p2 with p = nπ/ l for some integer n ∏ 0,
and X (x) has to be a multiple of cos(nπx/ l). Taking into account the formula
∏ = p2, we see that the equation for T (t) is

T 0(t) = −p2T (t).

Then T (t) has to be a multiple of e−(nπ/ l)2t , and our product solution is a multiple
of e−(nπ/ l)2t cos(nπx/ l). The form of solution we expect for the boundary-value
problem is therefore

u(x, t) =
∞X

n=0
cne−(nπ/ l)2t cos(nπx/ l).

We determine the coefficients cn by using the initial condition u(x, 0) = f (x),
and thus we want to represent f (x) by a series of cosines:

f (x) ∼
∞X

n=0
cn cos nπxl .

We can do so by extending f (x) from [0, l] to [−l, l] so as to be even and using
ordinary Fourier coefficients. The formula is therefore cn = 2

l
R l
0 f (y) cos

nπy
l dy

for n > 0, with c0 = 1
l
R l
0 f (y) dy. Again as in Example 1, we can carry out step

(iii) of the method either by using the theory of Fourier series or by appealing
to Theorem 1.3. In step (iv), we can again use Theorem 1.1 to see that the
prospective function u(x, t) satisfies the heat equation, and the boundary-value
conditions can be checked with the aid of Proposition 1.2.
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(3) We still assume that space is 1-dimensional and that the object of interest
is a rod 0 ≤ x ≤ l. The unknown function for heat flow in the rod is still u(x, t),
but this time the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),
u(0, t) = 0 (one end of rod held at temperature 0),
ux(l, t) = −hu(l, t) (other end radiating into a medium of temperature 0),

and h is assumed positive. In the same way as in Example 1, a product solution
X (x)T (t) leads to a separated equation T 0(t)/T (t) = X 00(x)/X (x), and both
sides must be some constant −∏. The equation for X (x) is then

X 00 + ∏X = 0 with
Ω X (0) = 0,
hX (l) + X 0(l) = 0.

From the equation X 00 + ∏X = 0 and the condition X (0) = 0, X (x) has to be
a multiple of sinh px with ∏ = −p2 < 0, or of x with ∏ = 0, or of sin px with
∏ = p2 > 0. In the first two cases, hX (l) + X 0(l) equals h sinh pl + p cosh pl
or hl + 1 and cannot be 0. Thus we must have ∏ = p2 > 0, and X (x) is a
multiple of sin px . The condition hX (l) + X 0(l) = 0 then holds if and only if
h sin pl + p cos pl = 0. This equation has infinitely many positive solutions p,
and we write them as p1, p2, . . . . See Figure 1.1 for what happens when l = π .

2 4 6 8 10

-10

-7.5

-5

-2.5

2.5

5

7.5

FIGURE 1.1. Graphs of sinπp and −p cosπp. The graphs
intersect for infinitely many values of ±p.

If ∏ = p2n , then the equation for T (t) is T 0(t) = −p2nT (t), and T (t) has to be a
multiple of e−p2n t . Thus our product solution is a multiple of e−p2n t sin pnx , and
the form of solution we expect for the boundary-value problem is

u(x, t) =
∞X

n=1
cne−p2n t sin pnx .
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Putting t = 0, we see that we want to choose constants cn such that

f (x) ∼
∞X

n=1
cn sin pnx .

There is no reason why the numbers pn should form an arithmetic progression,
and such an expansion is not a result in the subject of Fourier series. To handle
step (iii), this time we appeal to Theorem 1.3. That theorem points out the
remarkable fact that the functions sin pnx satisfy the orthogonality propertyR l
0 sin pnx sin pmx dx = 0 if n 6= m and therefore that

cn =
Z l

0
f (y) sin pn y dy

¡Z l

0
sin2 pn y dy .

Even more remarkably, the theorem gives us a completeness result and a conver-
gence result. Thus (iii) is completely finished. In step (iv), we use Theorem 1.1 to
check that u(x, t) satisfies the partial differential equation, just as in Examples 1
and 2. The same technique as in Examples 1 and 2 with Proposition 1.2 works to
recover the boundary value u(x, 0) as a limit; this timewe use Theorem1.3 for the
absolute uniform convergence in the x variable. For u(0, t), one new comment
is appropriate: we take X = (δ,+∞), Y = [0, l], y0 = 0, An(x) = e−p2n t , and
Bn(y) = cn sin pnx ; although the estimate |Bn(y)| ≤ 1 may not be valid for
all n, it is valid for n sufficiently large because of the uniform convergence ofP
cn sin pnx .
4) This time we assume that space is 2-dimensional and that the object of

interest is a circular plate. The unknown function for heat flow in the plate is
u(x, y, t), the differential equation is ut = uxx + uyy , and the assumptions about
boundary data are that the temperature distribution is known on the plate at t = 0
and that the edge of the plate is held at temperature 0 for all t ∏ 0. Let us use polar
coordinates (r, θ) in the (x, y) plane, let us assume that the plate is described by
r ≤ 1, and let us write the unknown function as v(r, θ, t) = u(r cos θ, r sin θ, t).
The heat equation becomes

vt = vrr + r−1vr + r−2vθθ ,

and the boundary data are given by

v(r, θ, 0) = f (r, θ) (initial temperature equal to f (r, θ)),
v(1, θ, t) = 0 (edge of plate held at temperature 0).

We first look for solutions of the heat equation of the form R(r)2(θ)T (t).
Substitution and division by R(r)2(θ)T (t) gives

R00(r)
R(r)

+
1
r
R0(r)
R(r)

+
1
r2

200(θ)

2(θ)
=
T 0(t)
T (t)

= −c,
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so that T (t) is a multiple of e−ct . The equation relating R, 2, and c becomes

r2R00(r)
R(r)

+
r R0(r)
R(r)

+
200(θ)

2(θ)
= −cr2.

Therefore
200(θ)

2(θ)
= −∏ = −

r2R00(r)
R(r)

−
r R0(r)
R(r)

− cr2.

Since 2(θ) has to be periodic of period 2π , we must have ∏ = n2 with n an
integer ∏ 0; then 2(θ) = c1 cos nθ + c2 sin nθ . The equation for R(r) becomes

r2R00 + r R0 + (cr2 − n2)R = 0.

This has a regular singular point at r = 0, and the indicial equation is s2 = n2.
Thus s = ±n. In fact, we can recognize this equation asBessel’s equation of order
n by a change of variables: A little argument excludes c ≤ 0. Putting k =

p
c,

ρ = kr , and y(ρ) = R(r) leads to y00 + ρ−1y0 + (1 − n2ρ−2)y = 0, which is
exactly Bessel’s equation of order n. Transforming the solution y(ρ) = Jn(ρ)
back with r = k−1ρ, we see that R(r) = y(ρ) = Jn(ρ) = Jn(kr) is a solution of
the equation for R. A basic product solution is therefore 12a0,k J0(kr) if n = 0 or

Jn(kr)(an,k cos nθ + bn,k sin nθ)e−k2t

if n > 0. The index n has to be an integer in order for v to be well behaved at the
center, or origin, of the plate, but we have not thus far restricted k to a discrete
set. However, the condition of temperature 0 at r = 1 means that Jn(k) has to be
0, and the zeros of Jn form a discrete set. The given condition at t = 0 means
that we want

f (r, θ) ∼ 1
2

X

k>0 with
J0(kr)=0

a0,k J0(kr)+
∞X

n=1

≥ X

k>0 with
Jn(kr)=0

(an,k cos nθ +bn,k sin nθ)Jn(kr)
¥
.

We do not have the tools to establish this kind of relation, but we can see a hint
of what to do. The orthogonality conditions that allow us to write candidates for
the coefficients are the usual orthogonality for trigonometric functions and the
relation

Z 1

0
Jn(kr)Jn(k 0r)r dr = 0 if Jn(k) = Jn(k 0) = 0 and k 6= k 0.

The latter is not quite a consequence of Theorem 1.3, but it is close since the
equation satisfied by yk(r) = Jn(kr), namely

(ry0
k)

0 + (k2r − n2r−1)yk = ry00
k + y0

k + (k2r − n2r−1)yk = 0,
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fails to be of the form in Theorem 1.3 only because of trouble at the endpoint
r = 0 of the domain interval. In fact, the argument in the next section for the
orthogonality in Theorem 1.3 will work also in this case; see Problem 2 at the
end of the chapter. Thus put

an(r) =
1
π

Z π

−π

f (r, θ) cos nθ dθ and bn(r) =
1
π

Z π

−π

f (r, θ) sin nθ dθ,

so that

f (r, θ) ∼ 1
2a0(r) +

∞X

n=1
(an(r) cos nθ + bn(r) sin nθ) for each r.

an,k =
Z 1

0
an(r)yk(r)r dr

¡Z 1

0
yk(r)2r drThen put

bn,k =
Z 1

0
bn(r)yk(r)r dr

¡Z 1

0
yk(r)2r dr .and

With these values in place, handling step (iii) amounts to showing that

f (r, θ) = 1
2

X

k>0 with
J0(kr)=0

a0,k J0(kr) +
∞X

n=1

≥ X

k>0 with
Jn(kr)=0

(an,k cos nθ + bn,k sin nθ)Jn(kr)
¥

for functions f of class C2. This formula is valid, but we would need a result
from Sturm–Liouville theory that is different from Theorem 1.3 in order to prove
it. Step (iv) is to use the convergence from Sturm–Liouville theory, together with
application of Proposition 1.2 and Theorem 1.1, to see that the function u(r, θ, t)
given by

1
2

X

k>0 with
J0(kr)=0

a0,k J0(kr)e−k2t +
∞X

n=1

≥ X

k>0 with
Jn(kr)=0

(an,k cos nθ + bn,k sin nθ)Jn(kr)e−k2t
¥

has all the required properties.

The second partial differential equation that we consider is the Laplace
equation 1u = 0. Various sets of boundary data can be given, but we deal
only with the values of u on the edge of its bounded domain of definition. In this
case the problem of finding u is known as the Dirichlet problem.
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EXAMPLES WITH LAPLACE EQUATION.
(1) We suppose that the space domain is the unit disk in R2. The Laplace

equation in polar coordinates (r, θ) is urr + r−1ur + r−2uθθ = 0. The unknown
function is u(r, θ), and the given boundary values of u for the Dirichlet problem
are

u(1, θ) = f (θ) (value on unit circle).

It is implicit that u(r, θ) is to be periodic of period 2π in θ and is to be well
behaved at r = 0. A product solution is of the form R(r)2(θ). We substitute
into the equation, divide by r−2R(r)2(θ), and and find that the variables separate
as

r2R00

R
+
r R0

R
= −

200

2
= c.

The equation for 2 is 200 + c2 = 0, and the solution is required to be periodic.
We might be tempted to try to apply Theorem 1.3 at this stage, but the boundary
condition of periodicity, 2(−π) = 2(π), is not exactly of the right kind for
Theorem 1.3. Fortunately we can handle matters directly, using Fourier series
in the analysis. The periodicity forces c = n2 with n an integer ∏ 0. Then
2(θ) = c1 cos nθ + c2 sin nθ , except that the sine term is not needed when
n = 0. The equation for R becomes

r2R00 + r R0 − n2R = 0.

This is an Euler equation with indicial equation s2 = n2, and hence s = ±n. We
discard−n with n ∏ 1 because the solution r−n is not well behaved at r = 0, and
we discard also the second solution log r that goes with n = 0. Consequently
R(r) is a multiple of rn , and the product solution is rn(an cos nθ + bn sin nθ)
when n > 0. The expected solution of the Laplace equation is then

u(r, θ) = 1
2a0 +

∞P

n=1
rn(an cos nθ + bn sin nθ).

We determine an and bn by formally putting r = 1, and we see that an and
bn are to be the ordinary Fourier coefficients of f (x). The normal assumption
for a boundary-value problem is that f is as nice a function as u and hence
has two continuous derivatives. In this case we know that the Fourier series
converges to f (x) uniformly. It is immediate from Theorem 1.1 that u(r, θ)
satisfies Laplace’s equation for r < 1, and Proposition 1.2 shows that u(r, θ) has
the desired boundary values. This completes the solution of the boundary-value
problem. In this example the solution u(r, θ) is given by a nice integral formula:
The same easy computation that expresses the partial sums of a Fourier series in
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terms of the Dirichlet kernel allows us to write u(r, θ) in terms of the Poisson
kernel

Pr (θ) =
1− r2

1− 2r cos θ + r2
=

∞X

n=−∞

r |n|einθ ,

namely

u(r, θ) =
∞X

n=−∞

r |n|
≥ 1
2π

Z π

−π

f (ϕ)e−inϕ dϕ
¥
einθ

=
1
2π

Z π

−π

f (ϕ)
≥ ∞X

n=−∞

r |n|ein(θ−ϕ)
¥
dϕ

=
1
2π

Z π

−π

f (ϕ)Pr (θ − ϕ) dϕ

=
1
2π

Z π

−π

f (θ − ϕ)Pr (ϕ) dϕ.

The interchange of integral and sum for the second equality is valid because of the
uniform convergence of the series

P∞
n=−∞ r |n|ein(θ−ϕ) for fixed r . The resulting

formula for u(r, θ) is known as the Poisson integral formula for the unit disk.
(2) We suppose that the space domain is the unit ball in R3. The Laplace

equation in spherical coordinates (r, ϕ, θ), with ϕ measuring latitude from the
point (x, y, z) = (0, 0, 1), is

(r2ur )r +
1
sinϕ

((sinϕ)uϕ)ϕ +
1

sin2 ϕ
uθθ = 0.

The unknown function is u(r, ϕ, θ), and the given boundary values of u for the
Dirichlet problem are

u(1, ϕ, θ) = f (ϕ, θ) (value on unit sphere).

The function u is to be periodic in θ and is to be well behaved at r = 0, ϕ = 0, and
ϕ = π . Searching for a solution R(r)8(ϕ)2(θ) leads to the separated equation

r2R00 + 2r R0

R
= −

800 + (cotϕ)80

8
−

1
sin2 ϕ

200

2
= c.

The resulting equation for R is r2R00+2r R0−cR = 0, which is an Euler equation
whose indicial equation has roots s satisfying s(s + 1) = c. The condition that a
solution of the Laplace equation be well behaved at r = 0 means that the solution
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rs must have s equal to an integer m ∏ 0. Then R(r) is a multiple of rm with m
an integer ∏ 0 and with c = m(m + 1). The equation involving8 and2 is then

(sin2 ϕ)
800 + (cotϕ)80

8
+

200

2
+ m(m + 1) sin2 ϕ = 0.

This equation shows that200/2 = c0, and as usual we obtain c0 = −n2 with n an
integer ∏ 0. Then 2(θ) = c1 cos nθ + c2 sin nθ . Substituting into the equation
for 8 yields

(sin2 ϕ)
800 + (cotϕ)80

8
− n2 + m(m + 1) sin2 ϕ = 0.

We make the change of variables t = cosϕ, which has

d
dϕ

= − sinϕ
d
dt

and
d2

dϕ2
= −(cosϕ)

d
dt

+ (sin2 ϕ)
d2

dt2
.

Putting P(t) = P(cosϕ) = 8(ϕ) for 0 ≤ ϕ ≤ π leads to

(1− t2)
h (1− t2)P 00 − t P 0 + (cotϕ)(− sinϕ)P 0

P

i
− n2+m(m+ 1)(1− t2) = 0

and then to

(1− t2)P 00 − 2t P 0 +
h
m(m + 1) −

n2

1− t2
i
P = 0.

This is known as an associated Legendre equation. For n = 0, which is the
case of a solution independent of longitude θ , the equation reduces to the ordinary
Legendre equation.5 Suppose for simplicity that f is independent of longitude θ
and that we can take n = 0 in this equation. One solution of the equation for P is
P(t) = Pm(t), themth Legendre polynomial. This is well behaved at t = ±1, the
values of t that correspond to ϕ = 0 and ϕ = π . Making a change of variables,
we can see that the Legendre equation has regular singular points at t = 1 and
t = −1. By examining the indicial equations at these points, we can see that
there is only a 1-parameter family of solutions of the equation for P that are well
behaved at t = ±1. Thus8(ϕ) has to be a multiple of Pm(cosϕ), and we are led
to expect

u(r, ϕ, θ) =
∞X

m=0
cmrm Pm(cosϕ)

5The ordinary Legendre equation is (1− t2)P 00 − 2t P 0 +m(m + 1)P = 0, as in Section IV.8 of
Basic.
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for solutions that are independent of θ . If f (ϕ, θ) is independent of θ , we
determine cm by the formula

f (ϕ, θ) ∼
∞X

m=0
cm Pm(cosϕ).

The coefficients can be determined because the polynomials Pm are orthogonal
under integration over [−1, 1]. To see this fact, we first rewrite the equation for
P as ((1 − t2)P 0)0 + m(m + 1)P = 0. This is almost of the form in Theorem
1.3, but the coefficient 1 − t2 vanishes at the endpoints t = ±1. Although the
orthogonality does not then follow from Theorem 1.3, it may be proved in the
sameway as the orthogonality that is part of Theorem1.3; see Problem2 at the end
of the chapter. A part of the completeness question is easily settled by observing
that Pm is of degree m and that therefore the linear span of {P0, P1, . . . , PN }
is the same as the linear span of {1, t, . . . , t N }. This much does not establish,
however, that the series

P
cm Pm(t) converges uniformly. For that, wewould need

yet another result from Sturm–Liouville theory or elsewhere. Once the uniform
convergence has been established, step (iv) can be handled in the usual way.

The third and final partial differential equation that we consider is the wave
equation utt = 1u. We consider examples of boundary-value problems in one
and two space variables.

EXAMPLES WITH WAVE EQUATION.
(1) A string on the x axis under tension is such that each point can be displaced

only in the y direction. Let y = u(x, t) be the displacement. The equation for
the unknown function u(x, t) in suitable physical units is utt = uxx , and the
boundary data are

u(x, 0) = f (x) (initial displacement),
ut(x, 0) = g(x) (initial velocity),
u(0, t) = u(l, t) = 0 (ends of string fixed for all t ∏ 0).

The string vibrates for t ∏ 0, and we want to know what happens. Searching
for basic product solutions X (x)T (t), we are led to T 00/T = X 00/X = constant.
As usual the conditions at x = 0 and x = l force the constant to be nonpositive,
necessarily −ω2 with ω ∏ 0. Then X (x) = c1 cosωx + c2 sinωx . We obtain
c1 = 0 from X (0) = 0, and we obtain ω = nπ/ l, with n an integer, from
X (l) = 0. Thus X (x) has to be a multiple of sin(nπx/ l), and we may take
n > 0. Examining the T equation, we are readily led to expect

u(x, t) =
∞X

n=1
sin(nπx/ l)[an cos(nπ t/ l) + bn sin(nπ t/ l)].
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The conditions u(x, 0) = f (x) and ut(x, 0) say that

f (x) ∼
∞P

n=1
an sin

° nπx
l ) and g(x) ∼

∞P

n=1

° nπ
l

¢
bn sin

° nπx
l

¢
,

so that an and nπbn/ l are coefficients in the Fourier sine series for f and g. Steps
(iii) and (iv) in the method follow in the same way as in earlier examples.
(2) We visualize a vibrating circular drum. A membrane in the (x, y) plane

covers the unit disk and is under uniform tension. Each point can be displaced
only in the z direction. Let u(x, y, t) = U(r, θ, t) be the displacement. The
wave equation utt = uxx + uyy becomes Utt = Urr + r−1Ur + r−2Uθθ in polar
coordinates. Assume for simplicity that the boundary data are

U(r, θ, 0) = f (r) (initial displacement independent of θ),
Ut(r, θ, 0) = 0 (initial velocity 0),
U(1, θ, t) = 0 (edge of drum fixed for all t ∏ 0).

Because of the radial symmetry, let us look for basic product solutions of the
form R(r)T (t). Substituting and separating variables, we are led to T 00/T =
(R00 + r−1R0)/R = c. The equation for R is r2R00 + r R0 − cr2R = 0, and
the usual considerations do not determine the sign of c. The equation for R has
a regular singular point at r = 0, but it is not an Euler equation. The indicial
equation is s2 = 0, with s = 0 as a root of multiplicity 2, independently of c.
One solution is given by a power series in r , while another involves log r . We
discard the solution with the logarithm because it would represent a singularity at
the middle of the drum. To get at the sign of c, we use the condition R(1) = 0 and
argue as follows: Without loss of generality, R(0) is positive. Suppose c > 0,
and let r1 ≤ 1 be the first value of r > 0 where R(r1) = 0. From the equation
r−1(r R0)0 = cR and the inequality R(r) > 0 for 0 < r < r1, we see that r R0

is strictly increasing for 0 < r < r1. Examining the power series expansion for
R(r), we see that R0(0) = 0. Thus R0(r) > 0 for 0 < r < r1. But R(0) > 0 and
R(r1) = 0 imply, by the Mean Value Theorem, that R0(r) is < 0 somewhere in
between, and we have a contradiction. Similarly we rule out c = 0. We conclude
that c is negative, i.e., c = −k2 with k > 0. The equation for R is then

r2R00 + r R0 + k2r2R = 0.

The change of variablesρ = kr reduces this equation toBessel’s equation of order
0, and the upshot is that R(r) is a multiple of J0(kr). The condition R(1) = 0
means that J0(k) = 0. If kn is the nth positive zero of J0, then the T equation is
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T 00 + k2nT = 0, so that T (t) = c1 cos knt + c2 sin knt . From Ut(r, θ, 0) = 0, we
obtain c2 = 0. Thus T (t) is a multiple of cos knt , and we expect that

U(r, θ, t) =
∞X

n=1
cn J0(knr) cos knt.

In step (iii), the determination of the cn’s and the necessary analysis are similar to
those in Example 4 for the heat equation, and it is not necessary to repeat them.
Step (iv) is handled in much the same way as in the vibrating-string problem.

3. Sturm–Liouville Theory

The name “Sturm–Liouville theory” refers to the analysis of certain kinds of
“eigenvalue” problems for linear ordinary differential equations, particularly
equations of the second order. In this sectionwe shall concentrate on one theorem
of this kind, which was stated explicitly in Section 2 and was used as a tool for
verifying that themethodof separationof variables succeeded, for someexamples,
in solving a boundary-value problem for one of the standard partial differential
equations. Before taking up this one theorem, however, let us make some general
remarks about the setting, about “eigenvalues” and “eigenfunctions,” and about
“self-adjointness.”
Fix attention on an interval [a, b] and on second-order differential operators

on this interval of the form L = P(t)D2 + Q(t)D + R(t)1 with D = d/dt , so
that

L(u) = P(t)u00 + Q(t)u0 + R(t)u.

We shall assume that the coefficient functions P , Q, and R are real-valued; then
L(ū) = L(u). As was mentioned in Section 2, the behavior of all functions in
question at the endpoints will be relevant to us: we say that a continuous function
f : [a, b] → C with a derivative on (a, b) has a continuous derivative at one or
both endpoints if f 0 has a finite limit at the endpoint in question; it is equivalent
to say that f extends to a larger set so as to be differentiable in an open interval
about the endpoint and to have its derivative be continuous at the endpoint.
An eigenvalue of the differential operator L is a complex number c such

that L(u) = cu for some nonzero function u. Such a function u is called an
eigenfunction. In practice we often have a particular nonvanishing function r
and look for c such L(u) = cru for a nonzero u. In this case, c is an eigenvalue
of r−1L .
We introduce the inner-product space of complex-valued functions with two

continuous derivatives on [a, b] and with (u, v) =
R b
a u(t)v(t) dt . Computation
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using integration by parts and assuming suitable differentiability of the coeffi-
cients gives

(L(u), v) =
Z b

a
(Pu00 + Qu0 + Ru)v̄ dt

=
Z b

a
((u00)(P v̄) + (u0)(Qv̄) + (u)(Rv̄)) dt

=
h
(u0)(P v̄) + (u)(Qv̄)

ib

a
−

Z b

a
(u0(P v̄)0 + (u)(Qv̄)0 − (u)(Rv̄)) dt

=
h
(u0)(P v̄) + (u)(Qv̄) − (u)(P v̄)0

ib

a

+
Z b

a
((u)(P v̄)00 − (u)(Qv̄)0 + (u)(Rv̄)) dt

= (u, L∗(v)) +
h
(u0)(P v̄) + (u)(Qv̄) − u(P v̄)0

ib

a
,

where L∗(v) = Pv00 + (2P 0 − Q)v0 + (P 00 − Q0 + R)v. The above computation
shows that (L(u), v) = (u, L∗(v)) if the integrated terms are ignored; this
property is the abstract defining property of L∗. The differential operator L∗

is called the formal adjoint of L . We shall be interested only in the situation
in which L∗ = L , which we readily see happens if and only if P 0 = Q; when
L∗ = L , we say that L is formally self adjoint. If L is formally self adjoint,
then substitution of Q = P 0 shows that the above identity reduces to

(L(u), v) − (u, L(v)) =
h
(P)(u0v̄ − uv̄0)

ib

a
,

which is known as Green’s formula.
Even when L as above is not formally self adjoint, it can be multiplied by a

nonvanishing function, specifically
R t exp[(Q(s) − P 0(s))/P(s)] ds, to become

formally self adjoint. Thus formal self-adjointness by itself is no restriction on
our second-order differential operator.
In the formally self-adjoint case, one often rewrites P(t)D2 + P 0(t)D as

D(P(t)D). With this understanding, let us rewrite our operator as

L(u) = (p(t)u0)0 − q(t)u

and assume that p, p0, and q are continuous on [a, b] and that p(t) > 0 for
a ≤ t ≤ b. We associate a Sturm–Liouville eigenvalue problem called (SL)
to the set of data consisting of L , an everywhere-positive function r with two
continuous derivatives on [a, b], and real numbers c1, c2, d1, d2 such that c1 and
c2 are not both 0 and d1 and d2 are not both 0. This is the problem of analyzing
simultaneous solutions of
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L(u) + ∏r(t)u = 0, (SL1)
c1u(a) + c2u0(a) = 0 and d1u(b) + d2u0(b) = 0, (SL2)

for all values of ∏.
Each condition (SL1) and (SL2) depends linearly on u and u0 if ∏ is fixed,

and thus the space of solutions of (SL) for fixed ∏ is a vector space. We know6
that the vector space of solutions of (SL1) alone is 2-dimensional; let u1 and u2
form a basis of this vector space. The Wronskian matrix is

≥
u1(t) u2(t)
u0
1(t) u

0
2(t)

¥
, and the

determinant of this matrix, namely

u1(t)u0
2(t) − u0

1(t)u2(t),

is nowhere 0. If u1 and u2 were both to satisfy the condition c1u(a)+c2u0(a) = 0
with c1 and c2 not both 0, then

≥
c1
c2

¥
would be a nontrivial solution of the matrix

equation µ
u1(a) u0

1(a)
u2(a) u0

2(a)

∂µ
c1
c2

∂
=

µ
0
0

∂

and we would obtain the contradictory conclusion that theWronskian matrix at a
is singular. We conclude that the space of solutions of (SL) for fixed ∏ is at most
1-dimensional.
Let (ϕ1, ϕ2)r =

R b
a ϕ1(t)ϕ2(t) r(t) dt for any continuous functions ϕ1 and ϕ2

on [a, b], and let kϕ1kr = ((ϕ1, ϕ1)r )
1/2. The unsubscripted expressions (ϕ1, ϕ2)

and kϕ1k will refer to (ϕ1, ϕ2)r and kϕ1kr with r = 1. Then we can restate
Theorem 1.3 as follows.

Theorem 1.30 (Sturm’s Theorem). The system (SL) has a nonzero solution
for a countably infinite set of values of ∏. If E denotes this set of values, then
the members ∏ of E are all real, they have no limit point in R, and the space of
solutions of (SL) is 1-dimensional for each such ∏. The set E is bounded below
if c1c2 ≤ 0 and d1d2 ∏ 0, and E is bounded below by 0 if these conditions and
the condition q ∏ 0 are all satisfied. In any case, enumerate E in any fashion as
∏1, ∏2, . . . , let u = ϕn be a nonzero solution of (SL) when ∏ = ∏n , and normalize
ϕn so that kϕnkr = 1. Then (ϕn, ϕm)r = 0 for m 6= n, and the functions ϕn
satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series

P∞
n=1(u, ϕn)rϕn(t) converges absolutely

uniformly to u(t) on [a, b],
(b) the only continuous ϕ on [a, b] with (ϕ, ϕn)r = 0 for all n is ϕ = 0,
(c) any continuous ϕ on [a, b] satisfies kϕk2r =

P∞
n=1 |(ϕ, ϕn)r |

2.

6From Theorem 4.6 of Basic, for example.
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REMARKS. In this section we shall reduce the proof of everything but (b)
and (c) to the Hilbert–Schmidt Theorem, which will be proved in Chapter II.
Conclusions (b) and (c) follow from (a) and some elementary facts about Hilbert
spaces, and we shall return to prove these two conclusions at the time of the
Hilbert–Schmidt Theorem in Chapter II.

PROOF EXCEPT FOR STEPS TO BE COMPLETED IN CHAPTER II. By way of
preliminaries, let u and v be nonzero functions on [a, b] satisfying (SL2) and
having two continuous derivatives. Green’s formula gives

(L(u),v) − (u, L(v)) =
£
(p)(u0v̄ − uv̄0)

§b
a

= p(b)
°
u0(b)v(b) − u(b)v0(b)

¢
− p(a)

°
u0(a)v(a) − u(a)v0(a)

¢
.

Condition (SL2) says that

c1u(a) + c2u0(a) = 0 and c1v(a) + c2v0(a) = 0.

Since c1 and c2 are real, these equations yield

c1u(a)v(a) + c2u0(a)v(a) = 0 and c1u(a)v(a) + c2u(a)v0(a) = 0,

as well as

c1u(a)v0(a) + c2u0(a)v0(a) = 0 and c1u0(a)v(a) + c2u0(a)v0(a) = 0.

Subtracting, for each of the above two displays, each second equation of a display
from the first equation of the display, we obtain

c2
°
u0(a)v(a) − u(a)v0(a)

¢
= 0

c1
°
u(a)v0(a) − u0(a)v(a)

¢
= 0.and

Since c1 and c2 are not both 0, we conclude that p(a)(u0(a)v(a)−u(a)v0(a)) = 0.
A similar computation starting from

d1u(b) + d2u0(b) = 0 and d1v(b) + d2v0(b) = 0

shows that p(b)(u0(b)v(b) − u(b)v0(b)) = 0. Consequently

(L(u), v) − (u, L(v)) = 0

whenever u and v are functions on [a, b] satisfying (SL2) and having two con-
tinuous derivatives.
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Nowwecanbegin to establish thepropertiesof the set E of numbers∏ forwhich
(SL) has a nonzero solution. Suppose that ϕα and ϕβ satisfy L(ϕα) + ∏αrϕα = 0
and L(ϕβ) + ∏βrϕβ = 0. By what we have just seen,

0 = (L(ϕα), ϕβ) − (ϕα, L(ϕβ))

=
Z b

a
L(ϕα)ϕ̄β dt −

Z b

a
ϕαL(ϕβ) dt

= (−∏α + ∏̄β)

Z b

a
ϕαϕ̄β r dt = (−∏α + ∏̄β)(ϕα, ϕβ)r .

Taking ϕα = ϕβ in this computation shows that ∏α = ∏̄α; hence ∏α is real. With
∏α and ∏β real and unequal, this computation shows that (ϕα, ϕβ)r = 0. Thus
the members of E are real, and the corresponding ϕ’s are orthogonal. We have
seen that the dimension of the space of solutions of (SL) corresponding to any
member of E is 1-dimensional.
We shall prove that E is at most countably infinite. Let c =

° R b
a r(t) dt

¢1/2.
Any continuous ϕ on [a, b] satisfies

kϕkr =
≥ Z b

a
|ϕ(t)|2r(t) dt

¥1/2
≤ ( sup

a≤t≤b
|ϕ(t)|)

≥ Z b

a
r(t) dt

¥1/2
= c sup |ϕ|.

Consider the open ball B(k;ϕ) of radius k and center ϕ in the space C([a, b]) of
continuous functionson [a, b]; themetric is givenby the supremumof the absolute
value of the difference of the functions. If √ is in this ball, then sup |√ −ϕ| < k,
c sup |√ −ϕ| < ck, and k√ −ϕkr < ck. Choose k with ck = 1

2 . Suppose that ϕα

and ϕβ correspond as above to unequal ∏α and ∏β and that ϕα and ϕβ have been
normalized so that kϕαkr = kϕβkr = 1. If √ is in B(k;ϕα) ∩ B(k;ϕβ), then
k√−ϕαkr < 1

2 andk√−ϕβkr < 1
2 . The triangle inequality giveskϕα−ϕβkr < 1,

whereas the orthogonality implies that

kϕα − ϕβk2r = (ϕα − ϕβ, ϕα − ϕβ)r

= (ϕα, ϕα)r − (ϕα, ϕβ)r − (ϕβ, ϕα)r + (ϕβ, ϕβ)r

= 1− 0− 0+ 1 = 2.

The existence of√ thus leads us to a contradiction, andwe conclude that B(k;ϕα)
and B(k;ϕβ) are disjoint. Since [a, b] is a compactmetric space,C([a, b]) is sep-
arable as a metric space,7 and hence so is the metric subspace S =

S
α B(k;ϕα).

The collection of all B(k;ϕα) is an open cover of S, and the separability gives us

7By Corollary 2.59 of Basic.
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a countable subcover. Since the sets B(k;ϕα) are disjoint, we conclude that the
set of all ϕα is countable. Hence E is at most countably infinite.
The next step is to bound E below under additional hypotheses as in the

statement of the theorem. Let ∏ be in E , and let ϕ be a nonzero solution of (SL)
corresponding to ∏ and normalized so that kϕkr = 1. Multiplying (SL1) by ϕ̄
and integrating, we have

∏ =
Z b

a
∏|ϕ|2r dt = −

Z b

a
(pϕ0)0ϕ̄ dt +

Z b

a
q|ϕ|2 dt

= −
£
pϕ0ϕ̄

§b
a +

Z b

a
p|ϕ0|2 dt +

Z b

a
q|ϕ|2 dt

∏ −p(b)ϕ0(b)ϕ(b) + p(a)ϕ0(a)ϕ(a) +
Z b

a
(|ϕ|2r)(r−1q) dt

∏ −p(b)ϕ0(b)ϕ(b) + p(a)ϕ0(a)ϕ(a) + inf
a≤t≤b

{r(t)−1q(t)}.

Let us show under the hypotheses c1c2 ≤ 0 and d1d2 ∏ 0 that ϕ0(a)ϕ(a) ∏ 0
and ϕ0(b)ϕ(b) ≤ 0, and then the asserted lower bounds will follow. Condition
(SL2) gives us c1ϕ(a) + c2ϕ0(a) = 0. If c1 = 0 or c2 = 0, then ϕ0(a) = 0
or ϕ(a) = 0, and hence ϕ0(a)ϕ(a) ∏ 0. If c1c2 6= 0, then c1c2 < 0. The
identity c1ϕ(a) + c2ϕ0(a) = 0 implies that c21|ϕ(a)|2 + c1c2ϕ0(a)ϕ(a) = 0 and
hence −c1c2ϕ0(a)ϕ(a) = c21|ϕ(a)|2 ∏ 0. Because of the condition c1c2 < 0,
we conclude that ϕ0(a)ϕ(a) ∏ 0. A similar argument using d1d2 ∏ 0 and
d1ϕ(b)+ d2ϕ0(b) = 0 shows that ϕ0(b)ϕ(b) ≤ 0. This completes the verification
of the lower bounds for ∏.
We have therefore established all the results in the theorem that are to be proved

at this time except for
(i) the existence of a countably infinite set of ∏ for which (SL) has a nonzero
solution,

(ii) the fact that E has no limit point in R,
(iii) the assertion (a) about completeness.

Before carrying out these steps, wemay need to adjust L slightly. We are studying
functions u satisfying L(u) + ∏ru = 0 and (SL2), and we have established that
the set E of ∏ for which there is a nonzero solution is at most countably infinite.
Choose a member ∏0 of the complementary set Ec and rewrite the differential
equation as M(u) + ∫ru = 0, where M(u) = L(u) + ∏0ru and ∫ = (∏ − ∏0).
Then M has properties similar to those of L , and it has the further property that 0
is not a value of ∫ for which M(u) + ∫ru = 0 and (SL2) together have a nonzero
solution. It would be enough to prove (i), (ii), and (iii) for M(u) + ∫ru = 0 and
(SL2). Adjusting notation, we may assume from the outset that 0 is not in E .
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The next step is to prove the existence of a continuous real-valued function
G1(t, s) on [a, b] × [a, b] such that G1(t, s) = G1(s, t), such that the operator
T1 given by

T1 f (t) =
Z b

a
G1(t, s) f (s) ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
spaceD[a, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b] → C[a, b] is a two-sided inverse
function to T1. The existence will be proved by an explicit construction that will
be carried out as a lemma at the end of this section. The functionG1(t, s) is called
aGreen’s function for the operator L subject to the conditions (SL2). Assuming
that aGreen’s function indeed exists, we next apply theHilbert–SchmidtTheorem
of Chapter II in the following form:

SPECIAL CASE OF HILBERT–SCHMIDT THEOREM. Let G(t, s) be a
continuous complex-valued function on [a, b] × [a, b] such that
G(t, s) = G(s, t), and define

T f (t) =
Z b

a
G(t, s) f (s) ds

from the space C[a, b] of continuous functions on [a, b] to itself.
Define an inner product ( f, g) =

R b
a f (t)g(t) dt and its corresponding

norm k · k on C[a, b]. For each complex µ 6= 0, define

Vµ =
©
f : [a, b] → C

Ø
Ø f is continuous and T ( f ) = µ f

™
.

Then each Vµ is finite dimensional, the space Vµ 6= 0 is nonzero
for only countably many µ, the µ’s with Vµ 6= 0 are all real, and
for any ≤ > 0, there are only finitely many µ with Vµ 6= 0
and |µ| ∏ ≤. The spaces Vµ are mutually orthogonal with respect
to the inner product ( f, g), and the continuous functions orthogonal
to all Vµ are the continuous functions h with T (h) = 0. Let v1, v2, . . .
be an enumeration of the union of orthogonal bases of the spaces Vµ

with kvjk = 1 for all j . Then for any continuous f on [a, b],

T ( f )(t) =
∞X

n=1
(T ( f ), vn)vn(t),

the series on the right side being absolutely uniformly convergent.
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The theorem is applied not to our Green’s function G1 and the operator T1 as
above but to

G(t, s) = r(t)1/2G1(t, s)r(s)1/2

T f (t) =
Z b

a
G(t, s) f (s) ds = r(t)1/2T1(r1/2 f )(t).and

If T ( f ) = µ f for a real number µ 6= 0, then we have T1(r1/2 f ) = µr−1/2 f .
Application of L gives r1/2 f = µL(r−1/2 f ). If we put u = r−1/2 f , then
we obtain µL(u) = r1/2 f = r(r−1/2 f ) = ru. Hence L(u) + ∏ru = 0 for
∏ = −µ−1. Also, the equation u = r−1/2 f = µ−1T1(r1/2 f ) exhibits u as in
the image of T1 and shows that u satisfies (SL2). Conversely if L(u) + ∏ru = 0
and u satisfies (SL2), recall that we arranged that 0 is not in E , so that ∏ has a
reciprocal. Define f = r1/2u. Application of T1 to L(u) + ∏ru = 0 gives 0 =
u + ∏T1(ru) = r−1/2 f + ∏T1(r1/2 f ). Then T ( f ) = r1/2T1(r1/2 f ) = −∏−1 f .
We conclude that the correspondence f = r1/2u exactly identifies the vector
subspace of functions u in D[a, b] satisfying L(u) + ∏ru = 0 with the vector
subspace of functions f in C[a, b] satisfying T ( f ) = −∏−1 f .
The statement of Sturm’s Theorem gives us an enumeration ∏1, ∏2, . . . of E .

We know for each ∏ = ∏n that the space of functions u solving (SL) for ∏ = ∏n
in E is 1-dimensional, and the statement of Sturm’s Theorem has selected for
us a function u = ϕn solving (SL) such that kϕnkr = 1. Define vn = r1/2ϕn
and µn = −∏−1

n , so that T (vn) = µnvn and kvnk = kϕnkr = 1. Because of
the correspondence of µ’s and ∏’s, the vn may be taken as the complete list of
vectors specified in the Hilbert–Schmidt Theorem. Since the ϕn’s are orthogonal
for ( · , · )r , the vn’s are orthogonal for ( · , · ).
The operator T1 has 0 kernel on C[a, b], being invertible, and the formula

for T in terms of T1 shows therefore that T has 0 kernel. Thus the sequence
µ1, µ2, . . . is infinite, and the Hilbert–Schmidt Theorem shows that it tends to
0. The corresponding sequence ∏1, ∏2, . . . of negative reciprocals is then infinite
and has no finite limit point. This proves results (i) and (ii) announced above.
Let u have two continuous derivatives on [a, b] and satisfy (SL2). Then u is in

the image of T1. Write u = T1( f )with f continuous, and put g = r−1/2 f . Then
u = T1( f ) = r−1/2T (r−1/2 f ) = r−1/2T (g) and (u, ϕn)r = (T (g), vn). Hence

r(t)1/2u(t) = T (g)(t)

r(t)1/2(u, ϕn)rϕn(t) = (T (g), vn)vn(t).and

The Hilbert–Schmidt Theorem tells us that the series
P∞

n=1(T (g), vn)vn(t)
converges absolutely uniformly to T (g)(t). Because r(t)1/2 is bounded above
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and below by positive constants, it follows that the series
P∞

n=1 (u, ϕn)rϕn(t)
converges absolutely uniformly to u(t). This proves result (iii), i.e., the com-
pleteness assertion (a) in the statement of Sturm’s Theorem, and we are done
for now except for the proof of the existence of the Green’s function G1. §

Lemma1.4. Under the assumption that there is no nonzero solution of (SL) for
∏ = 0, there exists a continuous real-valued function G1(t, s) on [a, b]× [a, b]
such that G1(t, s) = G1(s, t), such that the operator T1 given by

T1 f (t) =
Z b

a
G(t, s) f (s) ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
spaceD[a, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b] → C[a, b] is a two-sided inverse
function to T1.

PROOF. Since L(u) = pu00 + p0u0 − qu, a solution of L(u) = 0 has u00 =
−p−1 p0u0 + p−1qu. Fix a point c in [a, b]. Let ϕ1(t) and ϕ2(t) be the unique
solutions of L(u) = 0 on [a, b] satisfying

ϕ1(c) = 1 and ϕ0
1(c) = 0, ϕ2(c) = 0 and ϕ0

2(c) = 1.

Since the complex conjugate of ϕ1 or ϕ2 satisfies the same conditions, we must
have ϕ̄1 = ϕ1 and ϕ̄2 = ϕ2. Hence ϕ1 and ϕ2 are real-valued. The associated
Wronskian matrix is

W (ϕ1, ϕ2)(t) =

µ
ϕ1(t) ϕ2(t)
ϕ0
1(t) ϕ0

2(t)

∂
,

and its determinant is

detW (ϕ1, ϕ2)(t) = ϕ1(t)ϕ0
2(t) − ϕ0

1(t)ϕ2(t).

Then detW (ϕ1, ϕ2)(c) = 1 and detW (ϕ1, ϕ2)(t) satisfies the first-order linear
homogeneous differential equation

(detW (ϕ1, ϕ2))
0 = ϕ1ϕ

00
2 − ϕ00

1ϕ2

= ϕ1(−p−1 p0ϕ0
2 + p−1qϕ2) − ϕ2(−p−1 p0ϕ0

1 + p−1qϕ1)

= −p−1 p0(ϕ1ϕ
0
2 − ϕ0

1ϕ2)

= −p−1 p0 detW (ϕ1, ϕ2).
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Therefore

detW (ϕ1, ϕ2)(t) = exp
°
−

R t
c p

0(s)/p(s) ds
¢

= exp
°
− log p(t) + log p(c)

¢

= exp(log(p(c)/p(t))) = p(c)/p(t).

For f continuous, consider the solutions of the equation L(u) = f . A specific
solution is given by variation of parameters, as stated in Theorem 4.9 of Basic.
To use the formula in that theorem, we need L to have leading coefficient 1. For
that purpose, we rewrite L(u) = f as u00 + p−1 p0u0 − p−1qu = p−1 f . The
theorem shows that one solution u∗(t) is given by the first entry of

W (ϕ1, ϕ2)(t)
Z t

a
W (ϕ1, ϕ2)(s)−1

µ
0

p−1(s) f (s)

∂
ds.

Since W (ϕ1, ϕ2)(s)−1 = (detW (ϕ1, ϕ2)(s))−1
≥

ϕ0
2(s) −ϕ2(s)

−ϕ0
1(s) ϕ1(s)

¥
, the result is

u∗(t) =
Z t

a

−ϕ1(t)ϕ2(s)p−1(s) f (s) + ϕ2(t)ϕ1(s)p−1(s) f (s)
p(c)/p(s)

ds

= p(c)−1
Z t

a

°
− ϕ1(t)ϕ2(s) + ϕ2(t)ϕ1(s)

¢
f (s) ds.

Define

G0(t, s) =

Ω p(c)−1
°
− ϕ1(t)ϕ2(s) + ϕ2(t)ϕ1(s)

¢
if s ≤ t,

0 if s > t.

This function is continuous everywhere on [a, b]× [a, b], including where s = t ,
and it has been constructed so that

u∗(t) =
Z t

a
G0(t, s) f (s) ds =

Z b

a
G0(t, s) f (s) ds

is a solution of u00 + p−1 p0u0 − p−1qu = p−1 f , i.e., of L(u) = f . In particular,
the form of the equation shows that u∗ has two continuous derivatives on [a, b].
Therefore the operator

T0( f )(t) =
Z b

a
G0(t, s) f (s) ds

carries C[a, b] into the space of twice continuously differentiable functions on
[a, b].
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The final step is to adjust G0 and T0 so that the operator produces twice
continuously differentiable functions satisfying (SL2). Fix f continuous, and
let u∗(t) =

R b
a G0(t, s) f (s) ds. By assumption the equation L(u) = 0 has no

nonzero solution that satisfies (SL2). Thus the function ϕ(t) = x1ϕ1(t)+ x2ϕ2(t)
does not have both

c1ϕ(a) + c2ϕ0(a) = 0 and d1ϕ(b) + d2ϕ0(b) = 0

unless x1 and x2 are both 0. In other words the homogeneous system of equations
µ
c1ϕ1(a) + c2ϕ0

1(a) c1ϕ2(a) + c2ϕ0
2(a)

d1ϕ1(b) + d2ϕ0
1(b) d1ϕ2(b) + d2ϕ0

2(b)

∂µ
x1
x2

∂
=

µ
0
0

∂

has only the trivial solution. Consequently the system given by
µ
c1ϕ1(a) + c2ϕ0

1(a) c1ϕ2(a) + c2ϕ0
2(a)

d1ϕ1(b) + d2ϕ0
1(b) d1ϕ2(b) + d2ϕ0

2(b)

∂µ
k1
k2

∂

= −

µ
c1u∗(a) + c2u∗0(a)
d1u∗(b) + d2u∗0(b)

∂ (∗)

has a unique solution
≥
k1
k2

¥
for fixed f . We need to know how k1 and k2 depend

on f . From the form of G0, we have

u∗(t) = p(c)−1
≥

− ϕ1(t)
Z t

a
ϕ2(s) f (s) ds + ϕ2(t)

Z t

a
ϕ1(s) f (s) ds

¥
.

By inspection, two terms in the differentiation drop out and the derivative is

u∗0(t) = p(c)−1
≥

− ϕ0
1(t)

Z t

a
ϕ2(s) f (s) ds + ϕ0

2(t)
Z t

a
ϕ1(s) f (s) ds

¥
.

Evaluation of these formulas at a and b gives

u∗(a) = u∗0(a) = 0,

u∗(b) = p(c)−1
°
− ϕ1(b)

Z b

a
ϕ2(s) f (s) ds + ϕ2(b)

Z b

a
ϕ1(s) f (s) ds

¢
,

u∗0(b) = p(c)−1
°
− ϕ0

1(b)
Z b

a
ϕ2(s) f (s) ds + ϕ0

2(b)
Z b

a
ϕ1(s) f (s) ds

¢
.

Thus the right side of the equation (∗) that defines k1 and k2 is of the form

−

µ
c1u∗(a) + c2u∗0(a)
d1u∗(b) + d2u∗0(b)

∂
=

µ
0R b

a (e1ϕ1(s) + e2ϕ2(s)) f (s) ds

∂
,
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where e1 and e2 are real constants independent of f . Hence k1 and k2 are of the
form µ

k1
k2

∂
=

µR b
a (αϕ1(s) + βϕ2(s)) f (s) dsR b
a (∞ ϕ1(s) + δϕ2(s)) f (s) ds

∂
,

where α, β, ∞, δ are real constants independent of f . The fact that
≥
k1
k2

¥
solves

the system (∗) means that the function v(t) given by

u∗(t)+ϕ1(t)
Z b

a
(αϕ1(s)+βϕ2(s)) f (s) ds+ϕ2(t)

Z b

a
(∞ ϕ1(s)+δϕ2(s)) f (s) ds

satisfies c1v(a) + c2v0(a) = 0 and d1v(b) + d2v0(b) = 0. Put
µ
K1(s)
K2(s)

∂
=

µ
αϕ1(s) + βϕ2(s)
∞ ϕ1(s) + δϕ2(s)

∂
.

We can summarize the above computation by saying that the real-valued contin-
uous function

G1(t, s) = G0(t, s) + K1(s)ϕ1(t) + K2(s)ϕ2(t)

has, for every continuous f , the property that v(t) =
R b
a G1(t, s) f (s) ds satisfies

L(v) = f and the condition (SL2).
Define T1( f )(t) =

R b
a G1(t, s) f (s) ds. We have seen that T1 carries C[a, b]

intoD[a, b] and that L(T1( f )) = f . Nowsuppose thatu is inD[a, b]. Since L(u)
is continuous, T1(L(u)) is in D[a, b] and has L(T1(L(u))) = L(u). Therefore
T1(L(u)) − u is inD[a, b] and has L

°
T1(L(u)) − u

¢
= 0. We have assumed that

there is no nonzero solution of (SL) for ∏ = 0, and therefore T1(L(u)) = u. Thus
T1 and L are two-sided inverses of one another.
Finally we are to prove thatG1(t, s) = G1(s, t). Let f and g be arbitrary real-

valued continuous functions on [a, b], and put u = T1( f ) and v = T1(g). We
know from Green’s formula and (SL2) that (L(u), v) = (u, L(v)). Substituting
the formulas f = L(u) and g = L(v) into this equality gives

Z b

a

Z b

a
G1(t, s) f (t)g(s) ds dt =

Z b

a
f (t)v(t) dt = (L(u), v)

= (u, L(v)) =
Z b

a
u(s)g(s) ds =

Z b

a

Z b

a
G1(s, t) f (t)g(s) dt ds.

By Fubini’s Theorem the identity
Z b

a

Z b

a
(G1(t, s) − G1(s, t))F(s, t) dt ds = 0
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holds when F is one of the linear combinations of continuous functions f (s)g(t).
We can extend this conclusion to general continuous F by passing to the limit
and using uniform convergence because the Stone–Weierstrass Theorem shows
that real linear combinations of products f (t)g(s) are uniformly dense in the
space of continuous real-valued functions on [a, b] × [a, b]. Taking F(s, t) =
G1(t, s)−G1(s, t), we see that

R b
a

R b
a (G1(t, s)−G1(s, t))2 dt ds = 0. Therefore

G1(t, s) − G1(s, t) = 0 and G1(t, s) = G1(s, t). This completes the proof of
the lemma. §

HISTORICAL REMARKS. Sturm’s groundbreaking paper appeared in 1836. In
that paper he proved that the set E in Theorem 1.30 is infinite by comparing the
zeros of solutions of various equations, but he did not address the question of
completeness. Liouville introduced integral equations in 1837.

4. Problems

1. Let pn be thenth-smallest positive real number p such thath sin pl+p cos pl = 0,
as in Example 3 for the heat equation in Section 2. Here h and l are positive con-
stants. Prove directly that

R l
0 sin pnx sin pmx dx = 0 for n 6= m by substituting

from the trigonometric identity sin a sin b = − 1
2
°
cos(a + b) − cos(a − b)

¢
.

2. Multiplying the relevant differential operators by functions to make them for-
mally self adjoint, and applying Green’s formula from Section 3, prove the
following orthogonality relations:
(a)

R 1
−1 Pn(t)Pm(t) dt = 0 if Pn and Pm are Legendre polynomials and n 6= m.
The mth Legendre polynomial Pm is a certain nonzero polynomial solution
of the Legendre equation (1− t2)P 00 −2t P 0 +m(m+1)P = 0. It is unique
up to a scalar factor. These polynomials are applied in the second example
with the Laplace equation in Section 2.

(b)
R 1
0 J0(knr)J0(kmr)r dr = 0 if kn and km are distinct zeros of theBessel func-
tion J0. The function J0 is the power series solution J0(t) =

P∞
n=0

(−1)n t2n
(n!)2

of the Bessel equation of order 0, namely t2y00 + t y0 + t2y = 0. It is applied
in the last example of Section 2.

3. In the proof of Lemma 1.4:
(a) Showdirectly by expanding out u∗(t) =

R t
a G0(t, s) f (s) ds that u

∗ satisfies
L(u∗) = f .

(b) Calculate G0(t, s) and G1(t, s) explicitly for the case that L(u) = u00 + u
when the conditions (SL2) are that u(0) = 0 and u(π/2) = 0.
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4. This problem discusses the starting point for Sturm’s original theory. Suppose
that p(t), p0(t), g1(t), and g2(t) are real-valued and continuous on [a, b] and
that p(t) > 0 and g2(t) > g1(t) everywhere on [a, b]. Let y1(t) and y2(t) be
real-valued solutions of the respective equations

(p(t)y0)0 + g1(t)y = 0 and (p(t)y0)0 + g2(t)y = 0.
Follow the steps below to show that if t1 and t2 are consecutive zeros of y1(t),
then y2(t) vanishes somewhere on (t1, t2).
(a) Arguing by contradiction and assuming that y2(t) is nonvanishing on (t1, t2),

normalize matters so that y1(t) > 0 and y2(t) > 0 on (t1, t2). Multiply the
first equation by y2, the second equation by y1, subtract, and integrate over
[t1, t2]. Conclude from this computation that

£
py0
1y2 − py1y0

2
§t2
t1

> 0.
(b) Taking the signs of p, y1, y2 and the behavior of the derivatives into account,

prove that p(t)y0
1(t)y2(t) − p(t)y1(t)y0

2(t) is ≤ 0 at t = t2 and is ∏ 0 at
t1, in contradiction to the conclusion of (a). Conclude that y2(t) must have
equaled 0 somewhere on (t1, t2).

(c) Suppose in addition that q(t) and r(t) are continuous on [a, b] and that
r(t) > 0 everywhere. Let y1(t) and y2(t) be real-valued solutions of the
respective equations

(p(t)y0)0 − q(t)y + ∏1r(t)y = 0 and (p(t)y0)0 − q(t)y + ∏2r(t)y = 0,

where ∏1 and ∏2 are real with ∏1 < ∏2. Obtain as a corollary of (b) that
y2(t) vanishes somewhere on the interval between two consecutive zeros of
y1(t).

Problems 5–8 concern Schrödinger’s equation in one space dimension with a time-
independent potential V (x). In suitable units the equation is

−
@29(x, t)

@x2
+ V (x)9(x, t) = i

@9(x, t)
@t

.

5. (a) Show that any solution of the form 9(x, t) = √(x)ϕ(t) is such that
√ 00 + (E − V (x))√ = 0 for some constant E .

(b) Compute what the function ϕ(t) must be in (a).

6. Suppose that V (x) = x2, so that√ 00+(E−x2)√ = 0. Put√(x) = e−x2/2H(x),
and show that

H 00 − 2xH 0 + (E − 1)H = 0.

This ordinary differential equation is called Hermite’s equation.
7. Solve the equation H 00 − 2xH 0 + 2nH = 0 by power series. Show that there

is a nonzero polynomial solution if and only if n is an integer ∏ 0, and in this
case the polynomial is unique up to scalar multiplication and has degree n. For
a suitable normalization the polynomial is denoted by Hn(x) and is called a
Hermite polynomial.
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8. Guided by Problem 6, let L be the formally self-adjoint operator

L(√) = √ 00 − x2√.

Using Green’s formula from Section 3 for this L on the interval [−N , N ] and
letting N tend to infinity, prove that

lim
N→∞

Z N

−N
Hn(x)Hm(x)e−x

2
dx = 0 if n 6= m.



CHAPTER II

Compact Self-Adjoint Operators

Abstract. This chapter proves a first version of the Spectral Theorem and shows how it applies to
complete the analysis in Sturm’s Theorem of Section I.3.
Section 1 introduces compact linear operators from a Hilbert space into itself and characterizes

them as the limits in the operator norm topology of the linear operators of finite rank. The adjoint
of a compact operator is compact.
Section 2 proves the Spectral Theorem for compact self-adjoint operators on a Hilbert space,

showing that such operators have orthonormal bases of eigenvectors with eigenvalues tending to 0.
Section 3 establishes two versions of the Hilbert–Schmidt Theorem concerning self-adjoint

integral operators with a square-integrable kernel. The abstract version gives an L2 expansion of
the members of the image of the operator in terms of eigenfunctions, and the concrete version, valid
when the kernel is continuous and the space is compact metric, proves that the eigenfunctions are
continuous and the expansion in terms of eigenfunctions is uniformly convergent.
Section 4 introduces unitary operators on a Hilbert space, establishing the equivalence of three

conditions that may be used to define them.
Section 5 studies compact linear operators on an abstract Hilbert space, with special attention

to two kinds—the Hilbert–Schmidt operators and the operators of trace class. All three sets of
operators—compact, Hilbert–Schmidt, and trace-class—are ideals in the algebra of all bounded
linear operators and are closed under the operation of adjoint. Trace-class implies Hilbert–Schmidt,
which implies compact. The product of two Hilbert–Schmidt operators is of trace class.

1. Compact Operators

Let H be a real or complex Hilbert space with inner product1 ( · , · ) and norm
k · k. A bounded linear operator L : H → H is said to be compact if L
carries the closed unit ball of H to a subset of H that has compact closure, i.e., if
each bounded sequence {un} in H has the property that {L(un)} has a convergent
subsequence.2 The first three conclusions of the next proposition together give a
characterization of the compact operators on H .

1This book follows the convention that inner products are linear in the first variable and conjugate
linear in the second variable.

2Some books use the words “completely continuous” in place of “compact” for this kind of
operator.

34
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Proposition 2.1. Let L : H → H be a bounded linear operator on a Hilbert
space H . Then

(a) L is compact if the image of L is finite dimensional,
(b) L is compact if L is the limit, in the operator norm, of a sequence of

compact operators,
(c) L compact implies that there exist bounded linear operators Ln : H → H

such that L = lim Ln in the operator norm and the image of each Ln is
finite dimensional,

(d) L compact implies L∗ compact.

PROOF. For (a), let M be the image of L . Being finite dimensional, M is
closed and is hence a Hilbert space. Let {v1, . . . , vk} be an orthonormal basis.
The linear mapping that carries each vj to the j th standard basis vector ej in the
space of column vectors is then a linear isometry of M onto Rk or Ck . In Rk and
Ck , the closed ball about 0 of radius kLk is compact, and hence the closed ball
about 0 of radius kLk in M is compact. The latter closed ball contains the image
of the closed unit ball of H under L , and hence L is compact.
For (b), let B be the closed unit ball of H . Write L = lim Ln in the operator

norm, each Ln beingcompact. Since the subsets of a completemetric spacehaving
compact closure are exactly the totally bounded subsets, it is enough to prove that
L(B) is totally bounded. Let ≤ > 0 be given, and choose n large enough so that
kLn − Lk < ≤/2. With n fixed, Ln(B) is totally bounded since Ln(B) is assumed
to have compact closure. Thus we can find finitely many points v1, . . . , vk such
that the open balls of radius ≤/2 about the vj ’s together cover Ln(B). We shall
prove that the open balls of radius ≤ about the vj ’s together cover L(B). In
fact, if u is given with kuk ≤ 1, choose j with kLn(u) − vjk < ≤/2. Then
kL(u)−vjk ≤ kL(u)−Ln(u)k+kLn(u)−vjk < kLn−Lkkuk+ ≤

2 ≤ ≤
2+

≤
2 = ≤,

as required.
For (c), we may assume that H is infinite dimensional. Since L is compact,

there exists a compact subset K of H containing the image of the closed unit ball.
As a compact metric space, K is separable. Let {wn} be a countable dense set,
and let M be the smallest closed vector subspace of H containing all wn . Since
the closure of {wn} contains K , M contains K . The subspace M is separable:
in fact, if the scalars are real, then the set of all rational linear combinations of
the wn’s is a countable dense set; if the scalars are complex, then we obtain a
countable dense set by allowing the scalars to be of the form a+ bi with a and b
rational.
SinceM is a closedvector subspace, it is aHilbert space andhas anorthonormal

basis S. The set Smust be countable since the open balls of radius 1/2 centered at
the members of S are disjoint and would otherwise contradict the fact that every
topological subspace of a separable topological space is Lindelöf. Thus let us
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list the members of S as v1, v2, . . . . For each n, let Mn be the (closed) linear
span of {v1, . . . , vn}, and let En be the orthogonal projection on Mn . The linear
operator EnL is bounded, being a composition of bounded linear operators, and
its image is contained in the finite-dimensional space Mn . Hence it is enough
to show for each ≤ > 0 that there is some n with k(1 − En)Lk < ≤. If this
condition were to fail, we could find some ≤ > 0 such that k(1− En)Lk ∏ ≤ for
every n. With ≤ fixed in this way, choose for each n some vector un of norm 1
such that k(1− En)L(un)k ∏ ≤/2. The sequence {L(un)} lies in the compact set
K . Choose a convergent subsequence {L(unk )}, and let v = lim L(unk ). For nk
sufficiently large, we have kv − L(unk )k ≤ ≤/4. In this case,

k(1− Enk )vk ∏ k(1− Enk )L(unk )k − k(1− Enk )(v − L(unk ))k ∏ ≤
2 − ≤

4 = ≤
4 .

On the other hand, v is in M , and v is of the form v =
P∞

j=1(v, vj )vj . In this
expression we have En(v) =

Pn
j=1(v, vj )vj , and these partial sums converge to

v in H . In short, limn Env = v. Then k(1−En)vk tends to 0, and this contradicts
our estimate k(1− Enk )vk ∏ ≤

4 .
For (d), first suppose that the image of L is finite dimensional, and choose an

orthonormal basis {u1, . . . , un} of the image. Then L(u) =
Pn

j=1 (L(u), uj )uj =Pn
j=1 (u, L∗(uj ))uj . Taking the inner product with v gives (u, L∗(v)) =

(L(u), v) =
Pn

j=1 (u, L∗(uj ))(uj , v). This equality shows that L∗(v) andPn
j=1 (v, uj )L∗(uj ) have the same inner product with every u. Thus they must

be equal, and we conclude that the image of L∗ is finite dimensional.
Now suppose that L is any compact operator on H . Given ≤ > 0, use (c)

to choose a bounded linear operator Ln with finite-dimensional image such that
kL − Lnk < ≤. Since a bounded linear operator and its adjoint have the same
norm, kL∗ − L∗

nk < ≤. Since L∗
n has finite-dimensional image, according to what

we have just seen, and since we can obtain such an approximation for any ≤ > 0,
(b) shows that L∗ is compact. §

2. Spectral Theorem for Compact Self-Adjoint Operators

Let L : H → H be a bounded linear operator on the real or complex Hilbert
space H . One says that a nonzero vector v is an eigenvector of L if L(v) = cv for
some constant c; the constant c is called the corresponding eigenvalue. The set
of all u for which L(u) = cu is a closed vector subspace; under the assumption
that this subspace is not 0, it is called the eigenspace for the eigenvalue c.
In the finite-dimensional case, the self-adjointness condition L∗ = L means

that L corresponds to aHermitian matrix A, i.e., a matrix equal to its conjugate
transpose, once one fixes an ordered orthonormal basis. In this case it is shown
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in linear algebra that the members of an orthonormal basis can be chosen to
be eigenvectors of L , the eigenvalues all being real. In terms of matrices, the
corresponding matrix A is conjugate via a unitary matrix, i.e., a matrix whose
conjugate transpose is its inverse, to a diagonalmatrixwith real entries. This result
is called the Spectral Theorem for such linear operators ormatrices. A quick proof
goes as follows: An eigenvector v of L with eigenvalue c has (L−cI )(v) = 0, and
this implies that the matrix A of L has the property that A−cI has a nonzero null
space. Hence det(A− cI ) = 0 if and only if c is an eigenvalue of L . One readily
sees from the self-adjointness of L that all complex roots of det(A− cI ) have to
be real. Moreover, if L carries a vector subspace M into itself, then L carries M⊥

into itself as well. Finite-dimensionality forces A to have a complex eigenvalue,
and this must be real. Hence there is a nonzero vector u with L(u) = cu for
some real c. Normalizing, we may assume that u has norm 1. If M consists of
the scalar multiples of u, then L carries M⊥ to itself, and the restriction of L
to M⊥ is self adjoint. Proceeding inductively, we obtain a system of orthogonal
eigenvectors for L , each of norm 1.
A certain amount of this argument works in the infinite-dimensional case. In

fact, suppose that L is self adjoint. Then any u in H has

(L(u), u) = (u, L∗(u)) = (u, L(u)) = (L(u), u),

and hence the function u 7→ (L(u), u) is real-valued. If u is an eigenvector in
H with eigenvalue c, i.e., if L(u) = cu, then c(u, u) = (L(u), u) is real; since
(u, u) is real and nonzero, c is real. If u1 and u2 are eigenvectors for distinct
eigenvalues c1 and c2, then u1 and u2 are orthogonal because

(c1 − c2)(u1, u2) = (c1u1, u2) − (u1, c2u2) = (L(u1), u2) − (u1, L(u2)) = 0.

If M is a vector subspace of H with L(M) ⊆ M , then also L(M⊥) ⊆ M⊥

because m ∈ M and m⊥ ∈ M⊥ together imply

0 = (L(m),m⊥) = (m, L(m⊥)).

These observations prove everything in the following proposition except the last
statement.

Proposition 2.2. If L : H → H is a bounded self-adjoint linear operator
on a Hilbert space H , then u 7→ (L(u), u) is real-valued, every eigenvalue of L
is real, eigenvectors under L for distinct eigenvalues are orthogonal, and every
vector subspace M with L(M) ⊆ M has L(M⊥) ⊆ M⊥. In addition,

kLk = sup
kuk≤1

|(L(u), u))|.
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PROOF. We are left with proving the displayed formula. Inequality in one
direction is easy: we have

sup
kuk≤1

|(L(u), u))| ≤ sup
kuk≤1,
kvk≤1

|(L(u), v)| = kLk.

With C = supkuk≤1(L(u), u)), we are therefore to prove that kLk ≤ C , hence
that kL(u)k ≤ Ckuk for all u. In doing so, we may assume that u 6= 0 and
L(u) 6= 0. Let t be a positive real number. Since (L2(u), u) = (L(u), L(u)), we
have

kL(u)k2

= 1
4

h°
L(tu+t−1L(u)), tu+t−1L(u)

¢
−

°
L(tu−t−1L(u)), tu−t−1L(u)

¢i

≤ 1
4

h
Cktu + t−1L(u)k2 + Cktu − t−1L(u)k2

i

= 1
2 C

h
ktuk2 + kt−1L(u)k2

i
,

the last step following from the parallelogram law. By differential calculus
the minimum of an expression a2t2 + b2t−2, in which a and b are positive
constants, is attained when t2 = b/a. Here a = kuk and b = kL(u)k, and
thus kL(u)k2 ≤ C

2
£
kL(u)kkuk + kL(u)kkuk

§
= CkL(u)kkuk. Dividing by

kL(u)k gives kL(u)k ≤ Ckuk and completes the proof. §

In the infinite-dimensional case, in which we work with the operator L but
no matrix, consider what is needed to imitate the proof of the finite-dimensional
Spectral Theorem and thereby find an orthonormal basis of vectors carried by L
to multiples of themselves. In the formula of Proposition 2.2, if we can find some
u with kuk = 1 such that kLk = |(L(u), u)|, then this u satisfies kLkkuk2 =
|(L(u), u)| ≤ kL(u)kkuk ≤ kLkkuk2, and we conclude that |(L(u), u)| =
kL(u)kkuk, i.e., that equality holds in the Schwarz inequality. Reviewing the
proof of the Schwarz inequality, we see that L(u) and u are proportional. Thus u
is an eigenvector of L , and we can at least get started with the proof.
Unfortunately an orthonormal basis of eigenvectors need not exist for a self-

adjoint L without an extra hypothesis. In fact, take H = L2([0, 1])with ( f, g) =R 1
0 f ḡ dx , and define L( f )(x) = x f (x). This linear operator L has norm 1,
and the equality ( f, L(g)) =

R 1
0 x f (x)g(x) dx = (L( f ), g) shows that L is

self adjoint. On the other hand, the only function f with x f = c f a.e. for some
constant c is the 0 function. Thus we get no eigenvectors at all, and the supremum
in the formula of Proposition 2.2 need not be attained.
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The hypothesis that we shall add to obtain an orthonormal basis of eigenvectors
is that L is compact in the sense of the previous section. Each compact self-adjoint
operator has an orthonormal basis of eigenvectors, according to the following
theorem.

Theorem 2.3 (Spectral Theorem for compact self-adjoint operators). Let
L : H → H be a compact self-adjoint linear operator on a real or complex
Hilbert space H . Then H has an orthonormal basis of eigenvectors of L . In
addition, for each scalar ∏, let

H∏ = {u ∈ H | L(u) = ∏u},

so that H∏ − {0} consists exactly of the eigenvectors of L with eigenvalue ∏.
Then the number of eigenvalues of L is countable, the eigenvalues are all real,
the spaces H∏ are mutually orthogonal, each H∏ for ∏ 6= 0 is finite dimensional,
any orthonormal basis of H of eigenvectors under L is the union of orthonormal
bases of the H∏’s, and for any ≤ > 0, there are only finitely many ∏ with H∏ 6= 0
and |∏| ∏ ≤. Moreover, either or both of kLk and −kLk are eigenvalues, and
these are the eigenvalues with the largest absolute value.
PROOF. We know from Proposition 2.2 that the eigenvalues of L are all real

and that the spaces H∏ are mutually orthogonal. In addition, the formula kLk =
supkuk≤1 kL(u)k shows that no eigenvalue can be greater than kLk in absolute
value.
The theorem certainly holds if L = 0 since every nonzero vector is an eigen-

vector. Thus we may assume that kLk > 0.
Themain step is to produce an eigenvectorwith one of kLk and−kLk as eigen-

value. Taking the equalitykLk = supkuk≤1 |(L(u), u))| of Proposition2.2 into ac-
count, choose a sequence {un}with kunk = 1 such that limn |(L(un), un)| = kLk.
Since the proposition shows that (L(un), un) has to be real, we may assume that
this sequence is chosen so that ∏ = limn(L(un), un) exists. Then ∏ = ±kLk.
Using the compactness of L and passing to a subsequence if necessary, we may
assume that L(un) converges to some limit v0. Meanwhile,

0 ≤ kL(un) − ∏unk2 = kL(un)k2 − 2∏Re(L(un), un) + ∏2kunk2

≤ kLk2 − 2∏Re(L(un), un) + ∏2.

The equalities ∏2 = kLk2 and limn(L(un), un) = ∏ show that the right side tends
to 0, and thus limn kL(un) − ∏unk = 0. Since limn kL(un) − v0k = 0 also, the
triangle inequality shows that lim∏un exists and equals v0. Since ∏ 6= 0, lim un
exists and v0 = ∏ lim un . Consequently kv0k = |∏| lim kunk = |∏| = kLk 6= 0.
Applying L to the equation v0 = ∏ lim un and taking into account that L is
continuous and that lim L(un) = v0, we see that L(v0) = ∏v0. Thus v0 is an
eigenvector with eigenvalue ∏, and the main step is complete.
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Now consider the collection of all orthonormal systems of eigenvectors for
L , and order it by inclusion upward. A chain consists of nested such systems,
and the union of the members of a chain is again such an orthonormal system.
By Zorn’s Lemma the collection contains a maximal element S. Let M be the
smallest closed vector subspace containing thismaximal orthonormal system S of
eigenvectors. Since the collection of all finite linear combinations of members of
S is dense in M , the continuity of L shows that L(M) ⊆ M . By Proposition 2.2,
L(M⊥) ⊆ M⊥. The equality (L(u), v) = (u, L(v)) for any two members u and
v of M⊥ shows that the restriction of L to M⊥ is self adjoint, and this restriction
is certainly bounded and compact. Arguing by contradiction, suppose M⊥ 6= 0.
Then either L = 0 or else L 6= 0 and the main step above shows that L has an
eigenvector in M⊥. Thus L has an eigenvector v0 of norm 1 in M⊥ in either
case. But then S∪{v0}would be an orthonormal system of eigenvectors properly
containing S, in contradiction to the maximality. We conclude that M⊥ = 0.
Since M is a closed vector subspace of H , it satisfies M⊥⊥ = M . Therefore
M = (M⊥)⊥ = 0⊥ = H , and H has an orthonormal basis of eigenvectors.
With the orthonormal basis S = {vα} of eigenvectors fixed, consider all vα’s

for which the corresponding eigenvalue ∏α has |∏α| ∏ ≤. If α1 and α2 are two
distinct such indices, we have

kL(vα1) − L(vα2)k
2 = k∏α1vα1 − ∏α2vα2k

2

= k∏α1vα1k
2 + k∏α2vα2k

2 by the Pythagorean theorem

= |∏α1 |
2 + |∏α2 |

2

∏ 2≤2.

If there were infinitely many such eigenvectors vαn , the bounded sequence
{L(vαn )} could not have a convergent subsequence, in contradiction to compact-
ness. Thus only finitely many members of S have eigenvalue with absolute value
∏ ≤.
Fix ∏ 6= 0, let S∏ be the finite set of members of S with eigenvalue ∏, and

let H∏ be the linear span of S∏. If v is an eigenvector of L for the eigenvalue ∏
beyond the vectors in H∏, then the expansion

v =
X

vα∈S∏

(v, vα)vα +
X

vα∈S−S∏

(v, vα)vα

shows that (v, vα) 6= 0 for some vα in S − S∏. This vα must have eigenvalue ∏0

different from ∏, and then Proposition 2.2 gives the contradiction (v, vα) = 0. We
conclude that H∏ is the entire eigenspace for eigenvalue ∏ and that the eigenvalues
of the members of S are the only eigenvalues of L .
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For each positive integer n, we know that only finitely many eigenvalues ∏
corresponding to members of S have |∏| ∏ 1/n. Since every eigenvalue of L
is the eigenvalue for some member of S, the number of eigenvalues ∏ of L with
|∏| ∏ 1/n is finite. Taking the union of these sets as n varies, we see that the
number of eigenvalues of L is countable. This completes the proof. §

3. Hilbert–Schmidt Theorem

TheHilbert–SchmidtTheoremwas postponed fromSection I.3, where it was used
in connection with Sturm–Liouville theory. The nub of the matter is the Spectral
Theorem for compact self-adjoint operators on a Hilbert space, Theorem 2.3.
But the actual result quoted in Section I.3 contains an overlay of measure theory
and continuity. Correspondingly there is an abstract Hilbert–Schmidt Theorem,
which combines the Spectral Theorem with the measure theory, and then there
is a concrete form, which adds the hypothesis of continuity and obtains extra
conclusions from it.
The abstract theorem works with an integral operator on L2 of a σ -finite

measure space (X, µ), the operator being of the form

T f (x) =
Z

X
K (x, y) f (y) dµ(y),

where K (x, y) is measurable on X × X . The function K is called the kernel of
the operator.3 If f is in L2(X, µ), then the Schwarz inequality gives |T f (x)| ≤
kK (x, · )k2k f k2 for each x in X . Squaring both sides, integrating, and taking the
square root yields kT f k2 ≤

° R
X×X |K |2 d(µ×µ)

¢1/2
k f k2. As a linear operator

on L2(X, µ), T therefore has operator norm satisfying

kTk ≤
≥ Z

X

Z

X
|K (x, y)|2 dµ(x) dµ(y)

¥1/2
= kKk2.

In particular, T is bounded if K is square-integrable on X × X . In this case the
adjoint of T is given by

T ∗g(x) =
Z

X
K (y, x)g(y) dµ(y)

because (T f, g) =
R
X

R
X K (x, y) f (y)g(x) dµ(y) dµ(x) and because the as-

serted form of T ∗ has

( f, T ∗g) =
R
X f (x)

°R
X K (y, x)g(y) dµ(y)

¢
dµ(x)

=
R
X

R
X f (x)K (y, x)g(y) dµ(y) dµ(x).

3Not to be confused with the abstract-algebra notion of “kernel” as the set mapped to 0.
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Theorem 2.4 (Hilbert–Schmidt Theorem, abstract form). Let (X, µ) be a
σ -finite measure space, and let K ( · , · ) be a complex-valued L2 function on
X × X such that K (x, y) = K (y, x) for all x and y in X . Then the linear
operator T defined by

(T f )(x) =
Z

X
K (x, y) f (y) dµ(y)

is a self-adjoint compact operator on the Hilbert space L2(X, µ) with kTk ≤
kKk2. Consequently if for each complex∏ 6= 0, a vector subspaceV∏ of L2(X, µ)
is defined by

V∏ =
©
f ∈ L2(X, µ)

Ø
Ø T f = ∏ f

™
,

then each V∏ is finite dimensional, the space V∏ is nonzero for only countably
many ∏, the spaces V∏ are mutually orthogonal with respect to the inner product
on L2(X, µ), the ∏’s with V∏ 6= 0 are all real, and for any ≤ > 0, there are only
finitely many ∏ with V∏ 6= 0 and |∏| ∏ ≤. The largest value of |∏| for which
V∏ 6= 0 is kTk. Moreover, the vector subspace of L2 orthogonal to all V∏ is the
kernel of T , so that if v1, v2, . . . is an enumeration of the union of orthonormal
bases of the spaces V∏ with ∏ 6= 0, then for any f in L2(X, µ),

T f =
∞X

n=1
(T f, vn)vn,

the series on the right side being convergent in L2(X, µ).

PROOF. Theorem 2.3 shows that it is enough to prove that the self-adjoint
bounded linear operator T is compact. Choose a sequence of simple functions
Kn square integrable on X × X such that limn kK − Knk2 = 0, and define
Tn f (x) =

R
X Kn(x, y) f (y) dµ(y). The linear operator Tn is bounded with

kTnk ≤ kKnk2, and it has finite-dimensional image since Kn is simple. By
Proposition 2.1a, Tn is compact. Since kT − Tnk ≤ kK − Knk2 and since the
right side tends to 0, T is exhibited as the limit of Tn in the operator norm and is
compact by Proposition 2.1b. §

Nowwe include the overlay of continuity. The additional assumptions are that
X is a compact metric space, µ is a Borel measure on X that assigns positive
measure to every nonempty open set, and K is continuous on X × X . The
additional conclusions are that the eigenfunctions for the nonzero eigenvalues are
continuous and that the series expansion actually converges absolutely uniformly
as well as in L2. The result used in Section I.3 was the special case of this result
with X = [a, b] and µ equal to Lebesgue measure.
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Theorem 2.5 (Hilbert–Schmidt Theorem, concrete form). Let X be a compact
metric space, letµ be a Borel measure on X that assigns positive measure to every
nonempty open set, and let K ( · , · ) be a complex-valued continuous function on
X×X such that K (x, y) = K (y, x) for all x and y in X . Then the linear operator
T defined by

T f (x) =
Z

X
K (x, y) f (y) dµ(y),

is a self-adjoint compact operator on the Hilbert space L2(X, µ) with kTk ≤
kKk2, and its image lies in C(X). Consequently the vector subspace V∏ of
L2(X, µ) defined for any complex ∏ 6= 0 by

V∏ =
©
f ∈ L2(X, µ)

Ø
Ø T f = ∏ f

™

consists of continuous functions, each V∏ is finite dimensional, the space V∏ is
nonzero for only countably many ∏, the spaces V∏ are mutually orthogonal with
respect to the inner product on L2(X, µ), the ∏’s with V∏ 6= 0 are all real, and for
any ≤ > 0, there are only finitely many ∏ with V∏ 6= 0 and |∏| ∏ ≤. The largest
value of |∏| for which V∏ 6= 0 is kTk. If v1, v2, . . . is an enumeration of the union
of orthonormal bases of the spaces V∏ with ∏ 6= 0, then for any f in L2(X, µ),

T f (x) =
∞X

n=1
(T f, vn)vn(x),

the series on the right side being absolutely uniformly convergent for x in X .

REMARK. The hypothesis that µ assigns positive measure to every nonempty
open set is used only to identify

P∞
n=1 (T f, vn)vn(x) with T f (x) at every point.

Without this particular hypothesis on µ, the series is still absolutely uniformly
convergent, but its sum is shown to equal T f (x) only almost everywhere with
respect to µ.

PROOF. Given ≤ > 0, choose δ > 0 by uniform continuity of K such that
|K (x, y)− K (x0, y0)| ≤ ≤ whenever (x, y) and (x0, y0) are at distance≤ δ. If f
is in L2(X, µ) and the points x and x0 are at distance≤ δ, then (x, y) and (x0, y)
are at distance ≤ δ and hence

|T f (x) − T f (x0)| ≤
R
X |K (x, y) − K (x0, y)|| f (y)| dµ(y)

≤ ≤
R
X | f (y)| dµ(y) ≤ ≤k f k2(µ(X))1/2,

the last step following from the Schwarz inequality. This proves that T f is
continuous for each f in L2(X, µ). In particular, if T f = ∏ f with ∏ 6= 0,
then f = T (∏−1 f ) exhibits f as in the image of T and therefore as continuous.
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Everything in the theorem now follows from Theorem 2.4 except for the absolute
uniform convergence to T f (x) in the last sentence of the theorem.
For the absolute uniform convergence, let ( · , · ) denote the inner product in

L2(X, µ). We begin by considering the function K (x, · ) for fixed x . It satisfies

(K (x, · ), vn) =
R
X K (x, y) vn(y) dµ(y) = (T vn)(x) = ∏n vn(x)

if vn is in V∏n , and Bessel’s inequality gives

NX

n=1
|∏n|

2|vn(x)|2 ≤
Z

X
|K (x, y)|2 dµ(y) ≤ kKk2supµ(X) (∗)

for all N and x . Since the vn form an orthonormal basis of V⊥
0 ,

limN→∞

∞
∞Tg −

PN
n=1 (Tg, vn)vn

∞
∞
2 = 0 (∗∗)

for all g in L2(X, µ). Meanwhile, we have

(Tg, vn)vn(x) = (g, T vn)vn(x) = ∏n(g, vn)vn(x).

Application of the Schwarz inequality and (∗) gives

NP

n=M
|(Tg, vn)vn(x)| =

NP

n=M
|∏n(g, vn)vn(x)|

≤
≥ NP

n=M
|∏n|2|vn(x)|2

¥1/2≥ NP

n=M
|(g, vn)|2

¥1/2

≤ kKksupµ(X)1/2
≥ NP

n=M
|(g, vn)|2

¥1/2
.

Bessel’s inequality shows that the series
P∞

n=1 |(g, vn)|2 converges and has sum
≤ kgk22. Therefore

PN
n=M |(g, vn)|2 tends to 0 as M and N tend to infinity, and

the rate is independent of x . Consequently the series
P∞

n=1 |(Tg, vn)vn(x)| is
uniformly Cauchy, and it follows that the series

P∞
n=1 (Tg, vn)vn(x) is abso-

lutely uniformly convergent for x in X . Since the uniform limit of continuous
functions is continuous, the sum has to be a continuous function. Since (∗∗)
shows that

PN
n=1(Tg, vn)vn converges in L2(X, µ) to Tg, a subsequence of

PN
n=1 (Tg, vn)vn(x) converges almost everywhere to Tg(x). Since Tg is con-

tinuous, the set where
P∞

n=1 (Tg, vn)vn(x) 6= Tg(x) is an open set. The fact
that this set has measure 0 implies, in view of the hypothesis on µ, that this set is
empty. Thus

PN
n=1 (Tg, vn)vn(x) converges absolutely uniformly to Tg(x). §
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4. Unitary Operators

In CN , a unitary matrix corresponds in the standard basis to a unitary linear
transformation U , i.e., one with U∗ = U−1. Such a transformation preserves
inner products and therefore carries any orthonormal basis to another orthonor-
mal basis. Conversely any linear transformation from CN to itself that carries
some orthonormal basis to another orthonormal basis is unitary. For the infinite-
dimensional case we define a linear operator to be unitary if it satisfies the
equivalent conditions in the following proposition.4

Proposition 2.6. If V is a real or complex Hilbert space, then the following
conditions on a linear operator U : V → V are equivalent:

(a) UU∗ = U∗U = 1,
(b) U is onto V , and (Uv,Uv0) = (v, v0) for all v and v0 in V ,
(c) U is onto V , and kUvk = kvk for all v in V .

A unitary operator carries any orthonormal basis to an orthonormal basis. Con-
versely if {ui } and {vi } are orthonormal bases, then there exists a unique bounded
linear operator U such that Uui = vi for all i , and U is unitary.

REMARKS. In the finite-dimensional case the condition “UU∗ = 1” in (a) and
the condition “U is onto V ” in (b) and (c) follow from the rest, but that implication
fails in the infinite-dimensional case. Any two orthonormal bases have the same
cardinality, by Proposition 12.11 of Basic, and hence the index sets for {ui } and
{vi } in the statement of the proposition may be taken to be the same.

PROOF. If (a) holds, then UU∗ = 1 proves that U is onto, and U∗U = 1
proves that (Uv,Uv0) = (U∗Uv, v0) = (v, v0). Thus (b) holds. In the reverse
direction, suppose that (b) holds. From (U∗Uv, v0) = (Uv,Uv0) = (v, v0) for
all v and v0, we see thatU∗U = 1. ThusU is one-one. SinceU is assumed onto,
it has a two-sided inverse, which must then equalU∗ since any left inverse equals
any right inverse. Thus (a) holds, and (a) and (b) are equivalent. Conditions (b)
and (c) are equivalent by polarization.
If {ui } is an orthonormal basis andU is unitary, then (Uui ,Uuj ) = (ui , uj ) =

δi j by (b), and hence {Uui } is an orthonormal set. If (v,Uui ) = 0 for all i , then
(U∗v, ui ) = 0 for all i , U∗v = 0, and v = U(U∗v) = U0 = 0. So {Uui } is an
orthonormal basis.
If {ui } and {vi } are orthonormal bases, define U on finite linear combinations

of the ui by U
°P

i ci ui
¢

=
P

i civi . Then
∞
∞U

°P
i ci ui

¢∞∞2 =
∞
∞P

i civi
∞
∞2 =

4This book uses the term “unitary” for both real and complex Hilbert spaces. A unitary linear
operator from a real Hilbert space into itself is traditionally said to be orthogonal, but there is no
need to reject the word “unitary” for real Hilbert spaces.
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P
i |ci |2 = k

P
i ci uik2. Hence U extends to a bounded linear operator on V ,

necessarily preserving norms. It must be onto V since it preserves norms and
its image contains the dense set of finite linear combinations

P
i civi . Thus (c)

holds, and U is unitary. §

Since unitary operators are exactly the invertible linear operators that preserve
inner products, they are the ones that serve as isomorphismsof aHilbert spacewith
itself. Theorem 2.3 and Proposition 2.6 together give us a criterion for deciding
whether two compact self-adjoint operators on a Hilbert space are related to each
other by an underlying isomorphism of the Hilbert space: the criterion is that the
two operators have the same eigenvalues, that the dimension of the eigenspace for
each nonzero eigenvalue of one operator match the dimension of the eigenspace
for that eigenvalue of the other operator, and that the Hilbert-space dimension of
the zero eigenspaces of the two operators match.

5. Classes of Compact Operators

In this section we bring together various threads concerning compact operators,
integral operators, the Hilbert–Schmidt Theorem, the Hilbert–Schmidt norm of
a square matrix, and traces of matrices. The end product is to consist of some
relationships among these notions, together with the handy notion of the trace of
an operator. Once we have multiple Fourier series available as a tool in the next
chapter, wewill be able to supplement the results of the present section and obtain
a formula for computing the trace of certain kinds of integral operators. Let us
start with various notions about bounded linear operators from an abstract real
or complex Hilbert space V to itself, touching base with familiar notions when
V = Cn .
Compact linear operators were discussed in Section 1. Compactness means

that the image of the closed unit ball has compact closure in V . We know
from Proposition 2.1 that the compact linear operators are exactly those that can
be approximated in the operator norm topology by linear operators with finite-
dimensional image. The adjoint of a compact linear operator is compact. Being
themembers of the closure of a vector subspace, the compact linear operators form
a vector subspace. When V = Cn , every linear operator is of course compact.
If L is a compact linear operator, then LA and AL are compact whenever

A is a bounded linear operator. In fact, if Ln is a sequence of linear operators
with finite-dimensional image such that kL − Lnk → 0, then kLA − Ln Ak ≤
kL − LnkkAk → 0; since Ln A has finite-dimensional image, LA is compact.
To see that AL is compact, we take the adjoint: L∗ is compact, and hence
L∗A∗ = (AL)∗ is compact; since (AL)∗ is compact, so is AL . In algebraic



5. Classes of Compact Operators 47

terminology the compact linear operators form a two-sided ideal in the algebra
of all bounded linear operators.
Nextwe introduceHilbert–Schmidtoperators. If L is a bounded linear operator

on V and if {ui } and {vj } are orthonormal bases of V , then Parseval’s equality
gives

P
i kLuik2 =

P
i, j |(Lui , vj )|2 =

P
i, j |(ui , L∗vj )|2

=
P

i, j |(L∗vj , ui )|2 =
P

i, j |(L∗vj , ui )|2 =
P

j kL∗vjk2.

Application of this formula twice shows that if we replace {ui } by a different
orthonormal basis {u0

i }, we get
P

i kLuik2 =
P

i kLu0
ik
2. The expression

kLk2HS =
X

i
kLuik2 =

X

i, j
|(Lui , vj )|2,

which we therefore know to be independent of both orthonormal bases {ui } and
{vj }, is the square of what is called the Hilbert–Schmidt norm kLkHS of L .
For the finite-dimensional situation in which the underlying Hilbert space is

Rn orCn , we can take {ui } and {vj } both to be the standard orthonormal basis, and
then the Hilbert–Schmidt norm of the linear function corresponding to a matrix
A is just

°P
i, j |Ai j |2

¢1/2.
Our computation with kLkHS above shows that

kLkHS = kL∗kHS.

The bounded linear operators that have finite Hilbert–Schmidt norm are called
Hilbert–Schmidt operators. The name results from the following proposition.

Proposition 2.7. Let (X, µ) be a σ -finite measure space such that L2(X, µ)
is separable, and let K ( · , · ) be a complex-valued L2 function on X × X . Then
the linear operator T defined by

(T f )(x) =
Z

X
K (x, y) f (y) dµ(y)

is a compact operator on the Hilbert space L2(X, µ) with kTkHS = kKk2.
REMARK. No self-adjointness is assumed in this proposition.
PROOF. If {ui } is an orthonormal basis of L2(X, µ), then the functions

(uj ⊗ ūi )(x, y) = uj (x)ui (y) form an orthonormal basis of L2(X × X, µ × µ)
as a consequence of Proposition 12.9 of Basic. Hence

(Tui , uj ) =
R
X

R
X K (x, y)ui (y)uj (x) dµ(x) dµ(y) = (K , (uj ⊗ ūi )).

Taking the square of the absolute value of both sides and summing on i and j ,
we obtain kTk2HS = kKk22. §
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Returning to an abstract Hilbert space V and the bounded linear operators on
it, let us observe for any L that

kLk ≤ kLkHS.

In fact, if u in V has kuk = 1, then the singleton set {u} can be extended to an
orthonormal basis {ui }, and we obtain kLuk2 ≤

P
i kLuik2 = kLk2HS. Taking

the supremum over u with kuk = 1, we see that kLk2 ≤ kLk2HS. Two easier but
related inequalities are that

kALkHS ≤ kAkkLkHS and kLAkHS ≤ kAkkLkHS.

The first of these follows from the inequality kALuik2 ≤ kAk2kLuik2 by sum-
ming over an orthonormal basis. The second follows from the first because
kLAkHS = k(LA)∗kHS = kA∗L∗kHS ≤ kA∗kkL∗kHS = kAkkLkHS.
Any Hilbert–Schmidt operator is compact. In fact, if L is Hilbert–Schmidt,

let {ui } be an orthonormal basis, let ≤ > 0 be given, and choose a finite set F
of indices i such that

P
i /∈F kLuik2 < ≤. If E is the orthogonal projection on

the span of the ui for i in F , then we obtain kL∗ − EL∗k2 = kL − LEk2 ≤
kL − LEk2HS =

P
i k(L − LE)uik2 < ≤. Hence L∗ can be approximated in

the operator norm topology by operators with finite-dimensional image and is
compact; since L∗ is compact, L is compact.
The sum of two Hilbert–Schmidt operators is Hilbert–Schmidt. In fact, we

have k(L+M)uik ≤ kLuik+kMuik ≤ 2max{kLuik, kMuik}. Squaring gives
k(L + M)uik2 ≤ 4max{kLuik2, kMuik2} ≤ 4(kLuik2 + kMuik2), and the
result follows when we sum on i . Thus the Hilbert–Schmidt operators form a
vector subspace of the bounded linear operators on V , in fact a vector subspace
of the compact operators on V . As is true of the compact operators, the Hilbert–
Schmidt operators form a two-sided ideal in the algebra of all bounded linear
operators; this fact follows from the inequalities kALkHS ≤ kAkkLkHS and
kLAkHS ≤ kAkkLkHS.
The vector space of Hilbert–Schmidt operators becomes a normed linear space

under the Hilbert–Schmidt norm. Even more, it is an inner-product space. To see
this, let L and M be Hilbert–Schmidt operators, and let {ui } be an orthonormal
basis. We define hL ,Mi =

P
i (Lui ,Mui ). This sum is absolutely convergent

as we see from two applications of the Schwarz inequality:
P

i |(Lui ,Mui )| ≤
P

i kLuikkMuik ≤
°P

i kLuik2
¢1/2°P

i kMuik2
¢1/2

= kLkHSkMkHS < ∞.
Substituting from the definitions, we readily check that

hL ,Mi =






P

k∈{0,2}

i k
4 kL + i kMk2HS if V is real,

3P

k=0

i k
4 kL + i kMk2HS if V is complex.
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Hence the definition of hL ,Mi is independent of the orthonormal basis. It is
immediate from the definition and the above convergence that the form h · , · i
makes the vector space of Hilbert–Schmidt operators into an inner-product space
with associated norm k · kHS.
If L has finite-dimensional image, then L is a Hilbert–Schmidt operator. In

fact, let E be the orthogonal projection on image L , take an orthonormal basis
{ui | i ∈ F} of image L , and extend to an orthonormal basis {ui | i ∈ S}
of V ; here F is a finite subset of S. Then

P
i∈S kLuik2 =

P
i∈S kELuik2 =P

i∈S kL∗Euik2 =
P

i∈F kL∗uik2 < ∞. Thus the Hilbert–Schmidt operators
form an ideal between the ideal of compact operators and the ideal of operators
with finite-dimensional image.
Now we turn to a generalization of the trace Tr A =

P
i Aii of a square matrix

A. This generalization plays a basic role in distribution theory, in index theory
for partial differential equations, and in representation theory. In this section we
shall describe the operators, and at the end of Chapter III we shall show how
traces can be computed for simple integral operators. Realistic applications tend
to be beyond the scope of this book.
Although the trace of a linear operator on Cn may be computed as the sum of

the diagonal entries of the matrix of the operator in any basis, we shall continue
to use orthonormal bases. Thus the expression we seek to extend to any Hilbert
space V is

P
i (Lui , ui ). The operators of “trace class” are to be a subset of the

Hilbert–Schmidt operators. Itmight at first appear that the condition to impose for
the definition of trace class is that

P
i (Lui , ui ) be absolutely convergent for some

orthonormal basis, but this condition is not enough. In fact, if a bounded linear
operator L is defined on a Hilbert space with orthonormal basis u1, u2, . . . by
Lui = ui+1 for all i , then (Lui , ui ) = 0 for all i ; on the other hand, kLuik2 = 1
for all i , and L is not Hilbert–Schmidt.
We say that a bounded linear operator L on V is of trace class if it is a

compact operator5 such that
P

i |(Lui , vi )| < ∞ for all orthonormal bases
{ui } and {vi }. Since compact operators are closed under addition and under
passage to adjoints, we see directly from the definition that the sum of two trace-
class operators is of trace class and that the adjoint of a trace-class operator is
of trace class. The operator L = B∗A with A and B Hilbert–Schmidt is an
example of a trace-class operator. In fact, the operator L is compact as the
product of two compact operators; also, (Lui , vi ) = (B∗Aui , vi ) = (Aui , Bvi ),
and we therefore have

P
i |(Lui , vi )| =

P
i |(Aui , Bvi )| ≤

P
i kAuikkBvik ≤

5This condition is redundant; it is enough to assume boundedness. However, to proceed without
using compactness of L , we would have to know that L∗L has a “positive semidefinite” square root,
which requires having the full Spectral Theorem for bounded self-adjoint operators. This theorem
is not available until the end of Chapter IV. The development here instead gets by with the Spectral
Theorem for compact self-adjoint operators (Theorem 2.3).
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°P
i kAuik2

¢1/2°P
i kBvik2

¢1/2
= kAkHSkBkHS. The following proposition

shows that there are no other examples.

Proposition 2.8. If L : V → V is a trace-class operator on the Hilbert space
V , then L factors as L = B∗A with A and B Hilbert–Schmidt. Moreover, the
supremum of

P
i |(Lui , vi )| over all orthonormal bases {ui } and {vi } equals the

infimum, over all Hilbert–Schmidt A and B such that L = B∗A, of the product
kAkHSkBkHS.
PROOF. First we produce a factorization. Since L is a compact operator,

L∗L is a compact self-adjoint operator, and Theorem 2.3 shows that L∗L has an
orthonormal basis of eigenvectorswi with real eigenvalues ∏i tending to 0. Since
∏i (wi , wi ) = (L∗Lwi , wi ) = (Lwi , Lwi ), we see that all ∏i are ∏ 0. Define a
bounded linear operator T by Twi =

p
∏i wi for all i . The operator T is self

adjoint, it has (T v, v) ∏ 0 for all v, its kernel N is the smallest closed vector
subspace containing all the wi with ∏i = 0, and its image is dense in N⊥. Since
N ∩ N⊥ = 0, T is one-one from N⊥ into N⊥. Thus T v 7→ Lv is a well-
defined linear function from a dense vector subspace of N⊥ into V . The map
T v 7→ Lv has the property that kLvk2 = (Lv, Lv) = (L∗Lv, v) = (T 2v, v) =
(T v, T v) = kT vk2. Thus T v 7→ Lv is a linear isometry from a dense vector
subspace of N⊥ into V . Since V is complete, T v 7→ Lv extends to a linear
isometry U : N⊥ → V . This U satisfies L = UT .
Let I be the set of indices i for the orthonormal basis {wi }, and let P be the

subset with ∏i > 0. By polarization, U preserves inner products in carrying N⊥

into V . Extend U to all of V by setting it equal to 0 on N , so that U∗ is well
defined. The system {wi }i∈P is an orthonormal basis of N⊥, and hence the system
{ fi }i∈P with fi = Uwi for i ∈ P is an orthonormal set in V . SinceU : N⊥ → V
is isometric, we have (wi ,U∗ fi ) = (Uwi , fi ) = (Uwi ,Uwi ) = (wi , wi ). Since
Twi is a multiple of wi , we obtain (Twi ,U∗ fi ) = (Twi , wi ). Therefore

P

i∈P
|(Lwi , fi )| =

P

i∈P
|(UTwi , fi )| =

P

i∈P
|(Twi ,U∗ fi )|

=
P

i∈P
|(Twi , wi )| =

P

i∈P
(Twi , wi ).

Extend { fi }i∈P to an orthonormal basis { fi } of V ; since any two orthonormal
bases of a Hilbert space have the same cardinality, we can index the new vectors
of this set by I − P . The operators L and T have the same kernel, and thus the
sums for i ∈ P can be extended over all i in I to give

P

i∈I
|(Lwi , fi )| =

P

i∈I
(Twi , wi ).

Define a bounded linear operator S on V by Swi = 4
p

∏i wi for all i . Then
|(Swi , wj )|2 = δi j (S2wi , wi ) = δi j (Twi , wi ), and hence S is a Hilbert–Schmidt
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operator with kSk2HS =
P

i∈I (Twi , wi ). Take A = S and B∗ = US; each
of these is Hilbert–Schmidt since kUSkHS ≤ kUkkSkHS, and we have B∗A =
USS = UT = L . This proves the existence of a decomposition B∗A = L .
For the bases {wi } and { fi }, we have just seen that

kAkHSkBkHS ≤ kSkHSkUkkSkHS ≤ kSk2HS =
P

i∈I
(Twi , wi ) =

P

i∈I
|(Lwi , fi )|.

But if L = B 0∗A0 is any decomposition of L as the product of Hilbert–Schmidt
operators and if {ui } and {vi } are any two orthonormal bases, we have

P

i
|(Lui , vi )| =

P

i
|(B 0∗A0ui , vi )| =

P

i
|(A0ui , B 0vi )

≤
P

i
kA0uikkB 0vik ≤ kA0kHSkB 0kHS.

Therefore sup
P

i
|(Lui , vi )| ≤ inf kA0kHSkB 0kHS,

as asserted. §

If {ui } is an orthonormal basis of V and L is of trace class, we can thus write
L = B∗A with A and B Hilbert–Schmidt. We define the trace of L to be

Tr L =
P

i (Lui , ui ) =
P

i (B∗Aui , ui ) =
P

i (Aui , Bui ) = hA, Bi.

The series
P

i (Lui , ui ) is absolutely convergent by definition of trace class. The
trace of L is independent of the orthonormal basis since it equals hA, Bi, and it
is independent of A and B since it equals

P
i (Lui , ui ).

In practice it is not so easy to check from the definition that L is of trace class.
But there is a simple sufficient condition.

Proposition 2.9. If L : V → V is a bounded linear operator on the Hilbert
space V and if

P
i, j |(Lui , vj )| < ∞ for some orthonormal bases {ui } and {vj },

then L is of trace class.

PROOF. Since |(Lui , vi )| ≤ kLk, we have |(Lui , vj )|2 ≤ kLk|(Lui , vj )| for
all i and j , and it follows from the finiteness of

P
i, j |(Lui , vj )| that kLk2HS =

P
i, j |(Lui , vj )|2 is finite. Thus L is a Hilbert–Schmidt operator and has to be

compact.
If {ek} and { fl} are orthonormal bases, we expand ek =

P
i (ek, ui )ui and fk =P

j ( fk, vj )vj and substitute to obtain (Lek, fk) =
P

i, j (ek, ui )(Lui , vj )( fk, vj ).
Taking the absolute value and summing on k gives

P

k
|(Lek, fk)| ≤

P

i, j
|(Lui , vj )|

P

k
|(ek, ui )( fk, vj )|.
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Application of the Schwarz inequality to the sumon k and thenBessel’s inequality
to each factor of the result yields

P

k
|(Lek, fk)| ≤

P

i, j
|(Lui , vj )|

°P

k
|(ek, ui )|2

¢1/2°P

k
|( fk, vj )|2

¢1/2

≤
P

i, j
|(Lui , vj )|kuikkvjk =

P

i, j
|(Lui , vj )| < ∞,

and therefore L is of trace class. §

6. Problems

1. Let (S, µ) be a σ -finite measure space, let f be in L∞(S, µ), and let Mf be the
bounded linear operator on L2(S, µ) given by Mf (g) = f g.
(a) Find a necessary and sufficient condition for Mf to have an eigenvector.
(b) Find a necessary and sufficient condition for Mf to be compact.

2. Let L be a compact operator on a Hilbert space, and let ∏ be a nonzero complex
number. Prove that if ∏I − L is one-one, then the image of ∏I − L is closed.

3. Prove for a Hilbert space V that the normed linear space of Hilbert–Schmidt
operators with the norm k · kHS is a Banach space.

4. If L is a trace-class operator on a Hilbert space V , let kLkTC equal the supremum
of

P
i |(Lui , vi )| over all orthonormal bases {ui } and {vi }. By Proposition 2.8

this equals the infimum, over all Hilbert–Schmidt A and B such that L = B∗A,
of the product kAkHSkBkHS. Prove that the vector space of trace-class operators
is a normed linear space under k · kTC as norm.

5. If L is a trace-class operator on a complex Hilbert space V and A is a bounded
linear operator, prove that Tr AL = Tr LA and conclude that Tr(BLB−1) = Tr L
for any bounded linear operator B.

Problems 6–8 deal with some extensions of Theorem 2.3 to situations involving
several operators. A bounded linear operator L is said to be normal if LL∗ = L∗L .
6. Suppose that {Lα} is a finite commuting family of compact self-adjoint operators

on a Hilbert space. Prove that there exists an orthonormal basis consisting of
simultaneous eigenvectors for all Lα .

7. Fix a complex Hilbert space V .
(a) Prove that the decomposition L = 1

2 (L + L∗) + i 12i (L − L∗) exhibits
any normal operator L : V → V as a linear combination of commuting
self-adjoint operators.

(b) Prove that the operators in (a) are compact if L is compact.
(c) State an extension of Theorem 2.3 that concerns compact normal operators

on a complex Hilbert space.
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8. Fix a Hilbert space V .
(a) Prove that a unitary operator from V to itself is always normal.
(b) Under what circumstances is a unitary operator compact?

Problems 9–13 indicate an approach to second-order ordinary differential equations
by integral equations in a way that predates the use of the Hilbert–Schmidt Theorem.
9. Forω 6= 0, show that the unique solutionu(t)on [a, b] of the equationu00+ω2u =

g(t) and the initial conditions u(a) = 1 and u0(a) = 0 is

u(t) = cosω(t − a) + ω−1 R t
a g(s) sinω(t − s) ds.

10. Let ρ(t) be a continuous function on [a, b], and let u(t) be the unique solution
of the equation u00 + [ω2 − ρ(t)]u = 0 and the initial conditions u(a) = 1 and
u0(a) = 0. Show that u satisfies the integral equation

u(t) − ω−1 R t
a ρ(s) sinω(t − s)u(s) ds = cosω(t − a),

which is of the formu(t)−
R t
a K (t, s)u(s) ds = f (t), where K (t, s) is continuous

on the triangle a ≤ s ≤ t ≤ b.
11. Let K (t, s) be continuous on the triangle a ≤ s ≤ t ≤ b. For f continuous on

[a, b], define (T f )(t) =
R t
a K (t, s) f (s) ds.

(a) Prove that f continuous implies T f continuous.
(b) Put M = max |K (t, s)|. If f has C =

R b
a | f (t)| dt , prove inductively that

|(T n f )(t)| ≤ CMn

(n−1)! (t − a)n−1 for n ∏ 1.
(c) Deduce that the series f + T f + T 2 f + · · · converges uniformly on [a, b].

12. Set u = f + T f + T 2 f +· · · in the previous problem, and prove that u satisfies
u − Tu = f .

13. In the previous problem prove that u = f +T f +T 2 f +· · · is the only solution
of u − Tu = f .



CHAPTER III

Topics in Euclidean Fourier Analysis

Abstract. This chapter takes up several independent topics in Euclidean Fourier analysis, all having
some bearing on the subject of partial differential equations.
Section 1 elaborates on the relationship between the Fourier transform and the Schwartz space,

the subspace of L1(RN ) consisting of smooth functions with the property that the product of any
iterated partial derivative of the function with any polynomial is bounded. It is possible to make
the Schwartz space into a metric space, and then one can consider the space of continuous linear
functionals; these continuous linear functionals are called “tempered distributions.” The Fourier
transform carries the space of tempered distributions in one-one fashion onto itself.
Section 2 concerns weak derivatives, and the main result is Sobolev’s Theorem, which tells how

to recover information about ordinary derivatives from information about weak derivatives. Weak
derivatives are easy to manipulate, and Sobolev’s Theorem is therefore a helpful tool for handling
derivatives without continually having to check the validity of interchanges of limits.
Sections 3–4 concern harmonic functions, those functions on open sets in Euclidean space that

are annihilated by the Laplacian. The main results of Section 3 are a characterization of harmonic
functions in terms of a mean-value property, a reflection principle that allows the extension to all of
Euclidean space of any harmonic function in a half space that vanishes at the boundary, and a result
of Liouville that the only bounded harmonic functions in all of Euclidean space are the constants.
The main result of Section 4 is a converse to properties of Poisson integrals for half spaces, showing
that harmonic functions in a half space are given as Poisson integrals of functions or of finite complex
measures if their L p norms over translates of the bounding Euclidean space are bounded.
Sections 5–6 concern the Calderón–Zygmund Theorem, a far-reaching generalization of the

theorem concerning the boundedness of the Hilbert transform. Section 5 gives the statement and
proof, and two applications are the subject of Section6. Oneof the applications is toRiesz transforms,
and the other is to the Beltrami equation, whose solutions are “quasiconformal mappings.”
Sections 7–8 concern multiple Fourier series for smooth periodic functions. The theory is

established in Section 7, and an application to traces of integral operators is given in Section 8.

1. Tempered Distributions

We fix normalizations for the Euclidean Fourier transform as in Basic: For f in
L1(RN ), the definition is

bf (y) = (F f )(y) =
Z

RN
f (x)e−2π i x ·y dx,

54
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with x · y referring to the dot product and with the 2π in the exponent. The
inversion formula is valid whenever bf is in L1; it says that f is recovered as

f (x) = (F−1 bf )(x) =
Z

RN

bf (y)e2π i x ·y dy

almost everywhere, including at all points of continuity of f . The operator F
carries L1 ∩ L2 into L2 and extends to a linear map F of L2 onto L2 such that
kF f k2 = k f k2. This is the Plancherel formula.
The Schwartz space S = S(RN ) is the vector space of all functions f in

C∞(RN ) such that the product of any polynomial by any iterated partial derivative
of f is bounded. This is a vector subspace of L1 ∩ L2, and it was shown in Basic
that F carries S one-one onto itself. It will be handy sometimes to use a notation
for partial derivatives and their iterates that is different from that in Chapter I.

Namely,1 let Dj =
@

@xj
. If α = (α1, . . . , αN ) is an N -tuple of nonnegative

integers, wewrite |α| =
PN

j=1 αj , α! = α1! · · ·αN !, xα = xα1
1 · · · xαN

N , and Dα =
Dα1
1 · · · DαN

N . Addition of such tuples α is defined component by component, and
we say that α ≤ β if αj ≤ βj for 1 ≤ j ≤ N . We write |α| for the total
order α1 + · · · + αN , and we call α a multi-index. If Q(x) =

P
α aαxα is a

complex-valued polynomial on RN , define Q(D) to be the partial differential
operator

P
α aαDα with constant coefficients obtained by substituting, for each

j with 1 ≤ j ≤ N , the operator Dj = @
@xj for xj . The Schwartz functions are

then the smooth functions f on RN such that P(x)Q(D) f is bounded for each
pair of polynomials P and Q.
The Schwartz space is directly usable in connection with certain linear par-

tial differential equations with constant coefficients. A really simple example
concerns the Laplacian operator 1 = @2

@x21
+ · · · + @2

@x2N
, which we can write as

1 = |D|2 in the new notation for differential operators. Specifically the equation

(1− 1)u = f

has a unique solution u in S for each f in S. To see this, we take the Fourier
transformof both sides, obtainingFu−F(1u) = F f orFu−F(|D|2(u)) = F f .
Using the formulas relating the Fourier transform, multiplication by polynomials,
and differentiation,2 we can rewrite this equation as (1+ 4π2|y|2)F(u) = F( f ).
Problem1at the endof the chapter asks one to check that (1+4π2|y|2)−1g is inS if

1Some authors prefer to abbreviate @
@xj

as @j , reserving the notation Dj for the product of @j and
a certain imaginary scalar that depends on the definition of the Fourier transform.

2These, with hypotheses in place, appear as Proposition 8.1 of Basic.
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g is inS, and then existence of a solution inS to the differential equation is proved
by the formula u = F−1°(1+4π2|y|2)−1F( f )

¢
. For uniqueness let u1 and u2 be

two solutions in S corresponding to the same f . Then (1−1)(u1−u2) = 0, and
hence (1+ 4π2|y|2)F(u1 − u2)(y) = 0 for all y. Therefore F(u1 − u2)(y) = 0
everywhere. Since F is one-one on S, we conclude that u1 = u2.
A deeper use of the Schwartz space in connectionwith linear partial differential

equations comes about because of the relationship between the Schwartz space
and the theory of “distributions.” Distributions are continuous linear functionals
on vector spaces of smooth functions, i.e., continuous linear maps from such a
space to the scalars, and they will be considered more extensively in Chapter V.
For now, we shall be content with discussing “tempered distributions,” the dis-
tributions associated with the Schwartz space. In order to obtain a well-defined
notion of continuity, we shall describe how to make S(RN ) into a metric space.
For each pair of polynomials P and Q, we define

k f kP,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|.

Each function k · kP,Q on S is a seminorm on S in the sense that3

(i) k f kP,Q ∏ 0 for all f in S,
(ii) kc f kP,Q = |c|k f kP,Q for all f in S and all scalars c,
(iii) k f + gkP,Q ≤ k f kP,Q + kgkP,Q for all f and g in S.

Collectively these seminorms have a property that goes in the converse direction
to (i), namely
(iv) k f kP,Q = 0 for all P and Q implies f = 0.

In fact, f will already be 0 if the seminorm for P = Q = 1 is 0 on f .
Each seminorm gives rise to a pseudometric dP,Q( f, g) = k f − gkP,Q in

the usual way, and the topology on S is the weakest topology making all the
functions dP,Q( · , g) continuous. That is, a base for the topology consists of all
sets Ug,P,Q,n = { f | k f − gkP,Q < 1/n}.
A feature of S is that only countably many of the seminorms are relevant for

obtaining the open sets, and a consequence is that the topology ofS is defined by a
metric. The important seminorms are the ones in which P and Q are monomials,
each with coefficient 1. In fact, if P(x) =

P
α aαxα and Q(x) =

P
β bβxβ , then

it is easy to check that dP,Q( f, g) ≤
P

α,β |aαbβ |dxα,xβ ( f, g). Hence any open
set that dP,Q defines is a union of finite intersections of the open sets defined by
the finitely many dxα,yβ ’s.

3The reader may notice that the definition of “seminorm” is the same as the definition of
“pseudonorm” in Basic. The only distinction is that the word “seminorm” is often used in the
context of a whole family of such objects, while the word “pseudonorm” is often used when there is
only one such object under consideration.
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Let us digress and consider the situation more abstractly because it will arise
again later. Suppose we have a real or complex vector space V on which are
defined countably many seminorms k · kn satisfying (i), (ii), and (iii) above.
Each seminorm k · kn gives rise to a pseudometric edn on V and then to open

sets defined relative to edn . For any pseudometric eρ, the function ρ = min{1, eρ}
is easily checked to be a pseudometric, and ρ defines the same open sets on V as
eρ does. We shall use the following abstract result about pseudometrics; this was
proved as Proposition 10.28 of Basic, and we therefore omit the proof here.

Proposition 3.1. Suppose that V is a nonempty set and {dn}n∏1 is a sequence
of pseudometrics on V such that dn(x, y) ≤ 1 for all n and for all x and y in V .
Then d(x, y) =

P∞
n=1 2−ndn(x, y) is a pseudometric. If the open balls relative

to dn are denoted by Bn(r; x) and the open balls relative to d are denoted by
B(r; x), then the Bn’s and B’s are related as follows:

(a) whenever some Bn(rn; x) is given with rn > 0, there exists some B(r; x)
with r > 0 such that B(r; x) ⊆ Bn(rn; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many rn > 0,
say for n ≤ K , such that

TK
n=1 Bn(rn; x) ⊆ B(r; x).

In the situation with countably many seminorms k · kn for the vector space V ,
we see that we can introduce a pseudometric d such that three conditions hold:

• d(x, y) = d(0, y − x) for all x and y,
• whenever some x in V is given and an index n and corresponding number
rn > 0 are given, then there is a number r > 0 such that d(x, y) < r
implies ky − xkn < rn ,

• whenever some x in V is given and some r > 0 is given, then there exist
finitely many rn > 0, say for n ≤ K , such that any y with ky− xkn < rn
for n ≤ K implies d(x, y) < r .

If the seminorms collectively have the property that kxkn = 0 for all n only for
x = 0, then d is a metric, and we say that the family of seminorms is a separating
family. The specific form of d is not important: in the case of S, the metric d
depended on the choice of the countable subfamily of pseudometrics and the order
in which they were enumerated, and these choices do not affect any results about
S. The important thing about this construction is that it shows that the topology
is given by some metric.
The three conditions marked with bullets enable us to detect continuity of

linear functions with domain V and range another such space W by using the
seminorms directly.

Proposition 3.2. Let L : V → W be a linear function between vector spaces
that are both real or both complex. Suppose that V is topologized by means of
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countablymany seminorms k · kV,m andW is topologized bymeans of countably
many seminorms k · kW,n . Then L is continuous if and only if for each n, there
is a finite set F = F(n) of m’s and there are corresponding positive numbers δm
such that kvkV,m ≤ δm for all m ∈ F implies kL(v)kW,n ≤ 1.
PROOF. Let dV and dW be the distance functions in V and W . When n is

given, the second item in the bulleted list shows that there is some r > 0 such
that dW (0, w) ≤ r implies kwkW,n ≤ 1. If L is continuous at 0, then there is a
δ > 0 such that dV (0, v) ≤ δ implies dW (0, L(v)) ≤ r . From the third item in
the bulleted list, we know that there is a finite set F of indices m and there are
corresponding numbers δm > 0 such that kvkV,m ≤ δm implies dV (0, v) ≤ δ.
Then kvkV,m ≤ δm for all m in F implies kL(v)kW,n ≤ 1.
Conversely suppose for each n that there is a finite set F and there are numbers

δm > 0 form in F such that the stated condition holds. To see that L is continuous
at 0, let ≤ > 0 be given. Choose K and numbers ≤n > 0 for n ≤ K such
that kwkW,n ≤ ≤n for n ≤ K implies dW (0, w) ≤ ≤. For each n ≤ K , the
given condition on L allows us to find a finite set Fn of indices m and numbers
δm > 0 such that kvkV,m ≤ δm implies kL(v)kW,n ≤ 1. If kvkV,m ≤ δm≤n
for all m in F =

S
n≤K Fn , then kL(v)kW,n ≤ ≤n for all n ≤ K and hence

dW (0, L(v)) ≤ ≤. We know that there is a number δ > 0 such that dV (0, v) ≤ δ
implies kvkV,m ≤ δm≤n for all m in F , and then dW (0, L(v)) ≤ ≤. Hence L is
continuous at 0.
Once L is continuousat 0, it is continuouseverywherebecauseof the translation

invariance of dV and dW : dV (v1, v2) = dV (0, v2 − v1) and dW (L(v1), L(v2)) =
dW (0, L(v2) − L(v1)) = dW (0, L(v2 − v1)). §

Now we return to the Schwartz space S to apply our construction and Propo-
sition 3.2. The bulleted items above make it clear that it does not matter which
countable set of generating seminorms we use nor what order we put them in; the
open sets and the criterion for continuityare still the same. The followingcorollary
is immediate from Proposition 3.2, the definition of S, and the behavior of the
Fourier transform under multiplication by polynomials and under differentiation.

Corollary 3.3. For the Schwartz space S on RN ,
(a) a linear functional ` is continuous if and only if there is a finite set

F of pairs (P, Q) of polynomials and there are corresponding numbers
δP,Q > 0 such thatk f kP,Q ≤ δP,Q for all (P, Q) in F implies |`( f )| ≤ 1.

(b) the Fourier transform mapping F : S → S is continuous, and so is its
inverse.

A continuous linear functional on the Schwartz space is called a tempered
distribution, and the space of all tempered distributions is denoted by S 0 =
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S 0(RN ). It will be convenient to write hT, ϕi for the value of the tempered
distribution T on the Schwartz function ϕ. The space of tempered distributions
is huge. A few examples will give an indication just how huge it is.

EXAMPLES.
(1) Any function f on RN with | f (x)| ≤ (1+ |x |2)n|g(x)| for some integer n

and some integrable function g defines a tempered distribution T by integration:
hT, ϕi =

R
RN f (x)ϕ(x) dx when ϕ is in S. In view of Corollary 3.3a, the

continuity follows from the chain of inequalities

|hT, ϕi| ≤
R

RN

°
| f (x)|(1+ |x |2)−n

¢°
(1+ |x |2)n|ϕ(x)|

¢
dx

≤
° R

RN |g(x)| dx
¢°
supx{(1+ |x |2)n|ϕ(x)|}

¢

= kgk1kϕkP,1 for P(x) = (1+ |x |2)n.

(2)Any function f with | f (x)| ≤ (1+|x |2)n|g(x)| for some integern and some
function g in L∞(RN ) defines a tempered distribution T by integration: hT, ϕi =R

RN f (x)ϕ(x) dx . In fact, | f (x)| ≤ (1 + |x |2)n+N
°
(1 + |x |2)−N |g(x)|

¢
, and

(1+|x |2)−N |g(x)| is integrable; hence this example is an instance of Example 1.
(3) Any function f with | f (x)| ≤ (1 + |x |2)n|g(x)| for some integer n and

some function g in L p(RN ), where 1 ≤ p ≤ ∞, defines a tempered distribution
T by integration because such a distribution is the sum of one as in Example 1
and one as in Example 2.
(4) Suppose that f is as in Example 3 and that Q(D) is a constant-coefficients

partial differential operator. Then the formula hT, ϕi =
R

RN f (x)(Q(D)ϕ)(x) dx
defines a tempered distribution.
(5) In the above examples, Lebesguemeasure dx may be replaced by anyBorel

measure dµ(x) on RN such that
R

RN (1 + |x |2)n0 dµ(x) < ∞ for some n0. A
particular case of interest is that dµ(x) is a point mass at a point x0; in this case,
the tempered distributions ϕ 7→ hT, ϕi that are obtained by combining the above
constructions are the linear combinations of iterated partial derivatives of ϕ at the
point x0.
(6) Any finite linear combination of tempered distributions as in Example 5 is

again a tempered distribution.

Two especially useful operations on tempered distributions are multiplication
by a Schwartz function and differentiation. Both of these definitions are arranged
to be extensions of the corresponding operations on Schwartz functions. The
definitions are h√T, ϕi = hT, √ϕi and hDαT, ϕi = (−1)|α|hT, Dαϕi; in the
latter case the factor (−1)|α| is included because integration by parts requires its
presence when T is given by a Schwartz function.
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Auseful feature of distributions in connectionwith differential equations, aswe
shall see in more detail in later chapters, is that we can first look for solutions of a
given differential equation that are distributions and then consider how close those
distributions are to being functions. The special feature of tempered distributions
is that the Fourier transform makes sense on them, as follows.
As with the operations of multiplication by a Schwartz function and differen-

tiation, the definition of Fourier transform of a tempered distribution is arranged
to be an extension of the definition of the Fourier transform of a member √ of
S when we identify the function √ with the distribution √(x) dx . If ϕ is in S,
then

R b√ϕ dx =
R

√bϕ dx by the multiplication formula,4 which we reinterpret
as hF(√ dx), ϕi = h√ dx,bϕ i. The definition is

hF(T ), ϕi = hT,bϕ i

for T ∈ S 0 and ϕ ∈ S. To see that F(T ) is in S 0, we have to check that
F(T ) is continuous. The definition is F(T ) = T ◦ F, and F is continuous on S
by Corollary 3.3b. Thus the Fourier transform carries tempered distributions to
tempered distributions.

Proposition 3.4. The Fourier transform F is one-one from S 0(RN ) onto
S 0(RN ).
PROOF. If T is in S 0 and F(T ) = 0, then hT,F(ϕ)i = 0 for all ϕ in S. Since

F carries S onto S, hT, √i = 0 for all √ in S, and thus T = 0. Therefore F is
one-one on S 0.
If T 0 is given in S 0, put T = T 0 ◦ F−1, where F−1 is the inverse Fourier

transform as a map of S to itself. Then T 0 = T ◦ F and F(T ) = T ◦ F = T 0.
Therefore F is onto S 0. §

2. Weak Derivatives and Sobolev Spaces

A careful study of a linear partial differential equation often requires attention
to the domain of the operator, and it is helpful to be able to work with partial
derivatives without investigating a problem of interchange of limits at each step.
Sobolev spaces are one kind of space of functions that are used for this purpose,
and their definition involves “weak derivatives.” At the end one wants to be
able to deduce results about ordinary partial derivatives from results about weak
derivatives, and Sobolev’s Theorem does exactly that.
We shall make extensive use in this book of techniques for regularizing func-

tions that have been developed in Basic. Let us assemble a number of these in
one place for convenient reference.

4Proposition 8.1e of Basic.
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Proposition 3.5.
(a) (Theorems 6.20 and 9.13) Let ϕ be in L1(RN , dx), define ϕε(x) =

ε−Nϕ(ε−1x) for ε > 0, and put c =
R

RN ϕ(x) dx .
(i) If f is in L p(RN , dx) with 1 ≤ p < ∞, then

lim
ε↓0

kϕε ∗ f − c f kp = 0.

(ii) If f is bounded onRN and is continuous at x , then limε↓0(ϕε∗ f )(x) =
c f (x), and the convergence is uniform for any set E of x’s such that
f is uniformly continuous at the points of E .

(b) (Proposition 9.9) If µ is a Borel measure on a nonempty open set U in
RN and if 1 ≤ p < ∞, then L p(U, µ) is separable, and Ccom(U) is dense in
L p(U, µ).
(c) (Corollary 6.19) Suppose that ϕ is a compactly supported function of

class Cn on RN and that f is in L p(RN , dx) with 1 ≤ p ≤ ∞. Then ϕ ∗ f is of
class Cn , and Dα(ϕ ∗ f ) = (Dαϕ) ∗ f for any iterated partial derivative Dα of
order ≤ n.
(d) (Lemma 8.11) If δ1 and δ2 are given positive numbers with δ1 < δ2, then

there exists √ in C∞
com(RN ) with values in [0, 1] such that √(x) = √0(|x |), √0 is

nonincreasing, √(x) = 1 for |x | ≤ δ1, and √(x) = 0 for |x | ∏ δ2.
(e) (Consequence of (d)) If δ > 0, then there exists ϕ ∏ 0 in C∞

com(RN )
such that ϕ(x) = ϕ0(|x |) with ϕ0 nonincreasing, ϕ(x) = 0 for |x | ∏ 1, andR

RN ϕ(x) dx = 1.
(f) (Proposition 8.12) If K and U are subsets of RN with K compact, U

open, and K ⊆ U , then there exists ϕ ∈ C∞
com(U) with values in [0, 1] such that

ϕ is identically 1 on K .

In this section we work with a nonempty open subset U of RN , an index p
satisfying 1 ≤ p < ∞, and the spaces L p(U) = L p(U, dx), the underlying
measure being understood to be Lebesgue measure. Let p0 = p/(p − 1) be the
dual index. For Sobolev’s Theorem,we shall impose two additional conditions on
U , namely boundedness forU and a certain regularity condition for theboundary
@U = U cl−U of the open setU , but we do not impose those additional conditions
yet.

Corollary 3.6. If U is a nonempty open subset of RN , then C∞
com(U) is

(a) uniformly dense in Ccom(U),
(b) dense in L p(U) for every p with 1 ≤ p < ∞.

In (a), any member of Ccom(U) is the uniform limit of members of C∞
com(U).
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PROOF. Let f in Ccom(U) be given. Choose by Proposition 3.5e a function
ϕ in C∞

com(RN ) that is ∏ 0, vanishes outside the unit ball about the origin, and
has total integral 1. For ε > 0, define ϕε(x) = ε−Nϕ(ε−1x). The function
ϕε ∗ f is of class C∞ by (c). If U = RN , let ε0 = 1; otherwise let ε0 be the
distance from the support of f to the complement of U . For ε < ε0, ϕε ∗ f has
compact support contained in U . As ε decreases to 0, Proposition 3.5a shows
that kϕε ∗ f − f ksup tends to 0 and so does kϕε ∗ f − f kp. This proves the first
conclusion of the corollary and proves also that C∞

com(U) is L p dense in Ccom(U)
if 1 ≤ p < ∞. Since Proposition 3.5b shows that Ccom(U) is dense in L p(U),
the second conclusion of the corollary follows. §

Suppose that f and g are two complex-valued functions that are locally
integrable on U in the sense of being integrable on each compact subset of
U . If α is a differentiation index, we say that Dα f = g in the sense of weak
derivatives if

Z

U
f (x)Dαϕ(x) dx = (−1)|α|

Z

U
g(x)ϕ(x) dx for all ϕ ∈ C∞

com(U).

The definition is arranged so that g gives the result that one would expect
for iterated partial differentiation of type α if the integrated or boundary term
gives 0 at each stage. More precisely if f is in C |α|(U), then the weak derivative
of order α exists and is the pointwise derivative. To prove this, it is enough to
handle a first-order partial derivative Djh for a function h inC1(U), showing thatR
U hDjϕ dx = −

R
U (Djh)ϕ dx for ϕ ∈ C∞

com(U), i.e., that
R
U Dj (hϕ) dx = 0.

Because ϕ is compactly supported in U , √ = hϕ makes sense as a compactly
supported C1 function on RN , and we are to prove that

R
RN Dj√ dx = 0. The

Fundamental Theorem of Calculus gives
R a
−a Dj√ dxj = [√]xj=axj=−a for a > 0,

and the compact support implies that this is 0 for a sufficiently large. ThusR
R Dj√ dxj = 0, and Fubini’s Theorem gives

R
RN Dj√ dx = 0.

The function g in the definition of weak derivative is unique up to sets of
measure 0 if it exists. In fact, if g1 and g2 are bothweak derivatives of orderα, thenR
U (g1 − g2)ϕ dx = 0 for all ϕ in C∞

com(U). Fix an open set V having com-
pact closure contained in U . If f is in Ccom(V ), then Corollary 3.6a pro-
duces a sequence of functions ϕn in C∞

com(V ) tending uniformly to f . Since
g1 − g2 is integrable on V , the equalities

R
V (g1 − g2)ϕn dx = 0 for all n implyR

V (g1 − g2) f dx = 0. By the uniqueness in the Riesz Representation Theorem,
g1 = g2 a.e. on V . Since V is arbitrary, g1 = g2 a.e. on U .

EXAMPLE. In the open set U = (−1, 1) ⊆ R1, the function ei/|x | is locally
integrable and is differentiable except at x = 0, but it does not have a weak
derivative. In fact, if it had g as a weak derivative, we could use ϕ’s vanishing in
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neighborhoods of the origin to see that g(x) has to be −i x−2(sgn x)ei/|x | almost
everywhere. But this function is not locally integrable on U .

If f has αth weak derivative Dα f and Dα f has β th weak derivative Dβ(Dα f ),
then f has (β +α)th weak derivative Dβ+α f and Dβ+α f = Dβ(Dα f ). In fact, if
ϕ is in C∞

com(U), then this conclusion follows from the computation

R
U f Dβ+αϕ dx =

R
U f Dα(Dβϕ) dx = (−1)|α|

R
U Dα f Dβϕ dx

= (−1)|α|+|β|
R
U Dβ(Dα f )ϕ dx .

If f has weak j th partial derivative Dj f and if √ is in C∞(U), then f√ has a
weak j th partial derivative, and it is given by (Dj f )√+ f (Dj√). In fact, this con-
clusion holds because

R
U f√(Djϕ) dx =

R
U f Dj (√ϕ) dx−

R
U f (Dj√)ϕ dx =

−
R
U (Dj f )√ϕ dx −

R
U f (Dj√)ϕ dx = −

R
U ( f (Dj√) + (Dj f )√)ϕ dx .

If f has β th weak derivative Dβ f for every β with β ≤ α and if√ is inC∞(U),
then f√ has an αth weak derivative. It is given by the Leibniz rule:

Dα( f√) =
X

β≤α

α!
β!(α − β)!

(Dβ f )(Dα−β√).

This formula follows by iterating the formula for Dj ( f√) in the previous para-
graph.
Now we can give the definition of Sobolev spaces. Let k ∏ 0 be an integer,

and let 1 ≤ p < ∞. Define

L p
k (U) =

©
f ∈ L p(U)

Ø
Ø all Dα f exist weakly for |α| ≤ k and are in L p(U)

™
.

Then L p
k (U) is a vector space, and we make it into a normed linear space by

defining

k f kL p
k

=
≥ X

|α|≤k

Z

U
|Dα f |p dx

¥1/p
.

The normed linear spaces L p
k (U) are the Sobolev spaces forU . All the remaining

results in this section concern these spaces.5

5The subject of partial differential equations makes use of a number of families that generalize
these spaces in various ways. Of particular importance is a family Hs such that Hs = L2k when s is
an integer k ∏ 0 but s is a continuous real parameter with −∞ < s < ∞. The spaces Hs(RN ) are
introduced in Problems 8–12 at the end of the chapter. For an open set U , the two spaces Hs

com(U)
and Hs

loc(U) are introduced in Chapter VIII. All of these spaces are called Sobolev spaces.
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Proposition 3.7. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then the normed
linear space L p

k (U) is complete.

PROOF. If { fm} is a Cauchy sequence in L p
k (U), then for each α with |α| ≤ k,

the sequence {Dα fm} is Cauchy in L p(U). Since L p(U) is complete, we can
define f (α) to be the L p(U) limit of Dα fm . For ϕ in C∞

com(U), we then have
R
U f (α)ϕ dx =

R
U (limm Dα fm)ϕ dx = limm

R
U (Dα fm)ϕ dx,

the second equality holding since ϕ is in the dual space L p0
(U). In turn, this

expression is equal to

(−1)|α| limm
R
U ( fm)(Dαϕ) dx = (−1)|α|

R
U ( f (0))(Dαϕ) dx,

the second equality holding since Dαϕ is in L p0
(U). Therefore f (α) = Dα f (0)

and fm tends to f (0) in L p
k (U). §

Proposition 3.8. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then a function f
is in L p

k (U) if f is in L p(U) and there exists a sequence { fm} in Ck(U) such that
(a) limm k f − fmkp = 0,
(b) for each α with |α| ≤ k, the iterated pointwise partial derivative Dα fm is

in L p(U) and converges in L p(U) as m tends to infinity.

PROOF. By (b), kDα( fl − fm)kpp for each fixed α tends to 0 as l and m tend to
infinity. Summing onα and taking the pth root, we see that k fl− fmkL p

k
tends to 0.

In other words, { fm} is Cauchy in L p
k (U). By Proposition 3.7, { fm} converges to

some g in L p
m(U). The limit function g has to have the property that k fm − gkp

tends to 0, and (a) shows that we must have g = f . Therefore f is in L p
k (U). §

The key theorem is the following converse to Proposition 3.8.

Theorem 3.9. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then C∞(U)∩ L p
k (U)

is dense in L p
k (U).

On the other hand, despiteCorollary 3.6b, it will be a consequenceof Sobolev’s
Theorem that C∞

com(U) is not dense in L p
k (U) if k is sufficiently large. The proof

of the present theorem will be preceded by a lemma affirming that at least the
members of L p

k (U)with compact support inU can be approximated by members
of C∞

com(U).
In addition, the proof of the theoremwillmake use of an “exhausting sequence”

and a smooth partition of unity based on it. Since U is locally compact and
σ -compact, we can find a sequence {Kn}∞n=1 of compact subsets ofU with union
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U such that Kn ⊆ Ko
n+1 for all n. This sequence is called an exhausting sequence

forU . We construct the partition of unity {√n}n∏1 as follows. For n ∏ 1, we use
Proposition 3.5f to choose a C∞ function ϕn with values in [0, 1] such that

ϕ1(x) =

Ω 1 for x ∈ K3,
0 for x ∈ (Ko

4 )
c,

ϕn(x) =

Ω 1 for x ∈ Kn+2 − Ko
n+1,

0 for x ∈ (Ko
n+3)

c ∪ Kn.

and for n ∏ 2,

In the sum
P∞

n=1 ϕn(x), each x has a neighborhood in which only finitely many
terms are nonzero and some term is nonzero. Therefore ϕ =

P∞
n=1 ϕn is a

well-defined member of C∞(U). If we put √n = ϕn
±
ϕ, then √n is in C∞(U),P∞

n=1 √n = 1 on U , √1(x) is > 0 on K3 and is = 0 on (Ko
4 )
c, and for n ∏ 2,

√n(x)
Ω

> 0 for x ∈ Kn+2 − Ko
n+1,

= 0 for x ∈ (Ko
n+3)

c ∪ Kn.

Lemma 3.10. Let ϕ be a member of C∞
com(RN ) vanishing for |x | ∏ 1 and

having total integral 1, put ϕε(x) = ε−Nϕ(ε−1x) for ε > 0, and let f be a
function in L p

k (U) whose support is a compact subset of U . For ε sufficiently
small, ϕε ∗ f is in C∞

com(U), and

lim
ε↓0

kϕε ∗ f − f kL p
k

= 0.

PROOF. As in the proof of Corollary 3.6, ϕε ∗ f has compact support contained
in U if ε < ε0, where ε0 is 1 if U = RN and ε0 is the distance of the support
of f to the complement of U if U 6= RN . Moreover, the function ϕε ∗ f is in
C∞(RN ) with Dα(ϕε ∗ f ) = (Dαϕε) ∗ f for each α. Thus ϕε ∗ f is in C∞

com(U)
if ε < ε0. By the first remark after the definition of weak derivative, ϕε ∗ f
has weak derivatives of all orders for ε < ε0, and they are given by the ordinary
derivatives Dα(ϕε ∗ f ). For ε < ε0,

Dα(ϕε ∗ f )(x) =
R
U f (y)(Dαϕε)(x − y) dy

= (−1)|α|
R
U f (y)Dα(y 7→ ϕε(x − y)) dy.

Since f by assumption has weak derivatives through order k and since y 7→
ϕε(x − y) has compact support in U , the right side is equal to

R
U Dα f (y)ϕε(x − y) dy = (ϕε ∗ Dα f )(x)

for |α| ≤ k. Therefore, for ε < ε0 and |α| ≤ k, we have

kDα(ϕε ∗ f − f )kp = kϕε ∗ (Dα f ) − Dα f kp.

For these same α’s, Proposition 3.5a shows that the right side tends to 0 as ε tends
to 0. Therefore ϕε ∗ f − f tends to 0 in L p

k (U). §
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PROOF OF THEOREM 3.9. Let f be in L p
k (U). The idea is to break f into a

countable sum of functions of compact support, apply the lemma to each piece,
and add the results. The difficulty lies in arranging that each of the pieces of f
have controlled weak derivatives through order k. Thus instead of using indicator
functions to break up f , we shall use an exhausting sequence {Kn}n∏1 and an
associated partition of unity {√n}n∏1 of the kind described after the statement of
the theorem. The discussion above concerning the Leibniz rule shows that each
√n f has weak derivatives of all orders≤ k, and the construction shows that √n f
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ∏ 2.

Let ≤ > 0 be given, let ϕ be a member of C∞
com(RN ) vanishing for |x | ∏ 1 and

having total integral 1, and putϕε(x) = ε−Nϕ(ε−1x) for ε > 0. ApplyingLemma
3.10 to √n f , choose εn > 0 small enough so that the function un = ϕεn ∗ (√n f )
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ∏ 2 and so that

kun − √n f kL p
k

< 2−n≤.

Put u =
P∞

n=1 un . Each x in U has a neighborhood on which only finitely many
of the functions un are not identically 0, and therefore u is in C∞(U). Also,

u =
∞X

n=1
(un − √n f ) + f since

∞X

n=1
√n = 1.

Since for each compact subset of U , only finitely many un − √n f are not
identically 0 on that set, the weak derivatives of order ≤ k satisfy Dαu =P∞

n=1 Dα(un − √n f ) + Dα f . Hence

Dα(u − f ) =
∞X

n=1
Dα(un − √n f ).

Minkowski’s inequality for integrals therefore gives

kDα(u − f )kp ≤
∞X

n=1
kDα(un − √n f )kp ≤

∞X

n=1
kun − √n f kL p

k
≤

∞X

n=1

≤

2n
= ≤.

Finally we raise both sides to the pth power, sum for α with |α| ≤ k, and extract
the pth root. If m(k) denotes the number of such α’s, we obtain

ku − f kL p
k

≤ m(k)1/p ≤,

and the proof is complete. §
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Now we come to Sobolev’s Theorem. For the remainder of the section, the
open setU will be assumed bounded, and we shall impose a regularity condition
on its boundary @U = U cl − U . When we isolate one of the coordinates of
points in RN , say the j th, let us write y0 for the other N − 1 coordinates, so that
y = (yj , y0). We say that U satisfies the cone condition if there exist positive
constants c and h such that for each x in U , there are a sign ± and an index j
with 1 ≤ j ≤ N for which the closed truncated cone

0x = x +
©
y = (yj , y0)

Ø
Ø ± yj ∏ c|y0| and |y| ≤ h

™

lies inU for one choice of the sign±. See Figure 3.1. Problem 4 at the end of the
chapter observes that if the bounded open set U has a C1 boundary in a certain
sense, then U satisfies the cone condition.

yj

0x

y0x

FIGURE 3.1. Cone condition for a bounded open set.

Theorem 3.11 (Sobolev’s Theorem). Let U be a nonempty bounded open set
in RN , and suppose that U satisfies the cone condition with constants c and h.
If 1 ≤ p < ∞ and k > N/p, then there exists a constant C = C(N , c, h, p, k)
such that

sup
x∈U

|u(x)| ≤ CkukL p
k

for all u in C∞(U) ∩ L p
k (U).

REMARK. Under the stated conditions on k and p, the theorem says that the
inclusion ofC∞(U)∩L p

k (U) into the Banach spaceC(U) of bounded continuous
functions onU is a bounded linear operator relative to the norm of L p

k (U). Since
C∞(U)∩ L p

k (U) is dense in L p
k (U) by Theorem 3.9 and sinceC(U) is complete,

the inclusion extends to a continuous map of L p
k (U) into C(U). In other words,

every member of L p
k (U) can be regarded as a bounded continuous function on

U .

PROOF. Fix g in C∞
com(R1) with g(t) equal to 1 for |t | ≤ 1

2 and equal to 0 for
|t | ∏ 3

4 . Fix x inU and its associated sign± and index j . We introduce spherical
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coordinates about x with the indices reordered so that j comes first, writing x+ y
for a point near x with

yj = ±r cosϕ,

y1 = r sinϕ cos θ1,
... (with yj omitted)

yN−1 = r sinϕ sin θ1 · · · sin θN−3 cos θN−2,

yN = r sinϕ sin θ1 · · · sin θN−3 sin θN−2,

when
0 ≤ ϕ ≤ π,

0 ≤ θi ≤ π for i < N−2,
0 ≤ θN−2 ≤ 2π.

All the points x + y with 0 ≤ ϕ ≤ 8(c), where 8(c) is some positive number
and 0 ≤ r ≤ h, lie in the cone 0x at x . For such ϕ’s and for 0 ≤ t ≤ 1, we define

F(t) = g
° t
h
¢
u
°
x + (±t cosϕ, t sinϕ cos θ1, . . . )

¢

and expand F in a Taylor series through order k − 1 with remainder about the
point t = h. Because of the behavior of g, F and all its derivatives vanish at
t = h. Therefore F(t) is given by the remainder term:

F(t) = 1
(k−1)!

R t
h (t − s)k−1F (k)(s) ds.

Putting t = 0, we obtain

u(x) = 1
(k−1)!

R 0
h (−r)k−1 @k

@rk
£
g
° r
h
¢
u
°
x + (· · · )

¢§
dr

= (−1)k
(k−1)!

R h
0 rk−N @k

@rk
£
g
° r
h
¢
u
°
x + (· · · )

¢§
r N−1 dr.

We regard the integral on the right side as taking place over the radial part of the
spherical coordinates that describe the set of y’s in 0x , and we want to extend
the integration over all of 0x . To do so, we have to integrate over all values
of θ1, . . . , θN−2 and for 0 ≤ ϕ ≤ 8(c). We multiply by the spherical part of
the Jacobian determinant for spherical coordinates and integrate both sides. The
integrand on the left side is constant, being independent of y, and gives a positive
multiple of u(x). Dividing by that multiple, we get

u(x) = c1
R
0x−x |y|k−N @k

@rk
£
g
° |y|
h

¢
u(x + y)

§
dy.
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Suppose temporarily that p > 1. With p0 still denoting the index dual to p,
application of Hölder’s inequality gives

|u(x)| ≤ c1
° R

0x−x |y|(k−N )p0 dy
¢1/p0° R

0x−x

Ø
Ø @k

@rk
£
g
° |y|
h

¢
u(x + y)

§ØØp dy
¢1/p

.

The first integral on the right side is the critical one. The radius extends from
0 to h, and the integral is finite if and only if (k − N )p0 > −N > 0, i.e.,
k > N − N/p0 = N/p. This is the condition in the theorem.
The differentiation @k

@rk in the second factor on the right can be expanded in
terms of derivatives in Cartesian coordinates, and then the integration can be
extended over all of U . The result is that the second factor is dominated by a
multiple of kukL p

k
. This completes the proof when p > 1.

Now suppose that p = 1. Then the above result from applying Hölder’s
inequality is replaced by the inequality

|u(x)| ≤ c1
∞
∞|y|k−N

∞
∞

∞,0x−x

R
0x−x

Ø
Ø @k

@rk
£
g
° |y|
h

¢
u(x + y)

§ØØ dy.

The first factor is finite if k ∏ N , and the second factor is handled as before. This
completes the proof if p = 1. §

Corollary 3.12. Suppose that U is a nonempty bounded open subset of RN

satisfying the cone condition, and suppose that 1 < p < ∞ and that m and k are
integers ∏ 0 such that k > m + N/p. If f is in L p

k (U), then f can be redefined
on a set of measure 0 so as to be in Cm(U).

PROOF. Choose by Theorem 3.9 a sequence { fi } in C∞(U)∩ L p
k (U) such that

lim fi = f in L p
k (U). For |α| ≤ m, we apply Theorem 3.11 to see that

sup
U

|Dα fi − Dα f j |

tends to 0 as i and j tend to infinity. Thus all the Dα fi converge uniformly. It
follows that the uniform-limit function ef = lim fi is in Cm(U). Since fi → f
in L p(U) and fi → ef uniformly, we conclude that ef = f almost everywhere.
Thus ef tells how to redefine f on a set of measure 0 so as to be in Cm(U). §

3. Harmonic Functions

LetU be an open set inRN . The discussionwill not be very interesting for N = 1,
and we exclude that case. A function u in C2(U) is harmonic in U if 1u = 0
identically in U . Harmonic functions were introduced already in Chapter I and
investigated in connection with certain boundary-value problems. In the present
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section we examine properties of harmonic functions more generally. Harmonic
functions in a half space, through their boundary values and the Poisson integral
formula, become a tool in analysis for working with functions on the Euclidean
boundary, and the behavior of harmonic functions on general open sets becomes
a prototype for the behavior of solutions of further “elliptic” second-order partial
differential equations.
Harmonic functions will be characterized shortly in terms of a certain mean-

value property. To get at this characterization and its ramifications, we need the
N -dimensional “Divergence Theorem” of Gauss for two special cases—a ball
and a half space. The result for a ball will be formulated as in Lemma 3.13
below; we give a proof since this theoremwas not treated in Basic. The argument
for a half space is quite simple, and we will incorporate what we need into the
proof of Proposition 3.15 below. For the case of a ball, recall6 that the change-
of-variables formula x = rω, with r ∏ 0 and |ω| = 1, for transforming integrals
in Cartesian coordinates for RN into spherical coordinates involves substituting
dx = r N−1 dr dω, where dω is a certain rotation-invariant measure on the unit
sphere SN−1 that can be expressed in terms of N − 1 angular variables. The
open ball of radius x0 and radius r is denoted by B(r; x0), and its boundary is
@B(r; x0).

Lemma 3.13. If F is aC1 function in an open set onRN containing the closed
ball B(r; 0)cl and if 1 ≤ j ≤ N , then

Z

x∈B(r;0)

@F
@xj

(x0 + x) dx =
Z

rω∈@B(r;0)
xj F(x0 + rω)r N−2 dω.

REMARKS. The lemma is a special case of the Divergence Theorem, whose
usual formula of is

R
U divF dx =

R
@U (F · n) dS, where U is a suitable bounded

open set, @U = U cl −U is its boundary, n is the outward-pointing unit normal,
F is a vector-valued C1 function, and dS is surface area. In Lemma 3.13, U
is specialized to the ball B(r; 0), dS is the (N − 1)-dimensional area measure
r N−1 dω on the surface @B(r; 0) of the ball, F is taken to be the product of F by
the j th standard basis vector ej , and ej · n is r−1xj .
PROOF. Without loss of generality, we may take j = 1 and x0 = 0. Write

x = (x1, x 0), where x 0 = (x2, . . . , xN ), and write ω = (ω1, ω
0) similarly. The

left side in the displayed formula is equal to
R
|x 0|≤r

R p
r2−|x 0|2

x1=−
p
r2−|x 0|2

@F
@x1 (x1, x

0) dx1 dx 0

=
R
|x 0|≤r

£
F(

p
r2 − |x 0|2, x 0) − F(−

p
r2 − |x 0|2, x 0)

§
dx 0.

6From Section VI.5 of Basic.
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Thus the lemma will follow if it is proved that
R

|x 0|≤r
F(

p
r2 − |x 0|2, x 0) dx 0 =

R

|ω|=1, ω1∏0
x1F(rω)r N−2 dω (∗)

and

−
R

|x 0|≤r
F(−

p
r2 − |x 0|2, x 0) dx 0 =

R

|ω|=1, ω1≤0
x1F(rω)r N−2 dω. (∗∗)

Let us use ordinary spherical coordinates for ω, with

√ rω1
...

rωN

!

=








r cos θ1
r sin θ1 cos θ2

...
r sin θ1··· sin θN−2 cos θN−1

r sin θ1··· sin θN−2 sin θN−1








and
dω = sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1.

The right side of (∗) is equal to
R

|ω|=1, ω1∏0
F(rω)ω1r N−2 dω

=
R

0≤θ1≤π/2,
0≤θj≤π for 1< j<N−1,

0≤θN−1≤2π

F(rω)r N−1 cos θ1 sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1,

and we show that it equals the left side of (∗) by carrying out for the left side of
(∗) the change of variables x 0 ↔ (θ1, . . . , θN−1) given with r constant by

x 0 =

√ x2
...
xN

!

=






r sin θ1 cos θ2
...

r sin θ1··· sin θN−2 cos θN−1

r sin θ1··· sin θN−2 sin θN−1




 .

The Jacobian matrix is the same as for the change to spherical coordinates
(r, θ2, . . . , θN−1) except that the first column has a factor r cos θ1 instead of 1
and the other columns have an extra factor of sin θ1. Consequently

dx 0 = r N−1°| cos θ1| sinN−2 θ1
¢°
sinN−3 θ2 · · · sin θN−2

¢
dθ1 · · · dθN−1.

Therefore themeasuresmatch in the two transformed sides, the sets of integration
for (θ1, . . . , θN−1) are the same, and the integrands are the same because cos θ1 =
| cos θ1|. This proves (∗). For (∗∗)wemake the same computation but the interval
of integration for θ1 is π/2 ≤ θ1 ≤ π . To get a match, the minus sign is necessary
because cos θ1 = −| cos θ1|. §



72 III. Topics in Euclidean Fourier Analysis

Proposition 3.14 (Green’s formula7 for a ball). Let B be an open ball in RN ,
let @B be its surface, and let dσ be the surface-area measure of @B. If u and v
are C2 functions in an open set containing Bcl, then

Z

B
(u1v − v1u) dx =

Z

@B

≥
u

@v

@n
− v

@u
@n

¥
dσ,

where n : @S → RN is the outward-pointing unit normal vector.

PROOF. Apply Lemma 3.13 to F = u @v
@xj and then to F = v @u

@xj , and subtract
the results. Then sum on j . §

LetƒN−1 be the surface area
R
SN−1 dω of the unit sphere inRN . A continuous

function u on an open subset U of RN is said to have the mean-value property
inU if the value of u at each point x inU equals the average value of u over each
sphere centered at x and lying in U , i.e., if

u(x) =
1

ƒN−1

Z

ω∈SN−1
u(x + tω) dω

for every x in U and for every positive t less than the distance from x to Uc.
The mean-value property over spheres implies a corresponding average-value

property over balls. In fact, the volume |B(t0; 0)| of the ball B(t0; 0) is given byR t0
0

R
SN−1 t N−1 dω dt = N−1t N0

R
SN−1 dω = N−1t N0 ƒN−1. When the mean-value

property over spheres is satisfied and t0 is less than the distance from x toUc, we
can apply the operation Nt−N0

R t0
0 (—) dt to both sides of the mean-value formula

and obtain

u(x) =
Nt−N0
ƒN−1

Z t0

0

Z

ω∈SN−1
u(x+tω)t N−1 dω dt =

1
|B(t0; 0)|

Z

B(t0;0)
u(x+y) dy.

Proposition 3.15 (Green’s formula for a half space). Let H be the subset of
RN = {(x 0, xN ) | x 0 ∈ RN−1 and xN ∈ R} with xN > 0. Suppose that u and v

are C2 functions on an open subset of RN containing the closure H and that at
least one of u and v is compactly supported. Then

Z

x∈H
(u1v − v1u) dx =

Z

x 0∈RN−1

≥
v

@u
@xN

− u
@v

@xN

¥
dx 0.

PROOF. Suppose F is a C1 function compactly supported on an open subset of
RN containing H . If 1 ≤ j ≤ N − 1, then

R
H

@F
@xj dx = 0 since the integral with

7This formula is related to but distinct from the formula with the same name at the beginning of
Section I.3.



3. Harmonic Functions 73

respect to dxj is the difference between two values of F and since these are 0 by
the compactness of the support. For j = N , however, one of the boundary terms
may fail to be 0, and the result is that

R
H

@F
@xN dx = −

R
RN−1 F(x 0) dx 0.

Apply the j th of these formulas first to F = u @v
@xj and then to F = v @u

@xj , sum
the results on j , and subtract the two sums. The result is the formula of the
proposition. §

Theorem 3.16. Let U be an open set in RN , and let u be a continuous scalar-
valued function onU . If u is harmonic onU , then u has the mean-value property
on U . Conversely if u has the mean-value property on U , then u is in C∞(U)
and is harmonic on U .

PROOF. Suppose that u is harmonic onU . We prove that u has the mean-value
property. It is enough to treat x = 0. Green’s formula, as in Proposition 3.14,
directly extends from balls to the difference of two balls.8 Thus we have

R
E (u1v − v1u) dx =

R
@E

°
u @v

@n − v @u
@n

¢
dσ (∗)

whenever E is a closed ball Bt of radius t contained in U or is the difference
Bt − (B≤)

o of two concentric balls with ≤ < t . Taking E = Bt and v = 1 in (∗),
we obtain R

@Bt
@u
@n dσ = 0. (∗∗)

Routine computation shows that the function given by

v(x) =

Ω
|x |−(N−2) for N > 2,
log |x | for N = 2,

is harmonic for x 6= 0 and has @v
@r equal to a nonzeromultiple of |x |

−(N−1), r being
the spherical coordinate radius |x |. If we apply (∗) to this v and our harmonic u
when E = Bt − (B≤)

o, we obtain
R
@(Bt−(B≤ )o)

°
u @v

@n − v @u
@n

¢
dσ = 0.

Since v depends only on |x |, (∗∗) shows that the second term of the integrand
yields 0. Thus this formula becomes

R
@(Bt−(B≤ )o)

u @v
@n dσ = 0.

8For the extended result, suppose that the balls have radii r1 < r2. Then u and v are defined from
radius r1 − ε to r2 + ε for some ε > 0. We can adjust u and v by multiplying by a suitable smooth
function that is identically 1 for radius ∏ r1 − 1

3 ε and identically 0 for radius ≤ r1 − 2
3 ε, and then

u and v will extend as smooth functions for radius < r2 + ε. Consequently Proposition 3.14 will
apply on each ball to the adjusted functions, and subtraction of the results gives the desired version
of Green’s formula.
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The normal vector for the inner sphere points toward the center. Hence we can
rewrite our equality as

R
|x |=≤ u

@v
@r dσ =

R
|x |=t u

@v
@r dσ.

Since @v
@r = c|x |−(N−1) with c 6= 0, we obtain

≤−(N−1) R
|x |=≤ u dσ = t−(N−1) R

|x |=t u dσ.

On the left side, dσ = ≤N−1 dω, while on the right side, dσ = t N−1 dω.
Therefore R

|ω|=1 u(≤ω) dω =
R
|ω|=1 u(tω) dω

whenever 0 < ≤ < t and Bt is contained in U . Dividing by ƒN−1, letting ≤
decrease to 0, and using the continuity of u, we see that u(0) =

R
ω∈SN−1 u(tω) dω.

Thus u has the mean-value property.
For the converse direction suppose initially that u is in C2(U). Define

mt(u)(x) = ƒ−1
N−1

R
|ω|=1 u(x + tω) dω

whenever x is in U and t is a positive number less than the distance of x to Uc.
With x fixed, the function mt(u)(x) has two continuous derivatives. We shall
show that

d2

dt2
mt(u)(x)

Ø
Ø
t=0 = N−11u(x), (†)

the derivatives being understood to be one-sided derivatives as t decreases to 0.
If u is assumed to have the mean-value property, mt(u)(x) is constant in t , and
we can conclude from (†) that 1u(x) = 0. The computation of d2

dt2 mt(u)(x) is

mt(u)(x) = ƒ−1
N−1

R
|ω|=1 u(x1 + tω1, . . . , xN + tωN ) dω,

d
dt mt(u)(x) = ƒ−1

N−1
R
|ω|=1

PN
j=1 ωj Dju(x + tω) dω,

d2
dt2 mt(u)(x) = ƒ−1

N−1
R
|ω|=1

PN
j,k=1 ωjωk Dj Dku(x + tω) dω.

Letting t decrease to 0, we obtain

d2
dt2 mt(u)(x)

Ø
Ø
t=0 = ƒ−1

N−1
PN

j,k=1 Dj Dku(x)
R
|ω|=1 ωjωk dω.

If j 6= k, then
R
|ω|=1 ωjωk dω = 0 since the integrand is an odd function of

the j th variable taken over a set symmetric about 0. The integral
R
|ω|=1 ω2j dω is
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independent of j and has the property that N times it is equal to
R
|ω|=1 |ω|2 dω =

R
|ω|=1 dω = ƒN−1. Thus

R
|ω|=1 ω2j dω = N−1ƒN−1, and

d2
dt2 mt(u)(x)

Ø
Ø
t=0 = N−1PN

j=1 D2j u(x) = N−11u(x).

This proves (†) and completes the argument that a C2 function in U with the
mean-value property is harmonic.
Finally suppose that u has the mean-value property and is assumed to be

merely continuous. Proposition 3.5e allows us to choose a function ϕ ∏ 0 in
C∞
com(RN ) with ϕ(x) = ϕ0(|x |),

R
RN ϕ(x) dx = 1, and ϕ(x) = 0 for |x | ∏ 1. Put

ϕε(x) = ε−Nϕ(ε−1x), and define uε(x) =
R

RN u(x − y)ϕε(y) dy in the open set
Uε = {x ∈ U | D(x,Uc) > ε}. Proposition 3.5c shows that uε is in C∞(Uε),
and the mean-value property of u, in combination with the radial nature of ϕε as
expressed by the equality ϕε(tω) = ϕε(te1), forces uε(x) = u(x) for all x in Uε:

uε(x) =
R ε

t=0
R
|ω|=1 u(x − tω)ϕε(tω)t N−1 dω dt

=
R ε

t=0 ƒN−1u(x)ϕε(te1)t N−1 dt

= u(x)
R

RN ϕε(y) dy = u(x).

Since ε is arbitrary, u is in C∞(U). The function u has now been shown to be in
C2(U), and it is assumed to have themean-value property. Therefore the previous
case shows that it is harmonic. §

Corollary 3.17. If u is harmonic on an open subset U of RN , then u is in
C∞(U).

PROOF. This follows by using both directions of Theorem 3.16. §

A sequence of functions {un} on a locally compact Hausdorff space X is said
to converge uniformly on compact subsets of X if lim un = u pointwise on X
and if for each compact subset K of X , the convergence is uniform on K . For
example the sequence {xn} converges to the 0 function on (0, 1) uniformly on
compact subsets.

Corollary 3.18. If {un} is a sequence of harmonic functions on an open subset
U of RN and if {un} converges uniformly on compact subsets to u, then u is
harmonic on U .

PROOF. About any point of U is a compact neighborhood lying in U , and
the convergence is uniform on that neighborhood. Therefore u is continuous.
Each integration needed for the mean-value property occurs on a compact subset
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of U , and the uniform convergence allows us to interchange limit and integral.
Therefore the mean-value property for each un , valid because of one direction of
Theorem 3.16, implies the mean-value property for u. Hence u is harmonic by
the converse direction of Theorem 3.16. §

Suppose that U is open in RN and that u is harmonic on U . If B is an
open ball in U , then

R
U u1√ dx = 0 for all √ ∈ C∞

com(B) by Green’s formula
(Proposition 3.14), since √ and @√

@n are both identically 0 on the boundary of B.
We shall use a smooth partition of unity to show that

R
U u1√ dx is therefore 0

for all √ ∈ C∞
com(U). Corollary 3.19 below provides a converse; we shall use the

converse in a crucial way in Corollary 3.23 below.
The argument to construct the partition of unity goes as follows. To each point

of K = support(√), we can associate an open ball centered at that point whose
closure is contained in U . As the point varies, these open balls cover K , and
we extract a finite subcover {U1, . . . ,Uk}. Lemma 3.15b of Basic constructs an
open cover {W1, . . . ,Wk} of K such thatW cl

i is a compact subset ofUi for each i .
Now we argue as in the proof of Proposition 3.14 of Basic. A second application
of Lemma 3.15b of Basic gives an open cover {V1, . . . , Vk} of K such that V cli is
compact and V cli ⊆ Wi for each i . Proposition 3.5f constructs a smooth function
gi ∏ 0 that is 1 on V cli and is 0 off Wi . Then g =

Pk
i=1 gi is smooth and ∏ 0

on RN and is > 0 everywhere on K . A second application of Proposition 3.5f
produces a smooth function h ∏ 0 onRN that is 1 on the set where g is 0 and is 0
on K . Then g+h is everywhere positive onRN , and the functionsϕi = gi/(g+h)
form the smooth partition of unity that we shall use.
To apply the partition of unity, we write √ =

P
i ϕi√ . Then each term ϕi√

is smooth and compactly supported in an open ball whose closure is contained in
U . Consequently we have

R
U u1(ϕi√) dx = 0 for each i . Summing on i , we

obtain
R
U u1√ dx = 0, which was what was being asserted.

Corollary 3.19. Suppose thatU is open inRN , that u is continuous onU , and
that

R
U u1√ dx = 0 for all √ ∈ C∞

com(U). Then u is harmonic on U .
PROOF. Let B be an open ball of radius r with closure contained inU , fix ε > 0

so as to be< r , and let Bε be the open ball of radius r − ε with the same center as
B. Construct ϕε as in the proof of Theorem 3.16, and let uε = u ∗ ϕε. Suppose
that √ is in C∞

com(Bε). For t and x in RN with |t | ≤ ε, define √t(x) = √(t + x).
Since √ is supported in Bε, √t is supported in B, and therefore

R
B u(x − t)1√(x) dx =

R
B u(x)1√(x + t) dx =

R
B u1√t dx = 0,

the last equality holding by the hypothesis. Multiplying by ϕε(t), integrating for
|t | ≤ ε, and interchanging integrals, we obtain

0 =
R
B

R
RN u(x − t)ϕε(t)1√(x) dt dx =

R
B uε(x)1√(x) dx .
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Since √ vanishes identically near the boundary of B, this identity and Green’s
formula (Proposition 3.14) together yield

R
B √(x)1uε(x) dx = 0 for all √ in

C∞
com(Bε). Application of Corollary 3.6a allows us to extend this conclusion to
all √ in Ccom(Bε), and then the uniqueness in the Riesz Representation Theorem
shows that we must have 1uε(x) = 0 for all x in Bε. As ε decreases to 0, uε

tends to u uniformly on compact sets. By Corollary 3.18, u is harmonic in B.
Since the ball B is arbitrary in U , u is harmonic in U . §

Corollary 3.20. Let U be a connected open set in RN . If u is harmonic in U
and |u| attains a maximum somewhere in U , then u is constant in U .
PROOF. Suppose that |u| attains a maximum at x0. Multiplying u by a suitable

constant eiθ , we may assume that u(x0) = M > 0. The subset E of U where
u(x) equals M is closed and nonempty. It is enough to prove that E is open. Let
x1 be in E , and choose an open ball B centered at x1, say of some radius r > 0,
that lies in U . We show that B lies in E . For 0 < t < r , Theorem 3.16 says that
u has the mean-value property

ƒ−1
N−1

R
SN−1 u(x1 + tω) dω = u(x1) = M.

Arguing by contradiction, suppose that u(x1 + t0ω0) 6= u(x1) for some t0ω0 with
0 < t0 < r . Then Re u(x1 + t0ω0) < M − ≤ for some ≤ > 0, and continuity
produces a nonempty open set S in the sphere SN−1 such that Re u(x1 + t0ω) <
M − ≤ for ω in S. If σ is the name of the measure on SN−1, then we have

MƒN−1 = Re
° R

SN−1 u(x1 + tω) dω
¢

=
R
S Re u(x1 + tω) dω +

R
SN−1−S Re u(x1 + tω) dω

≤
R
S (M − ≤) dω +

R
SN−1−S M dω

= (M − ≤)σ (S) + Mσ(SN−1 − S)
= MƒN−1 − ≤σ(S),

and we have arrived at a contradiction since σ(S) > 0. §

Corollary 3.21. Let U be a bounded open subset of RN , and let @U be its
boundary. Ifu is harmonic inU and isu is continuousonU cl, then supx∈U |u(x)|=
maxx∈@U |u(x)|.
PROOF. Since u is continuous and U cl is compact, |u| assumes its maximum

M somewhere on U cl. If |u(x0)| = M for some x0 in U , then Corollary 3.20
shows that u is constant on the component ofU to which x0 belongs. The closure
of that component cannot equal that component sinceRN is connected. Thus the
closure of that component contains a point of @U , and |u| must equal M at that
point of @U . Consequently supx∈U |u(x)| ≤ maxx∈@U |u(x)|. Since every point
of @U is the limit of a sequence of points in U , the reverse inequality is valid as
well, and the corollary follows. §
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Corollary 3.22 (Liouville). Any bounded harmonic function on RN is
constant.

REMARKS. The best-known result of Liouville of this kind is one fromcomplex
analysis—that a bounded function analytic on all ofC is constant. This complex-
analysis result is actually a consequence of Corollary 3.22 because the real and
imaginary parts of a bounded analytic function on C are bounded harmonic
functions on R2.

PROOF. Suppose that u is harmonic on RN with |u(x)| ≤ M . Let x1 and x2
be distinct points of RN , and let R > 0. Since u has the mean-value property
over spheres by Theorem 3.16, u equals its average value over balls. Hence
u(x1) = |B(R; 0)|−1

R
B(R;x1) u(x) dx and u(x2) = |B(R; 0)|−1

R
B(R;x2) u(x) dx .

Subtraction gives

u(x1)−u(x2) = |B(R; 0)|−1
° R

B(R;x1) u(x) dx −
R
B(R;x2) u(x) dx

¢

= |B(R; 0)|−1
°R

B(R;x1)−B(R;x2)u(x) dx−
R
B(R;x2)−B(R;x1)u(x) dx

¢
.

Therefore

|u(x1) − u(x2)| ≤ |B(R; 0)|−1
R
B(R;x1)1B(R;x2) |u(x)| dx,

where B(R; x1)1B(R; x2) is the symmetric difference (B(R; x1) − B(R; x2)) ∪
(B(R; x2) − B(R; x1)). Hence

|u(x1)−u(x2)| ≤
M|B(R; x1)1B(R; x2)|

|B(R; 0)|
=

MRN |B(1; x1/R)1B(1; x2/R)|

RN |B(1; 0)|
.

The right side is |B(1; x1/R)1B(1; x2/R)|, apart from a constant factor, and the
sets B(1; x1/R)1B(1; x2/R) decrease and have empty intersection as R tends
to infinity. By complete additivity of Lebesgue measure, the measure of the
symmetric difference tends to 0. We conclude that u(x1) = u(x2). Therefore u
is constant. §

In the final two corollaries let RN+1
+ be the open half space of points (x, t) in

RN+1 such that x is in RN and t > 0.

Corollary 3.23 (Schwarz Reflection Principle). Suppose that u(x, t) is har-
monic in RN+1

+ , that u is continuous on (RN+1
+ )cl, and that u(x, 0) = 0 for all

x . Then the definition u(x,−t) = −u(x, t) for t > 0 extends u to a harmonic
function on all of RN+1.
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PROOF. Define

w(x, t) =

Ω u(x, t) for t ∏ 0,
−u(x,−t) for t ≤ 0.

The function w is continuous. We shall show that
R

RN w1√ dx = 0 for all
√ ∈ C∞

com(RN+1), and then Corollary 3.19 shows that w is harmonic. Write √
as the sum of functions even and odd in the variable t . Since w is odd in t , the
contribution to

R
RN w1√ dx from the even part of √ is 0. We may thus assume

that √ is odd in t .
For ε > 0, let Rε = {(x, t) | t > ε}. It is enough to show that

R
Rε
u1√ dx dt

has limit 0 as ε decreases to 0 since
R

RN+1 w1√ dx dt is twice this limit. We
apply Green’s formula for a half space (Proposition 3.15) with v = √ on the set
Rε ⊆ RN+1 except for one detail: to get the hypothesis of compact support to be
satisfied, we temporarily multiply√ by a smooth function that is identically 1 for
t ∏ ε and is identically 0 for t ≤ 1

2ε. Since u is harmonic in Rε, the result is that

−
R
Rε
u1√ dx dt =

R
Rε

(√1u − u1√) dx dt =
R
{(x,t) | t=ε}

°
u @√

@t − √ @u
@t

¢
dx .

On the right side, limε↓0
R
{(x,t) | t=ε} u

@√
@t dx = 0 since u( · , ε) tends uniformly

to 0 on the relevant compact set of x’s in RN .
Thus it is enough to prove that limε↓0

R
{(x,t) | t=ε} √

@u
@t dx = 0. Since √(x, t)

is of class C2, is odd in x , and is compactly supported, we have |√(x, t)| ≤ Ct
uniformly in x for small positive t . Thus it is enough to prove that

lim
t↓0

Ø
Ø
Ø t

@u
@t

(x, t)
Ø
Ø
Ø = 0 (∗)

uniformly on compact subsets of RN .
To prove (∗), let ϕ be a function as in Proposition 3.5e, and let ϕε(x, t) =

ε−(N+1)ϕ(ε−1(x, t)). Fix x0 in RN , and define X0 = (x0, t0) and X = (x0, t).
If |X − X0| < 1

3 t0, then the mean-value property of u in RN+1
+ gives u(X) =

(u ∗ ϕ 1
3 t0

)(X). Hence we have

@u
@t (X) = @

@t
R

RN+1 ϕ 1
3 t0

(X − Y )u(Y ) dY

=
R

RN+1
@
@t

£
( 13 t0)

−(N+1)ϕ
°
( 13 t0)

−1(X − Y )
¢§
u(Y ) dY.

In the computation of the partial derivative on the right side, the variable t appears
as the last coordinate of X . Therefore this expression is equal to

( 13 t0)
−1 R

RN+1 ( 13 t0)
−(N+1) @ϕ

@t
°
( 13 t0)

−1(X − Y )
¢
u(Y ) dY.
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Changing variables in the integration by a dilation in Y shows that this expression
is equal also to

( 13 t0)
−1 R

RN+1
@ϕ
@t

°
( 13 t0)

−1X − Y
¢
u( 13 t0Y ) dY.

If we write Y = (y, s) and take absolute values, we obtain

Ø
Ø @u

@t (x0, t)
Ø
Ø ≤ 3t−10

∞
∞ @ϕ

@t

∞
∞
1 sup

|s−t0|<2t0/3,
Y near X0

|u(Y )|.

The required behavior of t @u
@t follows from this estimate. §

Corollary 3.24. Suppose that u(x, t) is harmonic inRN+1
+ , that u is continuous

on (RN+1
+ )cl, and that u(x, 0) = 0 for all x . If u is bounded, then u is identically 0.

REMARK. Without the assumption of boundedness, the function u(x, t) = t is
a counterexample.

PROOF. Corollary 3.23 shows that u extends to a bounded harmonic function
on all of RN+1, and Corollary 3.22 shows that the extended function is constant,
hence identically 0. §

4. Hp Theory

As was said at the beginning of Section 3, harmonic functions in a half space,
through their boundary values and the Poisson integral formula, become a tool in
analysis for working with functions on the Euclidean boundary. The Poisson in-
tegral formula, which was introduced in Chapters VIII and IX of Basic, generates
harmonic functions from boundary values.
The details are as follows. Let RN+1

+ be the open half space of pairs (x, t) in
RN+1 with x ∈ RN andwith t > 0 inR1. Weview the boundary

©
(x, 0)

Ø
Ø x ∈ RN™

as RN . The function

P(x, t) = Pt(x) =
cN t

(t2 + |x |2) 12 (N+1)
,

for t > 0, with cN = π− 1
2 (N+1)0

° N+1
2

¢
, is called the Poisson kernel for RN+1

+ .
The Poisson integral formula for RN+1

+ is u(x, t) = (Pt ∗ f )(x), where f is
any given function in L p(RN ) and 1 ≤ p ≤ ∞, and the function u is called the
Poisson integral of f .
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If f is in L p, then u is harmonic on RN+1
+ , u( · , t) is in L p for each t > 0, and

ku( · , t)kp ≤ k f kp. For 1 ≤ p < ∞, limt↓0 u( · , t) = f in the norm topology of
L p, while for p = ∞, limt↓0 u( · , t) = f in theweak-star topology of L∞ against
L1. In both cases, limt↓0 ku( · , t)kp = k f kp, and limt↓0 u(x, t) = f (x) a.e.; this
latter result is known as Fatou’s Theorem. When p = ∞, the a.e. convergence
occurs at any point where f is continuous, and the pointwise convergence is
uniform on any subset of RN where f is uniformly continuous.
The L p theory for p = 1 extends from integrable functions to theBanach space

M(RN ) of finite complex Borel measures. Specifically if ∫ is a finite complex
Borel measure on RN , then the Poisson integral of ∫ is defined to be the function
u(x, t) = (Pt ∗ µ)(x) =

R
RN Pt(x − y) d∫(y). Then u is harmonic on RN+1

+ ,
ku( · , t)k1 ≤ k∫k for each t > 0, limt↓0 u( · , t) = ∫ in the weak-star topology of
M(RN ) against Ccom(RN ), and limt↓0 ku( · , t)k1 = kµk.
The new topic for this section is a converse to the above considerations. For

1 ≤ p ≤ ∞, we defineHp(RN+1
+ ) to be the vector space of functions u(x, t) on

RN+1
+ such that
(i) u(x, t) is harmonic on RN+1

+ ,
(ii) supt>0 ku( · , t)kp < ∞.

With kukHp defined as supt>0 ku( · , t)kp, the vector spaceHp(RN+1
+ ) is a normed

linear space. If f is in L p(RN ), then the facts about the Poisson integral formula
show that the Poisson integral of f is in Hp(RN+1

+ ) and its Hp(RN+1
+ ) norm

matches the L p(RN ) norm of f . For p = 1, we readily produce further examples.
Specifically if ∫ is any member of M(RN ), then the Poisson integral of ∫ is in
H1(RN+1

+ ), with the H1(RN+1
+ ) norm matching the M(RN ) norm. The theorem

of this section will say that there are no other examples.
The members of H∞(RN+1

+ ) are exactly the bounded harmonic functions in
the half space RN+1

+ , and the tool for obtaining an L∞ function on RN from
this harmonic function is the preliminary form of Alaoglu’s Theorem proved in
Basic:9 any norm-bounded sequence in the dual of a separable normed linear
space has a weak-star convergent subsequence.10 We shall use Corollary 3.24 to
see that the harmonic function has to be the Poisson integral of this L∞ function.

Theorem 3.25. If 1 < p ≤ ∞, then any harmonic function in Hp(RN+1
+ ) is

the Poisson integral of a function in L p(RN ). For p = 1, any harmonic function
inH1(RN+1

+ ) is the Poisson integral of a finite complex measure in M(RN ).

PROOF. We begin by proving that u(x, t) is bounded for t ∏ t0. For this step
we may assume that p < ∞. Theorem 3.16 shows that u has the mean-value

9Theorem 5.58 of Basic.
10The full-fledged version of Alaoglu’s Theorem will be stated and proved in Chapter IV.
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property. We know as a consequence that if B denotes the ball with center (x, t)
and radius 12 t0, then the value of u at (x, t) equals the average value over B:

u(x, t) = 1
|B|

R
B u(y, s) dy ds.

Since the measure |B|−1 dy ds on B has total mass 1, Hölder’s inequality gives
|u(x, t)|p ≤ 1

|B|

R
B |u(y, s)|p dy ds

≤ 1
|B|

R
|s−t |≤ 1

2 t0

R
y∈RN |u(y, s)|p dy ds

≤ [( 12 t0)
N+1ƒN ]−1(N + 1)t0kukpHp ,

and the boundedness is proved.
For each positive integer k, define fk(x) = u(x, 1/k) and w(x, t) =

(Pt ∗ fk)(x). Then the function wk(x, t) − u(x, t + 1/k) is
(i) harmonic in (x, t) for t > 0 sincewk and any translate of u are harmonic,
(ii) bounded as a function of (x, t) for t ∏ 0 since u(x, t + 1/k) is bounded

for t ∏ 0, according to the previous paragraph, and sincewk is the Poisson
integral of the bounded function fk ,

(iii) continuous in (x, t) for t ∏ 0 since u(x, t + 1/k) and wk(x, t) both have
this property, the latter because fk is continuous and bounded.

By Corollary 3.24, wk(x, t) − u(x, t + 1/k) = 0. That is,
u(x, t + 1/k) =

R
RN Pt(x − y) fk(y) dy.

Now suppose p > 1, so that L p is the dual space to L p0 if p−1 + p0−1 = 1.
Since u is in Hp, k fkkp ≤ M for the constant M = kukHp

. By the preliminary
form of Alaoglu’s Theorem, there exists a subsequence { fkj } of { fk} that is weak-
star convergent to some function f in L p. Since for each fixed t , Pt is in L1∩ L∞

and hence is in L p0 , each (x, t) has the property that
u(x, t + 1/kj ) =

R
RN Pt(x − y) fkj (y) dy →

R
RN Pt(x − y) f (y) dy.

But u(x, t + 1/kj ) → u(x, t) by continuity of u. We conclude that u(x, t) =R
RN Pt(x − y) f (y) dy.
This proves the theorem for p > 1. If p = 1, the above argument falls short

of constructing a function f in L1 since L1 is not the dual of L∞. Instead, we
treat fk as a complex measure fk(x) dx . The norm of fk(x) dx in M(RN ) equals
k fkk1, and thus the norms of the complex measures fk(x) dx are bounded. The
space M(RN ) is the dual of Ccom(RN ) and hence also of its uniform closure,
which is the Banach space C0(RN ) of continuous functions on RN vanishing at
infinity. Let { fkj (x) dx} be a weak-star convergent subsequence of { fk(x) dx},
with limit ∫ in M(RN ). Since each function y 7→ Pt(x − y) is in C0(RN ), we
have limk

R
RN Pt(x − y) fkj (y) dy =

R
RN Pt(x − y) d∫(y). This completes the

proof. §



5. Calderón-Zygmund Theorem 83

For N = 1, every analytic function in the upper half planeR2
+ is automatically

harmonic, and one can ask for a characterization of the subspace of analytic
members of Hp(R2+). Aspects of the corresponding theory are discussed in
Problems 13–20 at the end of the chapter.

5. Calderón–Zygmund Theorem

The Calderón–Zygmund Theorem asserts the boundedness of certain kinds of
important operators on L p(RN ) for 1 < p < ∞. It is an N -dimensional
generalization of the theorem giving the boundedness of the Hilbert transform,
which was proved in Chapters VIII and IX of Basic. We state and prove the
Calderón–Zygmund Theorem in this section, and we give some applications to
partial differential equations in the next section.

Theorem 3.26 (Calderón–Zygmund Theorem). Let K (x) be a C1 function on
RN − {0} homogeneous11 of degree 0 with mean value 0 over the unit sphere,
i.e., with Z

SN−1
K (ω) dω = 0.

For each ε > 0, define

Tε f (x) =
Z

|t |∏ε

K (t)
|t |N

f (x − t) dt

whenever 1 < p < ∞ and f is in L p(RN ). Then
(a) kTε f kp ≤ Apk f kp for a constant Ap independent of ε and f ,
(b) lim

ε↓0
Tε f = T f exists as an L p limit,

(c) kT f kp ≤ Apk f kp for a constant Ap independent of f .

REMARKS. If 1 ≤ p < ∞ and if p0 is the dual index to p, then the function
equal to K (t)/|t |N for |t | ∏ ε and equal to 0 for |t | < ε is in L p0 . Therefore, for
each such p, Tε f is the convolution of an L p0 function and an L p function and is
a well-defined bounded uniformly continuous function. In proving the theorem,
we shall use less about K (x) than the assumedC1 condition onRN −{0} but more
than continuity. The precise condition that we shall use is that |K (x) − K (y)| ≤
√(|x−y|) on SN−1 for a nondecreasing function√(δ) of one variable that satisfiesR 1
0

√(δ)
δ
dδ < ∞.

11A function F of several variables is homogeneous of degree m if F(r x) = rm F(x) for all
r > 0 and all x 6= 0.
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Themain steps in the proof are to show that the operator T1 equal to Tε for ε = 1
is bounded on L2 and is ofweak-type (1, 1) in the sense that

Ø
Ø©x

Ø
Ø |(T1 f )(x) > ξ

™ØØ
≤ Ck f k1/ξ . The remainder of the argument is qualitatively similar to the
argument with the Hilbert transform, not really involving any new ideas. We
handle matters in the following order: First we prove as Lemma 3.27 two facts
needed in the L2 analysis, second we give the proof of the boundedness of T1
on L2, third we establish in Lemmas 3.28 and 3.29 a weak-type (1, 1) result
for a wide class of operators, and fourth we show as a special case that T1 is of
weak-type (1, 1). Finally we tend to the remaining details of the proof.

Lemma 3.27. There is a constant C such that for all R ∏ 1, all ε with
0 < ε ≤ 1, and all nonzero real a and b,

(a)
Ø
Ø
Ø
Z R

ε

sin ar dr
r

Ø
Ø
Ø ≤ C ,

(b)
Ø
Ø
Ø
Z R

ε

(cos ar − cos br) dr
r

Ø
Ø
Ø ≤ C

°
1+

Ø
Ø log(|a/b|)

Ø
Ø¢.

PROOF. In (a) and (b), the signs of a and b make no difference, and we may
therefore assume that a > 0 and b > 0.
In (a), the change of variables s = ar converts the integral into

R aR
aε

sin s ds
s .

Since s−1 sin s is integrable near 0, it is enough to consider
R S
0
sin s ds

s . Integration
by parts shows that this integral equals

£ 1−cos s
s

§S
0 −

R S
0

(cos s−1) ds
s2 . The integrated

term tends to a finite limit as S tends to infinity, and the integral is absolutely
convergent. Hence (a) follows.
In (b), possibly by interchanging a and b, we may assume that c = b/a is≤ 1.

The changeof variables s = ar converts the integral into
R aR
aε

(cos s−cos cs) ds
s . Since

|1− cos s| ≤ 1
2s
2 for all s, we have |1− cos cs| ≤ 1

2c
2s2 ≤ 1

2s
2. So the integrand

is≤ s in absolute value everywhere and in particular is integrable for s near 0. It is
therefore enough to show that

Ø
Ø R S
1

(cos s−cos cs) ds
s

Ø
Ø ≤ C(1+ log(c−1)). Integration

by parts gives
R S
1
cos s ds

s =
£ sin s

s
§S
1 +

R S
1
sin s ds
s2 . The integrated term tends to a

finite limit, and the integral is absolutely convergent. Hence the term
R S
1
cos s ds

s
is bounded, and it is enough to handle

R S
1
cos cs ds

s . Putting t = cs changes this
integral to

R cS
c

cos t dt
t . If cS ∏ 1, the integral from 1 to cS contributes a bounded

amount, as is seen by integrating by parts, and the integral from c to 1 contributes
in absolute value at most

R 1
c

dt
t = log c−1. If cS ≤ 1, the integral from c to cS

contributes in absolute value at most
R 1
c

dt
t +

R 1
cS

dt
t = log c−1 + log(cS)−1 ≤

2 log c−1. §

PROOF FOR THEOREM 3.26 THAT T1 IS BOUNDED ON L2. Define k(x) to be
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K (x)/|x |N for |x | ∏ 1 and to be 0 for |x | < 1. Then k is an L2 function, and
T1 f = k ∗ f . We show that T1 is bounded on L2 by showing that the Fourier
transform F k of k is an L∞ function.
If In denotes the indicator function of {|x | ≤ n}, then the sequence {k In}

converges to k in L2. By the Plancherel formula, {F(k In)} converges to F k in
L2. Thus a subsequence converges almost everywhere. To simplify the notation,
let n run through the indices of the subsequence. We have just shown that

(F k)(x) = limn
R
|x |≤n k(x)e

−2π i x ·y dx,

the limit existing almost everywhere. Write x = rω and y = r 0ω0, where r = |x |
and r 0 = |y|. Then x · y = rr 0 cos ∞ , where ∞ = ω · ω0, and (F k)(x) is the limit
on n of
R
SN−1

R n
1

K (ω)
r N e−2π irr 0 cos ∞ r N−1 dr dω

=
R
SN−1

£ R n
1

e−2π irr 0 cos ∞ dr
r

§
K (ω) dω

=
R
SN−1

£ R n
1

(e−2π irr 0 cos ∞ −cos 2πrr 0) dr
r

§
K (ω) dω since K has

mean value 0

=
R
SN−1

£ R n
1

°
cos(2πrr 0 cos ∞ )−cos 2πrr 0

¢
dr

r
§
K (ω) dω

− i
R
SN−1

£ R n
1
sin(2πrr 0 cos ∞ ) dr

r
§
K (ω) dω.

Let us call the terms on the right side Term I and −i Term II. The inner integral
for Term II is bounded independently of r, r 0, ∞, n by Lemma 3.27a. Since K is
bounded, Term II is bounded.
The inner integral for Term I is bounded by C

°
1+ log(| cos ∞ |−1)

¢
, according

to Lemma 3.27b. Since K is bounded, the contribution from C by itself yields a
bounded contribution to Term I and is harmless. We are left with a term that in
absolute value is

≤ C
R
SN−1 log(| cos ∞ |−1)|K (ω)| dω = C

R
SN−1 log(| cos(ω · ω0)|−1)|K (ω)| dω.

Since K is bounded, it is enough to estimate
R
SN−1 log(| cos(ω · ω0)|−1) dω. This

integral is independent of ω0. We introduce spherical coordinates

ω1 = cos θ1,
ω2 = sin θ1 cos θ2,

...
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and take ω0 = (1, 0, . . . , 0). The integral becomes
R

0≤θj≤π for j<N−1,
0≤θN−1≤2π

log(| cos θ1|−1) sinN−2 θ1 · · · sin θN−2 dθN−1 · · · dθ1,

which is a constant times
R π

0 log(| cos θ |−1) sinN−2 θ dθ . This integral in turn
is ≤

R π

0 log(| cos θ |−1) dθ , whose finiteness reduces to the local integrability of
log(|x |−1) on the line. Thus Term I is bounded, and the boundedness of F k
follows. §

Lemma 3.28 (Calderón–Zygmund decomposition). Let f be in L1(RN ), and
let ξ be a positive real number. Then there exists a finite or infinite disjoint
sequence {En}n∏1 of Borel subsets of RN such that

(a) for each En , there exists a ball Bn = B(rn; xn) such that the balls Bn and
B∗
n = B(5rn; xn) have Bn ⊆ En ⊆ B∗

n ,
(b)

P
n |En| ≤ 5Nk f k1

±
ξ ,

(c) | f (x)| ≤ ξ almost everywhere off
S

n En ,

(d)
1

|En|

Z

En
| f (y)| dy ≤ 5N ξ for each n.

FIGURE 3.2. Calderón–Zygmund decomposition of RN relative to a function at a
certain height. The set where the maximal function of f exceeds ξ lies in the
union of the gray balls. The gray balls have radii 5 times those of the black
balls, and the black balls are disjoint. The function | f | is ≤ ξ almost
everywhere off the union of the gray balls, and the sum of the volumes

of the gray balls is controlled.

REMARKS. In the 1-dimensional case, this result was embedded in the proof
of Theorem 8.25 of Basic. The sets En were open intervals. Extending that
argument too literally to the N -dimensional case is unnecessarily complicated
for current purposes. Instead, we settle for an nth set that contains a ball of some
radius about a point and is contained in a ball of 5 times that radius. Thus the nth
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set En consists of a black ball and part of the corresponding gray ball in Figure
3.2. The fact that En has not been precisely locatedmakes the proof of weak-type
(1, 1) in the present section more difficult than the proof of Theorem 8.25 of
Basic.
PROOF. Let f ∗ be the Hardy–Littlewood maximal function

f ∗(x) = sup0<r<∞ |B(r; x)|−1
R
B(r;x) | f (y)| dy,

and let E = {x | f ∗(x) > ξ}. If x is in E , then |B(r; x)|−1
R
B(r;x) | f (y)| dy > ξ

for some r > 0. On the other hand, limr→∞ |B(r; x)|−1
R
B(r;x) | f (y)| dy = 0

since f is integrable. Thus, for each x in E , there exists an r = rx depending on
x such that

|B(rx ; x)|−1
R
B(rx ;x) | f (y)| dy > ξ

|B(5rx ; x)|−1
R
B(5rx ;x) | f (y)| dy ≤ ξ.and

Since k f k1 ∏
R
B(rx ;x) | f (y)| dy > ξ |B(rx ; x)| = r Nx ξ |B(1; 0)|, the radii rx are

bounded. Applying theWienerCoveringLemma12 to the cover {B(rx ; x) | x ∈E}
of E , we obtain a finite or infinite sequence of points x1, x2, . . . such that the
balls B(rxn ; xn) are disjoint and

E ⊆
S

n B(5rxn ; xn). (∗)

Write rn for rxn . Put E1 = B(5r1; x1) −
S

j 6=1 B(rj ; xj ), and define inductively

En = B(5rn; xn) −
Sn−1

j=1 Ej −
S

j 6=n B(rj ; xj ).

By inspection
(i) the sets En are disjoint,
(ii) B(rn; xn) ⊆ En ⊆ B(5rn; xn) for each n,
(iii)

S
n En =

S
n B(5rn; xn).

Property (ii) immediately yields (a). The second inclusion of (ii) gives ξ |En| ≤
ξ |B(5rn; xn)| = 5N ξ |B(rn; xn)| ≤ 5N

R
B(rn;xn) | f (y)| dy. Summing on n and

taking into account the disjointness of the sets B(rn; xn), we obtain ξ
P

n |En| ≤
5N

R
S
n B(rn;xn) | f (y)| dy ≤ 5Nk f k1. This proves (b). The two inclusions

of (ii) together yield
R
En | f (y)| dy ≤

R
B(5rn;xn) | f (y)| dy ≤ ξ |B(5rn; xn)| =

5N ξ |B(rn; xn)| ≤ 5N ξ |En|, and this proves (d). Finally (∗) and (iii) together
show that E ⊆

S
n En . Therefore f ∗(x) ≤ ξ everywhere off

S
n En . Since

limr↓0 |B(r; x)|−1
R
B(r;x) | f (y)| dy = f (x)

almost everywhere onRN , we see that | f (x)| ≤ ξ almost everywhere off
S

n En .
This proves (c). §

12Lemma 6.41 of Basic.
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Lemma 3.29. Let k be in L2(RN ), and define T f = k ∗ f for f in L1 + L2.
If

(a) kT f k2 ≤ Ak f k2 and
(b) there exist constants B and α > 0 such that

Z

|x |∏α|y|
|k(x − y) − k(x)| dx ≤ B

independently of y,
then the operator T is of weak-type (1, 1) with a constant depending only on A,
B, α, and N .

PROOF. We are to estimate the measure of the set of x where |(T f )(x)| > ξ .
Fix f and ξ , and apply Lemma 3.28 to obtain disjoint Borel sets En and balls
Bn = B(rn; xn) and B∗

n = B(5rn; xn) with Bn ⊆ En ⊆ B∗
n and with the other

properties listed in the lemma. Now that the sets En have been determined, we
decompose f into the sum f = g+ b of a “good” function and a “bad” function
by

g(x) =

( 1
|En |

R
En f (y) dy for x ∈ En,

f (x) for x /∈
S

n En,

b(x) =

Ω f (x) − 1
|En |

R
En f (y) dy for x ∈ En,

0 for x /∈
S

n En.

Since
©
x

Ø
Ø |T f (x)| > ξ

™
⊆

©
x

Ø
Ø |Tg(x)| > ξ/2

™
∪

©
x

Ø
Ø |Tb(x)| > ξ/2

™
, it is

enough to prove
(i)

Ø
Ø©x

Ø
Ø |Tg(x)| > ξ/2

™ØØ ≤ Ck f k1
±
ξ and

(ii)
Ø
Ø©x

Ø
Ø |Tb(x)| > ξ/2

™ØØ ≤ Ck f k1
±
ξ

for some constant C independent of ξ and f .
The definition of g shows that

R
En |g(x)| dx ≤

R
En | f (x)| dx for all n and

that |g(x)| = | f (x)| for x /∈
S

n En; therefore
R

RN |g(x)| dx ≤
R

RN | f (x)| dx .
Also, properties (b) and (c) of the En’s show that |g(x)| ≤ 5N ξ a.e. These two
inequalities, together with the bound kTgk2 ≤ Akgk2, give

R
RN |Tg(x)|2 dx ≤ A2

R
RN |g(x)|2 dx

≤ 5N ξ A2
R

RN |g(x)| dx ≤ 5N ξ A2
R

RN | f (x)| dx .

Combining this result with Chebyshev’s inequality
Ø
Ø©x

Ø
Ø |F(x)| > β

™ØØ ≤ β−2 R
RN |F(x)|2 dx
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for the function F = Tg and the number β = ξ/2, we obtain
Ø
Ø©x

Ø
Ø |Tg(x)| > ξ/2

™ØØ ≤
4
ξ 2
5N ξ A2

Z

RN
| f (x)| dx =

4 · 5N A2k f k1
ξ

.

This proves (i).
For the function b, let bn be the product of b with the indicator function of

En . Then we have b =
P

n bn with the sum convergent in L1. Inspection of
the definition shows that kbnk1 ≤ 2

R
En | f (y)| dy, and therefore kbk1 ≤ 2k f k1.

Since T is convolution by the L2 function k and since b =
P

n bn in L1, Tb =P
n T bn with the sum convergent in L2. A subsequence of partial sums therefore

converges almost everywhere. Inserting absolute values consistently with the
subsequence and then inserting absolute values around each term, we see that

|Tb(x)| ≤
P

n |Tbn(x)| a.e.
Let α be the constant in hypothesis (b). The measure of

S
n B(5αrn; xn) is

Ø
ØS

n B(5αrn; xn)
Ø
Ø ≤

P
n |B(5αrn; xn)| =

P
n 5NαN |B(rn; xn)|

≤ 5NαN P
n |En| ≤ 52NαNk f k1

±
ξ.

Let X = RN −
S

n B(5αrn; xn). If we show that
R
X |Tb(x)| dx ≤ C 0k f k1, then

we will have
Ø
Ø©x

Ø
Ø |Tb(x)| > ξ/2

™ØØ ≤ (52NαN + 2C 0)k f k1
±
ξ, (∗)

and (ii) will be proved. Put τn(X) = {x − xn | x ∈ X}. Since
R
En b(y) dy = 0

for each n,
R
X |Tb(x)| dx ≤

P
n
R
X |Tbn(x)| dx

=
P

n
R
X

Ø
Ø R

En k(x − y)b(y) dy
Ø
Ø dx

=
P

n
R
X

Ø
Ø R

En [k(x − y) − k(x − xn)]b(y) dy
Ø
Ø dx

≤
P

n
R
X

R
En |k(x − y) − k(x − xn)||b(y)| dy dx

x−xn→x
=

P
n
R
En

£ R
τn(X) |k(x + xn − y) − k(x)| dx

§
|b(y)| dy

≤
P

n
R
En

£ R
B(5αrn;0)c |k(x + xn − y) − k(x)| dx

§
|b(y)| dy.

In the nth term on the right side, y is in En ⊆ B∗
n , and hence |xn − y| ≤ 5rn;

meanwhile, |x | ∏ 5αrn . Therefore |x | ∏ 5αrn ∏ α|xn − y|. The right side in the
display is not decreased by increasing the region of integration in the x variable,
and hence the right side is

≤
P

n
R
En

£ R
|x |∏α|xn−y| |k(x + xn − y) − k(x)| dx

§
|b(y)| dy

≤
P

n
R
En B|b(y)| dy = Bkbk1 ≤ 2Bk f k1.

Therefore (∗) is proved with C 0 = 2B, and the proof of (ii) is complete. §
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PROOF FOR THEOREM 3.26 THAT T1 IS OF WEAK-TYPE (1, 1). With k(x) taken
to be K (x)/|x |N for |x | ∏ 1 and to be 0 for |x | < 1, Lemma 3.29 shows that it
is enough to prove that

R
|x |∏2|y| |k(x − y) − k(x)| dx ≤ B (∗)

with B independent of y. The function k is bounded, and thus the contribution
to the integral in (∗) from the bounded set of x’s where |x | < 1 is bounded
independently of y. The set of x’s where |x − y| < 1 is a ball whose measure is
bounded as a function of y, and thus this set too contributes a bounded term to
the integral in (∗). It is therefore enough to prove that

Z

|x |∏2|y|,
|x−y|∏1, |x |∏1

Ø
Ø
Ø
K (x − y)
|x − y|N

−
K (x)
|x |N

Ø
Ø
Ø dx

is bounded as a function of y. IfM is an upper bound for |K |, then this expression
is

≤
R

|K (x − y)|
Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø dx +

R |K (x−y)−K (x)|
|x |N dx

≤ M
R

|x |∏2|y|,
|x |∏1

Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø dx +

R

|x |∏2|y|,
|x |∏1

|K (x−y)−K (x)|
|x |N dx . (∗∗)

We use the two estimates

|x − y| ≤ |x | + |y| ≤ |x | + 1
2 |x | = 3

2 |x |

|x − y| ∏ |x | − |y| = ( 12 |x | − |y|) + 1
2 |x | ∏ 1

2 |x |.and

The integrand in the first term of (∗∗) is equal to
Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø =

Ø
Ø |x |N−|x−y|N

|x |N |x−y|N
Ø
Ø ≤ 2N

Ø
Ø |x |N−|x−y|N

|x |2N
Ø
Ø

≤ 2N | |x |−|x−y| |(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N

≤ 2N |y|(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N ≤ 2N ( 32 )

N |y|(|x |N−1+|x |N−1+···+|x |N−1)
|x |2N

= N3N |y|
|x |N+1 .

Thus the integral in the first term of (∗∗) is

≤ N3N
R
|x |∏max{1,2|y|}

|y|
|x |N+1 dx = N3NƒN−1

R ∞
max{1,2|y|}

|y|
r N+1 r N−1 dr

= N3NƒN−1
|y|

max{1,2|y|} ≤ 1
2N3

NƒN−1,
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and this is bounded independently of y.
For the second term of (∗∗), we start from the estimate

Ø
Ø z
|z| − w

|w|

Ø
Ø ≤ |z−w|

min{|z|,|w|} . (†)

To verify (†), we may assume that |z| ∏ |w|. Then |z|
|w| + 1 ∏ 2z·w

|z||w| because
the left side is ∏ 2 and the right side is ≤ 2. Multiplying by |z|

|w| − 1, we obtain
|z|2
|w|2 − 1 ∏ 2z·w

|w|2 − 2z·w
|z||w| . Hence 1 − 2z·w

|z||w| + 1 ≤ |z|2
|w|2 − 2z·w

|w|2 + 1, which is the
square of (†).
Using (†) and the definition and monotonicity of the function√ that is defined

in the remarks with the theorem and that captures the smoothness of K , we have

|K (x− y)−K (x)| =
Ø
ØK ( x−y

|x−y| )−K ( x
|x | )

Ø
Ø ≤ √

°ØØ x−y
|x−y| −

x
|x |

Ø
Ø¢ ≤ √

° |y|
min{|x−y|,|x |}

¢
.

Since |x− y| ∏ 1
2 |x |, min{|x− y|, |x |} ∏ 1

2 |x |. Thus√
° |y|
min{|x−y|,|x |}

¢
≤ √

° 2|y|
|x |

¢
,

and the computation
R

|x |∏2|y|,
|x |∏1

|K (x−y)−K (x)|
|x |N dx ≤

R

|x |∏2|y|,
|x |∏1

√(2|y|/|x |)
|x |N dx =

R

|z|∏1,
|z|∏1/2|y|

√(1/|z|)
|z|N dz

= ƒN−1
R ∞
max{1,1/2|y|} √(1/r)r−1 dr

= ƒN−1
R min{1,2|y|}
0 √(δ)δ−1 dδ

≤ ƒN−1
R 1
0 √(δ)δ−1 dδ

shows that the second term of (∗∗) is bounded independently of y. §

PROOF OF REMAINDER OF THEOREM 3.26. We can now argue in the same way
that the Hilbert transform was handled in Chapter IX of Basic. Since T1 has been
shown to be bounded on L2 and to be of weak-type (1, 1), the Marcinkiewicz
Interpolation Theorem given in Theorem 9.20 of Basic shows that kT1 f kp ≤
Apk f kp for 1 < p ≤ 2 with Ap independent of f . Lemma 9.22 of Basic extends
this conclusion to 1 < p < ∞. The argument that proves Theorem 9.23a in
Basic applies here and shows that kTε f kp ≤ Apk f kp for 1 < p < ∞ with Ap
independent of f and ε. This proves Theorem 3.26a.
The same argument as in Lemma 9.24 of Basic shows that if f is aC1 function

of compact support on RN , then

limε↓0
R
|y|∏ε

K (y) f (x−y) dy
|y|N

exists uniformly and in L p for every p > 1. This proves (b) of Theorem 3.26 for
the dense set of C1 functions f of compact support.
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To prove the norm convergence when we are given a general f in L p with
1 < p < ∞, we choose a sequence fn in the dense set with fn → f in L p. Then

kTε f − Tε0 f kp ≤ kTε( f − fn)kp + kTε fn − Tε0 fnkp + kTε0( fn − f )kp
≤ Apk fn − f kp + kTε fn − Tε0 fnkp + Apk fn − f kp.

Choose n to make the first and third terms small on the right, and then choose ε
and ε0 sufficiently close to 0 so that the second term on the right is small. The
result is that Tεn f is Cauchy in L p along any sequence {εn} tending to 0. This
proves Theorem 3.26b.
For any f in L p with 1 < p < ∞, we have just seen that Tε f → T f in L p.

Then (a) gives kT f kp = limε↓0 kTε f kp ≤ lim supε↓0 Apk f kp = Apk f kp. This
proves Theorem 3.26c. §

6. Applications of the Calderón–Zygmund Theorem

EXAMPLE 1. Riesz transforms. These are a more immediate N -dimensional
analog of the Hilbert transform than is the operator in the Calderón–Zygmund
Theorem. In R1, the Poisson kernel and conjugate Poisson kernel are given by

P(x, y) = Py(x) =
1
π

y
x2 + y2

and Q(x, y) = Qy(x) =
1
π

x
x2 + y2

.

The conjugate Poisson kernel Q may be obtained starting from the Poisson kernel
P by applying the Cauchy–Riemann equations in the form

@P
@x

=
@Q
@y

and
@Q
@x

= −
@P
@y

and by requiring that Q vanish at infinity. The differential equations lead to the
solution

Q(x, y) =
Z (x,y)

∞

@P
@x

dy.

TheHilbert transformkernelmaybeobtainedby letting y decrease to 0 inQ(x, y).
The resulting formal convolution formula

H f (x) =
1
π

Z ∞

−∞

f (x − t)
t

dt

is to be interpreted in such a way as to represent passage from the boundary values
of Py ∗ f to the boundary values of Qy ∗ f . We know that a valid way of arriving
at this interpretation is to take the integral for |t | ∏ ε and let ε decrease to 0.
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In N dimensions the Poisson kernel for RN+1
+ is

P(x, t) = Pt(x) =
cN t

(|x |2 + t2) 12 (N+1)
, x ∈ RN , t > 0,

with cN = π− 1
2 (N+1)0

° N+1
2

¢
. If wewrite xN+1 in place of t , the natural extension

of the Cauchy–Riemann equations is the system for the (N + 1)-component
function u = (u1, . . . , uN+1) given by

div u = 0 and curl u = 0,

N+1X

i=1

@ui
@xi

= 0 and
@ui
@xj

=
@uj
@xi

when i 6= j.i.e.,

A solution is (Q1, . . . , QN , P), where

Qj (x, t) =
cN xj

(|x |2 + t2) 12 (N+1)
, x ∈ RN , t > 0.

Imitating the procedure summarized above for the Hilbert transform, we let t
decrease to 0 here and arrive at the kernel

cN xj
|x |N+1 .

Accordingly, we define the j th Riesz transform for 1 ≤ j ≤ N by

Rj f (x) = cN lim
ε↓0

Z

|y|∏ε

yj
|y|N+1 f (x − y) dy.

The Calderón–Zygmund Theorem (Theorem 3.26) shows that Rj is a bounded
operator on L p(RN ) for 1 < p < ∞. The multiplier on the Fourier transform
side can be obtained routinely from the formula for the Fourier transform of
Pt(x), namely bPt(y) = e−2π t |y|, by using the differential equations and letting t
decrease to 0. The result is

dRj f (y) = −
i xj
|x |

bf (y).

A sample application of the Riesz transforms is to an inequality asserting
that the Laplacian controls all mixed second derivatives for smooth functions of
compact support:

∞
∞
∞

@

@xj
@

@xk
ϕ
∞
∞
∞
p

≤ Apk1ϕkp for 1 < p < ∞ and ϕ ∈ C∞
com(RN ).

The argument works as well for all Schwartz functions ϕ: the partial derivatives
satisfy the identity @

@xj
@

@xk ϕ = −Rj Rk1ϕ because the equality

−4π2yj yk bϕ(y) = −
≥

−
iyj
|y|

¥≥
−
iyk
|y|

¥
(−4π2|y|2)bϕ(y)

shows that the Fourier transforms are equal.



94 III. Topics in Euclidean Fourier Analysis

EXAMPLE 2. Beltrami equation. This will be an application in which the L p

theory of the Calderón–Zygmund Theorem is essential for some p 6= 2. We deal
with functions on R2. Define

@

@z
=
1
2

≥ @

@x
− i

@

@y

¥
and

@

@ z̄
=
1
2

≥ @

@x
+ i

@

@y

¥
.

We shall use the abbreviations fz = @ f
@z and fz̄ = @ f

@ z̄ . The Cauchy–Riemann
equations, testing whether a complex-valued function on R2 is analytic, become
the single equation fz̄ = 0.
We shall use weak derivatives on R2 in the sense of Section 2. Let µ be in

L∞(R2) with kµk∞ = k < 1. In the sense of weak derivatives, the Beltrami
equation is

fz̄ = µ fz.

This equation is fundamental in dealing with Riemann surfaces, since solutions
to it provide “quasiconformal mappings” with certain properties. For simplicity
we assume that µ has compact support. We seek a solution f such that f (0) = 0
and fz − 1 is in some L p class.
The equation is solved by first putting it in another form. Let

Ph(≥ ) = −
1
π

Z

R2

≥ 1
z − ≥

−
1
z

¥
h(z) dx dy.

The factor in parentheses is in Lq(R2) for 1 ≤ q < 2, and Hölder’s inequality
shows that Ph is therefore well defined for h in L p(R2) if p > 2. In fact, one
can show that |Ph(≥1) − Ph(≥2)| ≤ Ckhkp|≥1 − ≥2|

1− 2
p , and therefore Ph is

continuous for such h. Observe that Ph(0) = 0 for all h. Also, one can show
that

(Ph)z̄ = h in the sense of weak derivatives. (∗)

However, the definition of P falls apart for p = 2. Now define

Th(≥ ) = lim
ε↓0

−
1
π

Z

|z−≥ |∏ε

h(z)
(z − ≥ )2

dx dy.

The operator T is bounded on L p(R2) for 1 < p < ∞ by the Calderón–Zygmund
Theorem, and we shall be interested in h as above, thus interested in p > 2. One
can show that

(Ph)z = Th in the sense of weak derivatives if h ∈ L p with p > 2. (∗∗)

Nowwecan transformtheBeltramiequation. Suppose that f is aweak solution
of the Beltrami equation with f (0) = 0 and fz − 1 in L p for some p with p > 2.
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Since µ is in L∞, µ fz − µ is in L p, and since µ has compact support, µ fz is in
L p. Then fz̄ = µ fz is in L p, and P( fz̄) is defined. The function f − P( fz̄) is
analytic because (∗) shows that @

@ z̄ ( f − P( fz̄)) = fz̄ − fz̄ = 0. One can easily
show that this analytic function has to be z, i.e., that

f = P( fz̄) + z.

Differentiating with respect to z and using (∗∗), we obtain fz = T ( fz̄) + 1 =
T (µ fz) + 1. The equation

fz = T (µ fz) + 1 (†)

is the transformed equation.
Assuming that f is a solution of the Beltrami equation and therefore of (†),

we shall manipulate (†) a little and arrive at a formula for f . Multiply (†) by µ
and apply T to get T (µ fz) = TµTµ fz + Tµ. Adding 1 and substituting from
(†) gives

fz = TµTµ fz + Tµ + 1.

Iteration of this procedure yields

fz = (Tµ)n fz + [1+ Tµ + · · · + (Tµ)n−1].

We want to arrange that the first term on the right side tends to 0 in the limit
on n. The operations of P and T have together made sense only on L p for
p > 2. The linear operator g 7→ µg on L p has norm kµk∞ = k < 1, and T
has norm Ap, say. It can be shown that T is unitary on L2, so that A2 = 1. The
Marcinkiewicz Interpolation Theorem does not reveal good limiting behavior for
the bounds of operators at the endpoints of an interval of p’s where it is applied,
but the Riesz Convexity Theorem13 does. Consequently we can conclude that
lim supp↓2 Ap = 1. Therefore the operator g 7→ Tµg, with norm ≤ kAp on L p

for p > 2, has norm< 1 if p is sufficiently close to 2 (but is greater than 2). Fix
such a p. Then we have

k(Tµ)n fzkp ≤ kTµkn−1kTµ fzkp −→ 0,

and
fz = lim

n
[1+ Tµ + · · · + (Tµ)n−1].

The function fz−1 = limn[Tµ+· · ·+(Tµ)n−1] is certainly in L p. As a solution
of the Beltrami equation, f has fz̄ = µ fz = µ + µ limn[Tµ + · · · + (Tµ)n−1].

13The Riesz Convexity Theorem uses complex analysis. It was stated in Chapter IX of Basic,
but the proof was omitted.
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We saw above that any solution f of the Beltrami equation with f (0) and with
fz − 1 in L p has to satisfy f = P( fz̄) + z. Thus our formula for f is

f = P
°
µ + µ lim

n
[Tµ + · · · + (Tµ)n−1]

¢
+ z.

Finally we can turn things around and check that this process actually gives a
solution. Define g = µ+µ limn[Tµ+· · ·+(Tµ)n−1] in L p, and put f = Pg+z.
Application of (∗) and (∗∗) gives fz̄ = g and fz = Tg + 1. Substitution of the
formula for g into these yields

fz̄ = µ + µ lim
n
[Tµ + · · · + (Tµ)n−1] = µ(1+ lim

n
[Tµ + · · · + (Tµ)n−1])

= µ(1+ T (lim
n

µ + µTµ + · · · + µ(Tµ)n−2])) = µ(1+ Tg) = µ fz,

as required. The equality fz = Tg + 1 shows that fz − 1 is in L p, and the fact
that Ph(0) = 0 for all h shows that f (0) = (Pg + z)(0) = 0.

7. Multiple Fourier Series

Fourier series in several variables are a handy tool for local problems with linear
differential equations. One isolates a problem in a bounded subset of RN and
then reproduces it periodically in each variable, using a large period. Multiple
Fourier series for potentially rough functions is a complicated subject, butwe have
no need for it. What is required is information about Fourier series of smooth
functions. The relevant theory is presented in this section, using 2π for the period
in each variable, and a relatively simple application is given in the next section.
A more decisive application appears in Chapter VII, where we establish local
solvability of linear partial differential equations with constant coefficients.
If f is a locally integrable function onRN that is periodic of period 2π in each

variable, itsmultiple Fourier series is given by

f (x) ∼
X

k
ckeik·x ,

the sum being over all integer N -tuples and the coefficients ck being given by

ck = (2π)−N
Z π

−π

· · ·
Z π

−π

f (x)e−ik·x dx .

Let us write ZN for the set of all integer N -tuples and [−π, π]N for the region of
integration. Such series have the following properties.
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Proposition 3.30. If f is a locally integrable function on RN that is periodic
of period 2π in each variable, then

(a) |ck | ≤ k f k1 relative to L1([−π, π]N , (2π)−N dx),
(b) |ck | ≤ CM |k|−M for every positive integer M if f is smooth,
(c)

P
k∈ZN ckeik·x is smooth and periodic if |ck | ≤ CM |k|−M for every

positive integer M ,
(d) {eik·x}k∈ZN is an orthonormal basis of L2([−π, π]N , (2π)−N dx),
(e) f (x) =

P
k∈ZN ckeik·x if f is smooth.

PROOF. Conclusion (a) is evident by inspection of the definition. For (b),
integration by parts shows that any C1 periodic function f has the property that

(ikj )
R
[−π,π]N f (x)e−ik·x dx =

R
[−π,π]N Dj f (x)e−ik·x dx .

Apart from the factor of (2π)−N , the right side is a Fourier coefficient, and its
size is controlled by (a). Iterating this formula, we see, in the case that f is
smooth, that the Fourier coefficients ck of f have the property that {P(k)ck}k∈ZN

is bounded for every polynomial P . Then (b) follows.
Conclusion (c) is immediate from the standard theorem about interchanging

sums and derivatives. The result (d) is known in the 1-dimensional case, and the
N -dimensional case then follows fromProposition 12.9 ofBasic. In (e), the series
converges to f in L2 as a consequence of (d), and hence a subsequence converges
almost everywhere to f . On the other hand, the series converges uniformly to
something smooth by (c). The smooth limit must be almost everywhere equal to
f , and it must equal f since f is smooth. §

8. Application to Traces of Integral Operators

We return to the topic of traces of linear operators on Hilbert spaces, which was
introduced in Section II.5. That section defined trace-class operators as a subset
of the compact operators, and the trace of such an operator L is then given byP

i (Lui , ui ), where {ui } is an orthonormal basis. The defining condition for
trace class was hard to check, but Proposition 2.9 gave a sufficient condition: if
L : V → V is bounded and if

P
i, j |(Lui , vj )| < ∞ for some orthonormal bases

{ui } and {vj }, then L is of trace class.
In this section we use multiple Fourier series to show how traces can be

computed for simple integral operators in a Euclidean setting. The setting for
realistic applications is to be a compact smooth manifold. Such manifolds are
introduced in Chapter VIII, and the present result is to be regarded as the main
step toward a theorem about traces of integral operators on smooth manifolds.14

14Traces of integral operators play a role in the representation theory of noncompact locally com-
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Proposition 3.31. Let K ( · , · ) be a complex-valued smooth function on
RN × RN that is periodic of period 2π in each of the 2N variables, and suppose
that the subset of [−π, π]N × [−π, π]N where K is nonzero is contained in
[−π

8 ,
π
8 ]

N × [−π
8 ,

π
8 ]

N . Define a bounded linear operator L on the Hilbert space
L2([−π, π]N , (2π)−N dx) by

L f (x) =
1

(2π)N

Z

[−π,π]N
K (x, y) f (y) dy.

Then L is of trace class, and its trace is given by

Tr L =
1

(2π)N

Z

[−π,π]N
K (x, x) dx .

PROOF. For each k in ZN , the effect of L on the function x 7→ eik·x is

L(eik·(·))(x) =
1

(2π)N

Z

[−π,π]N
K (x, y)eik·y dy.

Taking the inner product in L2([−π, π]N , (2π)−N dx) with x 7→ eil·x gives

(L(eik·(·)), eil·(·)) =
1

(2π)2N

ZZ

[−π,π]2N
K (x, y)eik·ye−il·x dy dx . (∗)

The right side is a multiple-Fourier-series coefficient of the function K , and it is
estimated by Proposition 3.30b. Proposition 3.30c shows that the corresponding
trigonometric series converges absolutely. The functions eik·x are an orthonormal
basis of L2([−π, π]N , (2π)−N dx) as a consequence of Proposition 3.30d, and
therefore the sufficient condition of Proposition 2.9 is met for L to be of trace
class.
To compute the trace, we start from (∗) with k = l. We change variables,

letting u = y − x and v = y + x , and the right side of (∗) becomes

1
(2π)2N

ZZ

[−π,π]2N
2−N K

° 1
2 (v − u), 12 (v + u)

¢
eik·u du dv

because of the small support of K . We sum on k in ZN , moving the sum
under the integration with respect to v and recognizing the sum inside as the
sum of the multiple-Fourier-series coefficients in the u variable, i.e., the sum

pact groups and in index theory. Both these topics are beyond the scope of this book. Consequently
Chapter VIII does not carry out the easy argument to extend the Euclidean result to compact smooth
manifolds.
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of the series at the origin. Since the functions eik·u are an orthonormal basis of
L2([−π, π]N , (2π)−N dx), the sum of the uniformly convergentmultiple Fourier
series has to be the function itself. Thus we find that

Tr L =
1

(4π)N

Z

[−π,π]N
K

° 1
2v, 12v

¢
dv.

Replacing 1
2v by v and again taking into account the small support of K , we

obtain the formula asserted. §

9. Problems

1. Check that (1 + 4π2|y|2)−1g is in the Schwartz space S if g is in S, so that
(1− 1)u = f is solvable in S if f is in S.

2. Show that the Schwartz space S is closed under pointwise product and convolu-
tion, and show that these operations are continuous from S× S into S.

3. If ƒ is the open disk in R2 with x2 + y2 < 1
2 , prove the following:

(a) The function (x, y) 7→ log
°
(x2 + y2)−1

¢
is in L p1 (ƒ) for 1 ≤ p < 2 but is

not in L21(ƒ).
(b) The unbounded function (x, y) 7→ log log

°
(x2 + y2)−1

¢
is in L21(ƒ).

4. Let ƒ be a nonempty bounded open set in Rn , and suppose that there exists a
real-valued C1 function h on Rn such that h is positive on ƒ, h is negative on
(ƒcl)c, and the first partial derivatives of h do not simultaneously vanish at any
point of the boundary ƒcl − ƒ. Prove that ƒ satisfies the cone condition of
Section 2.

Problems 5–7 compute explicitly the Fourier transforms of the members of a family
of tempered distributions.
5. Show that the function |x |−(N−α) onRN is a tempered distribution if 0 < α < N .

For what values of α is it the sum of an L1 function and an L2 function?

6. Verify the identity
R ∞
0 tβ−1e−π |x |2t dt=

R ∞
0 t−β−1e−π |x |2/t dt=0(β)(π |x |2)−β .

7. Let ϕ be in S(RN ). Taking the formula F(e−π t |x |2) = t−N/2e−π |x |2/t as known
and applying the multiplication formula, obtain the identity

R
RN e−π t |x |2bϕ(x) dx = t−N/2 R

RN e−π |x |2/tϕ(x) dx .

Multiply both sides by t
1
2 (N−α)−1 and integrate in t . Dropping dx from the

notation for tempered distributions that are given by functions, conclude from
the resulting formula that
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F(|x |−α) =
π− 1

2 N+α0( 12 (N − α))

0( 12α)
|x |−(N−α)

as tempered distributions if 0 < α < N .

Problems 8–12 introduce a family Hs = Hs(RN ) of Hilbert spaces for s real that
are known as spaces of Bessel potentials. Because of Problem 8 below, these spaces
are sometimes called “Sobolev spaces.” The space Hs consists of all tempered dis-
tributions T ∈ S 0(RN ) whose Fourier transforms F(T ) are locally square integrable
functions such that

R
RN |F(T )|2(1 + |ξ |2)s dξ is finite, the norm kTkHs being the

square root of this expression. The spaces Hs get larger as s decreases.
8. Let s ∏ 0 be an integer, and let T be a tempered distribution.

(a) Prove that if T is in Hs , then all distributions DαT with |α| ≤ s are L2

functions. In this situation, if T is the L2 function f , conclude that f is in
L2s (RN ).

(b) Prove conversely that if DαT is given by an L2 function whenever |α| ≤ s,
then T is in Hs .

(c) As a consequence of (a) and (b), Hs can be identified with L2s (RN ) if s ∏ 0
is an integer. Prove that the respective norms are bounded above and below
by constant multiples of each other.

9. (a) Prove for each s that the operator As(T ) = F−1°(1 + |ξ |2)s/2F(T )
¢
is a

linear isometry of Hs onto H0 ∼= L2, and conclude that the inner-product
space Hs is a Hilbert space.

(b) Prove that A−1
s carries the subspace S(RN ) of Schwartz functions, i.e.,

tempered distributions of the form Tϕ with ϕ ∈ S(RN ), onto itself.
(c) Prove that S(RN ) is dense in Hs for all s.

10. Suppose that T is in H−s and ϕ is in S(RN ) ⊆ Hs . Prove that |hT, ϕi| ≤
kTkH−skϕkHs .

11. Conversely suppose that s is real and that T is a tempered distribution such that
|hT, ϕi| ≤ CkϕkHs for all ϕ ∈ S(RN ). Show thatF(T ) defines a bounded linear
functional on the Hilbert space L2(RN , (1+ |ξ |2)s dξ), and deduce that T is in
H−s with kTk−s ≤ C .

12. Let s > N/2.
(a) Prove that if the tempered distribution T given by the function ϕ ∈ S(RN )

is regarded as a member Tϕ of Hs , then kϕksup ≤ kF(ϕ)k1 ≤ CkTϕkHs ,
where C is the constant

° R
RN (1+ |ξ |2)−s dξ

¢1/2 independent of ϕ.
(b) (Sobolev’s Theorem) Deduce from (a) that any member T of Hs with

s > N/2 is given by a bounded continuous function.
(c) Extend the above argument to show for each integerm ∏ 0 that any member

T of Hs with s > N/2+ m is given by a function of class Cm .
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Problems 13–20 concern the Hardy spaces H p(R2+) for the upper half plane R2+ =
{z ∈ C | Im z > 0}. These problems use complex analysis in one variable, and some
familiarity with the Poisson and conjugate Poisson kernels as in Chapters VIII and IX
of Basic will be helpful. The space H p(R2+) is defined to be the vector subspace of
analytic functions in the space Hp(R2+). Let f ∗ be the Hardy–Littlewood maximal
function of f on R1. Take as known the result from Basic that the Poisson integral
Py ∗ f satisfies |Py ∗ f (x)| ≤ C f ∗(x) with C independent of f and y.
13. Suppose that p satisfies 1 < p < ∞, and let H : L p(R1) → L p(R1) be the

Hilbert transform.
(a) Prove that if u0(x) is in L p(R1), then the Poisson integral of the function

u0(x) + i(Hu0)(x) is in H p(R1).
(b) Conversely suppose that f (x + iy) is in H p(R1+). Applying Theorem 3.25,

let f (x + iy) be the Poisson integral of the member f0(x) of L p(R1+). If
Re f0 = u0, prove that Im f0 = Hu0.

14. Prove that the functions f in L2(R1)whose Poisson integrals are in the subspace
H2(R2+) of H2(R2+) are exactly the functions for which F f (x) = 0 a.e. for
x < 0.

15. Let F = ( f1, . . . , fn) be an n-tuple of analytic functions on an open subset of
C, and let ( · , · ) be the usual inner product on Cn . For a function on an open set
in C, define fz = 1

2 ( fx − i fy) and fz̄ = 1
2 ( fx + i fy), so that the condition for

analyticity is fz̄ = 0 and so that1 f = 4 fzz̄ . Suppose that F is nowhere 0 on an
open set. Prove for all q > 0 that

1(|F |q) = q2|F |q−4|(F, F 0)|2 + 2q|F |q−4° − |(F, F 0)|2 + |F |2|F 0|2
¢

∏ q2|F |q−4|(F, F 0)|2 ∏ 0.

16. Suppose that u is a smooth real-valued function on an open set in RN containing
the ball B(r; x0)cl such that 1u ∏ 0 on B(r; x0) and u ≤ 0 on @B(r; x0). By
considering u+c(|x− x0|2−r2) for a suitable c, prove that u ≤ 0 on B(r; x0)cl.

17. Let f be in H1(R2+), and define Fε : {Im z ∏ 0} → C2 for ε > 0 by Fε(z) =
( f (z + iε), ε(z + i)−2). Define gε(x) = |Fε(x)|1/2 for x ∈ R.
(a) Prove that kgεk22 ≤ k f kH1 + εk(x + i)−2k1.
(b) Let gε(z) be the Poisson integral of gε(x). Show that |Fε(z)|1/2 and gε(z)

both tend to 0 as |x | or y tends to infinity in R2+.
(c) By applying the previous two problems to |Fε(z)|1/2 − gε(z) on large disks

in R2+, prove that |Fε(z)|1/2 ≤ gε(z) on R2+.
18. By Alaoglu’s Theorem let g(x) be a weak-star limit in L2(R1) of a sequence

gεn (x) with εn ↓ 0, and let g(z) be the Poisson integral of g(x).
(a) Prove that | f (z)|1/2 ≤ g(z) ≤ Cg∗(x), with g∗(x) being the Hardy–

Littlewood maximal function of g(x).
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(b) Conclude that | f (x + iy)| is dominated by the fixed integrable function
g∗(x)2 as y ↓ 0.

19. Let X be a locally compact separable metric space, let µ be a finite Borel
measure on X , and suppose that {gn} is a sequence of Borel functions on X
with |gn| ≤ 1 such that the sequence {gn(x) dµ(x)} of complex Borel measures
converges weak-star against Ccom(X) to a complex Borel measure ∫. Prove that
∫ is absolutely continuous with respect to µ.

20. (F. and M. Riesz Theorem) Deduce from the above facts that each member
of H1(R2+) is the Poisson integral of an L1 function on R1.

Problems 21–24 show that the limit T f = limε↓0 Tε f defining a Calderón–Zygmund
operator T exists almost everywhere for f ∈ L p and 1 < p < ∞, as well as in
L p. Let notation be as in the statement of Theorem 3.26 and Lemma 3.29: K (x)
is a C1 function on RN − {0} homogeneous of degree 0 with mean value 0 over the
unit sphere, k(x) is K (x)/|x |N for |x | ∏ 1 and is 0 for |x | < 1. For any function
ϕ on RN , define ϕε(x) = ε−Nϕ(ε−1x). The operator Tε f is kε ∗ f . Let f ∗ be the
Hardy–Littlewood maximal function of f . Take as known from Basic that if 9 ∏ 0
is an integrable function on RN of the form 9(x) = 90(|x |) with 90 nonincreasing
and finite at 0, then supε>0(9ε ∗ f )(x) ≤ C9 f ∗(x) for some finite constant C9 . Let
f be in L p with 1 < p < ∞.
21. Let ϕ be as in Proposition 3.5e. Define 8 = T (ϕ) − k.

(a) Taking into account the fact that ϕ is in C∞
com(RN ), prove that T (ϕ) is in

C∞(RN ), and conclude that 8 is locally bounded.
(b) By taking into account the compact support of ϕ, prove that |8(x)| is

bounded by a multiple of |x |−N−1 for large |x |.
(c) Deduce that |8(x)| is dominated for all x by an integrable function9(x) on

RN of the form 9(x) = 90(|x |) with 90 nonincreasing and finite at 0.
22. Let ϕ and 8 be as in the previous problem.

(a) Prove that (Tϕ)ε = Tϕε.
(b) Prove the associativity formula Tϕε ∗ f = ϕε ∗ (T f ).
(c) Deduce that ϕε ∗ (T f ) − kε ∗ f = 8ε ∗ f .

23. Conclude from the previous problem that there are constantsC1 andC2 indepen-
dent of f such that supε>0 |Tε f (x)| ≤ C1 f ∗(x) + C2(T f )∗(x).

24. Why does it follow that limε↓0 Tε f (x) exists almost everywhere?

Problems 25–34 introduce Sobolev spaces in the context ofmultiple Fourier series. In
this set of problems, periodic functions are understood to be defined on RN and to be
periodic of period 2π in each variable. Write T for the circleR/2πZ, and letC∞(T N )

be the complex vector space of all smooth periodic functions. Let L2(T N ) be the
space of all periodic functions (modulo functions that are 0 almost everywhere) that
are in L2([−π, π]N ). If α = (α1, . . . , αN ) is a multi-index, a member f of L2(T N )
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is said to have a weak αth derivative in L2(T N ) if there exists a function Dα f in
L2(T N ) with

R
[−π,π]N (Dα f )ϕ dx = (−1)|α|

R
[−π,π] f D

αϕ dx

for all ϕ in C∞(T N ). Define the Sobolev space L2k(T N ) for each integer k ∏ 0 to
consist of all members of L2(T N ) having αth derivative in L2(T N ) for all α with
|α| ≤ k. The norm on L2k(T

N ) is given by

k f k2L2k(T N )
=

P

|α|≤k
(2π)−N

R
[−π,π]N |Dα f |2 dx .

25. Prove that L2k(T
N ) is complete.

26. Prove that C∞(T N ) is dense in L2k(T
N ) for all k ∏ 0.

27. Prove for each multi-index α and each k ∏ 0 that there exists a constant Cα,k
such that

kDα f kL2k(T N )
≤ Cα,kk f kL2k+|α|(T N )

for all f in C∞(T N ).
28. Prove for each k ∏ 0 that there is a constant Ak such that every member f of

L2k(T
N ) has

k f kL2k(T N )
≤ Ak

P

|α|≤k
sup

x∈[−π,πN ]
|Dα f (x)|.

29. Prove for each integer k ∏ 0 that there exist positive constants Bk and Ck such
that Bk

P

|α|≤k
l2α ≤ (1+ |l|2)k ≤ Ck

P

|α|≤k
l2α .

30. Prove that if f is periodic and locally integrable on RN with multiple Fourier
series f (x) ∼

P
l∈ZN cleil·x , then f is in L2k(T

N ) if and only if

P

l∈ZN
|cl |2(1+ |l|2)k < ∞.

31. With notation as in the previous problem, prove for each k ∏ 0 that there exist
positive constants Bk and Ck independent of f such that

Bkk f k2L2k(T N )
≤

P

l∈ZN
|cl |2(1+ |l|2)k ≤ Ckk f k2L2k(T N )

for all f in L2k(T
N ).

32. (Sobolev’s Theorem) Suppose that K is an integer with K > N/2. Prove thatP
l∈ZN (1 + |l|2)−K < ∞, and deduce that any f in L2K (T N ) can be adjusted

on a set of measure 0 so as to be continuous.
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33. Prove for each multi-index α that there exist some integerm(α) and constant Cα

such that
sup

x∈[−π,π]
|Dα f (x)| ≤ Cαk f kL2m(α)

(T N )

for all f in C∞(T N ).
34. Prove that the separating family of seminorms k · kL2k(T N )

on C∞(T N ), indexed
by k, is equivalent to the family of seminorms supx∈[−π,π]N |Dα( · )(x)|, indexed
by α. Here “is equivalent to” is to mean that the identity map is uniformly
continuous from the one metric space to the other.



CHAPTER IV

Topics in Functional Analysis

Abstract. This chapter pursues three lines of investigation in the subject of functional analysis—one
involving smooth functions and distributions, one involving fixed-point theorems, and one involving
spectral theory.
Section 1 introduces topological vector spaces. These are real or complex vector spaces with a

Hausdorff topology in which addition and scalar multiplication are continuous. Examples include
normed linear spaces, spaces given by a separating family of countably many seminorms, and weak
and weak-star topologies in the context of Banach spaces. Various general properties of topological
vector spaces are proved, and it is proved that the quotient of a topological vector space by a closed
vector subspace is Hausdorff and is therefore a topological vector space.
Section 2 introduces a topology on the space C∞(U) of smooth functions on an open subset of

RN . The support of a continuous linear functional on C∞(U) is defined and shown to be a compact
subset of U . Accordingly, the continuous linear functionals are called distributions of compact
support.
Section 3 studies weak and weak-star topologies in more detail. The main result is Alaoglu’s

Theorem, which says that the closed unit ball in theweak-star topology on the dual of a normed linear
space is compact. In an earlier chapter a preliminary form of this theorem was used to construct
elements in a dual space as limits of weak-star convergent subsequences.
Section 4 follows Alaoglu’s Theorem along a particular path, giving what amounts to a first

example of the Gelfand theory of Banach algebras. The relevant theorem, known as the Stone
Representation Theorem, says that conjugate-closed uniformly closed subalgebras containing the
constants in B(S) are isomorphic via a norm-preserving algebra isomorphism to the space of all
continuous functions on some compact Hausdorff space. The compact space in question is the space
of multiplicative linear functionals on the subalgebra, and the proof of compactness uses Alaoglu’s
Theorem.
Sections 5–6 return to the lines of study toward distributions and fixed-point theorems. Section 5

studies the relationship between convexity and the existence of separating linear functionals. The
main theorem makes use of the Hahn–Banach Theorem. Section 6 introduces locally convex
topological vector spaces. Application of the basic separation theorem from the previous section
shows the existence of many continuous linear functionals on such a space.
Section 7 specializes to the line of study via smooth functions and distributions. The topic is

the introduction of a certain locally convex topology on the space C∞
com(U) of smooth functions of

compact support onU . This is best characterized by a universal mapping property introduced in the
section.
Sections 8–9 pursue locally convex spaces along the other line of study that split off in Section 5.

Section 8 gives the Krein–Milman Theorem, which asserts the existence of a supply of extreme
points for any nonempty compact convex set in a locally convex topological vector space. Section 9
relates compact convex sets to the subject of fixed-point theorems.

105
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Section 10 takes up the abstract theory of Banach algebras, with particular attention to com-
mutative C∗ algebras with identity. Three examples are the algebras characterized by the Stone
Representation Theorem, any L∞ space, and any adjoint-closed commutative Banach algebra
consisting of bounded linear operators on a Hilbert space and containing the identity.
Section 11 continues the investigation of the last of the examples in the previous section and

derives the Spectral Theorem for bounded self-adjoint operators and certain related families of
operators. Powerful applications follow from a functional calculus implied by the Spectral Theorem.
The sectionconcludeswith remarksabout theSpectralTheoremforunboundedself-adjointoperators.

1. Topological Vector Spaces

In this section we shall work with vector spaces over R or C, and the distinction
between the two fields will not be very important. We write F for this field of
scalars. A topological vector space or linear topological space is a vector space
X overFwith aHausdorff topology such that addition, as amapping X×X → X ,
and scalar multiplication, as a mapping F × X → X , are continuous. The
mappings that we study between topological vector spaces are the continuous
linear functions, which may be referred to as “continuous linear operators.” An
isomorphism of topological vector spaces over F is a continuous linear operator
with a continuous inverse.
The simplest examples of topological vector spaces are the spaces FN of

column vectors with the usual metric topology. Since the topologies of FN ,
FN × FN , and F × FN are given by metrics, continuity of functions defined on
any of these spaces may be tested by sequences. In particular, continuity of the
vector-space operations on FN reduces to the familiar results about limits of sums
of vectors and limits of scalars times vectors. Moreover, if L : FN → Y is
any linear function from FN into a topological vector space over F, then L is
continuous. To see this, let {e1, . . . , eN } be the standard basis of column vectors,
and let ( · , · ) be the standard inner product on FN , namely the dot product if
F = R and the usual Hermitian inner product if F = C. Write yj = L(ej ). For
any x in FN , we have

L(x) =
NX

j=1
(x, ej )L(ej ) =

NX

j=1
(x, ej )yj .

If {xn} is a sequence converging to x inFN , then the continuity of the inner product
forces (xn, ej ) → (x, ej ) for each j . Then L(xn) tends to L(x) in Y since the
vector space operations are continuous in Y . Hence L is continuous.
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A second class of examples is the class of normed linear spaces. These were
defined in Basic, and the continuity of the operations was established there.1
The spaces FN of column vectors are examples. Further examples include the
space B(S) of all bounded scalar-valued functions on a nonempty set S with the
supremumnorm, the vector subspaceC(S) of continuousmembers of B(S)when
S is a topological space, the vector subspaces Ccom(S) and C0(S) of continuous
functions of compact support and of continuous functions vanishing at infinity
when S is locally compact Hausdorff, the space L p(X, µ) for 1 ≤ p ≤ ∞ when
(X, µ) is a measure space, and the space M(S) of finite regular Borel complex
measures on a locally compact Hausdorff space with the total variation norm.
Awider class of examples, which includes the normed linear spaces, is the class

of topological vector spaces defined by seminorms. Seminorms were defined in
Section III.1. If we have a family {k · ks} of seminorms on a vector space X over
F, with indexing given by s in some nonempty set S, the corresponding topology
on X is defined as the weak topology determined by all functions x 7→ kx − yks
for s ∈ S and y ∈ X . A base for the open sets of X is obtained as follows: For
each triple (y, s, r), with y in X , with s one of the seminorm indices, and with
r > 0, the set

©
x

Ø
Ø kx − yks < r

™
is to be in the base, and the base consists of all

finite intersections of these sets as (y, s, r) varies.
In order to obtain a topological vector space from a system of seminorms, we

must ensure the Hausdorff property, and we do so by insisting that the only f
in X with k f ks = 0 for all s is f = 0. In this case the family of seminorms is
called a separating family. Let us go through the argument that a space defined
by a separating family of seminorms is a topological vector space.

Proposition 4.1. Let X be a vector space over F endowed with a separating
family {k · ks} of seminorms. Then theweak topology determinedby all functions
x 7→ kx − yks makes X into a topological vector space.

PROOF. To see that X is Hausdorff, let x0 and y0 be distinct points of X . By
assumption, there exists some s such that kx0 − y0ks is a positive number r . The
sets

©
x

Ø
Ø kx − x0ks < r/2

™
and

©
y
Ø
Ø ky − y0ks < r/2

™
are disjoint and open, and

they contain x0 and y0, respectively. Hence X is Hausdorff.
To see that addition is continuous, we are to show that if a net {(xα, yα)} is con-

vergent in X× X to (x0, y0), then {xα + yα} converges to x0+ y0. This means that
if kxα −x0ks+kyα − y0ks tends to 0 for each s, then k(xα + yα)−(x0+ y0)ks tends
to 0 for each s. This is immediate from the triangle inequality for the seminorm
k · ks , and hence addition is continuous. The proof that scalar multiplication is
continuous is similar. §

1The definition appears in Section V.9 of Basic, and the continuity of the operations is proved in
Proposition 5.55.
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We have encountered two distinctly different kinds of examples of topological
vector spaces defined by families of seminorms. In the first kind a countable
family of seminorms suffices to define the topology. Normed linear spaces are
examples. So is the Schwartz spaceS(RN ), consisting of all smooth scalar-valued
functions onRN such that the product of any polynomial with any iterated partial
derivative of the function is bounded. The defining seminorms for the Schwartz
space are

k f kP,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|,

where P and Q are arbitrary polynomials. We saw in Section III.1 that the same
topology arises if we use only the countably many seminorms for which P is
some monomial xα and Q is some monomial xβ . This family of seminorms is a
separating family because if k f k1,1 = 0, then f = 0.
Another example of a topological vector space whose topology can be defined

by countablymany seminorms is the spaceC∞(U) of smooth scalar-valued func-
tions on a nonempty open setU ofRN with the topology of uniform convergence
on compact sets of all derivatives. The family of seminorms is indexed by pairs
(K , P)with K a compact subset ofU andwith P a polynomial, the corresponding
seminorm being k f kK ,P = supx∈K |(P(D) f )(x)|. The Hausdorff condition is
satisfied because if k f kK ,1 = 0 for all K , then f = 0. We shall see in the
next section that the topology can be defined by a countable subfamily of these
seminorms.
Still a third space of smooth scalar-valued functions, besides S(RN ) and

C∞(U), will be of interest to us. This is the spaceC∞
com(U) of smooth functions on

a nonempty open U with compact support contained in U . The useful topology
on this space is more complicated than the topologies considered so far. In
particular, it cannot be given by countably many seminorms. Describing the
topology requires some preparation, and we come back to the details in Section 7.
The examples we have encountered of topological vector spaces defined by

an uncountable family of seminorms, but not definable by a countable family,
are qualitatively different from the examples above. Indeed, they lead along a
different theoretical path, as we shall see—one that takes us in the direction of
spectral theory rather than distribution theory.
The first class of such examples is the class of normed linear spaces X with

the “weak topology,” as contrasted with the norm topology. Let X∗ be the set
of linear functionals of X that are continuous in the norm topology. The weak
topology on X was defined in Chapter X of Basic as the weakest topology that
makes all members of X∗ continuous. Of course, any set that is open in the weak
topology on X is open in the norm topology. A base for the open sets in the weak
topology on X is obtained as follows: For each triple (x0, x∗, r), with x0 in X , x∗

in X∗, and r > 0, the set
©
x

Ø
Ø |x∗(x − x0)| < r

™
is to be in the base, and the base
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consists of all finite intersections of these sets as (x0, x∗, r) varies. The weak
topology is given by the family of seminorms k · kx∗ = |x∗( · )|. The proof that
the weak topology is Hausdorff requires the fact, for each x 6= 0 in X , that there
is some member x∗ with x∗(x) 6= 0; this fact is one of the standard corollaries of
the Hahn–Banach Theorem. Examples of weak topologies will be discussed in
Section 3.
Similarly the weak-star topology on X∗, when X is a normed linear space,

was defined in Basic as the weakest topology on X∗ that makes all members of
X continuous. This is given by the family of seminorms k · kx = | · (x)|. Here
the relevant fact for seeing that the topology is Hausdorff is that for each x∗ 6= 0
in X∗, there is some x in X with x∗(x) 6= 0. This is just a matter of the definition
of x∗ 6= 0 and depends on no theorem. Examples of weak-star topologies will be
discussed in Section 3.
The above classes of examples by no means exhaust the possibilities for topo-

logical vector spaces. Let us mention briefly one example that is not even close
to being definable by seminorms. It is the space L p([0, 1])with 0 < p < 1. This
is the vector space of all real-valued Borel functions on [0, 1] with

R
[0,1] | f |

p dx
finite, except thatwe identify two functions if theydiffer onlyon a set ofmeasure0.
Let us see that d( f, g) =

R
[0,1] | f − g|p dx is a metric. We need only verify the

triangle inequality in the form
R
[0,1] | f + g|p dx ≤

R
[0,1] | f |

p dx +
R
[0,1] |g|

p dx .
To check this, we observe for nonnegative r that (1+ r)p − (1+ r p) is 0 at r = 0
and has negative derivative p((1+ r)p−1 − r p−1) since p − 1 is negative. Thus
(1+r)p ≤ 1+r p for r ∏ 0, and consequently |a+b|p ≤ (|a|+|b|)p ≤ |a|p+|b|p
for all real a and b. Taking a = f (x) and b = g(x) and integrating, we obtain the
desired triangle inequality. One readily shows that L p([0, 1])with this metric is a
topological vector space. On the other hand, this topological vector space is rather
pathological, as is shown in Problem 8 at the end of the chapter. For example it
has no nonzero continuous linear functionals, whereas nonzero topological vector
spaces whose topologies are given by seminorms always have enough continuous
linear functionals to separate points.2
Nowwe turn our attention to a few results valid for arbitrary topological vector

spaces.

Proposition 4.2. In any topological vector space, the closure of any vector
subspace is a vector subspace.

PROOF. Let V be a vector subspace of the topological vector space X . If x and
y are in V cl, then (x, y) is in V cl × V cl = (V × V )cl. Any continuous function

2More precisely it will be observed in Section 6 that topological vector spaces whose topologies
are given by seminorms are “locally convex,” and it will be proved in that same section that locally
convex spaces always have enough continuous linear functionals to separate points.
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f has the property for any set S that f (Scl) ⊆ f (S)cl. Applying this fact to the
addition function, we see that x+ y is in V cl since V is the image of V ×V under
addition. Thus V cl is closed under addition. Similarly V cl is closed under scalar
multiplication. §

Lemma 4.3. If X is a real or complex vector space in which addition and
scalar multiplication are continuous and if {0} is a closed subset of X , then X is
Hausdorff and hence is a topological vector space.
PROOF. Since translations are homeomorphisms, it is enough to separate 0 and

an arbitrary x 6= 0 by disjoint open neighborhoods. Since X − {0} is open, so
is V = X − {x}. By continuity of subtraction, choose an open neighborhood U
of 0 such that the set of differences satisfies U − U ⊆ V . Then U and x + U
are open neighborhoods of 0 and x . If y is in their intersection, then y is in U ,
and y is of the form x + u for some u in U . Hence x = y − u exhibits x as in
U − U ⊆ V = X − {x}, contradiction. Thus we can take U and x + U as the
required disjoint open neighborhoods of 0 and x . §

Proposition 4.4. If X is a topological vector space, if Y is a closed vector
subspace, and if the quotient vector space X/Y is given the quotient topology,3
then X/Y is a topological vector space, and the quotient map q : X → X/Y
carries open sets to open sets.
PROOF. If U is open in X , then q−1(q(U)) =

S
y∈Y (y + U) exhibits

q−1(q(U)) as the union of open sets and hence as an open set. By definition
of the topology on X/Y , q(U) is open in X/Y . Hence q carries open sets in X
to open sets in X/Y .
To see that addition is continuous in X/Y , let x1 and x2 be in X , and let E be

an open neighborhood of the member x1 + x2 + Y of X/Y . Then q−1(E) is an
open neighborhood of x1 + x2 in X . By continuity of addition in X , there exist
open neighborhoods U1 of x1 and U2 of x2 such that U1 + U2 ⊆ q−1(E). The
map q is open and linear, and hence q(U1) and q(U2) are open subsets of X/Y
with q(U1) + q(U2) ⊆ q(q−1(E)) = E . Thus addition is continuous in X/Y .
To see that scalar multiplication is continuous in X/Y , let c be a scalar, let x be

in X , and let E be an open neighborhood of cx in X/Y . Then q−1(E) is an open
neighborhood of cx in X . By continuity of scalar multiplication in X , there exist
open neighborhoods A of c in the scalars andU of x in X such that AU ⊆ q−1(E).
Then q(U) is an open subset of X/Y such that Aq(U) ⊆ q(q−1(E)) = E . Hence
scalar multiplication is continuous in X/Y .
Applying Lemma 4.3, we see that X/Y is Hausdorff. Therefore X/Y is a

topological vector space. §
3If q : X → X/Y is the quotient mapping, the open sets E of X/Y are defined as all subsets

such that q−1(E) is open in X .
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Proposition 4.5. If Y is an n-dimensional topological vector space over F,
then Y is isomorphic to Fn .

PROOF. Let y1, . . . , yn be a vector-space basis of Y , and let ( · , · ) and | · |
be the usual inner product and norm on Fn . If e1, . . . , en is the standard basis of
Fn , define L

°Pn
j=1 cj ej

¢
=

Pn
j=1 cj yj . Then L is one-one and hence is onto Y .

We saw earlier in this section that L is continuous. We shall prove that L−1 is
continuous, and it is enough to do so at 0 in Y .
Assuming on the contrary that L−1 is not continuous at 0, we can find some

≤ > 0 such that no open neighborhood U of 0 in Y maps under L−1 into the
open neighborhood {|x | < ≤} of 0 in Fn . For each such U , find yU in U with
|L−1(yU )| ∏ ≤. Define zU = |L−1(yU )|−1yU . The net {yU } tends to 0 in Y by
construction, and the numbers |L−1(yU )|−1 are bounded by ≤−1. By continuity
of scalar multiplication in Y , zU has limit 0 in Y . On the other hand, the members
of Fn defined by xU = L−1(zU ) = |L−1(yU )|−1L−1(yU ) have |xU | = 1 for all
U . The unit sphere in Fn is compact, and it follows that {xU } has a convergent
subnet, say {xUµ

}, with some limit x0 such that |x0| = 1. We have L(xU ) = zU ,
and passage to the limit gives L(x0) = limµ L(xUµ

) = limµ zUµ
= 0. On the

other hand, L is one-one, and hence the equality L(x0) = 0 for some x0 with
|x0| = 1 is a contradiction. We conclude that L−1 is continuous. §

Corollary 4.6. Every finite-dimensional vector subspace of a topological
vector space is closed.

PROOF. Let V be an n-dimensional subspace of a topological vector space X ,
and suppose that V cl properly contains V . Choose x0 in V cl − V , and form the
vector subspace W = V + Fx0. Then the closure of V in W , being a vector
subspace (Proposition 4.2), is W . The vector subspace W has dimension n + 1,
and Proposition 4.5 shows thatW is isomorphic to Fn+1. All vector subspaces of
Fn+1 are closed in Fn+1, and hence V is closed in W , contradiction. §

Lemma 4.7. If X is a topological vector space, K is a compact subset of X ,
and V is an open neighborhood of 0, then there exists ≤ > 0 such that δK ⊆ V
whenever |δ| ≤ ≤.

PROOF. For each k ∈ K , choose ≤k > 0 and an open neighborhood Uk of k
such that δUk ⊆ V whenever |δ| ≤ ≤k ; this is possible since scalar multiplication
is continuous at the point where the scalar is 0 and the vector is k. The open sets
Uk cover K , and the compactness of K implies that there is a finite subcover:
K ⊆ Uk1 ∪ · · · ∪Ukm . Then δK ⊆ V whenever |δ| ≤ min1≤ j≤m ≤kj . §

Proposition 4.8. Every locally compact topological vector space is finite
dimensional.
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PROOF. Let X be a locally compact topological vector space, let K be a
compact neighborhood of 0, and let U be its interior. Suppose that we have a
sequence {ym} in X with the property that for any δ > 0, there is an integer M
such that m ∏ M implies ym lies in δK . Then the result of Lemma 4.7 implies
that {ym} tends to 0.
The sets {k+ 1

2U | k ∈ K } form an open cover of K . If {k1+ 1
2U, . . . , kn+ 1

2U}
is a finite subcover, we prove that {k1, . . . , kn} spans X . It is enough to prove that
S = {k1, . . . , kn} spans U . If x is in U , then x is in one of the sets of the finite
subcover, say kj1 + 1

2U . Write x = kj1 + 1
2u1 accordingly. The finite subcover

covers K and hence its interior U , and thus 12U is covered by 1
2 (k1 + 1

2U), . . . ,
1
2 (kn + 1

2U). Applying this observation to the element 12u1 of
1
2U , we see that x

is in kj1 + 1
2 (kj2 + 1

2U) for some kj2 . Write x = kj1 + 1
2kj2 + 1

4u2 accordingly.
Continuing in this way, we see that

x is in kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr + 1
2r U for each r.

Put xr = kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr . This is an element of the finite-dimensional
subspace spanned by S, which is closed by Corollary 4.6; thus if {xr } converges,
it must converge to a member x0 of this subspace. Using the result of the previous
paragraph, we shall show that x − xr converges to 0. Then we can conclude that
xr converges to x , hence that x is in the span of S. To see that x − xr converges
to 0, choose l such that |δ0| ≤ 2−l implies δ0K ⊆ U . Applying the criterion of the
previous paragraph, let δ > 0 be given. ChooseM such that 2−Mδ−1 ≤ 2−l . Then
m ∏ M implies that 2−mδ−1 ≤ 2−Mδ−1 ≤ 2−l . Thus 2−mδ−1 is an allowable
choice of δ0, and we therefore obtain 2−mδ−1K ⊆ U and 2−mK ⊆ δU . For
m ∏ M , the element x − xm lies in 2−mU ⊆ 2−mK , and we have just proved that
2−mK ⊆ δU . Thus x− xm lies in δU , and the criterion of the previous paragraph
applies. Hence x − xm tends to 0. This completes the proof. §

2. C∞(U), Distributions, and Support

As was mentioned in Section III.1, distributions are continuous linear func-
tionals on vector spaces of smooth functions. Their properties are deceptively
simple-looking and enormously helpful in working with linear partial differential
equations. We considered tempered distributions in Section III.1; these are the
continuous linear functionals on the space S(RN ) of Schwartz functions on RN .
In this section we study the topology on the space C∞(U) of arbitrary scalar-
valued smooth functions on an open subsetU ofRN , together with the associated
space of distributions.
To topologizeC∞(U), weuse the familyof seminorms indexedbypairs (K , P)

with K a compact subset of U and with P a polynomial, the (K , P)th seminorm
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being k f kK ,P = supx∈K |(P(D) f )(x)|. The resulting topology is Hausdorff,
and C∞(U) becomes a topological vector space.
Let us see that this topology is given by a countable subfamily of these semi-

norms and is therefore implemented by a metric. It is certainly sufficient to
consider only the monomials Dα instead of all polynomials P(D), and thus the
P index of (K , P) can be assumed to run through a countable set. We make use
of a notion already used in Section III.2. An exhausting sequence of compact
subsets of U is an increasing sequence of compact sets with union U such that
each set is contained in the interior of the next set. An exhausting sequence
exists in any locally compact separable metric space. If {Kn} is an exhausting
sequence for U and if K is a compact subset of U , then the interiors Ko

n of
the Kn’s form an open cover of K , and there is a a finite subcover; since the
members of the open cover are nested, K is contained in some single Ko

n and
hence in Kn . Therefore k f kK ,P ≤ k f kKn,P for every P , and we can discard
all the seminorms except the ones from some Kn . In short, the countably many
seminorms k f kKn,xα = supx∈Kn

|(Dα f )(x)| suffice to determine the topology of
C∞(U). In particular, the topology is independent of the choice of exhausting
sequence.
After the statement of Theorem 3.9, we constructed a smooth partition of unity

{√n}n∏1 associated to an exhausting sequence {Kn}n∏1 of an open subset U of
RN . Such a partition of unity is sometimes useful, and Problem 9 at the end of
the chapter illustrates this fact. The functions √n are in C∞(U) and have the
properties that

P∞
n=1 √n(x) = 1 on U , √1(x) > 0 on K3, √1(x) = 0 on (Ko

4 )
c,

and for n ∏ 2,

√n(x)

(
> 0 for x ∈ Kn+2 − Ko

n+1,

= 0 for x ∈ (Ko
n+3)

c ∪ Kn.

Since C∞(U) is a metric space, its topology may be characterized in terms of
convergence of sequences: a sequence of functions converges in C∞(U) if and
only if the functions converge uniformly on each compact subset of U and so do
each of their iterated partial derivatives
If a particular metric for C∞(U) is specified as constructed in Section III.1

from an enumeration of some determining countable family of seminorms, then
it is apparent that a sequence of functions is Cauchy in C∞(U) if and only if the
functions and all their iterated partial derivatives are uniformly Cauchy on each
compact subset ofU . As a consequence we can see that C∞(U) is complete as a
metric space: in fact, let us extract limits fromeach uniformlyCauchy sequence of
derivatives and use the standard theorem on derivatives of convergent sequences
whose derivatives converge uniformly; the result is that we obtain a member of
C∞(U) to which the Cauchy sequence converges.
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It is unimportant which particular metric is used for this completeness argu-
ment. The relevant consequence is that theBaireCategoryTheorem4 is applicable
to C∞(U), and the statement of the Baire Category Theoremmakes no reference
to a particular metric.
In similar fashion one checks that S(RN ), whose topology is likewise given

by countably many seminorms, is complete as a metric space.
The vector space of continuous linear functionals on C∞(U), i.e., its continu-

ous dual, is called the space of all distributions of compact support onU and is
traditionally5 denoted by E 0(U). The words “of compact support” require some
explanation and justification, which we come back to after giving an example.

EXAMPLE. Take finitely many complex Borel measures ρα of compact support
on U , the indexing being by the set of n-tuples α of nonnegative integers with
|α| ≤ m, and define

T (ϕ) =
X

|α|≤m

Z

U
Dαϕ(x) dρα(x).

It is easy to check that T is a distribution of compact support on U . A theorem
in Chapter V will provide a converse, saying essentially that every continuous
linear functional on C∞(U) is of this form.

Let us observe that the vector subspaceC∞
com(U) is dense inC∞(U). In fact, let

{Kj } be an exhausting sequence of compact sets inU , and choose√j ∈ C∞
com(Rn)

by Proposition 3.5f to be 1 on Kj and 0 off Kj+1. If f is in C∞(U), then √j f is
in C∞

com(U) and tends to f in every seminorm on C∞(U).
To obtain a useful notion of “support” for a distribution, we need the following

lemma.

Lemma 4.9. If U1 and U2 are nonempty open sets in RN and if ϕ is in
C∞
com(U1 ∪ U2), then there exist ϕ1 ∈ C∞

com(U1) and ϕ2 ∈ C∞
com(U2) such that

ϕ = ϕ1 + ϕ2.

PROOF. Let L be the compact support of ϕ, and choose a compact set K such
that L ⊆ Ko ⊆ K ⊆ U1 ∪ U2. Then {U1,U2} is a finite open cover of K ,
and Lemma 3.15b of Basic produces an open cover {V1, V2} of K such that V cl1
is a compact subset of U1 and V cl2 is a compact subset of U2. Proposition 3.5f
produces functions g1 ∈ C∞

com(U1) and g2 ∈ C∞
com(U2) with values in [0, 1] such

that g1 is 1 on V cl1 and g2 is 1 on V cl2 . Then g = g1 + g2 is in C∞
com(U1 ∪U2) and

4Theorem 2.53 of Basic.
5The tradition dates back to Laurent Schwartz’s work, inwhich E(U)was the notation forC∞(U)

and E 0(U) was the space of continuous linear functionals.
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is 1 on K . If W is the open set where g 6= 0, then Proposition 3.5f produces a
function h in C∞

com(W ) with values in [0, 1] such that h is 1 on K . The function
1 − h is smooth, has values in [0, 1], is 1 where g 6= 0, and is 0 on K . Hence
g+ (1− h) is a smooth function that is everywhere positive on RN and equals g
on K . Therefore the functions g1/(g + 1 − h) and g2/(g + 1 − h) are smooth
functions onRN compactly supported inU1 andU2, respectively, with sum equal
to 1 on K . If we define ϕ1 = g1ϕ and ϕ2 = g2ϕ, then ϕ1 and ϕ2 have the required
properties. §

Proposition 4.10. If T is an arbitrary linear functional on C∞
com(U) and if U 0

is the union of all open subsetsU∞ of U such that T vanishes on C∞
com(U∞ ), then

T vanishes on C∞
com(U 0).

PROOF. Let ϕ be in C∞
com(U 0), and let K be the support of ϕ. The open sets

U∞ form an open cover of K , and some finite subcollection must have K ⊆
U∞1 ∪ · · · ∪ U∞p . Lemma 4.9 applied inductively shows that ϕ is the sum of
functions in C∞

com(Uj ), 1 ≤ j ≤ p. Since T is 0 on each of these, it is 0 on the
sum. §

If T is inE 0(U), the supportof T is the complement of the setU 0 in Proposition
4.10, i.e., the complement of the union of all open setsU∞ such that T vanishes on
C∞
com(U∞ ). If T has empty support, then T = 0 because T vanishes on C∞

com(U)
and C∞

com(U) is dense in C∞(U).

Proposition 4.11. Every member T of E 0(U) has compact support.

REMARKS. For the moment this proposition justifies using the name “distri-
butions of compact support” for the continuous linear functionals on C∞(U).
After we define general distributions in Section V.1, we shall have to return to
this matter.

PROOF. Let {Kn} be an exhausting sequence of compact sets in U . If T is not
supported in any Kn , then there is some fn in C∞

com(U − Kn) with T ( fn) 6= 0.
Put gn = fn/T ( fn), so that T (gn) = 1. If K is any compact subset of U , then
K ⊆ Kn for large n, and gn

Ø
Ø
K = 0 for such n. Thus gn tends to 0 in C∞(U)

while T (gn) tends to 1 6= 0 = T (0), in contradiction to continuity of T . §

Similarly we can use Proposition 4.10 to define the support of a tempered
distribution T in S 0(RN ) as the complement of the union of all open setsU∞ such
that T vanishes on C∞

com(U∞ ). Tempered distributions need not have compact
support; for example, the function1 defines a tempereddistributionwhose support
is RN .
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In the case of tempered distributions, a little argument is required to show that
the only tempered distribution with empty support is the 0 distribution. What is
needed is the following fact.

Proposition 4.12. C∞
com(RN ) is dense in S(RN ).

REMARKS. If T in S 0(RN ) has empty support, then T vanishes on C∞
com(RN ).

Proposition 4.12 and the continuity of T imply that T = 0 on S(RN ). Thus the
only tempered distribution with empty support is the 0 distribution.

PROOF. Fix h in C∞
com(RN ) with values in [0, 1] such that h(x) is 1 for |x | ≤ 1

and is 0 for |x | ∏ 2. Define hR(x) = h(R−1x). If ϕ is in S(RN ), we shall
show that limR→∞ hRϕ = ϕ in the metric space S(RN ), and then the proposition
will follow. Thus we want limR→∞ supx∈RN |x∞ Dα(ϕ − hRϕ)(x)| = 0. By
the Leibniz rule, Dα(hRϕ) = hRDαϕ +

P
β<α cβ(Dα−βhR)(Dβϕ). Hence it is

enough to prove that
lim
R→∞

sup
x∈RN

|x∞ (1− hR)Dαϕ| = 0

lim
R→∞

sup
x∈RN

|x∞ (Dα−βhR)(Dβϕ)| = 0 for β < α.and

The first of these limit formulas is a consequence of the fact that x∞ Dαϕ van-
ishes at infinity, which in turn follows from the fact that x∞ (1 + |x |2)Dαϕ is
bounded, i.e., that kϕkx∞ (1+|x |2),xα is finite. For the second of these limit formu-
las, we observe from the chain rule that Dα−βhR(x) = R−|α−β|Dα−βh(R−1x).
For β < α, this function is dominated in absolute value by cαR−1. Hence
supx∈RN |x∞ (Dα−βhR)(Dβϕ)| ≤ cαR−1P

β<α kϕkx∞ ,xβ , and the limit on R is 0.
§

3. Weak and Weak-Star Topologies, Alaoglu’s Theorem

Let X be a normed linear space, and let X∗ be its dual, which we know to be
a Banach space. We have defined the weak topology on X to be the weakest
topology on X making all members of X∗ continuous, i.e., making x 7→ x∗(x)
continuous for each x∗ in X∗. This topology is given by the family of seminorms
kxkx∗ = |x∗(x)| indexed by X∗. The weak-star topology on X∗ relative to X
is the weakest topology on X∗ making all members of ∂(X) continuous,6 i.e.,
making x∗ 7→ x∗(x) continuous for each x in X . This topology is given by
the family of seminorms kx∗kx = |x∗(x)| indexed by X . In this section we

6The symbol ∂ denotes the canonical map X → X∗∗ given by ∂(x)(x∗) = x∗(x).
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study these topologies7 in more detail, proving an important theorem about the
weak-star topology.
We shall discuss some examples in amoment. The space X∗ is a normed linear

space in its own right, and therefore it has a well-defined weak topology. The
definitions make the weak topology on X∗ the same as the weak-star topology on
X∗ relative to X if X is reflexive, but we cannot draw this conclusion in general.
The weak topology on X is of less importance to real analysis than the weak-

star topology on X∗, and thus the main interest in the weak topology on X will
be in the case that X is reflexive. It is also true that exact conditions that interpret
the weak or weak-star topology in a particular example tend not to be useful.
Nevertheless, it may still be helpful to consider examples in order to get a better
sense of what these topologies do.
We shall discuss the examples in terms of convergence. However, the conver-

gence will involve only convergence of sequences, not convergence of general
nets. A difficulty with nets is that one cannot draw familiar conclusions from
convergence of nets even in the case of nets in the real numbers; for example, a
convergent net of real numbers need not be bounded, just eventually bounded.
In order to have it available in the discussion, we prove one fact about con-

vergence of sequences in weak and weak-star topologies before coming to the
examples.

Proposition 4.13. Let X be a normed linear space, and let X∗ be its dual space.
(a) If {xn} is a sequence in X converging to x0 in the weak topology on X , then

{kxnk} is a bounded sequence in R and kx0k ≤ lim infn kxnk.
(b) If X is a Banach space and if {x∗

n } is a sequence in X∗ converging to x∗
0 in

the weak-star topology on X∗ relative to X , then {kx∗
nk} is a bounded sequence

in R and kx∗
0k ≤ lim infn kx∗

nk.
PROOF. For the first half of (a), let ∂ : X → X∗∗ be the canonical map. Since

the sequence {∂(xn)(x∗)} converges to x∗(x0) for each x∗ in X∗, {∂(xn)} is a set
of bounded linear functionals on the Banach space X∗ with {∂(xn)(x∗)} bounded
for each x∗ in X∗. By the Uniform Boundedness Theorem the norms k∂(xn)k
are bounded. Since ∂ preserves norms as a consequence of the Hahn–Banach
Theorem, the norms kxnk are bounded. For the second half of (a), let x∗ be
arbitrary in X∗ with kx∗k ≤ 1. Then

|x∗(x0)| = lim |x∗(xn)| ≤ lim inf kx∗kkxnk ≤ lim inf kxnk.

Taking the supremum over x∗ with kx∗k ≤ 1 and applying the formula kx0k =
supkx∗k≤1 |x∗(x0)|, which is known from the Hahn–Banach Theorem, we obtain
kx0k ≤ lim inf kxnk.

7The weak topology on X is also called the X∗ topology of X , and the weak-star topology on
X∗ is also called the X topology of X∗.
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For the first half of (b), {x∗
n } is a set of bounded linear functionals on theBanach

space X with {x∗
n (x)} bounded for each x in X . Then the Uniform Boundedness

Theorem shows that the norms kx∗
nk are bounded. For the second half of (b), let

x be arbitrary in X with kxk ≤ 1. Then

|x∗
0 (x)| = lim |x∗

n (x)| ≤ lim inf kx∗
nkkxk ≤ lim inf kx∗

nk.

Taking the supremum over x and applying the definition of kx∗
0k, we obtain

kx∗
0k ≤ lim inf kx∗

nk. §

EXAMPLES OF CONVERGENCE IN WEAK TOPOLOGIES.
(1) X = L p(S, µ) when 1 < p < ∞. Then X∗ ∼= L p0

(X, µ), where p0 is
the dual index8 of p. The assertion is that a sequence { fn} tends weakly to f
in L p if and only if {k fnkp} is bounded and lim

R
E fn dµ =

R
E f dµ for every

measurable subset E of S of finite measure. The necessity is immediate from
Proposition 4.13a and from taking the member of X∗ to be the indicator function
of E . Let us prove the sufficiency. From lim

R
E fn dµ =

R
E f dµ, we see that

lim
R
S fnt dµ =

R
S f t dµ for t simple if t is 0 off a set of finite measure. Let g

be given in L p0
(S, µ), and choose a sequence {tm} of simple functions equal to 0

off sets of finite measure such that limm tm = g in the norm topology of L p0 . For
all m and n, we have

Ø
Ø R

S fng dµ −
R
S f g dµ

Ø
Ø

≤
Ø
Ø R

S fn(g − tm) dµ
Ø
Ø +

Ø
Ø R

S fntm dµ −
R
S f tm dµ

Ø
Ø

+
Ø
Ø R

S f (tm − g) dµ
Ø
Ø

≤ k fnkpkg−tmkp0 +
Ø
Ø R

S fntm dµ−
R
S f tm dµ

Ø
Ø + k f kpkg−tmkp0 .

The first and third terms on the right tend to 0 as m tends to infinity, uniformly in
n. If ≤ > 0 is given, choose m such that those two terms are < ≤, and then, with
m fixed, choose n large enough to make the middle term < ≤.
(2) X = C(S) with S compact Hausdorff, C(S) being the space of continuous

scalar-valued functions on S. Then X∗ may be identified with the space M(S) of
(signed or) complex regular Borel measures on S, with the total-variation norm.9
The assertion is that a sequence { fn} tends weakly to f in C(S) if and only if
{k fnk} is bounded and lim fn = f pointwise. The necessity is immediate from
Proposition4.13a and from taking thememberof X∗ to be anypointmass at a point

8The index p0 is defined by 1
p + 1

p0 = 1. This duality was proved in Theorem 9.19 of Basic
when µ is σ -finite, but it holds without this restrictive assumption on µ.

9This identificationwas obtained inBasic in Theorem11.24 for real scalars and in Theorem11.26
for complex scalars. The starting point for the identification is the Riesz Representation Theorem.
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of S. For the sufficiency we simply observe that any member of M(S) is a finite
linear combination of regular Borel measuresµ on S and lim

R
S fn dµ =

R
S f dµ

for any Borel measure µ by dominated convergence.
(3) X = C0(S)with S locally compact separablemetric,C0(S) being the space

of continuous scalar-valued functions vanishing at infinity. Again the dual X∗

may be identified with the space M(S) of complex regular Borel measures on
S, with the total-variation norm. This example can be handled by applying the
previous example to the one-point compactification of S. All signed or complex
Borel measures are automatically regular in this case. A sequence { fn} tends
weakly to f in C0(S) if and only if {k fnk} is bounded and lim fn = f pointwise.

EXAMPLES OF CONVERGENCE IN WEAK-STAR TOPOLOGIES.
(1) X = L p(S, µ) and X∗ ∼= L p0

(S, µ) when 1 < p < ∞, p0 being the
dual index of p. This X is reflexive. Therefore the first example of convergence
in weak topologies shows that { fn} converges weak-star in L p0

(S, µ) relative to
L p(S, µ) if and only if {k fnkp0 } is bounded and lim

R
E fn dµ =

R
E f dµ for

every measurable subset E of S of finite measure.
(2) X = L1(S, µ) and X∗ ∼= L∞(S, µ) when µ is σ -finite. This X is usually

not reflexive. However, the condition for weak-star convergence is the same
as in the previous example: { fn} converges weak-star in L∞(S, µ) relative to
L1(S, µ) if and only if {k fnk∞} is bounded and lim

R
E fn dµ =

R
E f dµ for

every measurable subset E of S of finite measure. The argument in the first
example of convergence in weak topologies can easily be modified to prove this.
(3) X = C(S) with S compact Hausdorff, and X = C0(S) with S locally

compact separable metric. Weak-star convergence of complex regular Borel
measures does not have a useful necessary and sufficient condition beyond the
definition. The notion of weak-star convergence in this situation is, nevertheless,
quite helpful as a device for producing new complex measures out of old ones.10

A theoremabout theweak topology, due toBanach, is that the vector subspaces
that are closed in the weak topology are the same as the vector subspaces that are
closed in the norm topology. More generally the closed convex sets coincide in
the weak and norm topologies. We shall not have occasion to use this theorem or
mention any of its applications, and we therefore omit the proof.
The weak-star topology has results of more immediate interest, and we turn

our attention to those. Theorem 5.58 of Basic established for any separable
normed linear space X that any bounded sequence in the dual X∗ has a weak-
star convergent subsequence; this was called a “preliminary form of Alaoglu’s
Theorem.”

10Warning. Many probabilists and some other people use the unfortunate term “weak conver-
gence” for this instance of weak-star convergence.
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Theorem 4.14 Let X be a normed linear space with dual X∗.
(a) (Alaoglu’s Theorem) The closed unit ball of X∗ is compact in the weak-

star topology relative to X .
(b) If X is separable, then the closed unit ball of X∗ is a separable metric space

in the weak-star topology.

REMARKS. By (a), any net {x∗
α} in X∗ with kx∗

αk bounded has a subnet {x∗
αµ

}
and an element x∗

0 in X∗ such that x∗
αµ

(x) → x∗
0 (x) for every x in X . By (b),

this conclusion about nets can be replaced by a conclusion about sequences if
X is separable. Thus we recover the “preliminary form” of Alaoglu’s Theorem.
The results of Section III.4 give an example of the utility of the two parts of this
theorem; together they lead to a proof that harmonic functions inHp(RN+1

+ ) are
automatically Poisson integrals of functions if p > 1 or of complex measures if
p = 1.

PROOF. Let B be the closed unit ball in X∗, let D(r) be the closed disk in C
with radius r and center 0, and let C = ×x∈X D(kxk). Define F : B → C by
F(x∗) = ×x∈X x

∗(x). The function F is well defined since |x∗(x))| ≤ kxk for
all x∗ in B and all x in X . It is continuous as a map into the product space since
x∗ 7→ x∗(x) is continuous for each x , it is one-one since x∗ is determined by
its values on each x , and it is a homeomorphism with its image by definition of
weak topology. Since C is compact by the Tychonoff Product Theorem, (a) will
follow if it is shown that F(B) is closed in C . Let px denote the projection of
C to its x th coordinate. If x and x 0 are in X and if { fα} is a net in C convergent
to f0 in C , then an equality px+x 0( fα) = px( fα) + px 0( fα) for all α implies that
px+x 0( f0) = px( f0) + px 0( f0) by continuity of px+x 0 , px , and px 0 . Thus the set

S(x, x 0) = { f ∈ C | px+x 0( f ) = px( f ) + px 0( f )}

is closed, and similarly the set

T (x, c) = { f ∈ C | cpx( f ) = px(c f )}

is closed. The intersection of all S(x, x 0)’s and all T (x, c)’s is the set of linear
members of C , hence is exactly F(B). Thus F(B) is closed.
For (b), we continue with B and D(r) as above, but we change C and F

slightly. Let {xn} be a countable dense set in the norm topology of X , let C =
×xn D(kxnk), and define F : B → C by F(x∗) = ×xn x

∗(xn). As in the
proof of (a), F is continuous. It is one-one since any x∗, being continuous, is
determined by its values on the dense set {xn}. The domain is compact by (a). The
range space C is a separable metric space and is in particular Hausdorff. Hence
B is exhibited as homeomorphic to F(B), which is a subspace of the separable
metric space C and is therefore separable. §
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4. Stone Representation Theorem

In this section we begin to follow Alaoglu’s Theorem along paths different from
its use for creating limit functions andmeasures out of sequences that are bounded
in a weak-star topology. We shall work in this section with what amounts to an
example—oneof themotivating examples behind a stunning idea of I.M.Gelfand
around 1940 that brings algebra, real analysis, and complex analysis together in
a profound way. The example gives a view of subalgebras of the algebra B(S)
of all bounded functions on a set S in terms of compactness. The stunning idea
that came out, on which we shall elaborate shortly, is that the mechanism in the
proof is the same mechanism that lies behind the Fourier transform on RN , that
this mechanism can be cast in abstract form as a theory of commutative Banach
algebras, and that the theory gives a new perspective about spectra. In particular,
it leads directly to the full Spectral Theorem for bounded and unbounded self-
adjoint operators, extending the theorem for compact self-adjoint operators that
was proved as Theorem 2.3. In turn, the Spectral Theorem has many applications
to the study of particular operators.
Let us first state the theorem about B(S), then discuss Gelfand’s stunning idea

about the mechanism, and finally give the proof of the theorem. We shall pursue
the Gelfand idea in Sections 10–11 later in this chapter.
We have discussed B(S) as the Banach space of bounded complex-valued

functions on a nonempty set S, the norm being the supremum norm. In this
Banach space pointwise multiplication makes B(S) into a complex associative
algebra11 with identity (namely the function 1), there is an operation of complex
conjugation, and there is a notion of positivity (namely pointwise positivity of a
function). The theorem concerns subalgebras of B(S) containing 1, closed under
conjugation, and closed under uniform limits.

Theorem 4.15 (Stone Representation Theorem). Let S be a nonempty set,
and let A be a uniformly closed subalgebra of B(S) with the properties that A
is stable under complex conjugation and contains 1. Then there exist a compact
Hausdorff space S1, a function p : S → S1 with dense image, and a norm-
preserving algebra isomorphism U of A onto C(S1) preserving conjugation and
positivity, mapping 1 to 1, and having the property that U( f )(p(s)) = f (s) for
all s in S. If S is a Hausdorff topological space and A consists of continuous
functions, then p is continuous.

11An associative algebraA over C is a vector space with a C bilinear associative multiplication,
i.e., with an operationA×A → A satisfying (ab)c = a(bc), a(b+c) = ab+ac, (a+b)c = ac+bc,
and a(∏c) = (∏a)c = ∏(ac) if ∏ is in C and a, b, c are in A. This definition does not assume the
existence of an identity element.
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The ideaof theproof is to consider theBanach-spacedualA∗ and focuson those
members ofA∗ that are nonzero and respect multiplication—the nonzero contin-
uous multiplicative linear functionals on A. The ones that come immediately to
mind are the evaluations at each point: for a point s of S, the evaluation at s is given
by es( f ) = f (s), and it is a multiplicative linear functional, certainly of norm 1.
The set S1 in the theorem will be the set of all such continuous multiplicative
linear functionals, the function p will be given by p(s) = es for s ∈ S, and
the mapping U will be given by U( f )(`) = `( f ) for each multiplicative linear
functional `.
The Banach spaceA ⊆ B(S), with its multiplication, is a Banach algebra in

the sense that it is an associative algebra over C, with or without identity, such
that k f gk ≤ k f kkgk for all f and g in A. Another well-known Banach algebra
is L1(RN ). The norm in this case is the usual L1 norm, and the multiplication is
convolution, which satisfies k f ∗ gk1 ≤ k f k1kgk1 for all f and g in L1(RN ).
The stunning idea of Gelfand’s is that the formula that defines U in the Stone

theoremis the same formula that gives theFourier transformin the caseof L1(RN ).
Specifically the nonzero multiplicative linear functionals in the case of L1(RN )
are the evaluations at points of the Fourier transform, i.e., the mappings
f 7→ bf (y) =

R
RN f (x)e−2π i x ·y dx . These linear functionals are multiplicative

because convolution goes into pointwise product under the Fourier transform.
What A ⊆ B(S) and L1(RN ) have in common is, in the first place, that

they are commutative Banach algebras. In addition, each has a conjugate-linear
mapping f 7→ f ∗ that respects multiplication: complex conjugation in the case
of A and the map f 7→ f ∗ with f ∗(x) = f (−x) in the case of L1(RN ). These
conjugate-linear mappings interact well with the norm. The subalgebra A of
B(S) satisfies

(i) k f f ∗k = k f kk f ∗k for all f ,
(ii) k f ∗k = k f k for all f ,

while L1(RN ) satisfies just (ii). The theory that Gelfand developed applies best
when both (i) and (ii) are satisfied, as is the case with A and also any L∞ space,
and it works somewhat when just (ii) holds, as with L1(RN ).
Another example of a Banach algebra is the algebra B(H, H) of bounded

linear operators from a Hilbert space H to itself, with the operator norm. The
conjugate-linear mapping on B(H, H) is passage to the adjoint, and (i) and (ii)
both hold. The thing that is missing is commutativity for B(H, H). However,
if we take a single operator A and its adjoint A∗, assume that A commutes with
A∗, and take the Banach algebra generated by A and A∗, then we have another
example to which the Gelfand theory applies well. The Spectral Theorem for
bounded self-adjoint operators is the eventual consequence.
The idea of considering the Banach subalgebra generated by A is a natural

one because of one’s experience in the subject of modern algebra: the study of
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all complex polynomials in a square matrix A is a useful tool in understanding a
single linear transformation, including obtaining canonical forms for it like the
Jordan form. Thus the use of an analogy with a topic in algebra leads one to a
better understanding of a topic in analysis.
In this case ideas flowed in the reverse direction as well. The multiplicative

linear functionals correspond, by passage to their kernels, to those ideals in the
algebra that are maximal.12 In effect the Banach algebra was being studied
through its space of maximal ideals. About 1960, no doubt partly because of the
success of the idea of considering the maximal ideals of a Banach algebra, the
considerationof the totality of prime ideals of a commutative ring as a space began
to play an important role in algebraic number theory and algebraic geometry.

PROOF OF THEOREM 4.15. Let S1 be the set of all nonzero continuous multi-
plicative linear functionals ` on A with `( f̄ ) = `( f ). Let us see that each such
has norm 1. In fact, choose f with `( f ) 6= 0. Then `( f ) = `( f 1) = `( f )`(1)
shows that `(1) = 1, and hence k`k ∏ 1. For any f with k f ksup ≤ 1, if we had
|`( f )| > 1, then |`( f )|n = |`( f n)| ≤ k`k for all n would give a contradiction as
soon as n is sufficiently large. We conclude that k`k ≤ 1.
Therefore S1 is a subset of the unit ball of the Banach-space dualA∗. We give

S1 the relative topology from the weak-star topology on A∗. Let us define the
function p : S → S1, and in the process we shall have proved that S1 is not empty.
Every s in S defines an evaluation linear functional es in S1 by es( f ) = f (s), and
the function p is defined by p(s) = es for s in S. To see that S1 is a closed subset
of the unit ball ofA∗ in the weak-star topology, let {`α} be a net in S1 converging
to some ` ∈ A∗, the convergence being in the weak-star topology. Then we have
`α( f g) = `α( f )`α(g) and `α( f̄ ) = `α( f ) for all f and g in A. Passing to the
limit, we obtain `( f g) = `( f )`(g) and `( f̄ ) = `( f ). Hence S1 is closed. By
Alaoglu’s Theorem (Theorem 4.14a), S1 is compact. It is Hausdorff since A∗ is
Hausdorff in the weak-star topology.
Certainly we have sups∈S |es( f )| = k f ksup. Since any ` in S1 has k`k ≤ 1,

we obtain
sup
`∈S1

|`( f )| = k f ksup. (∗)

ThedefinitionofU : A → C(S1) isU( f )(`) = `( f ), and thismakesU( f )(p(s))
= U( f )(es) = es( f ) = f (s). The function U( f ) on S1 is continuous by
definition of the weak-star topology. Because of the definition of S1, U is an
algebra homomorphism respecting complex conjugation and mapping 1 to 1.

12Checking that there are no other maximal ideals than the kernels of multiplicative linear
functionals requires proving that every complex “Banach field” is 1-dimensional, an early result in
the subject of Banach algebras and one that uses complex analysis in its proof. Details appear in
Section 10.
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Also, (∗) shows that U is an isometry. SinceA is Cauchy complete, so is U(A).
ThereforeU(A) is a uniformly closed subalgebra of C(S1) stable under complex
conjugationandcontaining the constants. It separatespoints of S1 by thedefinition
of equality of linear functionals. By the Stone–Weierstrass Theorem, U(A) =
C(S1). SinceU is an isometry,U is one-one. ThusU is an algebra isomorphism
of A onto C(S1).
If p(S) were not dense in S1, then Urysohn’s Lemma would allow us to find

a nonzero continuous function F on C(S1) with values in [0, 1] such that F is 0
everywhere on p(S). Since U is onto C(S1), choose f ∈ A with U( f ) = F . If
s is in S, then 0 = F(p(s)) = U( f )(p(s)) = f (s). Hence k f ksup = 0. By (∗),
`( f ) = 0 for all ` ∈ S1. Then every ` ∈ S1 has 0 = `( f ) = U( f )(`) = F(`),
and F = 0, contradiction. We conclude that p(S) is dense.
To see that U carries functions ∏ 0 to functions ∏ 0, we observe first that

the identity `( f̄ ) = `( f ) for ` ∈ S1 and the equality f̄ = f for f real together
imply that `( f ) = `( f̄ ) = `( f ) for f real. Hence f real implies `( f ) real.
If f ∏ 0, then

∞
∞k f ksup − f

∞
∞
sup ≤ k f ksup. Since k`k ≤ 1, we therefore have

`(k f ksup − f ) ≤
∞
∞k f ksup − f

∞
∞
sup ≤ k f ksup. Since `(1) = 1, this says that

`( f ) ∏ 0. This inequality for all ` implies that U( f ) ∏ 0.
Finally suppose that S is a Hausdorff topological space and that A ⊆ C(S).

We are to show that p : S → S1 is continuous. If sα → s0 for a net in S, we
want p(sα) → p(s0), i.e., esα → es0 . According to the definition of the weak-star
topology, we are thus to show that f (sα) → f (s0) for every f in A. But this is
immediate from the continuity of f on S. §

We give three examples. A fourth example, concerning “almost periodic
functions,” will be considered in the problems at the end of Chapter VI. For
this fourth example the compact Hausdorff space of Theorem 4.15 admits the
structure of a compact group, and the representation theory of Chapter VI is
applicable to describe the structure of the space of almost periodic functions.
Problems 21–25 at the end of the chapter develop the theory of Theorem 4.15

further.
EXAMPLES.
(1) A = C(S) with S compact Hausdorff. Then p is a homeomorphism of

S onto S1. In fact, p(S) is always dense in S1. Here p is continuous and S is
compact. Thus p(S) is closed and must equal S1. The map p is one-one because
Urysohn’sLemmaproduces functions takingdifferent values at twodistinct points
s and s 0 of S and thus exhibiting es0 and es as distinct linear functionals. Since p
is continuous and one-one from a compact space onto a Hausdorff space, it is a
homeomorphism.
(2) One-point compactification. Let S be a locally compact Hausdorff space,

and letA be the subalgebra ofC(S) consisting of all continuous functions having
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limits at infinity. For a function f , this conditionmeans that there is some number
c such that for each ≤ > 0, some compact subset K of S has the property that
| f (s) − c| ≤ ≤ for all s not in K . Then S1 may be identified with the one-point
compactification of S.
(3) Stone–Čech compactification. Let S be a topological space, and let A =

C(S). The resulting compact Hausdorff space S1 is called the Stone–Čech
compactification of S. This space tends to be huge. For example, if S =
[0,+∞), the corresponding S1 has cardinality greater than the cardinality of R.

5. Linear Functionals and Convex Sets

For this section and the next we discuss aspects of functional analysis that lead
toward the theory of distributions and toward the use of fixed-point theorems.
The topic is the role of convex sets in real and complex vector spaces—first
without any topology and thenwith an overlay of topology consistentwith convex
sets. Sections 7–9 will then explore the consequences of this development, first
in connection with smooth functions and then in connection with fixed-point
theorems.
Let X be a real or complex vector space. A subset E of X is convex if for each

x and y in E , all points (1− t)x + t y are in E for 0 ≤ t ≤ 1.

Proposition 4.16. Convex sets in a real or complex vector space have the
following elementary properties:

(a) the arbitrary intersection of convex sets is convex,
(b) if E is convex and x1, . . . , xn are in E and t1, . . . , tn are nonnegative reals

with t1 + · · · + tn = 1, then t1x1 + · · · + tnxn is in E ,
(c) if E1 and E2 are convex, then so are E1 + E2, E1 − E2, and cE for any

scalar c,
(d) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of X , then L(E) is convex in Y ,
(e) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of Y , then L−1(E) is convex in X .

PROOF. Conclusions (a), (c), (d), and (e) are completely straightforward. For
(b), we induct on n, the case n = 2 being the definition of “convex.” Suppose that
the result is known for n and that members x1, . . . , xn+1 of X and nonnegative
reals t1, . . . , tn+1 with sum 1 are given. We may assume that t1 6= 1. Put
s = t2 + · · · + tn+1 and y = (1− t1)−1(t2x2 + · · · + an+1xn+1). Since the reals
(1 − t1)−1t2, . . . , (1 − t1)−1tn+1 are nonnegative and have sum 1, the inductive
hypothesis shows that y is in E . Since t1 and s are nonnegative and have sum 1,
t1x1 + sy = t1x1 + · · · + tn+1xn+1 is in E . This completes the induction. §



126 IV. Topics in Functional Analysis

Let E be a subset of our vector space X . We say that a point p in E is an
internal point of E if for each x in X , there is an ≤ > 0 such that p + δx is in
E for all scalars13 δ with |δ| ≤ ≤. If p in X is neither an internal point of E nor
an internal point of Ec, we say that p is a bounding point of E . These notions
make no use of any topology on X .
Let K be a convex subset of X , and suppose that 0 is an internal point of K .

For each x in X , let

ρ(x) = inf{a > 0 | a−1x ∈ K }.

The function ρ(x) is called the support function of K . For an example let X be
a normed linear space, and let K be the unit ball; then ρ(x) = kxk.
We are going to see that ρ(x) has some bearing on controlling the linear

functionals on X , as a consequenceof theHahn–BanachTheorem. By the “Hahn–
BanachTheorem”here, wemeannot the usual theorem for normed linear spaces14
but the more primitive statement15 from which that is derived:

HAHN–BANACH THEOREM. Let X be a real vector space, and let p be a real-
valued function on X with

p(x + x 0) ≤ p(x) + p(x 0) and p(t x) = tp(x)

for all x and x 0 in X and all real t ∏ 0. If f is a linear functional on a vector
subspace Y of X with f (y) ≤ p(y) for all y in Y , then there exists a linear
functional F on X with F(y) = f (y) for all y ∈ Y and F(x) ≤ p(x) for all
x ∈ X .

Before discussing linear functionals in our present context, let us observe
some properties of the support function ρ(x). Properties (b), (c), and (e) in the
next lemma are the properties of the dominating function p in the Hahn–Banach
Theorem as stated above.

Lemma 4.17. Let K be a convex subset of a vector space X , and suppose
that 0 is an internal point. Then the support function ρ(x) of K satisfies

(a) ρ(x) ∏ 0,
(b) ρ(x) < ∞,
(c) ρ(ax) = aρ(x) for a ∏ 0,
(d) ρ(x) ≤ 1 for all x in K ,
(e) ρ(x + y) ≤ ρ(x) + ρ(y),
(f) ρ(x) < 1 if and only if x is an internal point of K ,
(g) ρ(x) = 1 characterizes the bounding points of K .

13The scalars are complex numbers if X is complex, real numbers if X is real.
14As in Theorem 12.13 of Basic.
15As in Lemma 12.14 of Basic.
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PROOF. Conclusions (a), (c), and (d) are immediate, and (b) follows since 0 is
an internal point of K .
For (e), let c be arbitrary with c > ρ(x) + ρ(y). We show that c−1(x + y)

is in K . Since c is arbitrary, it follows that the infimum of all numbers d with
d−1(x + y) in K is ≤ ρ(x) + ρ(y); consequently ρ(x + y) will have to be
≤ ρ(x) + ρ(y), and (e) will be proved. Thus write c = a+ b with a > ρ(x) and
b > ρ(y). Since K is convex,

c−1(x + y) = (a + b)−1(x + y) = a
a+b a

−1x + b
a+b b

−1y

is in K , as required.
For (f), let x be an internal point of K . Then x + ≤x = (1 + ≤)x is in K for

some ≤ > 0, and hence ρ(x) ≤ (1+ ≤)−1 < 1.
Conversely suppose that ρ(x) < 1, and put ≤ = 1 − ρ(x). Fix y. Since 0 is

an internal point of K , we can find µ > 0 such that δy is in K for |δ| ≤ µ. If c is
any scalar of absolute value 1, then cµy is in K , and hence ρ(cy) ≤ µ−1. If δ is
a scalar with |δ| < ≤µ, write δ = c0|δ| with |c0| = 1. Then ρ(δy) = |δ|ρ(c0y) ≤
|δ|µ−1 < ≤. Applying (e) gives

ρ(x + δy) ≤ ρ(x) + ρ(δy) = (1− ≤) + ρ(δy) < (1− ≤) + ≤ = 1.

By definition of ρ, 1−1(x + δy) is in K , i.e., x + δy is in K . Thus x is an internal
point of K .
For (g), we can argue in the same way as with (f) to see that ρ(x) > 1

characterizes the internal points of Kc. Therefore ρ(x) = 1 characterizes the
bounding points of K . §

We shall now apply the Hahn–Banach Theorem to prove the basic separation
theorem.

Theorem 4.18. Let M and N be disjoint nonempty convex subsets of a real
or complex vector space X , and suppose that M has an internal point. Then there
exists a nonzero linear functional F on X such that for some real c, Re F ≤ c
on M and Re F ∏ c on N .

PROOF. First suppose that X is real. If m is an internal point of M , then 0 is
an internal point of M −m, and we can replace M and N by M −m and N −m.
Changing notation, we may assume from the outset that 0 is an internal point of
M .
If x0 is in N , then −x0 is an internal point of M − N , and 0 is an internal

point of K = M − N + x0. Since M and N are assumed disjoint, M − N
does not contain 0; thus K does not contain x0. Let ρ be the support function
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of K ; this function satisfies the properties of the function p in the Hahn–Banach
Theorem, according to Lemma 4.17. Moreover, ρ(x0) ∏ 1 by Lemma 4.17f.
Define f (ax0) = aρ(x0) for all (real) scalars a. Then f is a nonzero linear
functional on the 1-dimensional space of real multiples of x0, and it satisfies

a ∏ 0 implies f (ax0) = aρ(x0) = ρ(ax0),
a < 0 implies f (ax0) = a f (x0) < 0 ≤ ρ(ax0).

The Hahn–Banach Theorem shows that f extends to a linear functional F on
X with F(x) ≤ ρ(x) for all x . Then F(x0) ∏ 1, and Lemma 4.17 shows that
ρ(K ) ≤ 1. Hence

F(x0) ∏ 1 and F(M − N + x0) ≤ 1.

Thus we have F(M − N + x0) ≤ F(x0), F(M − N ) ≤ 0, F(m − n) ≤ 0 for all
m in M and n in N , and F(m) ≤ F(n) for all m and n. Taking the supremum
over m in M and the infimum over n in N gives the conclusion of the theorem
for X real.
Now suppose that the vector space X is complex. We can initially regard X

as a real vector space by forgetting about complex scalars, and then the previous
case allows us to construct a real-linear F such that F(M) ≤ c ≤ F(N ). Put
G(x) = F(x)− i F(i x). SinceG(i x) = F(i x)− i F(i2x) = F(i x)− i F(−x) =
F(i x)+ i F(x) = i(F(x)− i F(i x)) = iG(x), G is complex linear. The real part
of G equals F , and therefore G satisfies the conclusion of the theorem. §

6. Locally Convex Spaces

In this section we shall apply the discussion of convex sets and linear functionals
in the context of topological vector spaces. A topological vector space X is said
to be locally convex if there is a base for its topology that consists of convex sets.
Let us see that any topological vector space X whose topology is given by a

family of seminorms k · ks is locally convex. A base for the open sets consists
of all finite intersections of sets U(y, s, r) =

©
x

Ø
Ø kx − yks < r

™
with y in X , s

equal to one of the seminorm indices, and r > 0. If x and x 0 are in U(y, s, r)
and if 0 ≤ t ≤ 1, then

k((1− t)x + t x 0) − yks = k(1− t)(x − y) + t (x 0 − y)ks
≤ k(1− t)(x − y)ks + kt (x 0 − y)ks
= (1− t)kx − yks + tkx 0 − yks
< (1− t)r + tr = r.
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Hence ((1−t)x+t x 0 is inU(y, s, r), andU(y, s, r) is convex. Since the arbitrary
intersection of convex sets is convex by Proposition 4.16a, every member of the
base for the topology is convex. Thus X is locally convex.
We are going to show that every locally convex topological vector space has

many continuous linear functionals, enough to distinguish any two disjoint closed
convex sets when one of them is compact. This result will in particular be
applicable to the spaces S(RN ) and C∞(U) since their topologies are given by
seminorms.
We begin with two lemmas that do not need an assumption of local convexity

on the topological vector space.

Lemma 4.19. In any topological vector space if K1 and K2 are closed sets
with K1 compact, then the set K1 − K2 of differences is closed.

PROOF. It is simplest to use nets. Thus let x be a limit point of K1 − K2, and
let {xn} be any net in K1 − K2 converging to x . Since each xn is in K1 − K2,
we can write it as xn = k(1)

n − k(2)
n with k(1)

n in K1 and k(2)
n in K2. Since K1

is compact, {k(1)
n } has a convergent subnet, say {k(1)

nj }. Let k(1) be the limit of
{k(1)
nj } in K1. Both {xnj } and {k(1)

nj } are convergent, and {k(2)
nj } must be convergent

because k(2)
nj = k(1)

nj − xnj and subtraction is continuous. Let k2 be its limit. This
limit has to be in K2 since K2 is closed, and then the equation x = k(1) − k(2)

exhibits x as in K1 − K2. Hence K1 − K2 is closed. §

Lemma 4.20. Let X be any topological vector space, let K1 and K2 be
disjoint convex sets, and suppose that K1 has nonempty interior. Then there
exists a nonzero continuous linear functional F on X with Re F(K1) ≤ c and
c ≤ Re F(K2) for some real number c.

PROOF. The key observation is that any interior point of a subset E of X is
internal. In fact, if p is in Eo and x is in X , then p + δx is in Eo for δ = 0. By
continuity of the vector-space operations and openness of Eo, p+ δx is in Eo for
|δ| sufficiently small. Therefore p is an internal point.
Since K1 consequently has an internal point, Theorem4.18 produces a nonzero

linear functional F such that

Re F(K1) ≤ c and c ≤ Re F(K2) (∗)

for some real number c. We complete the proof of the lemma by showing that F
is continuous. Let f and g be the real and imaginary parts of F . Then g(x) =
−i f (i x), and it is enough to show that f is continuous. Fix an interior point p
of K1, and choose an open neighborhood U of 0 such that p + U ⊆ K1. Then
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f (U) ⊆ f (K1)− f (p) since f is real linear, and (∗) shows that f (U) ≤ c− f (p).
So f (U) ≤ a for some a > 0. If V = U ∩ (−U), then

f (V ) = f (U ∩ (−U)) ⊆ f (U) ∩ f (−U) = f (U) ∩ (− f (U)) ⊆ [−a, a],

and therefore f (≤a−1V ) ⊆ [−≤, ≤]. In other words, f is continuous at 0. Then
f (x + ≤a−1V ) ⊆ f (x) + [−≤, ≤], and f is continuous everywhere. §

Theorem 4.21. Let X be a locally convex topological vector space, let K1 and
K2 be disjoint closed convex subsets of X , and suppose that K1 is compact. Then
there exist ≤ > 0, a real constant c, and a continuous linear functional F on X
such that

Re F(K2) ≤ c − ≤ and c ≤ Re F(K1).

PROOF. Lemma 4.19 shows that K1 − K2 is closed, and K1 − K2 does not
contain 0 because K1 and K2 are disjoint. Since X is locally convex, we can
choose a convex open neighborhoodU of 0 disjoint from K1 − K2. Proposition
4.16c shows that K1 − K2 is convex, and Lemma 4.20 therefore applies to the
sets U and K1 − K2 and yields a nonzero continuous linear functional F such
that

Re F(U) ≤ d and d ≤ Re F(K1 − K2)

for some real d. Since F is not zero, we can find x0 in X with F(x0) = 1. Choose
≤ > 0 such that |a| < ≤ implies ax0 is in U . Then

d ∏ Re F(U) ⊇ Re F({ax0
Ø
Ø |a| < ≤} = (−≤, ≤),

and hence d ∏ ≤. Therefore all k1 in K1 and k2 in K2 have

Re F(k1) − Re F(k2) = Re F(k1 − k2) ∏ d ∏ ≤,

so that Re F(k1) ∏ ≤ + Re F(k2). Taking c = infk1∈K1 Re F(k1) now yields the
conclusion of the theorem. §

Corollary 4.22. Let X be a locally convex topological vector space, let K be
a closed convex subset of X , and let p be a point of X not in K . Then there exists
a continuous linear functional F on X such that

sup
k∈K

Re F(k) < Re F(p).

PROOF. This is the special case of Theorem 4.21 in which the given compact
set is a singleton set. §
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Corollary 4.23. If X is a locally convex topological vector space and if p and
q are distinct points of X , then there exists a continuous linear functional F on
X such that F(p) 6= F(q).

PROOF. This is the special case of Corollary 4.22 in which the given closed
convex set is a singleton set. §

We conclude this section with a simple result about locally convex topological
vector spaces that we shall need in the next section.

Proposition 4.24. If X is a locally convex topological vector space and Y is a
closed vector subspace, then the topological vector space X/Y is locally convex.

REMARK. X/Y is a topological vector space by Proposition 4.4.

PROOF. Let E be an open neighborhood of a given point of X/Y . Without loss
of generality, we may take the given point to be the 0 coset. If q : X → X/Y is
the quotient map, q−1(E) is an open neighborhood of 0 in X . Since X is locally
convex, there is a convex open neighborhoodU of 0 in X withU ⊆ q−1(E). The
map q carries open sets to open sets by Proposition 4.4 and carries convex sets to
convex sets by Proposition 4.16d, and thus q(U) is an open convex neighborhood
of the 0 coset in X/Y contained in E . §

7. Topology on C∞
com(U)

In this sectionwe carry the discussion of local convexity in Sections 5–6 along the
path toward applications to smooth functions. Our objective will be to topologize
the space C∞

com(U) of smooth functions of compact support on the open set U
of RN . The members of C∞

com(U) extend to functions in C∞
com(RN ) by defining

them to be 0 outside U , and we often make this identification without special
comment.
The important thing about the topology will be what it accomplishes, rather

than what the open sets are, and we shall therefore work toward a characterization
of the topology, together with an existence proof. The characterization will be
in terms of a universal mapping property, and local convexity will be part of that
property. Ultimately it is possible to give an explicit description of the open
sets, but we leave such a description for Problem 9 at the end of the chapter.
The explicit description will show in particular that the topology is given by an
uncountable family of seminorms that cannot be reduced to a countable family
except when U is empty.
Let us state the universal mapping property informally now, so that the ingre-

dients become clear. Let K be any compact subset of the given open setU ofRN ,
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and define C∞
K to be the vector space of all smooth functions of compact support

on RN with support contained in K . The space C∞
K becomes a locally convex

topological vector space when we impose the countable family of seminorms
k f kα = supx∈K |Dα f (x)|, with α running over all differentiation multi-indices.
Set-theoretically, C∞

com(U) is the union of all C∞
K as K runs through the compact

subsets of U . The topology on C∞
com(U) will be arranged so that

(i) every inclusion C∞
K ⊆ C∞

com(U) is continuous,
(ii) whenever a linear mapping C∞

com(U) → X is given into a locally convex
linear topological space X and the composition C∞

K → C∞
com(U) → X

is continuous for every K , then the given mapping C∞
com(U) → X is

continuous.

It will automatically have the additional property

(iii) every inclusion C∞
K ⊆ C∞

com(U) is a homeomorphism with its image.

We shall proceed somewhat abstractly, so as to be able to construct the topology
of a locally convex topological vector space out of simpler data. If (X, T ) is a
topological space and p is in X , we define a local neighborhood base for T at
p to be a collectionNp of neighborhoods of p, not necessarily open, such that if
V is any open set containing p, then there exists N inNp with N ⊆ V . If X is a
topological vector space with topology T and ifN0 is a local neighborhood base
at 0, then {p+N | N ∈ N0} is a local neighborhood base at p because translation
by x is a homeomorphism. A set is open if and only if it is a neighborhood of
each of its points. Consequently we can recover T from a local neighborhood
base N0 at 0 by this description: a subset V of X is open if and only if for each
p in V , there exists Np in N0 such that p + Np ⊆ V .
Let us observe two properties of a local neighborhood base N0 at 0 for a

topological vector space X . The first follows from the fact that X is Hausdorff,
more particularly that each one-point subset of X is closed. The property is that
for each x 6= 0 in X , there is some Mx in N0 with x not in Mx .
The second follows from the fact that 0 is an interior point of each member N

of N0. The property is that 0 is an internal point of N in the sense of Section 5.
The fact that interior implies internal was proved in the first paragraph of the
proof of Lemma 4.20.
We shall show in Lemma 4.25 that we can arrange in the locally convex case

for each member N of a local neighborhood base N0 at 0 to have the additional
property of being circled in the sense that zN ⊆ N for all scalars z with |z| ≤ 1.
Then we shall see in Proposition 4.26 that we can formulate a tidy necessary

and sufficient condition for a system of sets containing 0 in a real or complex
vector space X to be a local neighborhood base for a topology on X that makes
X into a locally convex topological vector space.
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Lemma 4.25. Any locally convex topological vector space has a local neigh-
borhood base at 0 consisting of convex circled sets.

PROOF. It is enough to show that if V is an open neighborhood of 0, then
there is an open subneighborhood U of 0 that is convex and circled. Since the
underlying topological vector space is locally convex, we may assume that V
is convex. Replacing V by V ∩ (−V ), we may assume by parts (a) and (c) of
Proposition 4.16 that V is stable under multiplication by−1. Since V is convex,
it follows that cV ⊆ V for any real c with |c| ≤ 1. If the field of scalars is R,
then the proof of the lemma is complete at this point.
Thus suppose that the field of scalars isC. If V is a convex open neighborhood

of 0, put
W = {u ∈ V | zu ∈ V for all z ∈ C with |z| ≤ 1}.

Then W is convex by Proposition 4.16a, and it is circled. Let us show that
W ⊇ 1

2V ∩ 1
2 iV . Thus let u be an element of 1

2V ∩ 1
2 iV , and write it as

u = 1
2v1 = 1

2 iv2 with v1 and v2 in V . Let z ∈ C be given with |z| ≤ 1, and let
x and y be the real and imaginary parts of z. The vectors ±v1 and 0 are in V ,
and V is convex; since |x | ≤ 1, xv1 is in V . Similarly −yv2 is in V . We can
write zu = 1

2 (x + iy)v1 = 1
2 (xv1)+ 1

2 (−yv2), and this is in V since V is convex.
Therefore zu is in V , and u is in U . Hence W ⊇ 1

2V ∩ 1
2 iV , as asserted.

Let U be the interior Wo of W . Then U is an open neighborhood of 0, and
we show that it is convex and circled; this will complete the proof. Let u and v
be in U . Since U is open, we can find an open neighborhood N of 0 such that
u + N ⊆ U and v + N ⊆ U . If n is in N and if t satisfies 0 ≤ t ≤ 1, then
(1− t)u + tv + n = (1− t)(u + n) + t (v + n) exhibits (1− t)u + tv + n as a
convex combination of a member of u + N ⊆ W and a member of v + N ⊆ W ,
hence as a member of W . Therefore every member of (1− t)u + tv + N lies in
W , and U is convex.
To see that U is circled, let u and N be as in the previous paragraph with

u + N ⊆ U . If |z| ≤ 1, then u + N ⊆ W implies z(u + N ) ⊆ W since
W is circled. Hence zu + zN ⊆ W . Since zN is open, zu + zN is an open
neighborhood of zu contained in W , and we must have zu + zN ⊆ Wo = U .
Therefore U is circled. §

Proposition 4.26. Let X be a real or complex vector space. If X has a
topology making it into a locally convex topological vector space, then X has a
local neighborhood baseN0 at 0 for that topology such that

(a) each N in N0 is convex and circled with 0 as an internal point,
(b) whenever M and N are in N0, there is some P in N0 with P ⊆ M ∩ N ,
(c) whenever N is in N0 and a is a nonzero scalar, then aN is in N0,
(d) each x 6= 0 in X has some associated Mx inN0 such that x is not in Mx .
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Conversely ifN0 is any family of subsets of the vector space X such that (a), (b),
(c), and (d) hold, then there exists one and only one topology on X making X
into a locally convex topological vector space in such a way that N0 is a local
neighborhood base at 0.
PROOF. For the direct part of the proof, Lemma 4.25 shows that there is some

local neighborhood base at 0 consisting of convex circled sets. To such a local
neighborhood base we are free to add any additional neighborhoods of 0. Thus
we may take N0 to consist of all convex circled neighborhoods of 0. Then (b)
and (c) hold, and (d) holds since the topology is Hausdorff. Since 0 is an internal
point of any neighborhood of 0, (a) holds. This proves existence.
For the converse there is only one possibility for the topology T : V is open

if for each x in V , there is some Nx in N0 with x + Nx ⊆ V . This proves the
uniqueness of T, and we are to prove existence. For existence we define open sets
in this way and define T to be the collection of all open sets. The definitionmakes
∅ open and the arbitrary union of open sets open, and (b) makes the intersection
of two open sets open.
We shall show that the complement of any {x0} is open. Then it follows by

taking unions that X is open, so that T is a topology; also we will have proved
that every one-point set is closed. If x1 6= x0, we use (d) to choose Mx0−x1 inN0
with x0 − x1 not in Mx0−x1 . Then x1 + Mx0−x1 ⊆ X − {x0}. Since x1 is arbitrary,
X − {x0} is open.
With T established as a topology, let us see that every member of N0 is a

neighborhood of 0. This step involves considering the family of sets aN for
fixed N in N0 and for arbitrary positive a. If 0 < t < 1 and if n1 and n2
are in N , then (1 − t)n1 + tn2 is in N since (a) says that N is convex. Hence
(1− t)N + t N ⊆ N . If a > 0 and b > 0, then we can take t = b(a + b)−1 and
obtain a(a + b)−1N + b(a + b)−1N ⊆ N . Multiplying by a + b gives

aN + bN ⊆ (a + b)N for all positive a and b. (∗)

In particular the sets aN are nested for a > 0, i.e., 0 < a < a0 implies aN ⊆ a0N .
From these facts we can show that each N inN0 is a neighborhood of 0. Given

N , define U =
S
0<a<1 aN . This is a subset of N by the nesting property, and

we shall prove that it is open. If x is in U , then x is in aN for some a with
0 < a < 1, and (∗) shows that x + 1

2 (1− a)N ⊆ U . By (c), 12 (1− a)N is inN0,
and therefore 12 (1−a)N can serve as a member Nx ofN0 such that x + Nx ⊆ U .
We conclude that U is open. Therefore N is a neighborhood of 0.
Next let us see that translations are homeomorphisms. If V is open and if x0

is given, we know that each x in V has an associated Nx such that x + Nx ⊆ V .
If y is in x0 + V , then x = y − x0 is in V and we see that (y − x0) + Ny−x0 ⊆ V
and y + Ny−x0 ⊆ x0 + V . Hence x0 + V is open, and every translation is a
homeomorphism.
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Let us see that addition is continuous at (0, 0), and then the fact that translations
are homeomorphisms implies that addition is continuous everywhere. If V is an
open neighborhood of 0, then the definition of open set says that there is some
N in N0 with 0 + N ⊆ V . By (c), 12N is in N0. It is enough to prove that
( 12N , 12N ) maps into V under addition. But this is immediate from (∗) since
1
2N + 1

2N ⊆ N ⊆ V .
Next we investigate continuity of the mapping x 7→ ax for a 6= 0. It is enough

to show that if V is open, then so is a−1V . Since V is open, every x in V has an
associated Nx in N0 such that x + Nx ⊆ V . The most general element of a−1V
is of the form a−1x with x in V , and we have a−1x + a−1Nx ⊆ a−1V . Since (c)
shows a−1Nx to be in N0, we conclude that a−1V is open.
Let us see that scalarmultiplication is continuous at (1, x), and then the fact that

x 7→ ax is continuous for a 6= 0 implies that scalar multiplication is continuous
everywhere except possibly at (0, x). Let V be an open neighborhood of x , and
choose N in N0 with x + N ⊆ V . Since N is in N0, (c) shows that 13N is in
N0. Then 0 is an internal point of 13N by (a), and there exists ≤ > 0 such that
−≤ ≤ c ≤ ≤ implies that cx is in 1

3N . There is no loss of generality in taking
≤ < 1. Since 1

3N is circled by (a), cx is in 1
3N for |c| ≤ ≤. Let A be the set of

scalars with |a−1| < ≤. We show that scalar multiplication carries A×(x+ 1
3N )

into V . In fact, if a is in A and 1
3n1 is in

1
3N , then |a| < 2, 13an1 is in

2
3N , and

(∗) gives

a(x + 1
3n1) = (ax − x) + (x + 1

3an1) ∈ 1
3N + (x + 2

3N ) ⊆ x + N ⊆ V .

To complete the proof of continuity of scalar multiplication, we show conti-
nuity at all points (0, x). Let V be an open neighborhood of 0 in X , and choose
N inN0 with 0+ N ⊆ V . Since 0 is an internal point of N , there is some ≤ > 0
such that cx is in N for real c with |c| ≤ ≤. For this ≤, 12≤x is in

1
2N . If |z| < 1

and y is in 1
2N , then (z, 12≤x + y) maps to 1

2 z≤x + zy, which lies in 1
2N + 1

2N
since N is circled. In turn, this is contained in N by (∗) and therefore is contained
in V . So ( 12≤z, x + 2≤−1y) maps into V if |z| < 1 and y is in 1

2N . Altering the
definitions of z and y, we conclude that (z, x + y)maps into V if |z| < 1

2≤ and y
is in ≤−1N . This proves the continuity.
Since {0} is a closed set, Lemma4.3 is applicableand shows that X isHausdorff,

hence is a topological vector space. Inside any open neighborhood V of 0 lies
some set N in U0, and

S
0<a<1 aN is a convex open subneighborhood of V .

Therefore the topology is locally convex. §

We are almost in a position to topologizeC∞
com(U). If iK denotes the inclusion

of C∞
K into C∞

com(U), we shall define a convex circled subset N in C∞
com(U)
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having 0 as an internal point to be in a local neighborhood base at 0 if i−1K (N ) is
a neighborhood of 0 in C∞

K for every compact subset K of U . Then conditions
(a), (b), and (c) in Proposition 4.26 will be met, and an examination of the
proof of that proposition shows that we obtain a topology for C∞

com(U) in which
additionand scalarmultiplicationare continuous. What is lacking is theHausdorff
property, which follows once (d) holds in Proposition 4.26. Verifying (d) requires
a construction, whose main step is given in the following lemma.

Lemma 4.27. Let X be a locally convex topological vector space, let Y be a
closed vector subspace, and let Y be given the relative topology, which is locally
convex. If N is a convex circled neighborhood of 0 in Y and x0 is a point in X
not in N , then there exists a convex circled neighborhood M of 0 in X such that
M ∩ Y = N and such that x0 is not in M .

M1

R1 M2 R2x0
Y

0 N

FIGURE 4.1. Extension of convex circled neighborhood of 0.
The lemma extends N to the set given in the figure

by M3 = R1 ∪ M2 ∪ R2.

PROOF. Since N is a neighborhood of 0 in Y and since Y has the relative
topology, there exists a neighborhood M1 of 0 in X such that M1 ∩ Y = U . We
shall adjust M1 to make it convex circled and to arrange that x0 is not in it. Since
X is locally convex, we can find a convex circled neighborhoodM2 of 0 contained
in M1. Taking a cue from Figure 4.1, define

M3 = {(1− t)n + tm2 | n ∈ N , m2 ∈ M2, 0 ≤ t ≤ 1}.

This is a neighborhood of 0 since it contains M2, and it is convex circled since N
and M2 are convex circled.
We shall prove that

M3 ∩ Y = N .

Certainly M3 ∩ Y ⊇ N . For the reverse inclusion let m3 be in M3 ∩ Y , and write
m3 = (1 − t)n + tm2 with n ∈ N , m2 ∈ M2, and 0 ≤ t ≤ 1. If t = 0, then
m3 = n is already in N . If t > 0, thenm2 = t−1(m3 − (1− t)n) exhibitsm2 as a
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linear combination of members of Y , hence as a member of Y . Since M2 ⊆ M1,
m2 is in M1 ∩ Y = N . Therefore m3 is a convex combination of the members n
and m2 of N and must lie in N since N is convex. Consequently M3 ∩ Y = N .
If x0 lies in Y , thenwe can takeM = M3 since x0 is by assumption not in N and

cannot therefore be in the larger set M3. If x0 is not in Y , then Proposition 4.24
says that X/Y is a locally convex topological vector space. Since x0 + Y is not
the 0 coset, we can find a convex circled neighborhood P of the 0 coset that does
not contain x0+Y . If q : X → X/Y is the quotient map, then q−1(P) by Propo-
sition 4.16e is a convex circled neighborhood of 0 in X that does not contain x0
and satisfies q−1(P) ∩ Y = Y . Therefore M = M3 ∩ q−1(P) is a convex circled
neighborhood of 0 in X that does not contain x0 and satisfies M ∩ Y = N . §

Proposition 4.28. Let X be a real or complex vector space, and suppose that X
is the increasing union X =

S∞
p=1 Xp of a sequence of locally convex topological

vector spaces such that for each p, Xp is a closed vector subspace of Xp+1 and
has the relative topology. Then there exists a unique topology on X making it
into a locally convex topological vector space in such a way that

(a) each inclusion ip : Xp → X is continuous,
(b) whenever L : X → Y is a linear function from X into a locally convex

topological vector space Y such that L ◦ ip : Xp → X is continuous for
all p, then L is continuous.

This unique topology has the property that
(c) each inclusion ip : Xp → X is a homeomorphism with its image.

PROOF. Let N0 be the family of all convex circled subsets N of X having 0
as an internal point such that i−1p (N ) is a neighborhood of 0 in Xp for all p. We
shall prove that N0 satisfies the four conditions (a) through (d) of Proposition
4.26, so that X has a unique topology making it into a locally convex topological
vector space in such a way that N0 is a local neighborhood base at 0. Condition
(a) holds by definition. Condition (b) holds because the intersection of two
convex circled subsets with 0 as an internal point is again a convex circled set
with 0 as an internal point and because the intersection of two neighborhoods is
a neighborhood. Condition (c) holds because multiplication by a nonzero scalar
sends convex circled sets with 0 as an internal point into convex circled sets
with 0 as an internal point and because multiplication by a nonzero scalar sends
neighborhoods of 0 to neighborhoods of 0.
We have to prove (d) in Proposition 4.26, namely that each x0 6= 0 in X has

some associated M inN0 such that x0 is not in M . Since X =
S∞

p=1 Xp, choose
p0 as small as possible so that x0 is in Xp0 . Since Xp0 satisfies (a) through (d) and
since x0 6= 0, we can find some convex circled neighborhoodMp0 of 0 in Xp0 that
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does not contain x0. Proceeding inductively by means of Lemma 4.27, we can
find, for each p > p0, a convex circled neighborhoodMp of 0 in Xp that does not
contain x0 such that Mp ∩ Xp−1 = Mp−1. Define M =

S
p∏p0 Mp. Then M is

convex circled since each Mp has this property. To see that 0 is an internal point
of M , we argue as follows: for each x in X , x lies in some Xp, the set Mp has 0
as an internal point since Mp is a neighborhood of 0, Mp contains all cx for c
real and small, and the larger set M contains all cx for c real and small. For each
p ∏ p0, the set i−1p (M) equals Mp, which was constructed as a neighborhood
of 0 in Xp. The intersection i−1k (M) = Mp ∩ Xk has to be a neighborhood of 0 in
Xk for k < p since Mp is a neighborhood of 0 in Xp, and the set M is therefore
in N0. Thus M meets the requirement of being a member of N0 that does not
contain x0, and (d) holds in Proposition 4.26.
We are left with proving (a) through (c) in the present proposition and with

proving that no other topology meets these conditions. For (a), since ip is linear,
it is enough to prove continuity at 0. Hence we are to see that if N is in N0,
then i−1p (N ) is a neighborhood of 0 in Xp. But this is just one of the defining
conditions for the set N to be in N0.
For (b), since L is linear, it is enough to prove continuity at 0. SinceY is locally

convex, the convex circled neighborhoods of 0 in Y form a local neighborhood
base. If E is such a neighborhood, we are to show that N = L−1(E) is a
neighborhood of 0 in X . The set E is convex and circled with 0 as an internal
point, and hence the same thing is true of N . Also, i−1p (N ) = i−1p L−1(E) =
(L◦ip)−1(E) is a neighborhoodof 0 in Xp since L◦ip is by assumptioncontinuous.
Therefore N = L−1(E) is inN0, and then L−1(E) is a neighborhood of 0 in the
topology imposed on X . Hence L is continuous at 0 and is continuous.
For (c), we again use Lemma 4.27, except that this time we do not need a

point x0. We are to show that if Np0 is a neighborhood of 0 in Xp0 , then i(Np0)
is a neighborhood of 0 in the relative topology that X defines on Xp0 . Since Xp0
is locally convex, there is no loss of generality in assuming that Np0 is convex
circled. Proceeding inductively for p > p0, we use the lemma to construct a
convex circled neighborhood Np of 0 in Xp such that Np ∩ Xp−1 = Np−1. Put
N =

S
p∏p0 Np. Arguing in the same way as earlier in the proof, we see that N

is in N0. Then i(Np0) = Xp0 ∩ N , and i(Np0) is exhibited as the intersection of
Xp0 with a neighborhood of 0 in X . This proves (c).
Finally suppose that the constructed topology on X is T and that T 0 is a second

topology making X into a locally convex topological vector space in such a way
that (a) and (b) hold. Let 1T be the identity map from (X, T ) to (X, T 0). By
(a) for T 0, the composition 1T ◦ ip : Xp → X is continuous. By (b) for T , 1T
is continuous from (X, T ) to (X, T 0). Reversing the roles of T and T 0, we see
that the identity map is continuous from (X, T 0) to (X, T ). Therefore 1T is a
homeomorphism. §



7. Topology on C∞
com(U) 139

In the terminology of abstract functional analysis, one says that X in Proposi-
tion 4.28 is a strict inductive limit16 of the spaces Xp. With extra hypotheses that
are satisfied in our case of interest, one says that X acquires the LF topology17
from the Xp’s.
Now let us apply the abstract theory to C∞

com(U). If {Kp} is any exhausting
sequence of compact subsets of U , then we apply Proposition 4.28 with X =
C∞
com(U) and Xp = C∞

Kp
. For the inclusion Xp ⊆ Xp+1, the restriction to C∞

Kp

of the seminorms on C∞
Kp+1

yields the seminorms for C∞
Kp
, and therefore Xp has

the relative topology as a vector subspace of Xp+1. The space Xp is a closed
subspace because C∞

Kp
is Cauchy complete and because complete subsets of a

metric space are closed. Thus the hypotheses are satisfied, and C∞
com(U) acquires

a unique topology as a locally convex topological vector space such that
(i) each inclusion C∞

Kp
⊆ C∞

com(U) is continuous,
(ii) whenever a linear mapping C∞

com(U) → X is given into a locally convex
linear topological space X and the composition C∞

Kp
→ C∞

com(U) → X
is continuous for every p, then the given mapping C∞

com(U) → X is
continuous.

Furthermore
(iii) each inclusion C∞

Kp
⊆ C∞

com(U) is a homeomorphism with its image.
To complete our construction, all we have to do is show that the resulting topology
on C∞

com(U) does not depend on the choice of exhausting sequence.

Proposition 4.29. The inductive limit topology on C∞
com(U) is independent of

the choice of exhausting sequence. Consequently
(a) each inclusion C∞

K ⊆ C∞
com(U) is a homeomorphism with its image,

(b) whenever a linear mapping C∞
com(U) → X is given into a locally convex

linear topological space X and the composition C∞
K → C∞

com(U) → X
is continuous for every compact subset K of U , then the given mapping
C∞
com(U) → X is continuous.

16Thewords “direct limit”mean the same thing as “inductive limit,” but “inductive” is more com-
mon in this situation. The term “strict” refers to the fact that the successive inclusions
ip+1,p : Xp → Xp+1 are one-one with ip+1,p(Xp) homeomorphic to Xp . The notion of “di-
rect limit” is a construction in category theory that is useful within several different categories.
Uniqueness of the direct limit up to canonical isomorphism is a formality built into the definition;
existence depends on the particular category. For this situation the construction is taking placewithin
the category of locally convex topological vector spaces (and continuous linear maps). A direct-limit
construction within a different category plays a role in Problems 26–30 at the end of the chapter,
and those problems are continued at the end of Chapter VI.

17“LF” refers to “Fréchet limit.” In the usual situation the spaces Xp are assumed to be locally
convex completemetric topological vector spaces, i.e., “Fréchet spaces.” The Xp’s have this property
in the application to C∞

com(U).
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PROOF. Write X forC∞
com(U)with its topologydefined relative to an exhausting

sequence {Kp} of compact subsets ofU , andwriteY forC∞
com(U)with its topology

defined relative to an exhausting sequence {K 0
p}. If Kk is amemberof the sequence

{Kp}, then Kk ⊆ K 0
p for p ∏ some index p0 depending on k since the interiors

of the sets K 0
p cover the compact set Kk . The inclusion Kk ⊆ K 0

p is continuous
for p ∏ p0, and therefore the composition Kk → K 0

p0 → Y is continuous. This
continuity for all k implies that the identity map from X into Y is continuous.
Reversing the roles of X and Y , we see that the identitymap is a homeomorphism.

§

8. Krein–Milman Theorem

In this sectionwe carry the discussion of local convexity in Sections 5–6 along the
path toward fixed-point theorems. Our objective will be to prove a fundamental
existence theorem about “extreme points.”
If K is a convex set in a real or complex vector space and if x0 is in K , we say

that x0 is an extreme point of K if x0 is not in the interior of any line segment
belonging to K , i.e., if

x0 = (1− t)x + t y with 0 < t < 1 and x, y ∈ K implies x0 = x = y.

Let X be a topological vector space, and let K be a closed convex subset of
X . A nonempty closed convex subset S of K is called a face if whenever ` is a
line segment belonging to K , in the above sense, and ` has an interior point in S,
then the whole line segment belongs to S. With this definition, x0 is an extreme
point of K if and only if the singleton set {x0} is a face.
If E is a subset of X , then the closed convex hull of E is defined to be the

intersection of all closed convex subsets of X that contain E . It may be described
explicitly as the closure of the set of all convex combinations of members of E .

Theorem 4.30 (Krein–Milman Theorem). If K is a compact convex set in a
locally convex topological vector space, then K is the closed convex hull of the
set of extreme points of K . In particular, if K is nonempty, then K has an extreme
point.

PROOF. Let X be the underlying topological vector space. We may assume,
without loss of generality, that K is nonempty. Let us see that if f is any
continuous linear functional on X , then the subset of K onwhich Re f assumes its
maximum value is a face. In fact, let S be the subset where g = Re f assumes its
maximum valuem. Then S is nonempty since K is compact and g is continuous,
and the continuity and real linearity of g imply that S is closed and convex. To
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check that S is a face, let x0 be in S, and suppose that x0 = (1 − t)x + t y with
0 < t < 1 and x, y in K . Then

m = g(x0) = (1− t)g(x) + tg(y) ≤ m(1− t) + tm = m.

Equality must hold throughout, and therefore g(x) = m = g(y). Hence x and y
are in S, and S is a face.
Next let us see that any face of K contains an extreme point. In fact, order the

faces by inclusion downward. The intersection of a chain of faces is nonempty
by compactness and hence is a face that provides a lower bound for the chain. By
Zorn’s Lemma there exists a minimal face S1. Arguing by contradiction, suppose
that S1 contains at least two points. Then Corollary 4.23 and the local convexity
of X yield a continuous linear functional whose real part takes distinct values at
the two points. From the previous paragraph we find that S1 contains a proper
face S. A face of a face is a face. Thus S is a face of K strictly smaller than the
minimal face S1, and we arrive at a contradiction.
Now we can complete the proof. If E denotes the closed convex hull of the set

of extreme points of K , then certainly E ⊆ K . Arguing by contradiction, suppose
that equality fails: Let x0 be in K but not in E . Then Corollary 4.22 and the local
convexity of X produce a continuous linear functional whose real part has supre-
mum on E strictly less than the value at x0. The first paragraph of the proof shows
that the subset of K where the real part of this linear functional takes the value
at x0 is a face of K , and the second paragraph shows that this face has an extreme
point. This extreme point is not in E , and we arrive at a contradiction. §

Compact convex subsets of RN arise in practical maximum-minimum prob-
lems involving several variables, typically economicvariables. Often the compact
convex set is a polyhedron, and the function to be maximized is the sum of a
constant and a linear function. The Krein–Milman Theorem produces extreme
points, and the basic techniques of the subject of linear programming show that
the maximum is attained at an extreme point and show how to find this extreme
point.
A natural place where infinite-dimensional compact convex sets arise is in the

weak-star topology on the closed unit ball of the dual of a normed linear space.
Alaoglu’s Theorem says that this set is compact, and it is certainly convex. The
Hahn–Banach Theorem is what shows that this compact convex set contains a
nonzero element when the normed linear space is nonzero.
When the whole closed unit ball is the set of interest, let us see what the

extreme points are like in certain situations. If the underlying normed linear
space is a Hilbert space, then the real part of a continuous linear functional takes
its maximum value at a single point of the closed unit ball. The upshot of this
fact is that the proof of the Krein–Milman Theorem above degenerates; Zorn’s
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Lemma is not needed, for example, to produce an extreme point. The proof
degenerates in the same way, in fact, whenever one considers some L p space
with 1 < p < ∞.
The case of L∞ is more interesting. Let us work with real-valued functions

in the context of a σ -finite measure space, regarding L∞ as the dual of L1. The
extreme points of the closed unit ball are all the L∞ functions that take only the
values −1 and +1.
Similarlywe can consider the spaceC([0, 1]) of continuous functions on [0, 1].

Again let us work with real-valued functions. Suppose that this Banach space
is the dual of some normed linear space. Then the closed unit ball of C([0, 1])
forms a compact convex set in the weak-star topology. As with L∞, the extreme
points are the functions that take only the values−1 and+1. The functions have
to be continuous, however, and they are therefore constant. So we get only two
extreme points, the constant functions −1 and +1, and their closed convex hull
contains only constant functions. The conclusion is that C([0, 1]) is not the dual
of any normed linear space.
We can argue similarly with measures and L1 functions. Suppose that X is

a compact Hausdorff space. The Banach space M(X) of regular complex Borel
measures on X is the dual of C(X), and the set of nonnegative Borel measures
of total mass ≤ 1 is a closed compact subset of the unit ball in the weak-star
topology. This set has to be the closed convex hull of its extreme points. Indeed,
as is pointed out in Problem 17 at the end of the chapter, the extreme points of
this set are 0 and the point masses of mass 1 at the points of X ; the statement of
the theorem is reflected in the fact that any regular Borel measure on X with total
mass ≤ 1 is a weak-star limit of linear combinations of point masses.
We can consider similarly the space L1([0, 1]) of Borel functions on [0, 1]

integrable with respect to Lebesgue measure. Suppose that this Banach space is
the dual of some normed linear space. Then the closed unit ball of L1([0, 1])
forms a compact convex set in the weak-star topology. Problem 18 at the end of
the chapter shows that the extreme points are trying to be the functions whose
mass is concentrated at a single point, and there are none. The conclusion is that
L1([0, 1]) is not the dual of any normed linear space.
The Krein–Milman Theorem begins to show its power when applied to more

subtle closed convex subsets of a unit ball in the weak-star topology. Here is
an example that lies behind the foundations of the theory of locally compact
abelian groups.18 For concreteness we work with complex-valued functions on
the integers, i.e., doubly infinite sequences. Such a function f (n) is said to be
positive definite if

P
j,k c( j) f ( j − k)c(k) ∏ 0 for all functions c(n) on the

integers with finite support. Positive definite functions are easily checked to

18Such groups are defined in Chapter VI.



9. Fixed-Point Theorems 143

have f (0) ∏ 0 and | f (n)| ≤ f (0). In particular, the set K of positive definite
functions f with f (0) = 1 may be regarded as a subset of the closed unit ball
of L∞ of the integers with the counting measure, a space sometimes called `∞.
Weak-star convergence for such functions is the same as pointwise convergence,
and it follows that K is closed, hence compact. Checking the definition, we see
that K is convex. TheKrein–MilmanTheorem tells us that K is the closed convex
hull of its extreme points. It is shown in Problem 20 at the end of the chapter that
the extreme points are the functions fθ (n) = einθ for real θ .
By way of introduction to the next section, let us consider one more example.

Let S be a compact Hausdorff space, and let F be any homeomorphism of S. Put
X = C(S). In the weak-star topology on M(S), the nonnegative regular Borel
measures µ with µ(S) = 1 form a compact convex subset K1 of M(S). The
Markov–Kakutani Theorem in the next section shows that there exist elements of
K1 invariant under F . The invariant such measures therefore form a nonempty
compact convex subset K of K1. According to the Krein–Milman Theorem, K is
the closed convex hull of its set of extreme points. As shown in Problem 19 at the
end of the chapter, the µ’s that are extreme points have the interesting property
that all Borel subsets that are carried onto themselves by the homeomorphism F
havemeasure 0 or 1; the usual name for this phenomenon is thatµ is ergodicwith
respect to F . Since the Krein–Milman Theorem is saying that extreme points
exist, we obtain the consequence that for each homeomorphism F of S, there is
some regular Borel measure µ with µ(S) = 1 that is ergodic with respect to F .

9. Fixed-Point Theorems

In this section we continue the discussion of convexity and local convexity. We
shall give two fixed-point theorems.

Theorem 4.31 (Markov–Kakutani Theorem). Let K be a compact convex set
in a topological vector space X , and let F be a commuting family of continuous
linear mappings carrying K into itself. Then there exists a point p in K such that
T (p) = p for all T in F.
PROOF. For each integer n ∏ 1 and member T of F, let

Tn = 1
n (I + T + T 2 + · · · + T n−1).

Let K be the family of all subsets of X that arise as Tn(K ) for some n ∏ 1 and
some T in F. Each such set is a compact convex subset of K , being the image
of a compact convex set under a continuous linear mapping that carries K into
itself. If {T (i)

ni }ri=1 is a finite subset of F and each ni is ∏ 1, then

T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆ T (1)
n1 T

(2)
n2 · · · T (r−1)

nr−1 (K ) ⊆ · · · ⊆ T (1)
n1 (K ).
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By symmetry and commutativity of the operators,

T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆
Tr

j=1 T
( j)
nj (K ).

Thus the members of K have the finite-intersection property. By compactness
their intersection is nonempty. Let p be in the intersection. We shall show that
T (p) = p for all T in F.
Arguing by contradiction, suppose that T is given inFwith T (p) 6= p. Choose

a neighborhoodU of 0 in X such that T (p) − p is not inU . The fact that p is in
the intersection of all the sets in K implies that p is in Tn(K ) for n ∏ 1 and thus

p = n−1(I + T + T 2 + · · · + T n−1)(qn)

for some qn in K . Applying T − I to this equality, we obtain

T (p) − p = n−1(T n − I )(qn).

Since the left side is not in U , the right side is not in U . Since T n(qn) and qn are
in K , it follows that 1n (K − K ) is not contained in U for any n. But K − K is a
compact set, being the image under the subtraction mapping of the compact set
K × K , and this conclusion contradicts Lemma 4.7. §

Let us return to the example at the end of the previous section. As in that
example, let S be a compact Hausdorff space, and let F be any homeomorphism
of S. Put X = C(S). In the weak-star topology onM(S), the nonnegative regular
Borel measures µ with µ(S) = 1 form a compact convex subset K1 of M(S).
The homeomorphism F acts on M(S) by the formula TF(ρ)(E) = ρ(F−1(E)).
The mapping TF is linear, and it follows from the definitions that TF satisfies
kTF(ρ)kM(S) = kρkM(S). Thus TF has norm 1 and is continuous. It maps K1
into itself. PuttingF = {TF} and applying Theorem 4.31, we obtain the existence
of a nonzero F invariant measure on S. The discussion in the previous section
went on to observe that the subset K of F invariant measures in K1, which we
now know to be nonempty, is compact convex in a locally convex topological
vector space. Thus K is a set to which we can apply the Krein–Milman Theorem,
and the extreme points turn out to be the ergodic invariant measures.

Theorem 4.32 (Schauder–Tychonoff Theorem). Let K be a compact convex
set in a locally convex topological vector space, and let F be a continuous function
from K into itself. Then there exists p in K with F(p) = p.
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The proof of Theorem 4.32 is long and will be omitted.19 The power in the
result comes from its applicability to nonlinear mappings. In the special case
in which K is the closed unit ball in RN , it reduces to the celebrated Brouwer
Fixed-Point Theorem.
This kind of theorem has applications to economics, where fixed-point theo-

rems prove the existence of equilibrium points for certain systems. The theorem
does not by itself address stability of such an equilibrium point, however.
Byway of illustration, let us return to a comparatively simple situation that was

studied in Chapter IV of Basic. The usual Picard–Lindelöf Existence Theorem20
for the initial-value problem with a system y0 = f (t, y) of ordinary differential
equations assumes continuity of f and also a Lipschitz condition for f in the
y variable. A variant, the Cauchy–Peano Existence Theorem, is the subject of
problems at the end of Chapter IV of Basic. It assumes only continuity for f and
obtains existence of solutions, with uniqueness being lost. The Cauchy–Peano
result is proved using Ascoli’s Theorem and a nonobvious construction.
Ascoli’s Theorem, as we know from Section X.9 of Basic, is intimately con-

nected with compactness. Let us see how to combine Ascoli’s Theorem and the
Schauder–Tychonoff Theorem to obtain a more transparent proof of the Cauchy–
Peano result thanwas suggested in the problems at the end of Chapter IV ofBasic.
To keep the notation simple, we stick with the case of a single equation, rather
than a system. We suppose that f (t, y) is continuous on an open subset D ofR2.
Let (t0, y0) be in D, and let R be a closed rectangle in D centered at (t0, y0) and
having the form

R =
©
(t, y)

Ø
Ø |t − t0| ≤ a and |y − y0| ≤ b

™
.

Suppose that | f (t, y)| ≤ M on R. Put a0 = min{a, b
M }. The theorem is that

there exists a continuously differentiable solution y(t) to the initial-value problem
y0 = f (t, y), y(t0) = y0, |t − t0| < a0.
For the proof let X be the Banach space C({t

Ø
Ø |t − t0| ≤ a0}), and let K be the

closure of the set

E =

(

y ∈ X

Ø
Ø
Ø
Ø
Ø

(i) y(t0) = y0,
(ii) y0 is continuous for |t − t0| ≤ a0,
(iii) |y0(t)| ≤ M for |t − t0| ≤ a0

)

in the Banach space X . Condition (iii) makes E an equicontinuous family, and
(i) and (iii) together make E pointwise bounded. Lemma 10.47 of Basic shows
that the closure K is equicontinuous and pointwise bounded. Ascoli’s Theorem

19A proof may be found in Dunford–Schwartz’s Linear Operators, Part I, pp. 453–456 and
467–469.

20Theorem 4.1 of Basic.
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therefore shows that K is compact. Define a function F carrying the space K of
functions to another space of functions by

F(y)(t) = y0 +
R t
t0 f (s, y(s)) ds.

For y in E , we have |y(s) − y0| ≤ M|s − t0| ≤ Ma0 ≤ b, and thus (s, y(s))
is in the rectangle R. Hence F(y) satisfies (i), (ii), and (iii) and is in E . So F
carries E to itself. The formula for F makes clear that F extends to a continuous
mapping on K in the supremum-norm topology. Since F(E) ⊆ E , we obtain
F(K ) ⊆ K . The set K is compact convex in a Banach space, which is locally
convex. The Schauder–Tychonoff Theorem applies to F , and the fixed point it
produces is the desired solution.

10. Gelfand Transform for Commutative C∗ Algebras

Alaoglu’s Theorem, obtained in Section 3, leads in several directions in functional
analysis, and we now return to its ramifications for spectral theory. The Stone
Representation Theorem in Section 4 gave a concrete example of what we shall
be investigating, showing that certain subalgebras of the algebra B(S) of all
complex-valued bounded functions on a set S can be realized as the algebra of
all complex-valued continuous functions on a suitable compact Hausdorff space.
The present section is devoted to a generalizationdue to I.M.Gelfand of this result
to certain algebras besides B(S); a different special case of this generalizationwill
yield in the next section the Spectral Theorem for bounded self-adjoint operators
on a Hilbert space.
Recall from Section 4 that a complex Banach algebra A is a complex as-

sociative algebra having a norm that makes it into a Banach space such that
kabk ≤ kakkbk for all a and b in A. We shall not consider A = 0 as a Banach
algebra. Nor shall we have any occasion to consider real Banach algebras. The
inequality concerning the norm under multiplication implies that multiplication
is continuous. If the Banach algebra has an identity, the same inequality implies
that k1k ∏ 1.

EXAMPLES.
(1) If S is a nonempty set, then the algebra B(S) of all bounded complex-valued

functions on S is a commutative Banach algebra. The function 1 is an identity.
If S has a topology, then the subalgebra C(S) of bounded continuous functions
gives another example of a commutative Banach algebra with identity.
(2) If (S, µ) is a σ -finite measure space, then pointwise multiplication and the

essential-supremum norm make L∞(S, µ) into a commutative Banach algebra
with identity.
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(3) In Euclidean space RN , the Banach space L1(RN ) with Lebesgue mea-
sure becomes a commutative Banach algebra with convolution as multiplication:
( f ∗g)(x) =

R
RN f (x− y)g(y) dy =

R
RN f (y)g(x− y) dy. This Banach algebra

does not have an identity. A variant of this Banach algebra may be defined using
functions on RN periodic in each variable with period 2π , the measure being
(2π)−N dx , and convolution being the multiplication. Still another variant uses
functions onZN integrable with respect to the countingmeasure, and convolution
is again the multiplication.
4) If H is a complex Hilbert space, then the algebra B(H, H) of all bounded

linear operators from H to itself is a Banach algebra with identity when the norm
is the operator norm and the multiplication is composition of operators.

The example of L1 is so important that one does not want automatically to
impose a condition on a Banach algebra that it contain an identity. Nevertheless,
it is always possible to adjoin an identity to a Banach algebra if one wants, as the
following proposition shows.

Proposition 4.33. Let A be a complex Banach algebra, and let

B = {(a, ∏) | a is in A and ∏ is in C} = A⊕ C

as a vector space. Define

(a, ∏)(b, µ) = (ab + ∏b + µa, ∏µ)

k(a, ∏)k = kak + |∏|.and

ThenB is a complex Banach algebra with identity (0, 1), and the map a 7→ (a, 0)
is a norm-preserving algebra homomorphism of A onto a closed ideal in B.

REMARKS. The formula for the multiplication is motivated by expansion of
the product (a + ∏)(b + µ), and the formula for the norm is motivated by the
norm of the element f dx + δ0 in M(RN ), where δ0 is a point mass of weight 1
at the origin. We omit the proof of the proposition, since we shall not pursue L1
very far from this point of view.

To proceed further, let us go back to our examples and see what can be said
about them. For B(S) in Example 1, the Stone Representation Theorem realized
certain subalgebras as C(X) for some compact Hausdorff space X . The space X
is the space of all nonzero continuous multiplicative linear functionals respecting
complex conjugation, regarded as a closed subset of the set of all continuous linear
functionals of norm ≤ 1 with the weak-star topology. Evaluations at points of S
provide examples of members of X , and X is just the closure of those evaluations.
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To what extent might multiplicative linear functionals help us understand
the other examples? For L∞ in Example 2, the notion of multiplicative linear
functional is meaningful, but it is not clear that any nonzero ones exist. At points
of the measure space of positive measure, evaluations are well defined and yield
multiplicative linear functionals. But if every one-point set of the measure space
has measure 0, then it is not clear how to proceed.
For L1 in Example 3, the answer is more decisive. The most general con-

tinuous linear functional is integration with an L∞ function, and the nonzero
continuous multiplicative linear functionals are the ones where the L∞ function
is an exponential x 7→ eix ·y for some y in RN . Let us sketch the argument. If a
multiplicative linear functional ` is given by the nonzero L∞ function ϕ, then the
condition `( f ∗ g) = `( f )`(g) translates into the condition

Z

RN×RN
f (x)g(y)ϕ(x + y) dx dy =

Z

RN×RN
f (x)g(y)ϕ(x)ϕ(y) dx dy.

Since f and g are arbitrary, ϕ(x + y) = ϕ(x)ϕ(y) a.e. [dx dy]. Letting p be in
Ccom(RN ) and integrating this equation with p(y) gives

Z

RN
p(y)ϕ(x + y) dy = ϕ(x)

Z

RN
p(y)ϕ(y) dy a.e. [dx].

The left side, upon the change of variables y 7→ −y, is the convolution of a
function in Ccom(RN ) and a function in L∞(RN ). It is therefore continuous
as a function of x . On the right side some p has

R
RN p(y)ϕ(y) dy 6= 0 since

ϕ is not the 0 function almost everywhere. Fixing such a p and dividing byR
RN p(y)ϕ(y) dy, we see that ϕ(x) is almost everywhere equal to a certain
continuous function. We may therefore adjust ϕ on a set of measure 0 to be
continuous. Once adjusted, ϕ satisfies ϕ(x + y) = ϕ(x)ϕ(y) everywhere. It is
then a simple matter to see that ϕ is an exponential, as asserted.
Example 4 is something like Example 2. Suppose that A is a bounded self-

adjoint operator on the Hilbert space H . We can form the smallest subalgebra
of B(H, H) containing A and the identity, and we can look for multiplicative
linear functionals. Theorem 2.3 addresses a situation in which we can identify
such functionals. If A is compact, then the theorem gives an orthonormal basis
of eigenvectors, and every member of this algebra acts as a scalar on each eigen-
vector. So each eigenvector yields, via the corresponding set of eigenvalues, a
multiplicative linear functional. If A is not compact, however, eigenvectors need
not exist, and then it is unclear where to look to find nonzero multiplicative linear
functionals.
A series of theoretical insights now comes into play. An associative algebra

with identity need not have nonzeromultiplicative linear functionals, but it always
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has maximal ideals. These come from Zorn’s Lemma, the proper ideals being
those ideals not containing the identity. Accordingly, we shall think in terms of
maximal ideals. These turn out to be closed, because as we shall see, there is a
neighborhood of the identity where every element is invertible with an inverse
given by the sum of a geometric series. The quotient of a commutative complex
Banach algebra with identity by a (closed) maximal ideal is then a complex
Banach algebra in which every nonzero element is invertible. The remarkable
fact is that such a quotient necessarily is 1-dimensional. Then it follows that
the maximal ideals all correspond to continuous multiplicative linear functionals
after all, and their existence has been established. Let us run through the steps.
Let A be a Banach algebra with identity, at first not necessarily commutative.

If a is inA, then a right inverse to a is an element b with ab = 1. If a has a right
inverse b and if a has a left inverse c, then the two are equal as a consequence
of the associativity of multiplication: c = c1 = c(ab) = (ca)b = 1b = b. So
a has a two-sided inverse, which we call simply an inverse, and we say that a is
invertible.

Proposition 4.34. Let A be a Banach algebra with identity. If kak < 1, then
1− a is invertible and k(1− a)−1k ≤ (1− kak)−1.

PROOF. Form
P∞

n=0 an . This series is Cauchy since kank ≤ kakn implies∞
∞PN

n=M an
∞
∞ ≤

PN
n=M kakn ≤ kakM(1−kak)−1. SinceA is complete, the series

P∞
n=0 an is convergent. Let b be its sum. Then we have (1 − a)

°PN
n=0 an

¢
=

°PN
n=0 an

¢
(1 − a) = 1 − aN+1, and hence (1 − a)b = b(1 − a) = 1. Also,

kbk ≤
P∞

n=0 kakn = (1− kak)−1. §

Corollary 4.35. In a Banach algebra with identity, the invertible elements
form an open set. More particularly if kak is invertible and kx − ak < ka−1k−1,
then x is invertible.

PROOF. LetU be the set of invertible elements, and let a be inU . If kx−ak <
ka−1k−1, then

ka−1x − 1k = ka−1(x − a)k ≤ ka−1kkx − ak < 1,

and Proposition 4.34 shows that 1 − (1 − a−1x) = a−1x is invertible. Hence x
is invertible. §

Proposition 4.36. IfA is a Banach algebra with identity andU is the open set
of invertible elements, then inversion is a continuous map of U into itself.
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PROOF. Let a be in U , and let kx − ak < ka−1k−1, so that x is in U by
Corollary 4.35. Then

kx−1 − a−1k = kx−1(x − a)a−1k ≤ ka−1kkx−1kkx − ak,

and continuity will follow if we show that kx−1k ≤ M < ∞ for x near a.
Computation and Proposition 4.34 give

kx−1k = k(a − (a − x))−1k = ka−1(1− (1− xa−1))−1k ≤
ka−1k

1− k1− xa−1k
,

and the desired boundedness follows from continuity of multiplication. §

Let A be a complex Banach algebra with identity. If a is in A, the spectrum
of a is the set

σ(a) = {∏ ∈ C | a − ∏ is not invertible}.

It will be proved in Corollary 4.39 below that σ(a) is always nonempty. The
resolvent set P(a) of a is the complement of σ(a) in C. The resolvent of a is
the function

R(∏) = (a − ∏)−1 from P(a) into A.

The spectral radius of a, denoted by r(a), is

r(a) = sup
©
|∏|

Ø
Ø ∏ is in σ(a)

™
.

Proposition 4.37. For a in a complex Banach algebra A with identity, σ(a)
is compact and r(a) is ≤ kak.

PROOF. The function ∏ 7→ a − ∏ is continuous, and the set U of invertible
elements is open, the latter by Corollary 4.35. Thus P(a) = {∏ | a − ∏ is in U}
is open. Hence the complement σ(a) is closed. Fix ∏ with ∏ > kak. Then
k∏−1ak < 1, and therefore ∏−1a − 1 is in U . Since ∏ 6= 0, a − ∏ is in U .
Thus ∏ is in P(a). It follows that σ(a) is contained in

©
∏

Ø
Ø |∏| ≤ kak

™
and that

r(a) ≤ kak. Since σ(a) is then bounded, as well as closed, σ(a) is compact. §

We say that a function ϕ from an open subset V ofC into the complex Banach
algebraA is weakly analytic on V if ` ◦ ϕ is an analytic function on V for every
` in the dual space A∗.

Theorem 4.38. If A is a complex Banach algebra with identity and if a is in
A, then R(∏) = (a−∏)−1 is weakly analytic on P(a)with lim∏→∞ kR(∏)k = 0.
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PROOF. Let ∏0 be in P(a), and let ` be in A∗. Writing

a − ∏ = (a − ∏0)
°
1− (a − ∏0)

−1(∏ − ∏0)
¢

and applying Proposition 4.34, we see that a − ∏ is invertible if the condition
k(a − ∏0)

−1(∏ − ∏0)k < 1 is satisfied. In this case,

(a − ∏)−1 = (a − ∏0)
−1P∞

n=0 (a − ∏0)
−n(∏ − ∏0)

n,

and the continuity of ` yields

`
°
(a − ∏)−1

¢
=

∞X

n=0
`
°
(a − ∏0)

−n−1¢(∏ − ∏0)
n,

with the series convergent. Therefore R(∏) is weakly analytic.
To establish that lim∏→∞ k(a − ∏)−1k = 0, we write

(a − ∏)−1 =
°
∏(∏−1a − 1)

¢−1
= ∏−1(∏−1a − 1)−1.

Proposition 4.34 gives

k(∏−1a − 1)−1k ≤ (1− |∏|−1kak)−1,

and the right side tends to 1 as∏ tends to infinity. Hence lim∏→∞ k(a−∏)−1k = 0.
§

Corollary 4.39. If A is a complex Banach algebra with identity, then σ(a) is
nonempty for each a in A.

PROOF. If σ(a) were to be empty, then every ` in A∗ would have ∏ 7→
`((a − ∏)−1) entire and vanishing at infinity, by Theorem 4.38. By Liouville’s
Theorem, we would have `((a−∏)−1) = 0 for every a and ∏. Since ` is arbitrary,
the Hahn–Banach Theorem would give (a − ∏)−1 = 0, contradiction. §

Corollary4.40 (Gelfand–MazurTheorem). The only complexBanach algebra
with identity in which every nonzero element is invertible is C itself.

PROOF. Suppose thatA is a complex Banach algebra with identity with every
nonzero element invertible. If a is given in A, σ(a) is not empty, according to
Corollary 4.39. Choose ∏ in σ(a). Then a − ∏ is not invertible. Since every
nonzero element of A is by assumption invertible, a − ∏ = 0. Hence a = ∏.
Thus A consists of the scalar multiples of the identity. §
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Corollary 4.41. If A is a commutative complex Banach algebra with iden-
tity, then the nonzero multiplicative linear functionals on A stand in one-one
correspondence with the maximal ideals of A, the correspondence being

` =
nmultiplicative
linear functional

o
−→ ker ` = maximal ideal

with inverse

I =

(maximal ideal,
necessarily with
A = I ⊕ C1

)

−→ ` defined by `(x, ∏) = ∏.

Every nonzero multiplicative linear functional is continuous with norm ≤ 1, and
every maximal ideal is closed. Every nonzero multiplicative linear functional
carries 1 into 1.

REMARKS. The proof will make use of Problem 4 in Chapter XII of Basic:
if X is a Banach space and Y is a closed subspace, then the vector space X/Y
becomes a normed linear space under the definition kx + Yk = infy∈Y kx + yk,
and the resulting metric on X/Y is complete. Problem 1 at the end of the present
chapter points out that the Banach space X/Y obtained this way has the same
topology as the quotient topological vector space X/Y defined in Section 1.

PROOF. We may assume A 6= 0. If ` is a nonzero multiplicative linear
functional, then its kernel is an ideal of codimension 1, hence is a maximal ideal.
Conversely if I is a maximal ideal, then no element of I can be invertible. Since
the set U of invertible elements is open, according to Corollary 4.35, the set I
is at positive distance from 1. Thus the closure I cl, which is an ideal, does not
contain 1. Since I is maximal, I cl = I . Thus I is closed. By the above remarks,
A/I is a complex Banach space. Its multiplication makes it into a complex
Banach algebra because if we take the infimum over y1 ∈ I and y2 ∈ I of the
right side of the inequality

ka1a2 + Ik ≤ ka1a2 + (y1a2 + a1y2 + y1y2)k
= k(a1 + y1)(a2 + y2)k
≤ ka1 + y1kka2 + y2k,

we obtain ka1a2+ Ik ≤ ka1+ Ikka2+ Ik. The quotientA/I is also a field, being
the quotient of a nonzero commutative ring with identity by a maximal ideal. By
Corollary 4.40,A/I ∼= C. Hence I has codimension 1, andA = I⊕C1 as vector
spaces. If we define a linear functional ` by `(x, ∏) = ∏, then we readily check
that ` is multiplicative and has kernel I . To see that ` is continuous, one way to
proceed is to use the Hahn–Banach Theorem: Since I is closed and 1 is not in I ,
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there exists a continuous linear functional `0 with `0(1) 6= 0 and `0(I ) = 0. Then
` = `0(1)−1`(1)`0, and therefore ` is continuous.
This establishes the correspondence. To check that it is one-one, it is enough

to see that any nonzero multiplicative linear functional carries 1 into 1. If ` is
a nonzero multiplicative linear functional, then `(a) = `(a)`(1) = `(a)`(1). If
we choose a with `(a) 6= 0, then we can divide and conclude that `(1) = 1.
Finally we check the norm of the nonzero multiplicative linear functional `.

If a in A has kak ≤ 1, then |`(a)|n = |`(an)| ≤ k`kkank ≤ k`kkakn ≤ k`k.
Since n ∏ 1 is arbitrary, we must have |`(a)| ≤ 1. Taking the supremum over a,
we obtain k`k ≤ 1. §

If A is a commutative complex Banach algebra with identity, we denote its
space of maximal ideals by A∗

m. For A 6= 0, this space is nonempty by an
application of Zorn’s Lemma to the set of all proper ideals of A. Using the
identification via Corollary 4.41 ofA∗

m as a set of linear functionals of norm≤ 1,
we can regard A∗

m as a subset of the unit ball of the dual A∗. We give A∗
m the

relative topology from the weak-star topology on A∗.

Proposition 4.42. If A is a commutative complex Banach algebra with
identity, then the weak-star topology makes the maximal ideal space A∗

m into
a compact Hausdorff space.

PROOF. Corollary 4.41 identifiesA∗
m with a subset of the unit ball ofA∗, which

is compact in the weak-star topology by Alaoglu’s Theorem (Theorem 4.14) and
is also Hausdorff. All we have to do is show thatA∗

m is a closed subset. For each
a and b in A, the set {` ∈ A∗ | `(ab) = `(a)`(b)} is closed since the functions
` 7→ `(ab) and ` 7→ `(a)`(b) are continuous from the weak-star topology into
C. Hence the intersection over all a and b is closed. The setA∗

m is the intersection
of this set with the closed set {` ∈ A∗ | `(1) = 1} and is therefore closed. §

For L1 or any other complex Banach algebraA not containing an identity, the
prescription for applying the above theory to A is to adjoin an identity and form
A⊕ C, apply the results toA⊕ C, and then see what happens when the identity
is removed. For Proposition 4.42, A is one of the maximal ideals in A ⊕ C.
Removing it from (A ⊕ C)∗m yields a locally compact Hausdorff space whose
one-point compactification is (A⊕ C)∗m.
It is now just a formality to obtain a mapping of any commutative com-

plex Banach algebra A with identity into C(A∗
m). The Gelfand transform

a 7→ ba is the mapping of A into C(A∗
m) given byba(`) = `(a) for each nonzero

multiplicative linear functional ` on A.
In the context of a suitable subalgebra of B(S), the Gelfand transform is just

the evaluation of all nonzero multiplicative linear functionals on the members of
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the subalgebra. Such linear functionals turn out automatically to respect complex
conjugation.21 The evaluations at the points of S are a dense subset of these.
The Stone Representation Theorem says that the Gelfand transform is a norm-
preserving algebra isomorphism.
In the context of L1(RN ), the Gelfand transform is just the Fourier trans-

form. The nonzero multiplicative linear functionals are the functions `y( f ) =R
RN f (x)e−2π i x ·y dx for y ∈ RN , i.e., `y( f ) = bf (y). The Gelfand transform is
the mapping of f to the resulting function of `y or of y. It is therefore exactly
the Fourier transform f 7→ bf if we parametrize L1(RN )∗m by the variable y.
The Gelfand transform makes sense for our other two examples as well, for

L∞ and for the complex Banach algebra generated by the identity and a single
self-adjoint bounded linear operator on a Hilbert space. But we do not so far
get much insight into what the Gelfand transform does for these cases. We can
summarize all the formalism as follows.

Proposition4.43. IfA is a commutative complexBanachalgebrawith identity,
then the Gelfand transform is an algebra homomorphism of norm ≤ 1 of A into
C(A∗

m) carrying 1 to 1, and its kernel is the intersection of all maximal ideals of
A. Moreover, for each a and b in A,

(a) σ(a) is the image of the functionba in C,
(b) r(a) = kbaksup,
(c) r(a + b) ≤ r(a) + r(b) and r(ab) ≤ r(a)r(b).

PROOF. The Gelfand transform is an algebra homomorphism because

cab (`) = `(ab) = `(a)`(b) = ba(`)bb(`)

for all` inA∗
m. Corollary4.41 shows that each` inA∗

m hasnorm≤ 1, and therefore
|ba(`)| = |`(a)| ≤ kak. Hencekbaksup ≤ kak, and theGelfand transformhas norm
≤ 1. Corollary 4.41 shows that every nonzero multiplicative linear functional
carries 1 into 1, and therefore the Gelfand transform carries 1 into 1.
The kernel of the Gelfand transform is the set of all a in A withba(`) = 0 for

all `, thus the set of all a with `(a) = 0 for all `, thus the intersection of the
kernels of all `’s.
For (a), we observe that a is invertible if and only if aA = A, if and only if a is

not in any maximal ideal, if and only ifba is nowhere vanishing. Thus a complex
number ∏ is in σ(a) if and only if a − ∏ is not invertible, if and only ifba − ∏ is
somewhere vanishing, if and only if ∏ is in the image ofba. This proves (a).

21The verification for an algebra as in Theorem 4.15 that the nonzero multiplicative linear
functionals automatically respect complex conjugation is embedded in the proof of Theorem 4.48
below. See the paragraph of the proof containing the display (†) and the two paragraphs that follow
it.



10. Gelfand Transform for Commutative C∗ Algebras 155

Conclusion (b) is immediate from (a) and the definition of r(a), and (c) follows
from (b) and the inequalities satisfied by the supremum norm. This completes
the proof. §

Proposition 4.43 isolates the real problem, which is to say something quanti-
tative about the intersection of the kernels of all maximal ideals, about σ(a), and
about r(a). For our purposes it will be enough to have the spectral radius formula
that is proved in Corollary 4.46 below.

Theorem4.44 (SpectralMappingTheorem). IfA is a complexBanach algebra
with identity, if a is in A, and if Q is any polynomial in one variable, then
Q(σ (a)) = σ(Q(a)).
REMARKS. The left side Q(σ (a)) is understood to be the image under Q of the

set σ(a), while the right side σ(Q(a)) is the spectrum of Q(a), i.e., the spectrum
of the member of A obtained by substituting a for the variable in Q.
PROOF. First we show that Q(σ (a)) ⊆ σ(Q(a)). Let ∏0 be in σ(a), so that

a − ∏0 is not invertible. Arguing by contradiction, suppose that Q(a) − Q(∏0)
is invertible, say with b as two-sided inverse. Let S be the polynomial
defined by Q(∏) − Q(∏0) = (∏ − ∏0)S(∏). Since b is a two-sided inverse of
Q(a) − Q(∏0) = (a − ∏0)S(a), we have 1 = b(a − ∏0)S(a) = (bS(a))(a − ∏0)
and 1 = (a−∏0)(S(a)b). Thus a−∏0 has a left inverse bS(a) and a right inverse
S(a)b, and a − ∏0 must be invertible, contradiction.
For the reverse inclusion σ(Q(a)) ⊆ Q(σ (a)), suppose that ∏0 is in σ(Q(a)).

Let ∏1, . . . , ∏n be the roots of Q(∏)−∏0 repeated according to theirmultiplicities.
Then we have Q(∏) − ∏0 = c(∏ − ∏1) · · · (∏ − ∏n) for some nonzero constant c.
Substitution of a for ∏ gives

Q(a) − ∏0 = c(a − ∏1) · · · (a − ∏n).

Since Q(a) − ∏0 is by assumption not invertible, some a − ∏j is not invertible.
For this j , ∏j is in σ(a). Since ∏j is a root of Q(∏)−∏0, we have Q(∏j )−∏0 = 0,
i.e., Q(∏j ) = ∏0. Hence ∏0 is exhibited as Q of the member ∏j of σ(a). §

Corollary 4.45. If A is a complex Banach algebra with identity and if a is in
A, then r(an) = r(a)n for every integer n ∏ 1.
PROOF. This follows by taking Q(∏) = ∏n in Theorem 4.44 and then using

the definition of the function r . §

Corollary 4.46 (spectral radius formula). If A is a complex Banach algebra
with identity and if a is in A, then

r(a) = lim
n→∞

kank1/n,

the limit existing.
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PROOF. For every n, Corollary 4.45 andProposition4.37 give r(a)n = r(an) ≤
kank and thus r(a) ≤ kank1/n . Hence

r(a) ≤ lim inf
n

kank1/n. (∗)

If |∏| < kak−1 and ` is in the dual space A∗, then Proposition 4.34 yields

(1−∏a)−1 =
P∞

n=0 an∏n and therefore `((1−∏a)−1) =
P∞

n=0 `(an)∏n.

Theorem 4.38 shows that ∏ 7→ `((1 − ∏a)−1) is analytic for ∏−1 in P(a), and
Proposition 4.37 shows that this analyticity occurs for |∏|−1 > r(a), hence for
|∏| < r(a)−1. Therefore the power series

P∞
n=0 `(an)∏n is convergent for |∏| <

r(a)−1. Since the terms of a convergent series are bounded, each fixed ∏ within
the disk of convergence must have |`(an)||∏n| ≤ M` for some constant M`. That
is,

|`(∏nan)| ≤ M` (∗∗)

for all n. Each linear functional on A∗ given by ` 7→ `(∏nan) is bounded, and
therefore the systemof such linear functionalsasn varies,whichhasbeen shown in
(∗∗) to be pointwisebounded, satisfiesk∏nank ≤ M by theUniformBoundedness
Theorem. Consequently |∏|kank1/n ≤ M1/n . Taking the limsup of both sides
gives |∏| lim supn kank1/n ≤ 1, and hence lim supn kank1/n ≤ |∏|−1. Since∏ is an
arbitrary complex numberwith |∏|−1 > r(a), we obtain lim supn kank1/n ≤ r(a).
In combination with (∗), this inequality completes the proof. §

The spectral radius formula gives us the following quantitative conclusion
about the Gelfand transform.

Corollary 4.47. The Gelfand transform for a commutative complex Banach
algebra A with identity is norm preserving from A to C(A∗

m) if and only if
ka2k = kak2 for all a in A.

PROOF. If ka2k = kak2 for all a, then induction gives ka2nk = kak2n and
thus kak = ka2nk2−n . Hence kak = limn ka2nk2−n . This limit equals r(a) by the
spectral radius formula (Corollary 4.46), and r(a) equals kbaksup by Proposition
4.43b. Therefore kak = kbaksup.
Conversely if kbaksup = kak for all a, then r(a) = kak by Proposition 4.43b,

and ka2k = r(a2) = r(a)2 = kak2 by Corollary 4.45. §

This represents some progress. The condition ka2k = kak2 is satisfied in L∞,
and hence the Gelfand transform is a norm-preserving algebra homomorphism of
L∞ into C(A∗

m). In L1 after an identity is adjoined, the condition ka2k = kak2
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is not universally satisfied, and the corollary says that the Gelfand transform, i.e.,
the Fourier transform, is not norm preserving; this conclusion has content, but
it is not a surprise. In the case of the complex Banach algebra generated by the
identity and a bounded self-adjoint operator A, the condition ka2k = kak2 is
satisfied for a = A as a consequence of Proposition 2.2 with L = A∗A, but it is
less transparent what happens with other operators in the Banach algebra that are
not self adjoint.
The final step is to bring the operation ( · )∗ into play. An involution of a

complex Banach algebra A is a map a 7→ a∗ of A into itself with the properties
that the following hold for all a and b in A:

(i) a∗∗ = a,
(ii) (a + b)∗ = a∗ + b∗,
(iii) (∏a)∗ = ∏̄a∗ for all ∏ in C,
(iv) (ab)∗ = b∗a∗.

A complex Banach algebraA with involution ( · )∗ is called a C∗ algebra if
(v) ka∗ak = kak2 for all a in A.

Our examples—B(S) and certain subalgebras, L∞, L1, and B(H, H) are all
complex Banach algebras with involution. For B(S) and L∞, the involution is
complex conjugation. For L1, it is f 7→ g with g(x) = f (−x), and for B(H, H)
it is adjoint. Of these examples all but L1 are C∗ algebras.
Observe that (i) and (iv) imply that the element 1, if it is present, has to satisfy

1∗ = 1 because 1 = (1∗)∗ = (11∗)∗ = 1∗∗1∗ = 11∗ = 1∗. If (v) holds also, then
(v) with a = 1 shows that k1k = 1.

Theorem 4.48. If A is a commutative C∗ algebra with identity, then the
Gelfand transform is a norm-preserving algebra isomorphism ofA onto C(A∗

m),
and it carries ( · )∗ into complex conjugation.

PROOF. For any a in A, (v) gives kak2 = ka∗ak ≤ ka∗kkak. If a = 0, then
a∗ = 0; otherwise division by kak gives kak ≤ ka∗k. Applying this inequality
to a∗ and using (i), we obtain

ka∗k = kak. (∗)

Next suppose that b is an element of A with b∗ = b. Raising to powers gives
(b2n )∗ = (b2n )∗ for n ∏ 0. Then (v) gives kb2nk = k(b2n−1)∗b2n−1k = kb2n−1k2,
and induction shows that kb2nk = kbk2n . Hence kbk = kb2nk2−n . Taking the
limit and applying the spectral radius formula and Proposition 4.43b, we obtain

kbk = lim
n

kb2
n
k2

−n
= r(b) = kbbksup. (∗∗)
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The Gelfand transform is an algebra homomorphism by Proposition 4.43. If a
general a is given inA, then we can apply (∗) to a and (∗∗) to b = a∗a to obtain

ka∗kkak = kak2 = ka∗ak = kbk = kbbksup = kda∗aksup
= kba∗baksup ≤ kba∗ksupkbaksup ≤ ka∗kkak,

the last inequality holding since the Gelfand transform has norm≤ 1 according to
Proposition 4.43. The end expressions are equal, and equality must hold through-
out. Therefore kbaksup = kak, and the Gelfand transform is norm preserving.
Inworking towardproving that theGelfand transformcarries ( · )∗ into complex

conjugation, we first show that

b∗ = b implies i is not in σ(b). (†)

Assuming the contrary, we find that 1 is in σ(−ib). By the Spectral Mapping
Theorem (Theorem 4.44), ∏ + 1 is in σ(∏ − ib) for all real ∏. Hence

(∏ + 1)2 ≤ (r(∏ − ib))2 ≤ k∏ − ibk2 = k(∏ − ib)∗(∏ − ib)k

= k(∏ + ib)(∏ − ib)k = k∏2 + b2k ≤ ∏2k1k + kb2k = ∏2 + kb2k,

and 2∏ + 1 ≤ kbk2 for all real ∏. This is a contradiction, and (†) is proved.
Next let us deduce from (†) that

b∗ = b implies σ(b) ⊆ R. (††)

Suppose that ∏ = α + iβ has α and β real and β 6= 0. Then β−1(b − ∏) =
β−1(b− α) − i . The element β−1(b− ∏) has (β−1(b− α))∗ = β−1(b− α), and
(†) shows that i is not in its spectrum. Therefore β−1(b − ∏) = β−1(b − α) − i
is invertible. Since β 6= 0, b − ∏ is invertible. Therefore ∏ is not in σ(b). This
proves (††).
Now we shall show that the Gelfand transform carries ( · )∗ into complex

conjugation. Let a be inA, and write a = 1
2 (a+a∗)+ 1

2i ((ia)+ (ia)∗) = b+ ic
with b∗ = b and c∗ = c. Then a∗ = b− ic. From (††) we know thatbb andbc are
real-valued. Therefore ba∗(`) = bb(`)− ibc(`) = bb(`) + ibc(`) = ba(`), as asserted.
Since the Gelfand transform is norm preserving, respects products, and car-

ries 1 into 1, its image is a uniformly closed subalgebra of C(A∗
m). The fact

that ( · )∗ is carried into complex conjugation implies that the image is closed
under complex conjugation. The image separates points of A by definition of
equality of linear functionals. By the Stone–Weierstrass Theorem the image is
all of C(A∗

m). This completes the proof. §
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Among our examples, if A is a conjugate-closed Banach subalgebra of B(S)
with identity, then Theorem 4.48 reproduces the Stone Representation Theorem
(Theorem 4.15).
Second if A is L∞, Theorem 4.48 gives us something new, identifying L∞

with C((L∞)∗m). We do not get a total understanding of (L∞)∗m, but we do get
some understanding from the fact that every ideal is contained in a maximal ideal.
We can produce an ideal in L∞ merely by specifying a measurable subset; the
ideal consists of all essentially bounded functions, modulo null functions, that
vanish on that set. As the set gets smaller, we get closer to the situation of a
maximal ideal.
Third if A is L1, Theorem 4.48 gives us no information since L1 is not a C∗

algebra. The theory of complex Banach algebras can be pursued in a direction
that specializes to more information about L1, but we shall not follow such a
route.
Fourth if A is the complex Banach algebra generated by the identity and a

bounded self-adjoint operator A on a Hilbert space H , then Theorem 4.48 is
applicable and realizes the algebra as C(A∗

m). We shall see in the next section
thatA∗

m can be viewed as the spectrum σ(A). However, the Hilbert space H plays
no role in this realization, and we therefore cannot expect to learn much about our
original operator from C(A∗

m). For example we cannot distinguish between the
two operators onC3 given by diagonal matrices diag(1, 1, 2) and diag(1, 2, 2) on
the basis of the spectrum of each. The goal of the next section is to remedy this
defect.
Since we shall want to consider operators in B(H, H) as belonging to more

than one C∗ algebra, let us take another look at the definition of the spectrum of
an element. The spectrum of a, as a member of A, is the set of complex ∏ for
which (a − ∏)−1 fails to exist as a member of A. Certainly if we have A1 ⊆ A2
and a is in A1, then the failure of (a − ∏)−1 to exist in A2 implies the failure of
(a−∏)−1 to exist inA1. Hence the spectrum relative toA1 contains the spectrum
relative to A2. The spectrum is the smallest for A = B(H, H). The following
corollary implies that for operators A with AA∗ = A∗A, the smallest possible
spectrum is already achieved for the C∗ algebra generated by 1, A, and A∗.

Corollary 4.49. If A is a C∗ algebra with identity and if a is an invertible
element of A such that aa∗ = a∗a, then a is invertible already in the smallest
closed subalgebraA0 of A containing 1, a, and a∗.

PROOF. Since a−1a∗ = a−1(a∗a)a−1 = a−1(aa∗)a−1 = a∗a−1, the smallest
closed subalgebra A1 of A containing 1, a, a∗, a−1, and a−1∗ is commutative,
hence is a commutative C∗ algebra with identity. Form the Gelfand transform
b 7→ bb for A1. Thenba and da−1 are reciprocals, and the image ofba is therefore
bounded away from0. By the Stone–Weierstrass Theoremwe can find a sequence
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{pn(z, z̄)} of polynomial functions that converge uniformly on the compact image
ofba to 1/z. Since by Theorem 4.48, the Gelfand transform is isometric for A1,
we have a−1 = lim pn(a, a∗) in A1, and a−1 is therefore exhibited as a member
of A0. §

11. Spectral Theorem for Bounded Self-Adjoint Operators

The goal of this section is to expand upon Theorem 4.48 in the case of a commu-
tativeC∗ algebra of bounded linear operators on a Hilbert space in such a way that
the Hilbert space plays a decisive role. The result will be the Spectral Theorem,
and we shall see how the Spectral Theorem enables one to compute with the
operators in question. The theorem to be given here is limited to the case of a
separable Hilbert space, and the assumption of separability will be included in
all our results about general spaces B(H, H). The Spectral Theorem will enable
us to view the operators in question as multiplications by L∞ functions on an L2
space, and we therefore begin with that example.

EXAMPLE. Let (S, µ) be a finite measure space, and let H be the Hilbert space
H = L2(S, µ). For f in L∞(X, µ), define Mf : L2 → L2 by Mf (g) = f g.
The computation

kMf (g)k22 =
Z

X
| f g|2 dµ ≤ k f k2∞

Z

X
|g|2 dµ = k f k2∞kgk22

shows that Mf is a bounded operator on H with kMf k ≤ k f k∞. Shortly we
shall check that equality holds:

kMf k = k f k∞. (∗)

But first, let us observe that

Mfg = Mf Mg, Mα f+βg = αMf + βMg, M∗
f = M f̄ , M1 = I.

These facts, in combination with (∗), say that f 7→ Mf is a norm-preserving
C∗ algebra isomorphism of the commutative C∗ algebra L∞(S, µ) onto the
subalgebra

M(L2(S, µ)) = {Mf ∈ B(L2(S, µ), L2(S, µ)) | f ∈ L∞(S, µ)}

of the C∗ algebra B(L2(S, µ), L2(S, µ)). The algebraM(L2(S, µ)) is called
themultiplication algebra on L2(S, µ). Returning to the verification of (∗), let
≤ > 0 be given with ≤ ≤ k f k∞, and let

E =
©
x

Ø
Ø | f (x)| ∏ k f k∞ − ≤

™
.
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Then 0 < µ(E) < ∞, and we take g to be the function that is 1 on E and is 0 on
Ec. Then kgk2 = µ(E)1/2, and

k f gk22 =
Z

X
| f g|2 dµ =

Z

E
| f |2 dµ ∏ (k f k∞ − ≤)2µ(E).

Therefore

(k f k∞ − ≤)µ(E)1/2 ≤ kMf gk2 ≤ kMf kkgk2 = kMf kµ(E)1/2,

and k f k∞ − ≤ ≤ kMf k. Since we already know that kMf k ≤ k f k∞ and since
≤ is arbitrary, we conclude that (∗) holds.

Now let us consider an arbitrary bounded self-adjoint linear operator on a
separable Hilbert space. Wementioned at the end of Section 10 the two operators
onC3 given by diagonalmatrices diag(1, 1, 2) and diag(1, 2, 2). TheC∗ algebras
generated by these operators are isomorphic 2-dimensional algebras, and hence
there is no way to superimpose on the setting of Theorem 4.48 the action of the
operators on the Hilbert space C3 if we consider these operators by themselves.
The operators do get distinguished, however, if we enlarge the C∗ algebra under
consideration, working instead with the 3-dimensional commutative C∗ algebra
of all diagonal matrices. In the general situation, as long as we are going to
enlarge the algebra of operators under consideration, we may as well enlarge it
as much as possible while keeping it commutative.
If H is a Hilbert space, a maximal abelian self-adjoint subalgebra in

B(H, H) is a commutative C∗ subalgebra of B(H, H) that is not contained in
any larger commutative subalgebra of B(H, H) that is closed under ( · )∗. In the
example with H = C3 in the previous paragraph, the 3-dimensional algebra of
diagonal matrices is a maximal abelian self-adjoint subalgebra.
For general H , we shall obtain a simple criterion for a subalgebra to bemaximal

abelian self-adjoint, we shall show that the multiplication algebra for an L2 space
with respect to a finite measure meets this criterion, and then we shall see that
maximal abelian self-adjoint subalgebras have a special property that will allow
us to incorporate the Hilbert space into an application of Theorem 4.48.
If T is a subset of B(H, H), let

T 0 = {A ∈ B(H, H) | AB = BA for all B ∈ T }.

The set T 0 is a subalgebra of B(H, H) containing the identity and called the
commuting algebra of T. It has the following properties:

(i) T 0 is closed in the operator-norm topology,
(ii) T 0 ⊇ T if and only if T is commutative,
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(iii) if T is stable under ( · )∗, then T 0 is stable under ( · )∗ and hence is a C∗

subalgebra of B(H, H),
(iv) a subalgebraA of B(H, H) stable under ( · )∗ is a maximal abelian self-

adjoint subalgebra of B(H, H) if and only if A0 = A.
All of these properties are verified by inspection except possibly the assertion in
(iv) thatAmaximal implies thatA0 does not strictly containA. For this assertion
letA bemaximal, and suppose that B lies inA0 but notA. SinceA is stable under
( · )∗, B∗ lies in A0, and so does B + B∗. Then B + B∗ and A together generate
a C∗ subalgebra that is commutative and strictly contains A, in contradiction to
the maximality of A. This proves (iv).

Proposition 4.50. If (S, µ) is a finite measure space, then the multiplication
algebra on L2(S, µ) is a maximal abelian self-adjoint subalgebra of the algebra
B(L2(S, µ), L2(S, µ)).

PROOF. WriteM forM(L2(S, µ)). SinceM is commutative, (ii) shows that
M0 ⊇ M. SinceM is stable under ( · )∗, (iv) shows that it is enough to prove
thatM0 ⊆ M. Thus let T be inM0, and define an L2 function g by g = T (1).
If f is in L∞, then the fact that T is inM0 implies that

T f = T Mf (1) = Mf T (1) = Mf g = f g.

If the set where N ≤ |g(x)| ≤ N + 1 has positive measure, then an argument in
the example with L2(S, µ) shows that kTk ∏ N . Since T is assumed bounded,
we conclude that g is in L∞. Therefore T f = Mg f for all f in L∞. Since L∞

is dense in L2 for a finite measure space and since T and Mg are both bounded,
T = Mg. Therefore T is exhibited as inM, and the proof thatM0 ⊆ M is
complete. §

We come now to the special property of maximal abelian self-adjoint subalge-
bras that will allow us to bring theHilbert space into playwhen applying Theorem
4.48 to these subalgebras. IfA is any subalgebra of B(H, H), a vector x in H is
called a cyclic vector for A if the vector subspaceAx of H is dense in H .

Lemma4.51. Let H be a complexHilbert space, let K ⊆ H be a closed vector
subspace, and let E be the orthogonal projection of H on K . IfA is a subalgebra
of B(H, H) that is stable under ( · )∗ and has the property that A(K ) ⊆ K for all
A in A, then E is in A0.

PROOF. Since A(K ) ⊆ K , AE(x) is in K for all x in H . Therefore AE(x) =
E AE(x) for all x in H , and AE = E AE . Since E∗ = E and since A is
stable under ( · )∗, A∗E = E A∗E . Consequently E A = E∗A = (A∗E)∗ =
(E A∗E)∗ = E AE = AE , and E is in A0. §
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Proposition 4.52. If H is a complex separable Hilbert space and A is a
maximal self-adjoint subalgebra of B(H, H), then A has a cyclic vector.

REMARKS. The 2-dimensional subalgebras that we introduced in connection
withC3 have no cyclic vectors, as we see by a count of dimensions; however, the

full 3-dimensional diagonal subalgebra has
µ 1
1
1

∂
as a cyclic vector since

√ a 0 0
0 b 0
0 0 c

!√ 1
1
1

!

=

√ a
b
c

!

.

PROOF. For each x in H , form the closed vector subspace (Ax)cl. Since the
identity is in A, x is in Ax . Since Ax is stable under A and since the members
of A are bounded operators, (Ax)cl is stable under A. The vector subspace Ax
has the property that

y ⊥ Ax implies Ay ⊥ Ax (∗)

because (Ax, By) = (y, A∗Bx) = 0 if A and B are inA. Consider orthonormal
subsets {xα} in H such thatAxα ⊥ Axβ for α 6= β. Such sets exist, the empty set
being one. By Zorn’s Lemma let S = {xα} be a maximal such set. This maximal
S has the property that

H =
° P

xα∈S
Axα

¢cl
,

since otherwise we could obtain a contradiction by adjoining any unit vector in°°P
xα∈S Axα

¢cl¢⊥ to S and applying (∗). Since H is separable, S is countable.
Let us enumerate its members as x1, x2, . . . . Put z =

P∞
n=1 2−nxn . This series

converges in H since H is complete, and we shall prove that the sum z is a cyclic
vector for A.
Lemma 4.51 implies that the orthogonal projection En of H onto (Axn)cl is in

A0. Since A is a maximal abelian self-adjoint subalgebra of B(H, H), A0 = A.
Hence En is in A. Therefore Az ⊇ AEnz = A2−nxn = Axn for all n, and we
obtain (Az)cl ⊇

°P
n Axn

¢cl
= H . This completes the proof. §

If H1 and H2 are complex Hilbert spaces, a unitary operator U from H1 to
H2 is a linear operator from H1 onto H2 with kUxkH2 = kxkH1 for all x in H1.
Such an operator is invertible, and its inverse is unitary. Bymeans of polarization,
one sees that a unitary operator satisfies also the identity (Ux,Uy)H2 = (x, y)H1 ,
i.e., that the inner product is preserved. Therefore a unitary operator provides the
natural notion of isomorphism between two Hilbert spaces.
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Theorem 4.53. If H is a nonzero complex separable Hilbert space andA is a
maximal abelian self-adjoint subalgebra of B(H, H), then there exists a measure
space (S, µ) with µ(S) = 1 and a unitary operatorU : H → L2(S, µ) such that

UAU−1 = M(L2(S, µ)).

REMARK. In other words, under the assumption that H is separable, any maxi-
mal abelian self-adjoint subalgebraofB(H, H) is isomorphic to themultiplication
algebra for the L2 space relative to some finite measure.

PROOF. Applying Proposition 4.52, let z be a unit cyclic vector for A. Let
us see that the linear map of A into H given by A 7→ Az is one-one. In fact, if
Az = 0, then every B in A has A(Bz) = BAz = B0 = 0. Since Az is dense in
H and A is bounded, A is 0.
We saw before Proposition 4.50 that A is a commutative C∗ algebra with

identity. By Theorem 4.48 the Gelfand transform A 7→ bA is a norm-preserving
algebra isomorphism of A onto C(A∗

m) carrying ( · )∗ to complex conjugation.
Define a linear functional ` on C(A∗

m) by

`(bA) = (Az, z)H ,

the inner product being the inner product in H . Let us see that the linear functional
` is positive. In fact, any function∏ 0 in C(A∗

m) is the absolute value squared of
some element of C(A∗

m), hence is of the form |bA|2. Then

`(|bA|2) = `(bA bA) = `( dA∗A) = (A∗Az, z)H = (Az, Az)H ∏ 0.

By the Riesz Representation Theorem, there exists a unique regular Borel
measure µ on A∗

m such that

`(bA) =
R
A∗
m

bA dµ

for all bA in C(A∗
m). The measure µ has total mass equal to `(1) = `(bI ) =

(I z, z)H = kzk2H = 1.
We shall now construct the unitary operator U carrying H to L2(A∗

m, µ). On
the dense vector subspaceAz of H , define a linear mapping U0 by

U0Az = bA ∈ C(A∗
m) ⊆ L2(A∗

m, µ).

This is well defined since, as we have seen, Az = 0 implies A = 0. On the vector
subspaceAz, we have

kU0Azk2L2(A∗
m)

=
R
A∗
m
|bA|2 dµ=

R
A∗
m

dA∗A dµ = `(A∗A) = (A∗Az, z)H =kAzk2H .
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HenceU0 is an isometry from the dense subsetAz of H into L2(A∗
m). By uniform

continuity,U0 extends to an isometryU from H into L2(A∗
m). As the continuous

extension of the linear functionU0,U is linear. The image ofU containsC(A∗
m),

which is dense in L2(A∗
m, µ), and the image is complete, being isometric with H .

Therefore the image of U is closed. Consequently U carries H onto L2(A∗
m, µ)

and is unitary.
We still have to check that UAU−1 = M(L2(A∗

m, µ)). If A and B are in A,
then

U AU−1(bB) = U A(Bz) = U(ABz) = dAB = bA bB = M bA
bB.

Since U AU−1 and M bA are bounded and since the bB’s are dense in L2(A∗
m, µ),

U AU−1 = M bA. Therefore UAU−1 ⊆ M(L2(A∗
m, µ)). Next let T be in

M(L2(A∗
m, µ)). Then T commutes with every member ofM(L2(A∗

m, µ)) and
in particular with every U AU−1. Thus TU AU−1 = U AU−1T for all A in A,
andU−1TU A = AU−1TU . Since A is arbitrary inA,U−1TU is inA0. ButA is
assumed to be a maximal abelian self-adjoint subalgebra, and thereforeA0 = A.
Consequently U−1TU is in A. Say that U−1TU = A0. Then T = U A0U−1,
and T is in UAU−1. Therefore UAU−1 = M(L2(A∗

m, µ)). §

The Spectral Theorem for a single bounded self-adjoint operator will be an
immediate consequence of Theorem 4.53 and an application of Zorn’s Lemma.
But let us state the result (Theorem 4.54) so that it applies to a wider class of
operators—and to a commuting family of such operators rather than just one.
The first step is to define the kinds of bounded linear operators of interest. Let

H be a complex Hilbert space. A bounded linear operator A : H → H is said to
be

• normal if A∗A = AA∗,
• positive semidefinite if it is self adjoint22 and (Ax, x) ∏ 0 for all x ∈ H ,
• unitary if A is onto H and has kAxk = kxk for all x ∈ H .

Self-adjoint operators, having A∗ = A, are certainly normal. Every operator of
the form A∗A for some bounded linear A is positive semidefinite. The definition
of “unitary”merely specializes the definition before Theorem4.53 to the case that
H1 = H2. Unitary operators A in the present setting, according to Proposition
2.6, are characterized by the condition that A is invertible with A−1 = A∗, and
unitary operators are therefore normal.
In the case of multiplication operators Mf by L∞ functions on L2 of a finite

measure space, the adjoint of Mf is M f̄ . Then every Mf is normal, Mf is self
adjoint if and only if f is real-valued a.e., Mf is positive semidefinite if and only
if f is ∏ 0 a.e., and Mf is unitary if and only if | f | = 1 a.e.

22The condition “self adjoint” can be shown to be automatic in the presence of the inequality
(Ax, x) ∏ 0 for all x , but we shall not need to make use of this fact.
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Theorem4.54 (SpectralTheoremfor boundednormal operators). Let {Aα}α∈E
be a family of bounded normal operators on a complex separable Hilbert space
H , and suppose that AαAβ = Aβ Aα and AαA∗

β = A∗
β Aα for all α and β. Then

there exist a finite measure space (S, µ), a unitary operator U : H → L2(S, µ),
and a set { fα}α∈E of functions in L∞(S, µ) such that U AαU−1 = Mfα for all α
in E .
PROOF. LetA0 be the complex subalgebra of B(H, H) generated by I and all

Aα and A∗
α for α in E . This algebra is commutative and is stable under ( · )∗. Let

S be the set of all commutative subalgebras of B(H, H) containingA0 and stable
under ( · )∗, and partially order S by inclusion upward. The union of the members
of a chain in S is an upper bound for the chain, and Zorn’s Lemma therefore
produces a maximal element A in S. Since A is maximal, it is necessarily
closed in the operator-norm topology. Then A is a maximal abelian self-adjoint
subalgebra of B(H, H), and Theorem 4.53 is applicable. The theorem yields a
finite measure space (S, µ) and a unitary operator U : H → L2(S, µ) such that
UAU−1 = M(L2(S, µ)). For each α in E , we then have U AαU−1 = Mfα for
some fα in L∞(S, µ), as required. §

In a corollarywe shall characterize the spectra of operators that are self adjoint,
or positive definite, or unitary. Implicitly in the statement and proof, we make
use of Corollary 4.49 when referring to σ(A): the set σ(A) is independent of
the Banach subalgebra of B(H, H) from which it is computed as long as that
subalgebra contains I , A, and A∗. The corollary needs one further thing beyond
Theorem 4.54, and we give that in the lemma below.

Lemma 4.55. Let (S, µ) be a finite measure space, and form the Hilbert space
L2(S, µ). For f in L∞(S, µ), let Mf be the operation of multiplication by f .
Define the essential image of f to be

©
∏0 ∈ C

Ø
Ø µ

°
f −1({∏ ∈ C

Ø
Ø |∏ − ∏0| < ≤})

¢
> 0 for every ≤ > 0

™
.

Then
σ(Mf ) = essential image of f .

PROOF. To prove ⊆ in the asserted equality, let ∏0 be outside the essential
image, and choose ≤ > 0 such that f −1({|∏ − ∏0| < ≤}) has measure 0. Then
| f (x) − ∏0| ∏ ≤ a.e. Hence 1/( f − ∏0) is in L∞, and M1/( f−∏0) exhibits Mf−∏0

as invertible. Thus ∏0 is not in σ(Mf ).
For the inclusion⊇, suppose thatMf−∏0 is invertible, with inverse T . For every

g in L∞, we have Mf−∏0Mg = MgMf−∏0 . Multiplying this equality by T twice,
we obtain MgT = T Mg. By Proposition 4.50, T is of the form T = Mh for some
h in L∞. Then we must have ( f − ∏0)h = 1 a.e. Hence | f (x) − ∏0| ∏ khk−1

∞
a.e., and ∏0 is outside the essential image. This proves the lemma. §
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Corollary 4.56. Let H be a complex separableHilbert space, let A be a normal
operator in B(H, H), and let σ(A) be the spectrum of A. Then

(a) A is self adjoint if and only if σ(A) ⊆ R,
(b) A is positive semidefinite if and only if σ(A) ⊆ [0,+∞),
(c) A is unitary if and only if σ(A) ⊆

©
z ∈ C

Ø
Ø |z| = 1

™
.

PROOF. The corollary is immediate fromTheorem 4.54 as long as the corollary
is proved for any multiplication operator A = Mf by an L∞ function f on the
Hilbert space L2(S, µ). For this purpose we shall use Lemma 4.55.
In the case of (a), the operator Mf is self adjoint if and only if f is real-valued

a.e. If f is real-valued, then the definition of essential image shows that ∏0 is not
in the essential image if ∏0 is nonreal. Conversely if every nonreal ∏0 is outside
the essential image, then to each such ∏0 we can associate a number ≤∏0 > 0 for
which f −1({∏ ∈ C

Ø
Ø |∏ − ∏0| < ≤∏0}) has µ measure 0. Countably many of the

open sets {∏ ∈ C
Ø
Ø |∏ − ∏0| < ≤∏0} cover the complement of R in C, and their

inverse images under f have µ measure 0. Therefore the inverse image under f
of the union hasµmeasure 0, andµ( f −1(Rc)) = 0. That is, f is real-valued a.e.
This proves (a), and the arguments for (b) and (c) are completely analogous. §

The power of the Spectral Theorem comes through the functional calculus that
it implies for working with operators. We shall prove the relevant theorem and
then give five illustrations of how it is used.

Theorem 4.57 (functional calculus). Fix a bounded normal operator A on a
complex separable Hilbert space H . Then there exists one and only one way to
define a system of operators ϕ(A) for every bounded Borel function ϕ on σ(A)
such that

(a) z(A) = A for the function ϕ(z) = z, and 1(A) = I for the constant
function 1,

(b) ϕ 7→ ϕ(A) is an algebra homomorphism into B(H, H),
(c) ϕ(A)∗ = ϕ(A),
(d) limn ϕn(A)x = ϕ(A)x for all x ∈ H whenever ϕn → ϕ pointwise with

{ϕn} uniformly bounded.
The operators ϕ(A) have the additional properties that

(e) ϕ(A) is normal, and all the operators ϕ(A) commute,
(f) kϕ(A)k ≤ kϕksup,
(g) limn ϕn(A) = ϕ(A) in the operator-norm topology whenever ϕn → ϕ

uniformly,
(h) σ(ϕ(A)) ⊆ (ϕ(σ(A))cl,
(i) (spectral mapping property) σ(ϕ(A)) = ϕ(σ(A)) if ϕ is continuous.



168 IV. Topics in Functional Analysis

PROOF OF EXISTENCE. Apply Theorem 4.54 to the singleton set {A}, obtaining
a finite measure space (S, µ), a unitary operatorU : H → L2(S, µ), and an L∞

function f A on S such that U AU−1 = MfA . Examining the proofs of Theorems
4.53 and 4.54, we see that we can take S to be a certain compact Hausdorff space
A∗
m, µ to be a regular Borel measure on S, and the function f A to be the Gelfand

transform bA, therefore continuous. In the construction of Theorem 4.53, the
measure µ has the property that

R
S |bB|2 dµ = kBzkH for every B in A, where

z is a cyclic vector. Therefore B 6= 0 implies
R
S |bB|2 dµ > 0. Since |bB|2 is the

most general continuous function ∏ 0 on S, µ assigns positive measure to every
nonempty open set.
For any bounded Borel function ϕ on σ(A), the function ϕ ◦ f A is a well-

defined function on S since Proposition 4.43a shows that the image of bA = f A
is σ(A). The function ϕ ◦ f A is a bounded Borel function since ϕ−1 of an open
set in C is a Borel set of C and since f −1

A of a Borel set of C is a Borel set of S.
Thus it makes sense to define

ϕ(A) = U−1Mϕ◦ f AU.

Then we see that properties (a) through (i) are satisfied for any given normal
A on H if they are valid in the special case of any Mf on L2(S, µ) with f
continuous, S compact Hausdorff, µ a regular Borel measure assigning positive
measure to every nonempty open set, and ϕ(Mf ) defined for arbitrary bounded
Borel functions ϕ on the image of f by

ϕ(Mf ) = Mϕ◦ f .

Properties (a) through (c) for multiplication operators are immediate, (d) follows
by dominated convergence, (e) and (f) are immediate, and (g) follows directly
from (f). We are left with properties (h) and (i).
Lemma 4.55 identifies the spectrum of a multiplication operator by an L∞

function with the essential image of the function. Using this identification, we
see that (h) and (i) follow in our special case if it is proved for f continuous that

essential image of ϕ ◦ f ⊆ (ϕ(essential image of f ))cl, ϕ bounded Borel, (∗)

essential image of ϕ ◦ f = ϕ(essential image of f ), ϕ continuous. (∗∗)

Let us see that these follow if we prove that

essential image of √ ⊆ (image √)cl for √ : S → C bounded Borel, (†)
essential image of √ = image √ for √ : S → C continuous. (††)



11. Spectral Theorem for Bounded Self-Adjoint Operators 169

In fact, if (†) and (††) hold, then for (∗) we have

essential image(ϕ ◦ f ) ⊆ (image(ϕ ◦ f ))cl by (†) for ϕ ◦ f

= (ϕ(image f ))cl

= (ϕ(essential image f ))cl by (††) for f.

For (∗∗) we have

essential image(ϕ ◦ f ) = image(ϕ ◦ f ) by (††) for ϕ ◦ f
= ϕ(image f )
= ϕ(essential image f ) by (††) for f.

Thus it is enough to prove (†) and (††). For (†) let ∏0 be in the essential
image of √ . Then for each n ∏ 1, µ

°
√−1©∏

Ø
Ø |∏ − ∏0| < 1

n
™¢

> 0, and hence
√−1©∏

Ø
Ø |∏ − ∏0| < 1

n
™

6= ∅. Thus there exists ∏ = ∏n with ∏n in the image of
√ such that |∏ − ∏0| < 1

n , and ∏0 is exhibited as a member of (image √)cl.
For (††) we first show that the image of √ lies in the essential image of √ if

√ is continuous. Thus let ∏0 be in the image of √ . Then √−1©∏
Ø
Ø |∏ − ∏0| < ≤

™

is nonempty, and it is open since √ is continuous. Since nonempty open sets of
S have positive µ measure, we conclude that ∏0 is in the essential image of √ .
Then

image √ ⊆ essential image √ by what we have just proved

⊆ (image √)cl by (†)
= image √ since S is compact and √ is continuous,

and (††) follows. This completes the proof of existence and the list of properties
in Theorem 4.57. §

PROOF OF UNIQUENESS. Properties (a) through (c) determineϕ(A)whenever ϕ
is a polynomial function of z and z̄. By the Stone–Weierstrass Theorem any con-
tinuous ϕ on a compact set such as σ(A) is the uniform limit of such polynomials,
and hence (d) implies that ϕ(A) is determined whenever ϕ is continuous.
The indicator function of a compact subset of C is the decreasing pointwise

limit of a sequence of continuous functions of compact support, and hence (d)
implies that ϕ(A) is determinedwhenever ϕ is the indicator function of a compact
set. Applying (b) twice, we see that ϕ(A) is determined whenever ϕ is the
indicator function of any finite disjoint union of differences of compact sets.
Such sets form23 the smallest algebra of sets containing the compact subsets of

23By Lemma 11.2 of Basic.
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σ(A). Another application of (d), together with the Monotone Class Lemma,24
shows that ϕ(A) is determined whenever ϕ is the indicator function of any Borel
subset of σ(A). Any bounded Borel function on σ(A) is the uniform limit of
finite linear combinations of indicator functions of Borel sets, and hence onemore
application of (b) and (d) shows that ϕ(A) is determinedwhenever ϕ is a bounded
Borel function on σ(A). §

Corollary 4.58. If H is a complex separable Hilbert space, then every positive
semidefinite operator in B(H, H) has a unique positive semidefinite square root.

REMARKS. This is an important application of the Spectral Theorem and the
functional calculus. It is already important when applied to operators of the form
A∗A with A in B(H, H). For example the corollary allows us in the definition
of trace-class operator before Proposition 2.8 to drop the assumption that the
operator is compact; it is enough to assume that it is bounded.

PROOF. If A is positive semidefinite, then σ(A) ⊆ [0,∞) by Corollary 4.56b.
Theusual square root function

p
on [0,∞) is boundedonσ(A), andwe can formp

A by Theorem 4.57. Then (a) and (b) in Theorem 4.57 imply that (
p
A)2 = A,

and (i) implies that
p
A is positive semidefinite. This proves existence.

For uniqueness let B be positive semidefinite with B2 = A. Because of
the uniqueness assertion in Theorem 4.57, we have at our disposal the maximal
abelian self-adjoint subalgebra of B(H, H) that is recalled from Theorem 4.53
and used to define operators ϕ(A) in the proof of Theorem 4.57. Let A0 be the
smallest C∗ algebra in B(H, H) containing I , A, and B, and extend A0 to a
maximal abelian self-adjoint subalgebraA of B(H, H). We use this A to define
p
A. On the compact Hausdorff space, dpA and bB are both nonnegative square

roots of bA and must be equal. Since the Gelfand transform for A is one-one,
B =

p
A. §

Corollary 4.59. Let H be a complex separable Hilbert space, and let A and B
be bounded normal operators on H such that A commutes with B and B∗. Then
each ϕ(A), for ϕ a bounded Borel function on σ(A), commutes with B and B∗.

PROOF. As in the proof of the previous corollary, we have at our disposal
the maximal abelian self-adjoint subalgebraA of B(H, H) that is used to define
operators ϕ(A). We choose one containing I , A, and B. Then ϕ(A) is in A and
hence commutes with B and B∗. §

Corollary 4.60. Let A be a bounded normal operator on a complex
separable Hilbert space, let ϕ2 : σ(A) → C be a continuous function,

24Lemma 5.43 of Basic.
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and let ϕ1 : ϕ2(σ (A)) → C be a bounded Borel function. Then ϕ1(ϕ2(A)) =
(ϕ1 ◦ ϕ2)(A).

REMARK. If ϕ2(z) = z̄, this corollary recovers property (c) in Theorem 4.57.

PROOF. The uniqueness in Theorem 4.57 shows that the operators ϕ(ϕ2(A))
form the unique system defined for bounded Borel functions ϕ : σ(ϕ2(A)) → C
such that z(ϕ2(A)) = ϕ2(A), 1(ϕ2(A)) = 1, ϕ 7→ ϕ(ϕ2(A) is an algebra homo-
morphism, ϕ(ϕ2(A))∗ = ϕ(ϕ2(A)), and limϕn(ϕ2(A))x = ϕ(ϕ2(A))x for all x
whenever ϕn → ϕ pointwise and boundedly on σ(ϕ2(A)).
We now consider the system formed from √(A), specialize to functions √ =

ϕ ◦ ϕ2, and make use of the properties of √(A) as stated in the existence half
of the theorem. Theorem 4.57i shows that σ(ϕ2(A)) = ϕ2(σ (A)). We have
(z ◦ ϕ2)(A) = ϕ2(A) trivially and (1 ◦ ϕ2)(A) = 1(A) = 1 by (a) for the system
√(A). The map ϕ 7→ (ϕ ◦ ϕ2)(A) is an algebra homomorphism as a special case
of (b) for√(A). The formula (ϕ◦ϕ2)(A)∗ = ϕ ◦ ϕ2(A) = (ϕ◦ϕ2)(A) is a special
case of (c) for √(A). And the formula lim(ϕn ◦ ϕ2)(A)x = (ϕ ◦ ϕ2)(A)x is a
special case of (d) for√(A). Therefore the system (ϕ ◦ϕ2)(A) has the properties
that uniquely determine the system ϕ(ϕ2(A)), and we must have ϕ(ϕ2(A)) =
(ϕ ◦ ϕ2)(A) for every bounded Borel function ϕ on σ(ϕ2(A)). §

Corollary 4.61. If A is a bounded normal operator on a complex separable
Hilbert space, then there exists a sequence {Sn} of bounded linear operators of
the form Sn =

PNn
i=1 ci,n Ei,n converging to A in the operator-norm topology and

having the property that each Ei,n is an orthogonal projection of the form ϕ(A).

PROOF. Choose a sequence of simple Borel functions sn on σ(A) converging
uniformly to the function z, and let Sn = sn(A). Then apply Theorem 4.57. §

Corollary 4.62. If A is a bounded normal operator on a complex separable
Hilbert space H of dimension > 1, then there exists a nontrivial orthogonal
projection that commutes with every bounded normal operator that commutes
with A and A∗. Hence there is a nonzero proper closed vector subspace K of H
such that B(K ) ⊆ K for every bounded normal operator B commuting with A
and A∗.

PROOF. This is a special case of Corollary 4.61. §

This completes our list of illustrations of the functional calculus associated
with the Spectral Theorem. We now prove a result mentioned near the end of
Section 10, showing how the spectrum of an operator relates to spaces of maximal
ideals.
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Proposition 4.63. Let A be a bounded normal operator on a complex separable
Hilbert space H , and let A be the smallest C∗ algebra of B(H, H) containing I ,
A, and A∗. Then the maximal ideal space A∗

m is canonically homeomorphic to
the spectrum σ(A).

PROOF. Let B 7→ bB be the Gelfand transform for A, carrying A to C(A∗
m).

Proposition 4.43a shows that the image of bA in C is σ(A), and Corollary 4.49
shows that this version of σ(A) is the same as the one obtained from B(H, H).
Therefore we obtain a map C(σ (A)) → C(A∗

m) by the definition f 7→ f ◦ bA.
This map is an algebra homomorphism respecting conjugation, and it satisfies
k f ksup = k f ◦ bAksup since the function bA is onto σ(A). This equality of norms
implies that the map f 7→ f ◦ bA is one-one.
To see that f 7→ f ◦ bA is ontoC(A∗

m), we observe that the operators p(A, A∗),
for p a polynomial in z and z̄, are dense in A since I , A, and A∗ generate A.
Using that (b· ) is a norm-preserving isomorphism of A onto C(A∗

m), we see
that the members \p(A, A∗) of C(A∗

m) are dense in C(A∗
m). Since C(σ (A)) is

complete and f 7→ f ◦ bA is norm preserving, the image is closed. Therefore
f 7→ f ◦ bA carries C(σ (A)) onto C(A∗

m).
Hencewe have a canonical isomorphismof commutativeC∗ algebrasC(σ (A))

and C(A∗
m). The maximal ideal spaces must be canonically homeomorphic. The

maximal ideal space of C(σ (A)) contains σ(A) because of the point evaluations
but can be no larger than σ(A) since the StoneRepresentationTheorem (Theorem
4.15) shows that the necessarily closed image of σ(A) is dense in

°
C(σ (A))

¢
∗
m.
§

FURTHER REMARKS. A version of the Spectral Theorem is valid also for
unbounded self-adjoint operators on a complex separableHilbert space. Such op-
erators are of importance since they enable one to use functional analysis directly
with linear differential operators, which may be expected to be unbounded. The
operator L in the Sturm–Liouville theory of Chapter I is an example of the kind
of operator that one wants to handle directly. The subject has to address a large
number of technical details, particularly concerning domains of operators, and the
definitions have to bemade just right. The prototype of an unbounded self-adjoint
operator is the multiplication operator Mf on our usual L2(S, µ) corresponding
to an unbounded real-valued function f that is finite almost everywhere; the
domain of Mf is the dense vector subspace of members of L2 whose product
with f is in L2. Just as in this example, the domain of an unbounded self-adjoint
operator is forced by the definitions to be a dense but proper vector subspace of
the whole Hilbert space. Once one is finally able to state the Spectral Theorem
for unbounded self-adjoint operators precisely, the result is proved by reducing
it to Theorem 4.54. Specifically if T is an unbounded self-adjoint operator on
H , then one shows that (T + i)−1 is a globally defined bounded normal operator.
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Application of Theorem 4.54 to (T + i)−1 yields an L∞ function g such that the
unitary operator U : H → L2(S, µ) carries (T + i)−1 to g. One wants T to
be carried to f , and hence the definition should force 1/( f + i) = g. In other
words, f is defined by the equation f = 1/g − i . One checks that the unitary
operator U from H to L2 indeed carries T to Mf . For a discussion of the use of
the Spectral Theorem in connection with partial differential equations, the reader
can look at Parts 2 and 3 of Dunford–Schwartz’s Linear Operators.

BIBLIOGRAPHICAL REMARKS. The exposition in Section 3–6 and Section
8–9 is based on that in Part 1 of Dunford–Schwartz’s Linear Operators. The
exposition in Section 7 is based on that in Treves’s Topological Vector Spaces,
Distributions and Kernels.

12. Problems

1. Let X be a Banach space, and let Y be a closed vector subspace. Take as known
(from Problem 4 in Chapter XII of Basic) that X/Y becomes a normed linear
space under the definition kx+Yk = infy∈Y kx+ yk and that the resulting norm
is complete. Prove that the topology on X/Y obtained this way coincides with
the quotient topology on X/Y as the quotient of a topological vector space by a
closed vector subspace.

2. Let T : X → Y be a linear function between Banach spaces such that T (X) is
finite-dimensional and ker(T ) is closed. Prove that T is continuous.

3. Using the result of Problem 1, derive the Interior Mapping Theorem for Banach
spaces from the special case in which the mapping is one-one.

4. If X is a finite-dimensional normed linear space, why must the norm topology
coincide with the weak topology?

5. Let H be a separable infinite-dimensional Hilbert space. Give an example of a
sequence {xn} in H with kxnk = 1 for all n and with {xn} tending to 0 weakly.

6. In a σ -finite measure space (S, µ), suppose that the sequence { fn} tends weakly
to f in L2(S, µ) and that limn k fnk2 = k f k2. Prove that { fn} tends to f in the
norm topology of L2(S, µ).

7. Let X be a normed linear space, let {xn} be a sequence in X with {kxnk} bounded,
and let x0 be in X . Prove that if limn x∗(xn) = x∗(x0) for all x∗ in a dense subset
of X∗, then {xn} tends to x0 weakly.

8. Fix p with 0 < p < 1. It was shown in Section 1 that the set of Borel functions
f on [0, 1] with

R
[0,1] | f |

p dx < ∞, with two functions identified when they are
equal almost everywhere, forms a topological vector space L p([0, 1]) under the
metric d( f, g) =

R
[0,1] | f − g| dx . Put D( f ) =

R
[0,1] | f |

p dx .
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(a) Show for each positive integer n that any function f with D( f ) = 1 can be
written as f = 1

n ( f1 + · · · + fn) with D( f j ) = n−(1−p).
(b) Deduce from (a) that if f has D( f ) = 1, then an arbitrarily large multiple of

f can be written as a convex combination of functions f j with D( f j ) ≤ 1.
(c) Deduce from (b) for each ε > 0 that the smallest convex set containing all

f ’s with D( f ) ≤ ε is all of L p([0, 1]).
(d) Why must L p([0, 1]) fail to be locally convex?
(e) Prove that L p([0, 1]) has no nonzero continuous linear functionals.

9. LetU be a nonempty open set inRN , and let {Kp}p∏0 be an exhausting sequence
of compact subsets of U with K0 = ∅. Let M be the set of all monotone
increasing sequences of integers mp ∏ 0 tending to infinity, and let E be the set
of all monotone decreasing sequences of real numbers εp > 0 tending to 0. For
each pair (m, ε) =

°
{mp}, {εp}

¢
with m ∈ M and ε ∈ E , define a seminorm

k · km,ε on C∞
com(U) by

kϕkm,ε = sup
p∏0

ε−1
p

°
sup
x /∈Kp

sup
|α|≤mp

|(Dαϕ)(x)|
¢
.

Denote the inductive limit topology on C∞
com(U) by T and the topology defined

with the above uncountable family of seminorms by T 0.
(a) Verify for ϕ in C∞(U) that kϕkm,ε < ∞ for all pairs (m, ε) if and only if ϕ

is in C∞
com(U).

(b) Prove that the identity mapping (C∞
com(U), T ) → (C∞

com(U), T 0) is
continuous.

(c) For p ∏ 0, fix √p ∏ 0 in C∞
com(U) with

P
p √p = 1, √0 6= 0 on K2, and

√p(x)

(
6= 0 for x in Kp+2 − K 0p+1,

= 0 for x in (K 0p+3)
c and for x in Kp.

A basic open neighborhood N of 0 in (C∞
com(U), T ) is a convex circled set

with 0 as an internal point satisfying conditions of the following form: for
each p ∏ 0, there exist an integer np and a real δp > 0 such that a member ϕ
of C∞

Kp+3
is in N ∩C∞

Kp+3
if and only if supx∈Kp+3 sup|α|≤np |Dαϕ(x)| < δp.

Prove that there exists a pair (m, ε) such that kϕkm,ε < 1 implies that
2p+1√pϕ is in N ∩ C∞

Kp+3
for all p ∏ 0.

(d) With notation as in (c), show that the functionϕ =
P

p∏0 2−(p+1)(2p+1√pϕ)

is in N whenever kϕkm,ε < 1. Conclude that the identity mapping from
(C∞
com(U), T 0) to (C∞

com(U), T ) is continuous and thatT andT 0 are therefore
the same.

(e) Exhibit a sequence of closed nowhere dense subsets of C∞
com(U) with union

C∞
com(U), thereby showing that the hypotheses of the Baire Category Theo-
rem must not be satisfied in C∞

com(U).
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10. Prove or disprove: If H is an infinite-dimensional separable Hilbert space, then
B(H, H) is separable in the operator-norm topology.

11. Let S be a compact Hausdorff space, let µ be a regular Borel measure on S,
and regard A = {multiplications by C(S)} as a subalgebra of M(L2(S, µ)).
Prove that the commuting algebra A0 of A within B(L2(S, µ), L2(S, µ)) is
M(L2(S, µ)).

12. Prove that if A is a bounded normal operator on a separable complex Hilbert
space H , then kAk = supkxk≤1 |(Ax, x)H |.

13. Let H be a separable complex Hilbert space, let A be a commutative C∗ sub-
algebra of B(H, H) with identity, and suppose that A has a cyclic vector.
Prove that there exist a regular Borel measure µ on A∗

m and a unitary operator
U : H → L2(A∗

m, µ) such that

UAU−1 = {multiplications by C(A∗
m)} ⊆ M(L2(A∗

m, µ)).

14. Let A be a bounded normal operator on a separable complex Hilbert space H ,
and let A be the smallest C∗ subalgebra of B(H, H) containing I , A, and A∗.
Suppose that A has a cyclic vector. Prove that there exists a Borel measure on
the spectrum σ(A) and a unitary mapping U : H → L2(σ (A), µ) such that

UAU−1 = {multiplications by C(σ (A))} ⊆ M(L2(σ (A), µ))

and such that U AU−1 is the multiplication operator Mz .

15. Form the multiplication operator Mx on L2([0, 1]), and letA be the smallest C∗

subalgebra of B(L2([0, 1]), L2([0, 1])) containing I and Mx .
(a) Prove that the function 1 is a cyclic vector for A.
(b) Identify the spectrum σ(Mx ).
(c) Prove in the context of the functional calculus of the Spectral Theorem

that the operator ϕ(Mx ) is Mϕ for every bounded Borel function ϕ on the
spectrum σ(Mx ).

16. Let A and B be bounded normal operators on a separable complex Hilbert space
H such that A commutes with B and B∗. Let A be the smallest C∗ subalgebra
of B(H, H) containing I , A, A∗, B, and B∗.
(a) Prove that A∗

m is canonically homeomorphic to the subset σ(A, B) of
σ(A) × σ(B) ⊆ C2 given by σ(A, B) = {(bA(`), bB(`)}`∈A∗

m.
(b) Prove under the identification of (a) that bA is identified with the function z1

and bB is identified with z2.

Problems 17–20 concern the set of extreme points in particular closed subsets of
locally convex topological vector spaces.
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17. Let S be a compact Hausdorff space, and let K be the set of all regular Borel
measures on S with µ(S) ≤ 1. Give K the weak-star topology relative to C(S).
Prove that the extreme points of K are 0 and the point masses of total measure 1.

18. In L1([0, 1]), suppose that f has norm 1 and that E is a Borel subset such thatR
E | f | dx > 0 and

R
Ec | f | dx > 0. Let f1 be f on E and be 0 on Ec, and let f2

be f on Ec and be 0 on E .
(a) Prove that f is a nontrivial convex combination of k f1k−1

1 f1 and k f2k−1
1 f2.

(b) Conclude that the closed unit ball of L1([0, 1]) has no extreme points.
19. Let S be a compact Hausdorff space, and let K1 be the set of all regular Borel

measures on S with µ(S) = 1. Give K1 the weak-star topology relative to C(S).
Let F be a homeomorphism of S. Within K1, let K be the subset of members
µ of K1 that are F invariant in the sense that µ(E) = µ(F−1(E)) for all Borel
sets E .
(a) Prove that K is a compact convex subset of M(S) in the weak-star topology

relative to C(S).
(b) A member µ of K is said to be ergodic if every Borel set E such that

F(E) = E has the property that µ(E) = 0 or µ(E) = 1. Prove that every
extreme point of K is ergodic.

(c) Is every ergodic measure in K necessarily an extreme point?
20. Regard the set Z of integers as a measure space with the counting measure

imposed. As in Section 8, a complex-valued function f (n) on Z is said to be
positive definite if

P
j,k c( j) f ( j−k)c(k) ∏ 0 for all complex-valued functions

c(n) on the integers with finite support.
(a) Prove that every positive definite function f has f (0) ∏ 0, f (−n) = f (n),

and | f (n)| ≤ f (0).
(b) Prove that a bounded sequence in L∞(Z) converges weak-star relative to

L1(Z) if and only if it converges pointwise.
(c) In view of (a), the set K of positive definite functions f with f (1) = 1 is a

subset of the closed unit ball of L∞(Z). Prove that the set K is convex and
is compact in the weak-star topology relative to L1(Z).

(d) Prove that every function fθ (n) = einθ with θ real is an extreme point of K .
(e) Take for granted the fact that every positive definite function on Z is the

sequence of Fourier coefficients of some Borel measure on the circle. (The
corresponding fact for positive definite functions on RN is proved in Prob-
lems 8–12 of Chapter VIII of Basic.) Prove that the set K has no other
extreme points besides the ones in (d).

Problems 21–25 elaborate on the Stone Representation Theorem, Theorem 4.15. The
first of the problems gives a direct proof, without using the Gelfand–Mazur Theorem,
that every multiplicative linear functional is continuous in the context of Theorem
4.15.
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21. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)
containing the constants and stable under complex conjugation. Let C be a
complex number with |C| > 1, let f be a member of A with k f ksup ≤ 1, and
let ` be a multiplicative linear functional on A.
(a) Show that

P∞
n=0( f/C)n converges and that its sum x provides an inverse to

1− ( f/C) under multiplication.
(b) By applying ` to the identity (1 − ( f/C))x = 1, prove that `( f ) = C is

impossible.
(c) Conclude from (b) that k`k ≤ 1, hence that ` is automatically bounded.

22. Let S be a compactHausdorff space, and let ` be amultiplicative linear functional
on C(S) such that `( f̄ ) = `( f ) for all f in C(S). Prove that ` is the evaluation
es at some point s of S.

23. Let S and T be two compact Hausdorff spaces, and letU : C(S) → C(T ) be an
algebra homomorphism that carries 1 to 1 and respects complex conjugation.
(a) Prove that there exists a unique continuous map u : T → S such that

(U f )(t) = f (u(t)) for every t ∈ T and f ∈ C(S).
(b) Prove that if U is one-one, then u is onto.
(c) Prove that if U is an isomorphism, then u is a homeomorphism.

24. Let X be a compact Hausdorff space, and letA and B be uniformly closed subal-
gebras of B(X) containing the constants and stable under complex conjugation.
Suppose thatA ⊆ B. Suppose that S, p,U and T, q, V are data such that S and
T are compact Hausdorff spaces, p : X → S and q : X → T are functions with
dense image, andU : A → C(S) and V : B → C(T ) are algebra isomorphisms
carrying 1 to 1 and respecting complex conjugations such that for every x ∈ X ,
(U f )(p(x)) = x for all f ∈ A and (Vg)(q(x)) = x for all g ∈ B. Prove that
there exists a unique continuous map 8 : T → S such that p = 8 ◦ q. Prove
also that this map satisfies (U f )(8(t)) = (V f )(t) for all f in A.

25. Formulate and prove a uniqueness statement to complement the existence state-
ment in Theorem 4.15.

Problems 26–30 concern inductive limits. As mentioned in a footnote in the text,
“direct limit” is a construction in category theory that is useful within several different
settings. These problems concern the setting of topological spaces and continuous
maps between them. For this setting a direct limit is something attached to a directed
system of topological spaces and continuous maps. For the latter let (I,≤) be a
directed set, and suppose that Wi is a topological space for each i in I . Suppose that
a one-one continuous map √j i : Wi → Wj is defined whenever i ≤ j , and suppose
that these maps satisfy √i i = 1 and √ki = √k j ◦ √j i whenever i ≤ j ≤ k. A direct
limit of this directed system consists of a topological space W and continuous maps
qi : Wi → W for each i in I satisfying the following universal mapping property:
whenever continuous maps ϕi : Wi → Z are given for each i such that ϕj ◦ √j i = ϕi
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for i ≤ j , then there exists a unique continuousmap8 : W → Z such thatϕi = 8◦qi
for all i .
26. Suppose that a directed system of topological spaces and continuous maps is

given with notation as above. Let
`

i Wi denote the disjoint union of the spaces
Wi , topologized so that each Wi appears as an open subset of the disjoint union.
Define an equivalence relation ∼ on

`
Wi as follows: if xi is in Wi and xj is

in Wj , then xi ∼ xj means that there is some k with i ≤ k and j ≤ k such that
√ki (xi ) = √k j (xj ).
(a) Prove that ∼ is an equivalence relation.
(b) Prove that elements xi in Wi and xj in Wj have xi ∼ xj if and only if every

l with i ≤ l and j ≤ l has √li (xi ) = √l j (xj ).
27. Define W to be the quotient

`
i Wi

±
∼, and give W the quotient topology. Let

q :
`

i Wi → W be the quotient map. Prove that W and the system of maps
q
Ø
Ø
Wi
form a direct limit of the given directed system.

28. Prove that if (V, {pi }) and (W, {qi }) are two direct limits of the given system,
then there exists a unique homeomorphism F : V → W such that qi = F ◦ pi
for all i in I .

29. Suppose that eachmap√i : Wi → Wj is a homeomorphism onto an open subset.
(a) Prove that the quotient map q :

`
i Wi → W carries open sets to open sets.

(b) Prove that the direct limit W is Hausdorff if each given Wi is Hausdorff.
(c) Prove that the direct limit W is locally compact Hausdorff if each Wi is

locally compact Hausdorff.
(d) Give an example in which eachWi is compact Hausdorff but the direct limit

W is not compact.
30. Let I be a nonempty index set, and let S0 be a finite subset. Suppose that a locally

compact Hausdorff space Xi is given for each i ∈ I and that a compact open
subset Ki is specified for each i /∈ S0. For each finite subset S of I containing
S0, define

X (S) =
°×i∈S Xi

¢
×

°×i /∈SKi
¢
,

giving it the product topology. If S1 and S2 are two finite subsets of I containing
S0 such that S1 ⊆ S2, then the inclusion √S2S1 : X (S1) → X (S2) is a homeo-
morphism onto an open set, and these homeomorphisms are compatible under
composition. The resulting direct limit X is called the restricted direct product
of the Xi ’s with respect to the Ki ’s. Prove that X is locally compact Hausdorff
and that elements of X may be regarded as tuples (xi ) for which xi is in Xi for
all i while xi is in Ki for all but finitely many i .



CHAPTER V

Distributions

Abstract. This chapter makes a detailed study of distributions, which are continuous linear func-
tionals on vector spaces of smooth scalar-valued functions. The three spaces of smooth functions
that are studied are the space C∞

com(U) of smooth functions with compact support in an open set
U , the space C∞(U) of all smooth functions on U , and the space of Schwartz functions S(RN ) on
RN . The corresponding spaces of continuous linear functionals are denoted by D 0(U), E 0(U), and
S 0(RN ).
Section 1 examines the inclusions among the spaces of smooth functions and obtains the conclu-

sion that the corresponding restrictionmappings on distributions are one-one. It extends from E 0(U)

to D 0(U) the definition given earlier for support, it shows that the only distributions of compact
support in U are the ones that act continuously on C∞(U), it gives a formula for these in terms of
derivatives and compactly supported complex Borel measures, and it concludes with a discussion of
operations on smooth functions.
Sections 2–3 introduce operations on distributions and study properties of these operations.

Section2brieflydiscussesdistributionsgivenby functions, and it goeson toworkwithmultiplications
by smooth functions, iterated partial derivatives, linear partial differential operators with smooth
coefficients, and the operation ( · )∨ corresponding to x 7→ −x . Section 3 discusses convolution at
length. Three techniques are used—the realization of distributions of compact support in terms of
derivatives of complex measures, an interchange-of-limits result for differentiation in one variable
and integration in another, and a device for localizing general distributions to distributions of compact
support.
Section 4 reviews the operation of the Fourier transform on tempered distributions; this was

introduced in Chapter III. The two main results are that the Fourier transform of a distribution
of compact support is a smooth function whose derivatives have at most polynomial growth and
that the convolution of a distribution of compact support and a tempered distribution is a tempered
distribution whose Fourier transform is the product of the two Fourier transforms.
Section 5 establishes a fundamental solution for the Laplacian in RN for N > 2 and concludes

with an existence theorem for distribution solutions to1u = f when f is any distribution of compact
support.

1. Continuity on Spaces of Smooth Functions

Distributions are continuous linear functionals on vector spaces of smooth func-
tions. Their properties are deceptively simple-looking and enormously helpful.
Some of their power is hidden in various interchanges of limits that need to be
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carried out to establish their basic properties. The result is a theory that is easy to
implement and that yields results quickly. In the last section of this chapter, we
shall see an example of this phenomenonwhen we show how it gives information
about solutions of partial differential equations involving the Laplacian.
The three vector spaces of scalar-valued smooth functions that we shall con-

sider in the text1 of this chapter are C∞(U), S(RN ), and C∞
com(U), where U is a

nonempty open set inRN . Topologies for these spaceswere introduced in Section
IV.2, Section III.1, and Section IV.7, respectively. Let {Kp} be an exhausting
sequence of compact subsets of U , i.e., a sequence such that Kp ⊆ Ko

p+1 for all
p and such that U =

S∞
p=1 Kp.

The vector spaceC∞(U) of all smooth functions onU is given by a separating
family of seminorms such that a countable subfamily suffices. The members of
the subfamilymay be taken to be k f kp,α = supx∈Kp

|Dα f (x)|, where 1 ≤ p < ∞

andwhereα varies over all differentiationmulti-indices.2 The spaceof continuous
linear functionals is denoted by E 0(U), and the members of this space are called
“distributions of compact support” for reasons that we recall in a moment.
The vector space S(RN ) of all Schwartz functions is another space given by

a separating family of seminorms such that a countable subfamily suffices. The
members of the subfamily may be taken to be k f kα,β = supx∈RN |xαDβ f (x)|,
where α and β vary over all differentiation multi-indices.3 The space of contin-
uous linear functionals is denoted by S 0(RN ), and the members of this space are
called “tempered distributions.”
The vector space C∞

com(U) of all smooth functions of compact support on U
is given by the inductive limit topology obtained from the vector subspaces C∞

Kp
.

The spaceC∞
Kp
consists of the smooth functions with support contained in Kp, the

topology on C∞
Kp
being given by the countable family of seminorms k f kp,α =

supx∈Kp
|Dα f(x)|. The space of continuous linear functionals is traditionally4

written D 0(U), and the members of this space are called simply “distributions.”
Since the field of scalars is a locally convex topological vector space, Proposition
4.29 shows that the members of D 0(U) may be viewed as arbitrary sequences of
consistently defined continuous linear functionals on the spaces C∞

Kp
.

1A fourth space, the space of periodic smooth functions onRN , is considered in Problems 12–19
at the end of the chapter and again in the problems at the end of Chapter VII.

2The notation for the seminorms in Chapter IV was chosen for the entire separating subfamily
and amounted to k f kKp ,Dα . The subscripts have been simplified to take into account the nature of
the countable subfamily.

3The notation for the seminorms in Chapter III was chosen for the entire separating subfamily
and amounted to k f kxα,xβ . The subscripts have been simplified to take into account the nature of
the countable subfamily.

4The tradition dates back to Laurent Schwartz’s work, in which D(U) was the notation for
C∞
com(U) and D 0(U) denoted the space of continuous linear functionals.
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For the spaces of smooth functions, there are continuous inclusions
C∞
com(U) ⊆ C∞(U) for all U,

C∞
com(RN ) ⊆ S(RN ) ⊆ C∞(RN ) for U = RN .

We observed in Section IV.2 that C∞
com(U) ⊆ C∞(U) has dense image, and it

follows that S(RN ) ⊆ C∞(RN ) has dense image. Proposition 4.12 showed that
C∞
com(RN ) ⊆ S(RN ) has dense image.
If i : A → B denotes one of these inclusions and T is a continuous linear

functional on B, then T ◦ i is a continuous linear functional on A, and we can
regard T ◦ i as the restriction of T to A. Since i has dense image, T ◦ i cannot
be 0 unless T is 0. Thus each restriction map T 7→ T ◦ i as above is one-one.
We therefore have one-one restriction maps

E 0(U) → D 0(U) for all U,

E 0(RN ) → S 0(RN ) → D 0(RN ) for U = RN .

This fact justifies using the term “distribution” for any member of D 0 and for
using the term “distribution” with an appropriate modifier for members of E 0 and
S 0.
As in Section III.1 it will turn out often to be useful to write the effect of a

distribution T on a function ϕ as hT, ϕi, rather than as T (ϕ), and we shall adhere
to this convention systematically for the moment.5
We introduced inSection IV.2 thenotionof “support” for anymemberofE 0(U),

and we now extend that discussion to D 0(U). We saw in Proposition 4.10 that if
T is an arbitrary linear functional on C∞

com(U) and if U 0 is the union of all open
subsetsU∞ ofU such that T vanishes onC∞

com(U∞ ), then T vanishes onC∞
com(U 0).

We accordingly define the support of any distribution to be the complement in
U of the union of all open sets U∞ such that T vanishes on C∞

com(U∞ ). If T has
empty support, then T = 0 because T vanishes onC∞

com(U) and becauseC∞
com(U)

is dense in the domain of T . Proposition 4.11 showed that the members of E 0(U)
have compact support in this sense; we shall see in Theorem 5.1 that no other
members of D 0(U) have compact support.
An example of a member of E 0(U) was given in Section IV.2: Take finitely

many complex Borel measures ρα of compact support withinU , the indexing be-
ing bymulti-indicesαwith |α| ≤ m, and put hT, ϕi=

P
|α|≤m

R
U Dαϕ(x) dρα(x).

Then T is in E 0(U), and the support of T is contained in the union of the supports
of the ρα’s. Theorem 5.1 below gives a converse, but it is necessary in general
to allow the ρα’s to have support a little larger than the support of the given
distribution T .

5A different convention is to write
R
U ϕ(x) dT (x) in place of hT, ϕi. This notation emphasizes

an analogy between distributions and measures and is especially useful when more than one RN

variable is in play. This convention will provide helpful motivation in one spot in Section 3.
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Theorem 5.1. If T is a member ofD 0(U)with support contained in a compact
subset K of U , then T is in E 0(U). Moreover, if K 0 is any compact subset of
U whose interior contains K , then there exist a positive integer m and, for each
multi-index α with |α| ≤ m, a complex Borel measure ρα supported in K 0 such
that

hT, ϕi =
X

|α|≤m

Z

K 0
Dαϕ dρα for all ϕ ∈ C∞(U).

REMARK. Problems 8–10 at the end of the chapter discuss the question of
taking K 0 = K under additional hypotheses.

PROOF. Let √ be a member of C∞
com(U) with values in [0, 1] that is 1 on a

neighborhood of K and is 0 on K 0c; such a function exists by Proposition 3.5f.
If ϕ is in C∞

com(U), then we can write ϕ = √ϕ + (1 − √)ϕ with √ϕ in C∞
K 0

and with (1− √)ϕ in C∞
com(Kc). The assumption about the support of T makes

hT, (1− √)ϕi = 0, and therefore

hT, ϕi = hT, √ϕi + hT, (1− √)ϕi = hT, √ϕi for all ϕ in C∞
com(U). (∗)

Since the inclusionC∞
K 0 → C∞

com(U) is continuous, we can define a continuous
linear functional T1 onC∞

K 0 by T1(φ) = hT, φi forφ inC∞
K 0 . For anyϕ inC∞

com(U),
φ = √ϕ is in C∞

K 0 , and (∗) gives hT, ϕi = hT, √ϕi = T1(√ϕ). The continuity
of T1 on C∞

K 0 means that there exist m and C such that

|T1(φ)| ≤ C
P

|α|≤m
sup
x∈K 0

|Dαφ(x)| for all φ ∈ C∞
K 0 . (∗∗)

Let M be the number of multi-indices α with |α| ≤ m.
We introduce the Banach space X of M-tuples of continuous complex-valued

functions on K 0, the norm for X being the largest of the norms of the components.
The Banach-space dual of this space is the space of M-tuples of continuous linear
functionals on the components, thus the space of M-tuples of complex Borel
measures on K 0.
We can embedC∞

K 0 as a vector subspace of X bymappingφ to theM-tuplewith
components Dαφ for |α| ≤ m. We transfer T1 from C∞

K 0 to its image subspace
within X , and the result, which we still call T1, is a linear functional continuous
relative to the norm on X as a consequence of (∗∗). Applying the Hahn–Banach
Theorem, we extend T1 to a continuous linear functional eT1 on all of X without
an increase in norm. Then eT1 is given on X by an M-tuple of complex Borel
measures ρ0

α on K 0, i.e., eT1({ fα}|α|≤m) =
P

|α|≤m
R
K 0 fα dρ0

α. Therefore any ϕ in
C∞
com(U) has

hT, ϕi = T1(√ϕ) = eT1
°
{Dα(√ϕ)}|α|≤m

¢
=

P

|α|≤m

R
K 0 Dα(√ϕ) dρ0

α. (†)
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The right side of (†) is continuous on C∞(U), and therefore T extends to a
member of E 0(U). The formula in the theorem follows by expanding out each
Dα(√ϕ) in (†) by the Leibniz rule for differentiation of products, grouping the
derivatives of √ with the complex measures, and reassembling the expression
with new complex measures ρα. §

In Chapters VII and VIII we shall be interested also in a notion related to
support, namely the notion of “singular support.” If f is a locally integrable
function on the open set U , then f defines a member Tf of D 0(U) by

hTf , ϕi =
Z

U
f ϕ dx for ϕ ∈ C∞

com(U).

If U 0 is an open subset of U and T is a distribution on U , we say that T equals
a locally integrable function on U 0 if there is some locally integrable function
f on U 0 such that hT, ϕi = hTf , ϕi for all ϕ in C∞

com(U). We say that T equals
a smooth function on U 0 if this condition is satisfied for some f in C∞(U 0). In
the latter case the member of C∞(U 0) is certainly unique.
The singular support of a member T of D 0(U) is the complement of the

union of all open subsets U 0 of U such that T equals a smooth function on U 0.
The uniqueness of the smooth function on such a subset implies that if T equals
the smooth function f1 on U 0

1 and equals the smooth function f2 on U 0
2, then

f1(x) = f2(x) for x in U 0
1 ∩U 0

2. In fact, T equals the smooth function f1
Ø
Ø
U 0
1∩U

0
2

on U 0
1 ∩U 0

2 and also equals the smooth function f2
Ø
Ø
U 0
1∩U

0
2
there. The uniqueness

forces f1
Ø
Ø
U 0
1∩U

0
2
= f2

Ø
Ø
U 0
1∩U

0
2
. Taking the union of all the open subsets on which T

equals a smooth function, we see that T is a smooth function on the complement
of its singular support.

EXAMPLE. Take U = R1, and define

hT, ϕi = lim
ε↓0

Z

|x |∏ε

ϕ(x) dx
x

for ϕ ∈ C∞
com(R1).

To see that this is well defined, we choose η in C∞
com(R1) with η identically 1

on the support of ϕ and with η(x) = η(−x) for all x . Taylor’s Theorem gives
ϕ(x) = ϕ(0) + x R(x) with R in C∞(R1). Multiplying by η(x) and integrating
for |x | ∏ ε, we obtain

R
|x |∏ε

ϕ(x) dx
x = ϕ(0)

R
|x |∏ε

η(x) dx
x +

R
|x |∏ε R(x)η(x) dx .

The first term on the right side is 0 for every ε, and therefore

hT, ϕi =
R

R1 R(x)η(x) dx .
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It follows that T is inD 0(R1). On any function compactly supported inR1−{0},
the original integral defining T is convergent. Thus T equals the function 1/x
on R1 − {0}. Since 1/x is nowhere zero on R1 − {0}, the (ordinary) support of
T has to be a closed subset of R1 containing R1 − {0}. Therefore T has support
R1. On the other hand, T does not equal a function on all of R1, and T has {0}
as its singular support.

Starting in Section 2, we shall examine various operations on distributions.
Operations on distributions will be defined by duality from corresponding opera-
tions on smooth functions. For that reason it is helpful to know about continuity
of various operations on spaces of smooth functions. These we study now.
We begin with multiplication by smooth functions and with differentiation. If

√ is in C∞(U), then multiplication ϕ 7→ √ϕ carries C∞
com(U) into itself and also

C∞(U) into itself. The same is true of any iterated partial derivative operator
ϕ 7→ Dαϕ. We shall show that these operations are continuous. A multiplication
ϕ 7→ √ϕ need not carry S(RN ) into itself, and we put aside S(RN ) for further
consideration later.
The kind of continuity result for C∞(U) that we are studying tends to follow

from an easy computation with seminorms, and it is often true that the same
argument can be used to handle also C∞

com(U). Here is the general fact.

Lemma 5.2. Suppose that L : C∞(U) → C∞(U) is a continuous linear map
that carries C∞

com(U) into C∞
com(U) in such a way that for each compact K ⊆ U ,

C∞
K is carried into C∞

K 0 for some compact K 0 ⊇ K . Then L is continuous as a
linear map from C∞

com(U) into C∞
com(U).

PROOF. Proposition 4.29b shows that it is enough to prove for each K that
the composition of L : C∞

K → C∞
K 0 followed by the inclusion of C∞

K 0 into
C∞
com(U) is continuous, and we know that the inclusion is continuous. Fix

K , choose Kp in the exhausting sequence containing the corresponding K 0,
and let α be a multi-index. By the continuity of L : C∞(U) → C∞(U),
there exist a constant C , some integer q with q ∏ p, and finitely many multi-
indices βi such that kL(ϕ)kp,α ≤ C

P
i kϕkq,βi

. Since L(ϕ) has support in
K 0 ⊆ Kp and ϕ has support in K ⊆ K 0 ⊆ Kp ⊆ Kq , this inequality shows that
supx∈K 0 |Dα(L(ϕ))(x)| ≤ C

P
i supx∈K |Dβiϕ(x)|. Hence L : C∞

K → C∞
K 0 is

continuous, and the lemma follows. §

Proposition 5.3. If√ is in C∞(U), then ϕ 7→ √ϕ is continuous from C∞(U)
to C∞(U) and fromC∞

com(U) to C∞
com(U). If α is any differentiation multi-index,

then ϕ 7→ Dαϕ is continuous from C∞(U) to C∞(U) and from C∞
com(U) to

C∞
com(U).
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PROOF. The Leibniz rule for differentiation of products gives Dα(√ϕ) =P
β≤α cβ(Dβ−α√)(Dβϕ) for certain integers cβ . Then

k√ϕkp,α ≤
P

β≤α cβmβkϕkp,β,

where mβ = supx∈Kp
|Dβ−α√(x)|, and it follows that ϕ 7→ √ϕ is continuous

from C∞(U) into itself. Taking K 0 = K in Lemma 5.2, we see that ϕ 7→ √ϕ is
continuous from C∞

com(U) into itself.
Since kDαϕkp,β = kϕkp,α+β , the function ϕ 7→ Dαϕ is continuous from

C∞(U) into itself, and Lemma 5.2 with K 0 = K shows that ϕ 7→ Dαϕ is
continuous from C∞

com(U) into itself. §

We can combine these two operations into the operation of a linear partial
differential operator

P(x, D) =
X

|α|≤m
cα(x)Dα with all cα in C∞(U)

by means of the formula P(x, D)ϕ =
P

|α|≤m cα(x)Dαϕ. It is to be understood
that the operator has smooth coefficients. It is immediate from Proposition 5.3
that P(x, D) is continuous from C∞(U) into itself and from C∞

com(U) into itself.
An operator P(x, D) as above is said to be of order m if some cα(x) with

|α| = m has cα not identically 0. The operator reduces to an operator of the form
P(D) if the coefficient functions cα are all constant functions.
We introduce the transpose operator P(x, D)tr by the formula

P(x, D)trϕ(x) =
X

|α|≤m
(−1)|m|Dα

°
cα(x)ϕ(x)

¢
.

Expanding out the terms Dα
°
cα(x)ϕ(x)

¢
by means of the Leibniz rule, we see

that P(x, D)tr is some linear partial differential operator of the form Q(x, D).
The next proposition gives the crucial property of the transpose operator.

Proposition 5.4. Suppose that P(x, D) is a linear partial differential operator
on U . If u and v are in C∞(U) and at least one of them is in C∞

com(U), then
Z

U

°
P(x, D)tru(x)

¢
v(x) dx =

Z

U
u(x)

°
P(x, D)v(x)

¢
dx .

PROOF. It is enough to prove that the partial derivative operator Dj with respect
to xj satisfies

R
U (Dju)v dx = −

R
U u(Djv) dx since iteration of this formula

gives the result of the proposition. Moving everything to one side of the equation
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and putting w = uv, we see that it is enough to prove that
R

RN IU Djw dx = 0
if w is in C∞

com(U), where IU is the indicator function of U . We can drop the
IU from the integration since Djw is 0 off U , and thus it is enough to prove thatR
RN Djw dx = 0 for w in C∞

com(RN ). By Fubini’s Theorem the integral may be
computed as an iterated integral. The integral on the inside extends over the set
where xj is arbitrary in R and the other variables take on particular values, say
xi = ci for i 6= j . The integral on the outside extends over all choices of the ci
for i 6= j . The inside integral is already 0, because for suitable a and b, it is of
the form

R b
a Djw dxj = [w]xj=bxj=a = 0− 0 = 0. §

Next let us consider convolution, taking U = RN . We shall be interested in
the function √ ∗ ϕ given by

√ ∗ ϕ(x) =
R

RN √(x − y)ϕ(y) dy =
R

RN √(y)ϕ(x − y) dy,

under the assumption that √ and ϕ are in C∞(RN ) and that one of them has
compact support.
A simple device of localization helps with the analysis of this function: If K

is the support of √ , then the values of √ ∗ ϕ(x) for x in a bounded open set S
depend only on the value of ϕ on the bounded open set of differences S − K .
Consequently we can replace ϕ by ηϕ, where η is a member of C∞

com(RN ) that
is 1 on S − K , and the values of √ ∗ ϕ(x) will match those of √ ∗ (ηϕ)(x) for x
in S. The latter function is the convolution of two smooth functions of compact
support and is smooth by Proposition 3.5c. Therefore√ ∗ϕ is always inC∞(RN )
if √ is in C∞

com(RN ) and ϕ is in C∞(RN ). We shall use this same device later in
treating convolution of distributions.

Proposition 5.5. If √ is in C∞
com(RN ) and ϕ is in C∞(RN ), then

(a) Dα(√ ∗ ϕ) = (Dα√) ∗ ϕ = √ ∗ (Dαϕ),
(b) convolution of three functions in C∞(RN ) is associative when at least

two of the three functions have compact support,
(c) convolution with √ is continuous from C∞(RN ) into itself and from

C∞
com(RN ) into itself,

(d) convolution with ϕ is continuous from C∞
com(RN ) into C∞(RN ).

PROOF. For (a), let K be the support of √ . Concentrating on x’s lying in a
bounded open set S, choose a function η in C∞

com(RN ) that is 1 on S − K , and
then √ ∗ ϕ(x) = √ ∗ (ηϕ)(x) for x in S. Proposition 3.5c says that

Dα(√ ∗ (ηϕ))(x) = (Dα√) ∗ (ηϕ)(x) = √ ∗ Dα(ηϕ)(x)

for all x in RN , and consequently

Dα(√ ∗ ϕ)(x) = (Dα√) ∗ ϕ(x) = √ ∗ Dαϕ(x)
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for all x in S. Since S is arbitrary, (a) follows. The proof of (b) is similar.
For (c), again let K be the support of √ , and apply (a). Then

k√ ∗ ϕkp,α = sup
x∈Kp

|Dα(√ ∗ ϕ)(x)| = sup
x∈Kp

|√ ∗ (Dαϕ)(x)|

≤ sup
x∈Kp

R
K |√(y)||Dαϕ(x − y)| dy

Ø
Ø ≤ k√k1 supz∈Kp−K |Dαϕ(z)|,

and the right side is ≤ k√k1kϕkq,α if q is large enough so that Kp − K ⊆ Kq .
This proves the continuity on C∞(RN ), and the continuity on C∞

com(RN ) then
follows from Lemma 5.2.
For (d), Proposition 4.29b shows that it is enough to prove that √ 7→ √ ∗ ϕ is

continuous from C∞
K into C∞(RN ) for each compact set K . The same estimate

as for (c) gives

k√ ∗ ϕkp,α ≤ k√k1kϕkq,α ≤ |K |kϕkq,α(sup
x∈K

|√(x)|)

if q is large enough so that Kp − K ⊆ Kq . The result follows. §

2. Elementary Operations on Distributions

In this section we take up operations on distributions. If f is a locally integrable
function on the open set U , we defined the member Tf of D 0(U) by

hTf , ϕi =
Z

U
f ϕ dx

for ϕ in C∞
com(U). If f vanishes outside a compact subset of U , then Tf is in

E 0(U), extending to operate on all of C∞(U) by the same formula.
Starting from certain continuous operations L on smooth functions, we want

to extend these operations to operations on distributions. So that we can regard
L as an extension from smooth functions to distributions, we insist on having
L(Tf ) = TL( f ) if f is smooth. To tie the definition of L on distributions Tf to the
definition on general distributions T , we insist that L be the “transpose” of some
continuous operation M on functions, i.e., that hL(T ), ϕi = hT,M(ϕ)i. Taking
T = Tf in this equation, we see thatwemust have

R
U L( f )ϕ dx =

R
U f M(ϕ) dx .

On the other hand, once we have found a continuousM on smooth functions withR
U L( f )ϕ dx =

R
U f M(ϕ) dx , then we can make the definition hL(T ), ϕi =

hT,M(ϕ)i for the effect of L on distributions. In particular the operator M on
smooth functions is unique if it exists. We write L tr = M for it. In summary, our
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procedure6 is to find, if we can, a continuous operator L tr on smooth functions
such that Z

U
L( f )ϕ dx =

Z

U
f L tr(ϕ) dx

and then to define
hL(T ), ϕi = hT, L tr(ϕ)i.

We begin with the operations of multiplication, whose continuity is addressed
in Proposition 5.3. If L is multiplication by the function √ in C∞(U), then
we can take L tr = L because

R
U L( f )ϕ dx =

R
U (√ f )ϕ dx =

R
U f (√ϕ) dx =R

U f L tr(ϕ) if f and ϕ are in C∞(U) and one of them has compact support. Thus
our definition of multiplication of a distribution T by √ in C∞(U) is

h√T, ϕi = hT, √ϕi.

Here we assume either that T is in D 0(U) and ϕ is in C∞
com(U) or else that T is

in E 0(U) and ϕ is in C∞(U). Briefly we say that at least one of T and ϕ has
compact support.
The operation of multiplication by a function can be used to localize the effect

of a distribution in a way that is useful in the definition below of convolution
of distributions. First observe that if T is in D 0(U) and η is in C∞

com(U), then
the support of ηT is contained in the support of η; in fact, if ϕ is any member
of C∞

com(U ∩ support(η)c), then ηϕ = 0 and hence hηT, ϕi = hT, ηϕi = 0. In
particular, ηT is in E 0(U). On the other hand, we lose no information about T
by this operation if we allow all possible η’s, because if T is in D 0(U) and if ϕ
is a member of C∞

com(U) with support in a compact subset K of U , then ϕ = ηϕ
and hence hT, ϕi = hT, ηϕi = hηT, ϕi.
Next we consider differentiation, which is a continuous operation by Proposi-

tion 5.3. When L gives the iterated derivative Dα of a distribution, we can take
the operation L tr on smooth functions to be (−1)|α| times Dα. The definition is
then

hDαT, ϕi = (−1)|α|hT, Dαϕi.

Again we assume that at least one of T and ϕ has compact support.
Putting these definitions together yields the definition of the operation of a lin-

ear partial differential operator P(x, D)with smooth coefficients on distributions.
The formula is

hP(x, D)T, ϕi = hT, P(x, D)trϕi,

6Another way of proceeding is to use topologies on E 0(U) andD 0(U) such thatC∞
com(U) is dense

in E 0(U) and C∞(U) is dense in D 0(U). The approach in the text avoids the use of such topologies
on spaces of distributions, and it will not be necessary to consider them.
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where P(x, D)tr is the transpose differential operator defined in Section 1. This
definition is forced to satisfy P(x, D)T = TP(x,D) f on smooth f .
For further operations let us specialize to the setting that U = RN . The first

is the operation of acting by −1 in the domain. For a function ϕ, we define
ϕ∨(x) = ϕ(−x). It is easy to check that this operation is continuous on C∞(RN )
and onC∞

com(RN ). Since
R

RN f ∨ϕ dx =
R

RN f ϕ∨ dx by a change of variables, the
operator L tr corresponding to L( f ) = f ∨ is just L itself. Thus the corresponding
operation T 7→ T∨ on distributions is given by

hT∨, ϕi = hT, ϕ∨i.

The operation ( · )∨ has the further property that (ϕ∨)∨ = ϕ and (T∨)∨ = T .

3. Convolution of Distributions

The next operation, again in the setting of RN , is the convolution of two dis-
tributions. Convolution is considerably more complicated than the operations
considered so far because it involves two variables.
The method of Section 2 starts off easily enough. An easy change of variables

shows that any three smooth functions, two of which have compact support,
satisfy

R
RN (√ ∗ f )ϕ dx =

R
RN (√)( f ∨ ∗ ϕ) dx , where f ∨(−x) = f (−x).

This means that
R

RN L(√)ϕ dx =
R

RN √L tr(ϕ) dx , where L(√) = √ ∗ f and
L tr(ϕ) = f ∨∗ϕ. Thus Section 2 says to define T ∗ f by hT ∗ f, ϕi = hT, f ∨∗ϕi.
To handle the other convolution variable, however, we have to know that T ∗ f
is a smooth function and that the passage from f to T ∗ f is continuous, and
neither of these facts is immediately apparent. In addition, there are several cases
to handle, depending on which two of the functions f , √ , and ϕ at the start have
compact support.
Sorting out all these matters could be fairly tedious, but there is a model for

what happens that will help us anticipate the results. We shall follow the path
that the model suggests. Then afterward, if we were to want to do so, it would
be possible to go back and see that all the arguments with transposes in the style
of Section 2 can be carried through with the tools that we have had to establish
anyway.
The model takes a cue from Theorem 5.1, which says that members of E 0(RN )

are given by integration with compactly supported complex Borel measures and
derivatives of them. In particular our definitions ought to specialize to famil-
iar constructions when they are given by compactly supported positive Borel
measures. In the case of measures, convolution is discussed in Problem 5 of
Chapter VIII of Basic. The definition and results are as follows:

(i) (µ1 ∗ µ2)(E) =
R

RN µ1(E − x) dµ2(x) by definition,
(ii)

R
RN ϕ d(µ1∗µ2) =

R
RN

R
RN ϕ(x+ y) dµ1(x) dµ2(y) for ϕ ∈ Ccom(RN ),
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(iii) µ1 ∗ µ2 = µ2 ∗ µ1,
(iv) ϕ dx∗µ is the continuous function (ϕ dx∗µ)(x) =

R
RN ϕ(x−y) dµ(y) =R

RN (ϕ∨)−x dµ for ϕ ∈ Ccom(RN ), where the subscript −x refers to the
translate ht(y) = h(y + t).

The measures and the function ϕ in these properties are all assumed compactly
supported, but some relaxation of this condition is permissible. For example the
function ϕ can be allowed to be any continuous scalar-valued function on RN .
In defining convolution of distributions and establishing its properties, we shall

face three kinds of technical problems: One is akin to Fubini’s Theorem and will
be handled for E 0(RN ) by appealing to Theorem 5.1 and using the ordinary form
of Fubini’s Theorem with measures. A second is a regularity question—showing
that certain integrations in one variable of functions of two variables lead to
smooth functions of the remaining variable—and will be handled for E 0(RN ) by
Lemma 5.6 below. A third is the need to work with D 0(RN ), not just E 0(RN ),
and will be handled by the localization device T 7→ ηT mentioned in Section 2.
We begin with the lemma that addresses the regularity question.

Lemma 5.6. Let K be a compact metric space, and let µ be a Borel measure
on K . Suppose that 8 = 8(x, y) is a scalar-valued function on RN × K such
that 8( · , y) is smooth for each y in K , and suppose further that every iterated
partial derivative Dα

x8 in the first variable is continuous on RN × K . Then the
function

F(x) =
Z

K
8(x, y) dµ(y)

is smooth on RN and satisfies DαF(x) =
R
K D

α
x8(x, y) dµ(y) for every multi-

index α.

REMARKS. The lemma gives us a new proof of the smoothness shown in
Section 1 for √ ∗ ϕ when √ is in C∞

com(RN ) and ϕ is in C∞(RN ). In fact,
we write the convolution as √ ∗ ϕ(x) =

R
RN ϕ(x − y)√(y) dy and apply the

lemma with µ equal to Lebesgue measure on the compact set support(√) and
with F(x) = √ ∗ ϕ(x) and 8(x, y) = ϕ(x − y)√(y).

PROOF. In the proof we may assume without loss of generality that 8 is real-
valued. We begin by showing that F is continuous. If xn → x0, then the uniform
continuity of 8 on the compact set {xn}n∏0 × K implies that limn 8(xn, y) =
8(x0, y) uniformly. Dominated convergence allows us to conclude that
limn

R
K 8(xn, y) dµ(y) =

R
K 8(x0, y) dµ(y). Therefore F is continuous.

Let B be a (large) closed ball in RN , and suppose that x is a member of B that
is at distance at least 1 from Bc. If ej denotes the j th standard basis vector of RN
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and if |h| < 1, then the Mean Value Theorem gives
8(x + hej , y) − 8(x, y)

h
=

@8

@xj
(c, y)

for some c on the line segment between x and x + h. If ≤ > 0 is given, choose
the δ of uniform continuity of @8

@xj on the compact set B × K . We may assume
that δ < 1. For |h| < δ and for y in K , we have

Ø
Ø
Ø
8(x + hej , y) − 8(x, y)

h
−

@8

@xj
(x, y)

Ø
Ø
Ø =

Ø
Ø
Ø
@8

@xj
(c, y) −

@8

@xj
(x, y)

Ø
Ø
Ø < ≤,

the inequality holding since (c, y) and (x, y) are both in B×K and are at distance
at most δ from one another. As a consequence, if L is any compact subset ofRN ,
then

lim
h→0

8(x + hej , y) − 8(x, y)
h

=
@8

@xj
(x, y)

uniformly for (x, y) in L × K . Because of this uniform convergence we have

lim
h→0

Z

K

8(x + hej , y) − 8(x, y)
h

dµ(y) =
Z

K

@8

@xj
(x, y) dµ(y).

The integral on the left side equals h−1[F(x + hej , y) − F(x, y)], and the
limit relation therefore shows that @

@xj

R
K 8(x, y) dµ(y) exists and equals

R
K

@8
@xj (x, y) dµ(y).
This establishes the formula DαF(x) =

R
K D

α
x8(x, y) dµ(y) for α equal to

the multi-index that is 1 in the j th place and 0 elsewhere. The remainder of the
proof makes the above argument into an induction. If we have established the for-
mula DαF(x) =

R
K D

α
x8(x, y) dµ(y) for a certain α, then the first paragraph of

the proof shows that DαF is continuous. The secondparagraphof the proof shows
for each partial derivative operator Dj in one of the x variables that the operator
Dβ = Dj Dα has DβF(x) =

R
K D

β
x 8(x, y) dµ(y). The lemma follows. §

For our definitions let us beginwith the convolutionof twomembers ofE 0(RN ).
As indicated at the start of the section, we shall jump right to the final formula.
The justification via formulas for transpose operations can be done afterward if
desired. If we use notation that treats distributions like measures, the formula (ii)
above suggests trying

hS ∗ T, ϕi =
R

RN

R
RN ϕ(x + y) dT (y) dS(x) = hS, hT, ϕxii = hT, hS, ϕyii,

where the subscript again indicates a translation: ϕx(z) = ϕ(z+ x). The outside
distribution acts on the subscripted variable, and the inside distribution acts on
the hidden variable. To make this into a rigorous definition, however, we have
to check that hT, ϕxi and hS, ϕyi are smooth, that the last equality in the above
display is valid, and that the resulting dependence on ϕ is continuous. We carry
out these steps in the next proposition.
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Proposition 5.7. Let S and T be in E 0(RN ), and let ϕ be in C∞(RN ). Then
(a) the functions x 7→ hT, ϕxi and y 7→ hS, ϕyi are smooth on RN ,
(b) Dα(x 7→ hT, ϕxi) = hT, (Dαϕ)xi,
(c) the function ϕ 7→ hT, ϕxi is continuous from C∞(RN ) into itself and

from C∞
com(RN ) into itself,

(d) hS, hT, ϕxii = hT, hS, ϕyii,
(e) the function ϕ 7→ hS, hT, ϕxii is continuous from C∞(RN ) into the

scalars,
(f) the formula

hS ∗ T, ϕi = hS, hT, ϕxii = hT, hS, ϕyii

determines a well-defined member of E 0(RN ) such that S ∗ T = T ∗ S,
(g) the supports of S, T , and S ∗ T are related by

support(S ∗ T ) ⊆ support(S) + support(T ).

PROOF. Let expressions for S and T in Theorem 5.1 be

hS, ϕi =
P

α

R
RN Dαϕ(x) dρα(x) and hT, ϕi =

P
β

R
RN Dβϕ(y) dσβ(y),

the sums both being over finite sets of multi-indices and the complex measures
being supported on some compact subset of RN . Then

hT, ϕxi =
P

β

R
RN Dβϕ(x + y) dσβ(y). (∗)

If we apply Lemma 5.6 with8(x, y) = Dβϕ(x + y) and treat y as varying over
the union of the compact supports of the σβ’s, then we see that each term in
the sum over β is a smooth function of x . Hence x 7→ hT, ϕxi is smooth, and
symmetrically y 7→ hS, ϕyi is smooth. This proves (a).
Applying to (∗) the conclusions of Lemma 5.6 about passing the derivative

operator Dα under the integral sign, we obtain

Dα(x 7→ hT, ϕxi) =
P

β

R
RN Dα+βϕ(x + y) dσβ(y) = hT, (Dαϕ)xi.

This proves (b).
If K denotes a subset of RN containing the supports of all the σβ’s, then

|DαhT, ϕxi| ≤
P

β

sup
y∈K

|Dα+βϕ(x + y)|kσβk,
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where kσβk denotes the total-variation norm of σβ . Hence

sup
x∈L

|DαhT, ϕxi| ≤
P

β

sup
z∈K+L

|Dα+βϕ(z)|kσβk.

This proves (c) for C∞(RN ). Combining this same inequality with Lemma 5.2,
we obtain (c) for C∞

com(RN ).
The formula for hS, · i and the identity (∗) together give

hS, hT, ϕxii =
P

α,β

R
RN

R
RN DαDβϕx(y) dσβ(y) dρα(x)

=
P

α,β

R
RN

R
RN Dα+βϕ(x + y) dσβ(y) dρα(x). (∗∗)

By Fubini’s Theorem the right side is equal to
P

α,β

R
RN

R
RN Dα+βϕ(x + y) dρα(x) dσβ(y) = hT, hS, ϕyii.

This proves (d).
Conclusion (e) is immediate from (c) and the continuity of S on C∞(RN ).

Thus S ∗ T is in E 0(RN ). The equality in (d) shows that S ∗ T = T ∗ S. This
proves (f).
Finally let L be the compact set support(S) + support(T ), and suppose that ϕ

is in C∞
com(Lc). Let d > 0 be the distance from support(ϕ) to L , and let D be the

function giving the distance to a set. Define

LS = {x | D(x, support(S)} ≤ 1
3d

LT = {x | D(x, support(T )} ≤ 1
3d.and

If xS is in LS and xT is in LT , then |xS − s| ≤ 1
3d and |xT − t | ≤ 1

3d for some
s in support(S) and t in support(T ). Thus |(xS + xT ) − (s + t)| ≤ 2

3d. Hence
xS + xT is at distance ≤ 2

3d from L . Since every member of support(ϕ) is at
distance ∏ d from L , xS + xT is not in support(ϕ). Therefore

(LS + LT ) ∩ support(ϕ) = ∅. (†)

Also, support(S) ⊆ (LS)o and support(T ) ⊆ (LT )o. Since LS contains a neigh-
borhood of support(S), Theorem 5.1 allows us to express S in terms of complex
Borel measures ρα supported in LS . Similarly we can express T in terms of
complex Borel measures σβ supported in LT . By (†) the integrand in (∗∗) is iden-
tically 0 on LS+LT , and hence hS, hT, ϕxii = 0. Thus hS∗T, ϕi = 0 for all ϕ in
C∞
com(Lc), and we conclude that support(S ∗T ) ⊆ L = support(S)+support(T ).
This proves (g). §
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Proposition 5.7 establishes facts about the convolution of two members of
E 0(RN ) as a member of E 0(RN ). If one of the two members is in fact a smooth
function of compact support, then the corresponding results about convolution of
measures suggest that the convolution shouldbe a smooth function. Thenecessary
tools for carrying out a proof are already in place in Proposition 5.7 and Theorem
5.1.

Corollary 5.8. If S is in E 0(RN ), f is in C∞
com(RN ), and ϕ is in C∞(RN ), then

hS ∗ Tf , ϕi = hS, f ∨ ∗ ϕi.

Moreover, S ∗ Tf is given by the C∞ function y 7→ hS, ( f ∨)−yi, i.e.,

S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi.

REMARKS. For S in E 0(RN ) and f in C∞
com(RN ), we write S ∗ f for the

C∞
com(RN ) function F of the corollary such that S ∗ Tf = TF . The specific
formula that we shall use to simplify notation is

S ∗ Tf = TS∗ f ,

with the right side written as TS∗ f rather than TS∗Tf .

PROOF. Proposition 5.7f gives

hS ∗ Tf , ϕi = hS, hTf , ϕxii =
≠
S,

R
RN f (y)ϕ(x + y) dy

Æ

=
≠
S,

R
RN f (−y)ϕ(x − y) dy

Æ
= hS, f ∨ ∗ ϕi.

(∗)

This proves the first displayed formula. For the rest let S be written according to
Theorem 5.1 as hS, √i =

P
α

R
RN Dα√ dρα. Then

hS, f ∨ ∗ ϕi =
P

α

R
RN Dα( f ∨ ∗ ϕ)(x) dρα(x)

=
P

α

R
RN (Dα f ∨ ∗ ϕ)(x) dρα(x)

=
P

α

R
RN

R
RN Dα f ∨(x − y)ϕ(y) dy dρα(x)

=
R

RN

£P
α

R
RN (Dα f ∨)−y dρα(x)

§
ϕ(y) dy

=
R

RN hS, ( f ∨)−yiϕ(y) dy,

the next-to-last equality following from Fubini’s Theorem. Combining this cal-
culation with (∗), we see that S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi. The
function F is smooth by Proposition 5.7a. §
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Corollary 5.9. Convolution of members of E 0(RN ) is consistent with convo-
lution of members ofC∞

com(RN ) in the sense that if f and g are inC∞
com(RN ), then

Tg ∗ Tf is given by the C∞ function Tg ∗ f , and this function equals g ∗ f .
PROOF. The first conclusion is the result of Corollary 5.8 with S = Tg.

For the second conclusion Corollary 5.8 gives Tg ∗ Tf = TF with F(y) =
hTg, ( f ∨)−yi =

R
RN g(x) f ∨(x − y) dx =

R
RN g(x) f (y − x) dy = (g ∗ f )(y).

Hence TTg∗ f = Tg∗ f , and the second conclusion follows. §

Corollary 5.10. If T is in E 0(RN ) and ϕ is in C∞
com(RN ), then

(T∨ ∗ ϕ)(x) = hT, ϕxi.

PROOF. Corollary 5.8 gives (T∨ ∗ ϕ)(x) = hT∨, (ϕ∨)−xi, and the latter is
equal to hT, ((ϕ∨)−x)

∨i = hT, ϕxi. §

Corollary 5.11. If S and T are in E 0(RN ) and ϕ is in C∞
com(RN ), then

hS ∗ T, ϕi = hS, T∨ ∗ ϕi.

PROOF. Proposition 5.7f and Corollary 5.10 give hS ∗ T, ϕi = hS, hT, ϕxii =
hS, T∨ ∗ ϕi. §

Corollary 5.12. If T is in E 0(RN ), then the map ϕ 7→ T∨ ∗ ϕ is continuous
from C∞

com(RN ) into itself and extends continuously to a map of C∞(RN ) into
itself under the definition

(T∨ ∗ ϕ)(x) = hT, ϕxi.

The derivatives of T∨ ∗ϕ satisfy Dα(T∨ ∗ϕ) = T∨ ∗Dαϕ, and also (T∨ ∗ϕ)∨ =
T ∗ ϕ∨.
PROOF. The equality (T∨ ∗ ϕ)(x) = hT, ϕxi restates Corollary 5.10, and the

statements about continuity follow from Proposition 5.7c. For the derivatives we
use Proposition 5.7b to write Dα(T∨ ∗ ϕ)(x) = DαhT, ϕxi = hT, (Dαϕ)xi =
(T∨∗Dαϕ)(x). Finally (T∨∗ϕ)∨(x)=(T∨∗ϕ)(−x)=hT, ϕ−xi=hT∨, (ϕ−x)

∨i
= hT∨, (ϕ∨)xi = (T ∗ ϕ∨)(x). §

Since T∨ ∗ ϕ is now well defined for T in E 0 and ϕ in C∞(RN ), we can use
the same formula as in Corollary 5.11 to make a definition of convolution of two
arbitrary distributions when only one of the two distributions being convolved has
compact support. Specifically if S is in D 0(RN ) and T is in E 0(RN ), we define
S ∗ T in D 0(RN ) by the first equality of

hS ∗ T, ϕi = hS, T∨ ∗ ϕi = hS, hT, ϕxii for ϕ ∈ C∞
com(RN ),

the second equality holding by Corollary 5.12. Corollary 5.12 shows also that
S∗T has the necessary property of being continuous onC∞

com(RN ), and Corollary
5.11 shows that this definition extends the definition of S ∗ T when S and T are
in E 0(RN ).
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What is missing with this definition of S ∗ T is any additional relationship that
arises for distributions that equal smooth functions. For example:

• Does this new definition make Tf ∗ T = TT∗ f when T is compactly
supported and f does not have compact support?

• Is S ∗Tf equal to a function when f is compactly supported and S is not?
• If so, are the formulas of Corollaries 5.8, 5.9, and 5.10 valid?
• If so, can we equally well define S ∗ T by hS ∗ T, ϕi = hT, S∨ ∗ ϕi =

hT, hS, ϕyii when T is compactly supported and S is not?
The answers to these questions are all affirmative. To get at the proofs, we
introduce a technique of localization for members of D 0(RN ). Proposition 5.13
below is a quantitative statement of what we need. We apply the technique to
obtain smoothness of functions of the form hS, ϕyi when S is in D 0(RN ) and
ϕ is in C∞

com(RN ); this step does not make use of the above enlarged definition
of S ∗ T . Then we gradually make the connection with the new definition of
convolution and establish all the desired properties.

Proposition5.13. Let N be a boundedopen set inRN . Let S be inD 0(RN ), and
let ϕ be in C∞

com(RN ). If η ∈ C∞
com(RN ) is identically 1 on the set of differences

support(ϕ) − N , then hS, ϕyi = hηS, ϕyi for y in N . Consequently y 7→ hS, ϕyi
is in C∞(RN ). Moreover, Dα(y 7→ hS, ϕyi) = hS, (Dαϕ)yi, and the linear map
ϕ 7→ hS, ϕyi of C∞

com(RN ) into C∞(RN ) is continuous.

PROOF. Let y be in N . If x + y is in support(ϕ), then x is in support(ϕ) − N ,
and η(x) = 1. Hence η(x)ϕ(x + y) = ϕ(x + y). If x + y is not in support(ϕ),
then η(x)ϕ(x+ y) = ϕ(x+ y) because both sides are 0. Hence ηϕy = ϕy for y in
N , and hS, ϕyi = hS, ηϕyi = hηS, ϕyi. The function y 7→ hηS, ϕyi is smooth by
Proposition 5.7a, and hence y 7→ hS, ϕyi is smooth on N . Since N is arbitrary,
y 7→ hS, ϕyi is smooth everywhere.
For the derivative formula Proposition 5.7b gives us Dα(y 7→ hηS, ϕyi) =

hηS, (Dαϕ)yi for y in N . For y in N , hηS, ϕyi = hS, ϕyi and hηS, (Dαϕ)yi =
hS, (Dαϕ)yi. Therefore Dα(y 7→ hS, ϕyi) = hS, (Dαϕ)yi for y in N . Since N
is arbitrary, Dα(y 7→ hS, ϕyi) = hS, (Dαϕ)yi everywhere.
For the asserted continuity of ϕ 7→ hS, ϕyi, it is enough to prove that this map

carriesC∞
K continuously intoC∞(RN ) for each compact set K . If N is a bounded

open set on which we are to make some C∞ estimates, choose η ∈ C∞
com(RN )

so as to be identically 1 on the set of differences K − N . We have just seen that
hS, ϕyi = hηS, ϕyi for all y in N . Proposition 5.7c shows that √ 7→ hηS, √yi
is continuous from C∞

com(RN ) into C∞
com(RN ), hence from C∞

K into C∞
com(RN ),

hence from C∞
K into C∞(RN ). Therefore ϕ 7→ hS, ϕyi is continuous from C∞

K
into C∞(RN ). §
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Corollary 5.14. Let S be inD 0(RN ), T be in E 0(RN ), and ϕ be in C∞
com(RN ).

Then
hS ∗ T, ϕi = hS, T∨ ∗ ϕi = hS, hT, ϕxii = hT, hS, ϕyii.

Moreover, Dα(S ∗ T ) = (DαS) ∗ T = S ∗ (DαT ) for every multi-index α.

REMARKS. The first two equalities follow by definition of S ∗ T and by
application of Corollary 5.12. The new statements in the corollary are the third
equality and the derivative formula. The right side hT, hS, ϕyii of the displayed
equation is well defined, since Proposition 5.13 shows that hS, ϕyi is inC∞(RN ).

PROOF. Let N be a boundedopen set containing support(T ), and choose a func-
tion η ∈ C∞

com(RN ) that is identically 1 on the set of differences support(ϕ) − N .
Proposition 5.7g shows that

support(T∨ ∗ ϕ) ⊆ support(ϕ) + support(T∨)

= support(ϕ) − support(T )

⊆ support(ϕ) − N ,

and the fact that η is identically 1 on support(ϕ) − N implies that

(η)(T∨ ∗ ϕ) = T∨ ∗ ϕ. (∗)

Meanwhile, Proposition 5.13 shows that

hS, ϕyi = hηS, ϕyi (∗∗)

for all y in N , hence for all y in support(T ). Therefore

hT, hS, ϕyii = hT, hηS, ϕyii by (∗∗)

= hT, (ηS)∨ ∗ ϕi by Corollary 5.10
= hηS ∗ T, ϕi by Corollary 5.11
= hηS, T∨ ∗ ϕi by Corollary 5.10
= hS, η(T∨ ∗ ϕ)i by definition
= hS, T∨ ∗ ϕi by (∗). (†)

For one of the derivative formulas, we have

hDα(S ∗ T ), ϕi = (−1)|α|hS ∗ T, Dαϕi = (−1)|α|hS, hT, (Dαϕ)xii.

Proposition 5.7b shows that this expression is equal to

(−1)|α|hS, DαhT, ϕxii = hDαS, hT, ϕxii,
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and the definition of convolution shows that the latter expression is equal to
h(DαS)∗T, ϕi. Hence Dα(S∗T ) = (DαS)∗T . For the other derivative formula
we have

hDα(S ∗ T ), ϕi = (−1)|α|hS ∗ T, Dαϕi = (−1)|α|hT, hS, (Dαϕ)yii.

Proposition 5.13 shows that this expression is equal to

(−1)|α|hT, DαhS, ϕyii = hDαT, hS, ϕyii,

and step (†) shows that the latter expression is equal to

hS, (DαT )∨ ∗ ϕi = hS ∗ (DαT ), ϕi.

Hence Dα(S ∗ T ) = S ∗ (DαT ). §

For S in D 0(RN ) and ϕ in C∞
com(RN ), we now define

(S∨ ∗ ϕ)(y) = hS, ϕyi.

Corollary 5.8 shows that this definition is consistent with our earlier definition
when S is in the subset E 0(RN ) ofD 0(RN ). Proposition 5.13 shows that the linear
map ϕ 7→ S ∗ ϕ is continuous from C∞

com(RN ) into C∞(RN ).

Corollary 5.15. Let S be inD 0(RN ), T be in E 0(RN ), and ϕ be in C∞
com(RN ).

Then

hS ∗ T, ϕi = hS, T∨ ∗ ϕi = hS, hT, ϕxii = hT, hS, ϕyii = hT, S∨ ∗ ϕi,

and (S ∗ T )∨ = S∨ ∗ T∨.

PROOF. The displayed line just adds the above definition to the conclu-
sion of Corollary 5.14. For the other formula we use Corollary 5.12 to write
h(S ∗ T )∨, ϕi = hS ∗ T, ϕ∨i = hS, T∨ ∗ ϕ∨i = hS, (T ∗ ϕ)∨i = hS∨, T ∗ ϕi =
hS∨ ∗ T∨, ϕi. §

With the symmetry that has been established in Corollary 5.15, we allow
ourselves to write T ∗ S for S ∗ T when S is inD 0(RN ) and T is in E 0(RN ). This
notation is consistent with the equality S ∗ T = T ∗ S established in Proposition
5.7f when S and T both have compact support.
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Corollary 5.16. Suppose that S is in D 0(RN ), that f is in C∞(RN ), and that
at least one of S and f has compact support. If ϕ is in C∞

com(RN ), then

hS ∗ Tf , ϕi = hS, f ∨ ∗ ϕi.

Moreover, S ∗ Tf is given by the C∞ function y 7→ hS, ( f ∨)−yi, i.e.,

S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi.

REMARK. If both S and f have compact support, Corollary 5.16 reduces to
Corollary 5.8.

PROOF. First suppose that S has compact support. Theorem 5.1 allows us to
write S as hS, √i =

P
α

R
RN Dα√ dρα, with the sum involving only finitelymany

terms and with the complex Borel measures ρα compactly supported. Applying
Corollary 5.15 to S ∗ Tf and using the definition of S∨ ∗ ϕ, we obtain

hS ∗ Tf , ϕi =
R

RN f (y)(S∨ ∗ ϕ)(y) dy
=

R
RN f (y)

P
α

R
RN Dαϕy(x) dρα(x) dy

=
R

RN

P
α

R
RN f (y)Dαϕ(x + y) dρα(x) dy.

Since ϕ and the ρα’s are compactly supported, we may freely interchange the
order of integration to see that the above expression is equal to

P
α

R
RN

£ R
RN f (y)Dαϕ(x + y) dy

§
dρα(x)

=
P

α

R
RN ( f ∨ ∗ Dαϕ)(x) dρα(x)

=
P

α

R
RN (Dα( f ∨) ∗ ϕ)(x) dρα(x)

=
P

α

R
RN

£ R
RN Dα( f ∨)(x − y)ϕ(y) dy

§
dρα(x)

=
R

RN

£P
α

R
RN Dα( f ∨)(x − y) dρα(x)

§
ϕ(y) dy

=
R

RN hS, ( f ∨)−yiϕ(y) dy
= hTF , ϕi,

as asserted.
Next suppose instead that f has compact support. Then

hS ∗ Tf , ϕi = hS, (Tf )∨ ∗ ϕi = hS, Tf ∨ ∗ ϕi = hS, f ∨ ∗ ϕi. (∗)

We are to show that this expression is equal to

hTF , ϕi = hThS,( f ∨)−yi, ϕi =
R

RN hS, ( f ∨)−yiϕ(y) dy. (∗∗)



200 V. Distributions

We introduce a member η of C∞
com(RN ) that is identically 1 on the set of sums

support( f ∨) + support(ϕ). Since ηS is in E 0(RN ), Corollary 5.8 shows that

hηS, f ∨ ∗ ϕi =
R

RN hηS, ( f ∨)−yiϕ(y) dy =
R

RN hS, η( f ∨)−yiϕ(y) dy.

In view of (∗) and (∗∗), it is therefore enough to prove the two identities

hηS, f ∨ ∗ ϕi = hS, f ∨ ∗ ϕi (†)

and R
RN hS, η( f ∨)−yiϕ(y) dy =

R
RN hS, ( f ∨)−yiϕ(y) dy. (††)

Since support( f ∨ ∗ ϕ) ⊆ support( f ∨) + support(ϕ), we have η( f ∨ ∗ ϕ) =
f ∨ ∗ ϕ and therefore hηS, f ∨ ∗ ϕi = hS, η( f ∨ ∗ ϕ)i = hS, f ∨ ∗ ϕi. This proves
(†).
To prove (††), it is enough to show that η( f ∨)−y = ( f ∨)−y for every y in

support(ϕ). For a given y in support(ϕ), there is nothing to prove at points x
where ( f ∨)−y(x) = 0. If ( f ∨)−y(x) 6= 0, then f ∨(x − y) 6= 0 and x − y is
in support( f ∨). Hence x = y + (x − y) is in support(ϕ) + support( f ∨), and
η(x)( f ∨)−y(x) = ( f ∨)−y(x). This proves (††). §

Corollary 5.17. Convolution of two distributions, one of which has compact
support, is consistent with convolution of smooth functions, one of which has
compact support, in the sense that if f and g are smooth and one of them has
compact support, then Tg ∗ Tf is given by the C∞ function Tg ∗ f and by the C∞

function Tf ∗ g, and these functions equal g ∗ f .

PROOF. We apply Corollary 5.16 with S = Tg, and we find that Tg ∗ Tf
is given by the smooth function that carries y to hTg, ( f ∨)−yi. In turn, this
latter expression equals

R
RN g(x)( f ∨)−y(x) dx =

R
RN g(x) f ∨(x − y) dx =R

RN g(x) f (y − x) dx = (g ∗ f )(y). Hence Tg ∗ f = g ∗ f . Reversing the
roles of f and g, we obtain Tf ∗ g = f ∗ g = g ∗ f . §

Corollary 5.18. If R, S, and T are distributions and √ and ϕ are smooth
functions, then

(a) (T ∗ √) ∗ ϕ = T ∗ (√ ∗ ϕ) provided at least two of T , √ , and ϕ have
compact support,

(b) (S ∗ T ) ∗ ϕ = (S ∗ ϕ) ∗ T provided at least two of S, T , and ϕ have
compact support,

(c) R ∗ (S ∗ T ) = (R ∗ S) ∗ T provided at least two of R, S, and T have
compact support.
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PROOF. Let η be in C∞
com(RN ). We make repeated use of Corollaries 5.15

through 5.17 in each part. For (a), we use associativity of convolution of smooth
functions (Proposition 5.5b) to write

hT ∗ T√∗ϕ, ηi = hT, (√ ∗ ϕ)∨ ∗ ηi = hT, (√∨ ∗ ϕ∨) ∗ ηi

= hT, √∨ ∗ (ϕ∨ ∗ η)i = hT ∗ T√, ϕ∨ ∗ ηi

= h(T ∗ T√) ∗ Tϕ, ηi.

Thus T ∗ T√∗ϕ = (T ∗ T√) ∗ Tϕ . Since T ∗ T√∗ϕ = TT∗(√∗ϕ) and (T ∗ T√) ∗ Tϕ =
TT∗√ ∗ Tϕ = T(T∗√)∗ϕ , we obtain T ∗ (√ ∗ ϕ) = (T ∗ √) ∗ ϕ. This proves (a).
For (b), we use (a) to write

h(S ∗ T ) ∗ Tϕ, ηi = hS ∗ T, ϕ∨ ∗ ηi = hS, T∨ ∗ (ϕ∨ ∗ η)i

= hS, (T∨ ∗ ϕ∨) ∗ ηi = hS, (T ∗ ϕ)∨ ∗ ηi

= hS, (T ∗ Tϕ)∨ ∗ ηi = hS ∗ (T ∗ Tϕ), ηi.

Thus (S∗T )∗Tϕ = S∗(T ∗Tϕ). Since (S∗T )∗Tϕ = T(S∗T )∗ϕ and S∗(T ∗Tϕ) =
S ∗ TT∗ϕ = TS∗(T∗ϕ), we obtain (S ∗ T ) ∗ ϕ = S ∗ (T ∗ ϕ).
For (c), we use (b) to write

hR ∗ (S ∗ T ), ηi = hR, (S ∗ T )∨ ∗ ηi = hR, (S∨ ∗ T∨) ∗ ηi

= hR, S∨ ∗ (T∨ ∗ η)i = hR ∗ S, T∨ ∗ ηi

= h(R ∗ S) ∗ T, ηi.

Thus R ∗ (S ∗ T ) = (R ∗ S) ∗ T , and (c) is proved. §

We conclude with a special property of one particular distribution. The Dirac
distribution at the origin is the member of E 0(RN ) given by hδ, ϕi = ϕ(0). It
has support {0}. The proposition below shows that the differentiation operation
Dα on distributions equals convolution with the distribution Dαδ.

Proposition 5.19. If T is in D 0(RN ) and if δ denotes the Dirac distribution at
the origin, then δ ∗ T = T . Consequently Dαδ ∗ T = DαT for every multi-index
α.

PROOF. For ϕ in C∞
com(RN ), Corollary 5.14 gives hδ ∗ T, ϕi = hδ, hT, ϕxii =

hT, ϕi, and therefore δ ∗ T = T . Applying Dα and using the second conclusion
of Corollary 5.14, we obtain Dα(δ ∗ T ) = δ ∗ (DαT ) = DαT . §
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4. Role of Fourier Transform

The final tool we need in order to make the theory of distributions useful for
linear partial differential equations is the Fourier transform. Let us write F for
the Fourier transform on the various places it acts, its initial definition being
F( f )(ξ) =

R
RN f (x)e−2π i x ·ξ dx on L1(RN ). Since the Schwartz space S(RN )

is contained in L1(RN ), this definition of F is applicable on S(RN ), and it was
shown in Basic that F is one-one from S(RN ) onto itself. We continue to use the
same angular-brackets notation forS 0(RN ) as forD 0(RN ) andE 0(RN ). Then, as a
consequence of Corollary 3.3b, the Fourier transform is well defined on elements
T of S 0(RN ) under the definition hF(T ), ϕi = hT,F(ϕ)i for ϕ ∈ S(RN ), and
Proposition 3.4 shows that F is one-one from S 0(RN ) onto itself. On tempered
distributions that are L1 or L2 functions, F agrees with the usual definitions on
functions. For f in L1, the verification comes down to themultiplication formula:

hF Tf , ϕi = hTf ,Fϕi =
R
f (x)(Fϕ)(x) dx =

R
(F f )(x)ϕ(x) dx = hTF f , ϕi.

For f in L2, we choose a sequence { fn} in L1 ∩ L2 tending to f in L2, obtain
hF Tfn , ϕi = hTF fn , ϕi for each n, and then check by continuity that we can pass
to the limit.
The formulas that are used to establish the effect of F on S(RN ) come from

the behavior of differentiation and multiplication by polynomials on Fourier
transforms and are

Dα(F f )(x) = F((−2π i)|α|xα f )(x)

xβ(F f )(x) = F((2π i)−|β|Dβ f )(x).and

Let us define the effect of Dα and multiplication by xβ on tempered distributions
and then see how the Fourier transform interacts with these operations. If ϕ is
in S(RN ), then Dαϕ is in S(RN ), and hence it makes sense to define DαT for
T ∈ S 0(RN ) by hDαT, ϕi = (−1)αhT, Dαϕi. The product of an arbitrary smooth
function onRN by a Schwartz function need not be a Schwartz function, and thus
the product of an arbitrary smooth function and a tempered distribution need not
make sense as a tempered distribution. However, the product of a polynomial
and a Schwartz function is a Schwartz function, and thus we can define xβT for
T ∈ S 0(RN ) by hxβT, ϕi = hT, xβϕi. The formulas for the Fourier transform
are then

F(DαT ) = (2π i)|α|xαF(T )

F(xβT ) = (−2π i)−|β|DβF(T ).and
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In fact, we compute that hF(DαT ), ϕi = hDαT,Fϕi = (−1)|α|hT, DαFϕi =
(−1)|α|hT,F((−2π i)|α|xαϕ)i = (2π i)|α|hF(T ), xαϕi = (2π i)|α|hxαF(T ), ϕi
and that hF(xβT ), ϕi = hxβT,Fϕi = hT, xβFϕi = hT,F((2π i)−|β|Dβϕ)i =
(2π i)−|β|hF(T ), Dβϕi = (−2π i)−|β|hDβF(T ), ϕi.
We have seen that the restriction map carries E 0(RN ) in one-one fashion into

S 0(RN ). Therefore we can identify members of E 0(RN ) with certain members
of S 0(RN ) when it is convenient to do so, and in particular the Fourier transform
becomes a well-defined one-one map of E 0(RN ) into S 0(RN ). (The Fourier
transform is not usable, however, withD 0(RN ).) The somewhat surprising fact is
that the Fourier transform of a member of E 0(RN ) is actually a smooth function,
not just a distribution. We shall prove this fact as a consequence of Theorem
5.1, which has expressed distributions of compact support in terms of complex
measures of compact support.

Theorem 5.20. If T is a member of E 0(RN ) with support in a compact subset
K of RN , then the tempered distribution F(T ) equals a smooth function that
extends to an entire holomorphic function on CN . The value of this function at
z ∈ CN is given by

F(T )(z) = hT, e−2π i z·( · )i,

and there is a positive integer m such that this function satisfies

|Dβ(F T )(ξ)| ≤ Cβ(1+ |ξ |)m

for ξ ∈ RN and for every multi-index β.
REMARK. The estimate shows that the product of hT, e−2π i z·( · )i by a Schwartz

function is again a Schwartz function, hence that the tempered distribution F(T )
is indeed given by a certain smooth function.
PROOF. Fix a compact set K 0 whose interior contains K . Theorem 5.1 allows

us to write
hT, ϕ0i =

P
|α|≤m

R
K 0 Dαϕ0 dρα

for all ϕ0 ∈ C∞(RN ). Replacing ϕ0 by e−2π i z·( · ) gives

hT, e−2π i z·( · )i =
P

|α|≤m
R
K 0 Dα

ξ e−2π i z·ξ dρα(ξ),

which shows that z 7→ hT, e−2π i z·( · )i is holomorphic inCN and gives the estimate

|Dβ
x hT, e−2π i x ·( · )i| ≤

P
|α|≤m

R
ξ∈K 0 |Dβ

x Dα
ξ e−2π i x ·ξ | d|ρα|(ξ) ≤ Cβ(1+ |x |)m .

Replacing ϕ0 by Fϕ with ϕ in C∞
com(RN ) gives

hF(T ), ϕi = hT,Fϕi =
P

|α|≤m
R
ξ∈K 0 Dα

ξ Fϕ(ξ) dρα(ξ)

=
P

|α|≤m
R
ξ∈K 0 Dα

ξ

R
x∈RN e−2π i x ·ξϕ(x) dx dρα(ξ)
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=
P

|α|≤m
R
ξ∈K 0

R
x∈RN Dα

ξ e−2π i x ·ξϕ(x) dx dρα(ξ)

=
R
x∈RN

°P
|α|≤m

R
ξ∈K 0 Dα

ξ e−2π i x ·ξ dρα(ξ)
¢
ϕ(x) dx

=
R
x∈RN hT, e−2π i x ·( · )iϕ(x) dx .

Both sides are continuous functions of the Schwartz-space variableϕ on the dense
subsetC∞

com(RN ), and hence the formula extends to be valid for ϕ in S(RN ). This
proves that F(T ) is given on S(RN ) by the function x 7→ hT, e−2π i x ·( · )i. The
estimate on Dβ

x of this function has been obtained above, and the theorem follows.
§

EXAMPLE. There is an important instance of the formula of the proposition
that can be established directly without appealing to the proposition. The Dirac
distribution δ at the origin, defined by hδ, ϕi = ϕ(0), has Fourier transform F(δ)
equal to the constant function 1 because hF(δ), ϕi = hδ,F(ϕ)i = F(ϕ)(0) =R

RN ϕ dx = hT1, ϕi, where T1 denotes the distribution equal to the smooth func-
tion 1. Therefore F(Dαδ) = (2π i)|α|xαT1, i.e., F(Dαδ) equals the function
x 7→ (2π i)|α|xα. The formula of the proposition when T = Dαδ says that this
function equals (Dαδ)(e−2π i x ·( · )), and we can see this equality directly because
hDαδ, e−2π i x ·( · )i= (−1)|α|hδ, Dαe−2π i x ·( · )i= (−1)|α|(−2π i)|α|xαhδ, e−2π i x ·( · )i
= (2π i)|α|xα.

We know that the convolution of two distributions is meaningful if one of them
has compact support. Since the (pointwise) product of two general tempered
distributions is undefined, we might not at first expect that the Fourier transform
could be helpful with understanding this kind of convolution. However, Theorem
5.20 says that there is reason for optimism: the product of the Fourier transform
of a distribution of compact support by a tempered distribution is indeed defined.
This is the clue that suggests the second theorem of this section.

Theorem 5.21. If S is in E 0(RN ) and T is in S 0(RN ), then S ∗T is in S 0(RN ),
and F(S ∗ T ) = F(S)F(T ).

PROOF. We know that S ∗ T is in D 0(RN ), and we shall check that S ∗ T is
actually in S 0(RN ), so that F(S ∗ T ) is defined: We start with ϕ in C∞

com(RN )
and the identity hS ∗ T, ϕi = hS, T∨ ∗ ϕi = hS∨, T ∗ ϕ∨i. Since S has compact
support, there is a compact set K and there are constants C and m such that

|hS ∗ T, ϕi ≤ C
P

|α|≤m
sup
x∈K

|Dα(T ∗ ϕ∨)(x)| = C
P

|α|≤m
sup
x∈K

|T ∗ Dα(ϕ∨)(x)|

= C
P

|α|≤m
sup
x∈K

|hT, ((Dα(ϕ∨))∨)xi| = C
P

|α|≤m
sup
x∈K

|hT, (Dαϕ)xi|.
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Since T is tempered, there exist constants C 0, m0, and k such that the right side is

≤ CC 0 P

|α|≤m,

|β|≤m0

sup
x∈K ,

y∈RN

Ø
Ø(1+ |y|2)k Dβ(Dαϕ)x(y)

Ø
Ø;

in turn, this expression is estimated by Schwartz-space norms for ϕ, and thus
S ∗ T is in S 0(RN ).
Now let ϕ and √ be Schwartz functions with ϕ and F(√) in C∞

com(RN ). Then

hF(Tϕ ∗ T ), √i = hTϕ ∗ T,F(√)i = hT, ϕ∨∗ F(√)i

= hF(T ),F−1(ϕ∨∗ F(√))i = hF(T ), (F−1(ϕ∨))F−1(F(√))i

= hF(T ),F−1(ϕ∨)√i = hF(T ), (F(ϕ))√i = hF(ϕ)F(T ), √i,

the next-to-last equality following since F−1(ϕ∨) = F(ϕ) by the Fourier inver-
sion formula. Since the √’s with F(√) in C∞

com(RN ) are dense in S(RN ),

F(Tϕ ∗ T ) = F(ϕ)F(T ). (∗)

Finally let ϕ and √ be in C∞
com(RN ). Corollary 5.18 gives Tϕ ∗ (S ∗ T ) =

(Tϕ ∗ S) ∗ T . Taking the Fourier transform of both sides and applying (∗) three
times, we obtain

F(ϕ)F(S ∗ T ) = F(Tϕ ∗ (S ∗ T )) = F((Tϕ ∗ S) ∗ T )

= F(Tϕ ∗ S)F(T ) = F(ϕ)F(S)F(T ).

Hence we have hF(ϕ)F(S ∗ T ), √i = hF(ϕ)F(S)F(T ), √i and therefore

hF(S ∗ T ),F(ϕ)√i = hF(S)F(T ),F(ϕ)√i for all ϕ ∈ C∞
com(RN ).

The set of functions F(ϕ) is dense in S(RN ). Moreover, if ηk → η in S(RN ),
then ηk√ → η√ in S(RN ). Choosing a sequence of ϕ’s for which F(ϕ) tends in
S(RN ) to a function in C∞

com(RN ) that is 1 on the support of √ , we obtain

hF(S ∗ T ), √i = hF(S)F(T ), √i.

Since the set of √’s is dense in S(RN ), we conclude that F(S ∗ T ) = F(S)F(T ).
§
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5. Fundamental Solution of Laplacian

The availability of distributions makes it possible to write familiar partial differ-
ential equations in a general but convenient notation. For example consider the
equation1u = f inRN , where1 is the Laplacian. We regard f as known and u
as unknown. Ordinarilywemight think of f as some function, possiblywith some
smoothness properties, and we are seeking a solution u that is another function.
However, we can regard any locally integrable function f as a distribution Tf and
seek a distribution T with 1T = Tf . In this sense the equation 1u = f in the
sense of distributions includes the equation in the ordinary sense of functions.
In this section we shall solve this equation when the distribution on the right

side has compact support. To handle existence, the technique is to exhibit a
fundamental solution for the Laplacian, i.e., a solution of the equation1T = δ,
where δ is the Dirac distribution at 0, and then to use the rules of Sections 2–3 for
manipulating distributions.7 The argument for this special case will avoid using
the full power of Theorem 5.21, but a generalization to other “elliptic” operators
with constant coefficients that we consider in Chapter VII will call upon the full
theorem.
In this sectionwe shallmake use ofGreen’s formula for a ball, as in Proposition

3.14. As we observed in a footnote when applying the proposition in the proof of
Theorem 3.16, the result as given in that proposition directly extends from balls
to the difference of two balls. The extended result is as follows: If BR and B≤

are closed concentric balls of radii ≤ < R and if u and v are C2 functions on a
neighborhood of E = BR ∩ (Bo≤ )c, then

Z

E
(u1v − v1u) dx =

Z

@E

≥
u

@v

@n
− v

@u
@n

¥
dσ,

where dσ is “surface-area” measure on @E and the indicated derivatives are
directional derivatives pointing outward from E in the direction of a unit normal
vector.

Theorem 5.22. In RN with N > 2, let T be the tempered distribution
−ƒ−1

N−1(N − 2)−1|x |−(N−2) dx , whereƒN−1 is the area of the unit sphere SN−1.
Then 1T = δ, where δ is the Dirac distribution at 0.

REMARK. The statement uses the name f (x) dx for a certain distribution,
rather than Tf , for the sake of readability.

7Although a fundamental solution for the Laplacian is being shown to exist, it is not unique. One
can add to it the distribution Tf for any smooth function f that is harmonic in all of RN .
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PROOF. We are to prove that each ϕ in C∞
com(RN ) satisfies h1T, ϕi = hδ, ϕi,

i.e., that the second equality holds in the chain of equalities

ϕ(0) = hδ, ϕi = h1T, ϕi = hT,1ϕi = − 1
ƒN−1(N−2)

R
RN

1ϕ(x) dx
|x |N−2 .

WeapplyGreen’s formula as abovewith the closed balls BR and B≤ centered at the
origin, with R chosen large enough so that support(ϕ) ⊆ BoR , with u = |x |−(N−2),
and with v = ϕ. Writing r for |x | and observing that 1u = 0 on BR − B≤ and
that @ϕ

@n = −∇ϕ · x
r on the boundary of B≤ , we obtain

R
@B≤

°
−r−(N−2) x ·∇ϕ

r −
°
(ϕ)

°
− d

dr (r−(N−2))
¢¢

≤N−1 dω =
R
BR−B≤

r−(N−2)1ϕ dx .

On the left side the first term has |x · ∇ϕ|
±
r bounded; hence its absolute value

is at most a constant times
R
@B≤

≤ dω, which tends to 0 as ≤ decreases to 0. The
second term on the left side is −(N − 2)≤−(N−1) R

@B≤
ϕ≤N−1 dω, and it tends, as

≤ decreases to 0, to −(N − 2)ƒN−1ϕ(0). The result in the limit as ≤ decreases
to 0 is that

−(N − 2)ƒN−1ϕ(0) =
R

RN r−(N−2)1ϕ dx,

and the theorem follows. §

Corollary 5.23. In RN with N > 2, let T be the tempered distribution
−ƒ−1

N−1(N − 2)−1|x |−(N−2) dx , whereƒN−1 is the area of the unit sphere SN−1.
If f is in E 0(RN ), then u = T ∗ f is a tempered distribution and is a solution of
1u = f .

PROOF. Let δ be the Dirac distribution at 0, so that1T = δ by Theorem 5.22.
Theorem 5.21 shows that T ∗ f is a tempered distribution, and Corollaries 5.14
and 5.19 give 1(T ∗ f ) = (1T ) ∗ f = δ ∗ f = f , as required. §

BIBLIOGRAPHICAL REMARKS. The development in Sections 2–4 is adapted
from Hörmander’s Volume I of The Analysis of Linear Partial Differential
Equations.

6. Problems

1. Prove that if U and V are open subsets of RN with U ⊆ V , then the inclusion
C∞
com(U) → C∞

com(V ) is continuous.
2. Prove that if ϕ is in C∞

com(U), then the map √ 7→ √ϕ of C∞(U) into C∞
com(U)

is continuous.
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3. Let U be a nonempty open set in RN . Any member TU of E 0(U) extends to a
member T of E 0(RN ) under the definition hT, ϕi = hTU , ϕ

Ø
Ø
U i for ϕ ∈ C∞(RN ).

Prove that this is truly an extension in the sense that if ϕ1 is in C∞(U) and if ϕ
is in C∞(RN ) and agrees with ϕ1 in a neighborhood of the support of TU , then
hT, ϕi = hTU , ϕ

Ø
Ø
U i = hTU , ϕ1i.

4. Prove the following variant of Theorem 5.1: Let K and K 0 be closed balls ofRN

with K contained in the interior of K 0. If T is a member of E 0(RN )with support
in K , then there exist a positive integer m and members gα of L2(K 0, dx) for
each multi-index α with |α| ≤ m such that

hT, ϕi =
P

|α|≤m
R
K 0 (Dαϕ)gα dx for all ϕ ∈ C∞(RN ).

5. Let K be a compact metric space, and let µ be a Borel measure on K . Suppose
that 8 = 8(x, y) is a scalar-valued function on RN × K such that 8( · , y) is
smooth for each y in K , and suppose further that every iterated partial derivative
Dα
18 in the first variable is continuous on RN × K . Define

F(x) =
R
K 8(x, y) dµ(y).

(a) Prove that any T in E 0(RN ) satisfies hT, Fi =
R
K hT,8( · , y)i dµ(y).

(b) Suppose that8 has compact support inRN ×K . Prove that any S inD 0(RN )

satisfies hS, Fi =
R
K hS,8( · , y)i dµ(y).

6. Suppose that T is a distribution on an open set U in RN such that hT, ϕi ∏ 0
whenever ϕ is a member of C∞

com(U) that is ∏ 0. Prove that there is a Borel
measure µ ∏ 0 on U such that hT, ϕi =

R
U ϕ dµ for all ϕ in C∞

com(U).

7. Verify the formula of Theorem 5.22 for ϕ(x) = e−π |x |2 , namely that
R

RN |x |−(N−2)(1ϕ)(x) dx = −ƒN−1(N − 2)ϕ(0)

for this ϕ, by evaluating the integral in spherical coordinates.

Problems 8–11 deal with special situations in which the conclusion of Theorem 5.1
can be improved to say that a distribution with support in a set K is expressible as the
sum of iterated partial derivatives of finite complex Borel measures supported in K .

8. This problem classifies distributions on R1 supported at {0}. By Proposition
3.5f let η be a member of C∞

com(R1) with values in [0, 1] that is identically 1 for
|x | ≤ 1

2 and is 0 for |x | ∏ 1. Suppose that T is a distribution with support at {0}.
Choose constants C , M , and n such that |hT, ϕi| ≤ C

Pn
k=0 sup|x |≤M |Dkϕ(x)|

for all ϕ in C∞(R1).
(a) For ε > 0, define ηε(x) = η(ε−1x). Prove for each k ∏ 0 that there is a

constant Ck independent of ε such that supx |( d
dx )

k ηε(x)| ≤ Ckε−k .
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(b) Using the assumption that T has support at {0}, prove that hT, ϕi = hT, ηεϕi
for every ϕ in C∞(R1).

(c) Suppose that ϕ is of the form ϕ(x) = √(x)xn+1 with √ in C∞(R1). By
applying (b) and estimating |hT, ηεϕi| by means of the Leibniz rule and (a),
prove that this special kind of ϕ has T (ϕ) = 0.

(d) Using a Taylor expansion involving derivatives through order n and a re-
mainder term, prove for general ϕ in C∞(R1) that hT, ϕi is a linear combi-
nation of ϕ(0), D1ϕ(0), . . . , Dnϕ(0), hence that T is a linear combination
of δ, D1δ, . . . , Dnδ.

9. By suitably adapting the argument in the previous problem, show that every
distribution on RN that is supported at {0} is a finite linear combination of the
distributions Dαδ, where δ is the Dirac distribution at 0.

10. Let the members x of RN be written as pairs (x 0, x 00) with x 0 in RL and x 00

in RN−L . Suppose that T is a compactly supported distribution on RN that is
supported inRL . By using aTaylor expansion in the variables x 00with coefficients
involving x 0 and by adapting the argument for the previous two problems, prove
that T is a finite sum of the form hT, ϕi =

P
|α|≤nhTα, (Dαϕ)

Ø
Ø
RL i, the sum

being over multi-indices α involving only x 00 variables and each Tα being in
E 0(RL). (Educational note: The operators Dα of this kind are called transverse
derivatives to RL . The result is that T is a finite sum of transverse derivatives
of compactly supported distributions on RL .)

11. Using the result of Problem 9, prove the following uniqueness result to accom-
pany Corollary 5.23: if f is a distribution of compact support inRN with N > 2,
then any two tempered distributions u on RN that solve 1u = f differ by
a polynomial function annihilated by 1. Is this uniqueness still valid if u is
allowed to be any distribution that solves 1u = f ?

Problems 12–13 introduce a notion of periodic distribution as any continuous linear
functional on the space of periodic smooth functions on RN . Write T for the circle
R/2πZ, and letC∞(T N ) be the complex vector space of all smooth functions onRN

that are periodic of period 2π in each variable. RegardC∞(T N ) as a vector subspace
ofC∞((−2π, 2π)N ), and give it the relative topology. Then defineP 0(T N ) to be the
space of restrictions to C∞(T N ) of members of E 0((−2π, 2π)N ). For S in P 0(T N ),
define the Fourier series of S to be the trigonometric series

P
k∈ZN ckeik·x with

ck = hS, e−ik·x i.
12. Prove that the Fourier coefficients ck for such an S satisfy |ck | ≤ C(1+ |k|2)m/2

for some constant C and positive integer m.
13. Prove that any trigonometric series

P
k∈ZN ckeik·x in which the ck’s satisfy |ck | ≤

C(1+ |k|2)m/2 for some constant C and positive integer m is the Fourier series
of some member S of P 0(T N ).

Problems 14–19 establish the Schwartz Kernel Theorem in the setting of periodic
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functions. Wemake use of Problems 25–34 in Chapter III concerning Sobolev spaces
L2k(T

N ) of periodic functions. As a result of those problems, the metric on C∞(T N )

may be viewed as given by the separating family of seminorms k · kL2K (T N )
, k ∏ 0,

and C∞(T N ) is a complete metric space. The Schwartz Kernel Theorem says that
any bilinear function B : C∞(T N ) ×C∞(T N ) → C that is separately continuous in
the two variables is given by “integration with” a distribution on T N × T N ∼= T 2N .
The analogous assertion about signed measures is false.
14. Let B : C∞(T N ) × C∞(T N ) → C be a function that is bilinear in the sense

of being linear in each argument when the other argument is fixed, and suppose
that B is continuous in each variable. The continuity in the first variable means
that for each √ ∈ C∞(T N ), there is an integer k and there is some constant
C√,k such that |B(ϕ,√)| ≤ C√,kkϕkL2k(T N )

for all ϕ in C∞(T N ), and a similar
inequality governs the behavior in the √ variable for each ϕ. For integers k ∏ 0
and M ∏ 0, define

Ek,M =
©
√ ∈ C∞(T N )

Ø
Ø |B(ϕ,√)| ≤ MkϕkL2k(T N )

for all ϕ ∈ C∞(T N )
™
.

(a) Prove that each Ek,M is closed and that the union of these sets on k and M
is C∞(T N ).

(b) Apply the Baire Category Theorem, and prove as a consequence that there
exist an integer k ∏ 0 and a constant C such that

|B(ϕ,√)| ≤ CkϕkL2k(T N )
k√kL2k(T N )

for all ϕ and √ in C∞(T N ).

15. Let B be as in Problem14, and suppose that k andC are chosen as in Problem14b.
Fix an integer K > N/2, and define k0 = k + K . Prove that

|B(Dαϕ, Dβ√)| ≤ CkϕkL2k0 (T
N )

k√kL2k0 (T
N )

for all ϕ and √ in C∞(T N ) and all multi-indices α and β with |α| ≤ K and
|β| ≤ K .

16. Let B, C , K , and k0 be as in Problem 15. Put blm = B(eil·( · ), eim·( · )) for l and
m in ZN , and for each pair of multi-indices (α, β) with |α| ≤ k0 and |β| ≤ k0,
define

Fα,β(x, y) =
X

l,m∈ZN

blm(−i)|α|+|β|lαmβe−il·xe−im·y
° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢

for (x, y) ∈ T N × T N . Prove that this series is convergent in L2(T N × T N ).
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17. With B, C , K , and k0 be as in Problem 15 and with Fα,β as in Problem 16 for
|α| ≤ k0 and |β| ≤ k0, define

B0(ϕ,√) =
X

|α|≤k0,
|β|≤k0

(2π)−2N
Z

[−π,π]N×[−π,π]N

Fα,β(x, y)(Dαϕ)(x)(Dβ√)(y) dx dy

for ϕ and√ inC∞(T N ). Prove that B0 is well defined for all ϕ and√ inC∞(T N )

and that B0(eil·( · ), eim·( · )) = B(eil·( · ), eim·( · )) for all l and m in ZN .
18. With B0 as in the previous problem, prove that B0(ϕ,√) = B(ϕ,√) for all ϕ and

√ in C∞(T N ), and conclude that there exists a distribution S in P 0(T 2N ) such
that

B(ϕ,√) = hS, ϕ ⊗ √i

for all ϕ and √ in C∞(T N ) if ϕ ⊗ √ is defined by (ϕ ⊗ √)(x, y) = ϕ(x)√(y).
19. Let η be a function in C∞

com(R1) with values in [0, 1] that is 1 for |x | ≤ 1
2 and

is 0 for |x | ∏ 1. For f continuous on T 1, the Hilbert transform

(H(η f ))(x) = lim
ε↓0

1
π

Z

|y|∏ε

η(x − y) f (x − y) dy
y

exists as an L2(R1) limit.
(a) Let C(T 1) be the space of continuous periodic functions onR of period 2π ,

and give it the supremum norm. Taking into account that H , as an operator
from L2(R1) to itself, has norm 1, prove that

B( f, g) =
R π
−π(H(η f ))(x)(ηg)(x) dx

is bilinear on C(T 1) × C(T 1) and is continuous in each variable.
(b) Prove that there is no complex Borel measure ρ(x, y) on [−π, π]2 such that

B( f, g) =
R
[−π,π]2 f (x)g(y) dρ(x, y) for all f and g in C(T 1).



CHAPTER VI

Compact and Locally Compact Groups

Abstract. This chapter investigates several ways that groups play a role in real analysis. For the
most part the groups in question have a locally compact Hausdorff topology.
Section 1 introduces topological groups, their quotient spaces, and continuous group actions.

Topological groups are groups that are topological spaces in such a way that multiplication and
inversion are continuous. Their quotient spaces by subgroups are of interestwhen they areHausdorff,
and this is the case when the subgroups are closed. Many examples are given, and elementary
properties are established for topological groups and their quotients by closed subgroups.
Sections 2–4 investigate translation-invariant regular Borel measures on locally compact groups

and invariant measures on their quotient spaces. Section 2 deals with existence and uniqueness in the
group case. A left Haar measure on a locally compact group G is a nonzero regular Borel measure
invariant under left translations, and right Haar measures are defined similarly. The theorem is that
left and right Haar measures exist on G, and each kind is unique up to a scalar factor. Section
3 addresses the relationship between left Haar measures and right Haar measures, which do not
necessarily coincide. The relationship is captured by the modular function, which is a certain
continuous homomorphism of the group into the multiplicative group of positive reals. The modular
function plays a role in constructing Haar measures for complicated groups out of Haar measures for
subgroups. Of special interest are “unimodular” locally compact groups G, i.e., those for which the
left Haarmeasures coincidewith the right Haarmeasures. Every compact group, and of course every
locally compact abelian group, is unimodular. Section 4 concerns translation-invariant measures on
quotient spaces G/H . For the setting in which G is a locally compact group and H is a closed
subgroup, the theorem is that G/H has a nonzero regular Borel measure invariant under the action
of G if and only if the restriction to H of the modular function of G coincides with the modular
function of H . In this case the G invariant measure is unique up to a scalar factor. Section 5
introduces convolution on unimodular locally compact groups G. Familiar results valid for the
additive group of Euclidean space, such as those concerning convolution of functions in various L p
classes, extend to be valid for such groups G.
Sections 6–8 concern the representation theory of compact groups. Section 6 develops the

elementary theory of finite-dimensional representations and includes some examples, Schur or-
thogonality, and properties of characters. Section 7 contains the Peter–Weyl Theorem, giving an or-
thonormal basis of L2 in terms of irreducible representations and concludingwith an Approximation
Theorem showing how to approximate continuous functions on a compact group by trigonometric
polynomials. Section 8 shows that infinite-dimensional unitary representations of compact groups
decompose canonically according to the irreducible finite-dimensional representations of the group.
An example is given to show how this theorem may be used to take advantage of the symmetry in
analyzing a bounded operator that commutes with a compact group of unitary operators. The same
principle applies in analyzing partial differential operators.

212
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1. Topological Groups

The theme of this chapter is the interaction of real analysis with groups. We shall
work with topological groups, their quotients, and continuous group actions, all
of which are introduced in this section. A topological group is a group G with a
Hausdorff topology such that multiplication, as a mapping G ×G → G, and in-
version, as amappingG → G, are continuous. Ahomomorphism of topological
groups is a continuous group homomorphism. An isomorphism of topological
groups is a group isomorphism that is a homeomorphism of topological spaces.

EXAMPLES.
(1) Any discrete group, i.e., any group with the discrete topology.
(2) The additive group R or C with the usual metric topology. The group

operation is addition, and the inversion operation is negation.
(3) The multiplicative groups R× = R − {0} and C× = C − {0}, with the

relative topology from R or C.
(4) Any subgroup of a topological group, with the relative topology. Thus, for

example, the circle
©
z ∈ C

Ø
Ø |z| = 1

™
is a subgroup of C×.

(5) Any product of topological groups, with the product topology. Thus,
for example, the additive groups RN and CN are topological groups. So is the
countable product of two-element groups, each with the discrete topology; in this
case the topological space in question is homeomorphic to the standard Cantor
set in [0, 1].
(6) The general linear group GL(N , C) of all nonsingular N -by-N complex

matrices, with matrix multiplication as group operation. The topology is the
relative topology from CN 2 . Each entry in a matrix product is a polynomial in
the 2N 2 entries of the two matrices being multiplied and is therefore continuous;
thus matrix multiplication is continuous. Inversion is defined on the set where
the determinant polynomial is not 0 and is given, according to Cramer’s rule, in
each entry by the quotient of a polynomial function and the determinant function;
thus inversion is continuous. By (4), the general linear group GL(N , R) is a
topological group.
(7) The additive group of any topological vector space in the sense of Section

IV.1. The additive groups of normed linear spaces are special cases.

In working with topological groups, we shall use expressions like

aU = {au | u ∈ U} and Ub = {ub | u ∈ U},

U−1 = {u−1 | u ∈ U} and UV = {uv | u ∈ U, v ∈ V }.
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In any topological group every left translation y 7→ xy and every right translation
y 7→ yx is a homeomorphism. The continuity of each translation follows by
restriction from the continuity of multiplication, and the continuity of the inverse
of a translation follows because the inverse of a translation is translation by the
inverse element. For an abstract topological group, we write 1 for the identity
element.
Continuity of the multiplication mapping G × G → G at (1, 1) implies, for

any open neighborhood V of the identity inG, that there is an open neighborhood
U of the identity for whichUU ⊆ V . Inversion, being a continuous operation of
order two, carries open sets to open sets; therefore if U is an open neighborhood
of the identity, so is U ∩ U−1. Combining these facts, we see that if V is an
open neighborhood of the identity, then there is an open neighborhood U of the
identity such that UU−1 ⊆ V .
Conversely if whenever V is an open neighborhood of the identity, there is an

open neighborhoodU of the identity such thatUU−1 ⊆ V , then it follows that the
mapping (x, y) 7→ xy−1 is continuous at (x, y) = (1, 1). If also all translations
are homeomorphisms, then (x, y) 7→ xy−1 is continuous, and it follows easily
that x 7→ x−1 and (x, y) 7→ xy are continuous.

Proposition 6.1. If G is a topological group, thenG is regular as a topological
space.

PROOF. We are to separate by disjoint open sets a point x and a closed set
F with x /∈ F . Since translations are homeomorphisms, we may assume x to
be 1. Then V = Fc is an open neighborhood of 1, and we can choose an open
neighborhood U of 1 such that UU ⊆ V . Let us see that U cl ⊆ V . From
UU ⊆ V and 1 ∈ U , we haveU ⊆ V . Thus let y be inU cl −U . Since y is then
a limit point of U and since U−1y is an open neighborhood of y, U−1y meets
U . If z is in U−1y ∩ U , then z = u−1y for some u in U , and so y = uz is in
UU ⊆ V . Thus U cl ⊆ V and U cl ∩ F = ∅. Consequently G is regular. §

If H is a subgroup of G, then the quotient space G/H of left cosets aH
results from the equivalence relation that a ∼ b if there is some h in H with
a = bh. The quotient space is given the quotient topology. Quotient spaces of
topological groups are sometimes called homogeneous spaces.

Proposition 6.2. Let G be a topological group, let H be a closed subgroup,
and let q : G → G/H be the quotient map. Then q is an open map, and
G/H is a Hausdorff regular space such that the action of G on G/H given by
(g, aH) 7→ (ga)H is continuous. Moreover,

(a) G separable implies G/H separable,
(b) G locally compact implies G/H locally compact,
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(c) G is compact if and only if H and G/H are compact,
(d) H normal in the group-theoretic sense implies that G/H is a topological

group.

PROOF. Let U be open. To show that q(U) is open, we are to show that
q−1(q(U)) is open. But q−1(q(U)) =

S
h∈H Uh, which is open, being the union

of open sets. Hence q is open.
To consider the action of G on H , we start from the continuous open mapping

1 × q : G × G → G × (G/H) given by (g, a) 7→ (g, aH). This descends to
a well-defined one-one mapping eq : (G × G)/(1 × H) → G × (G/H) given
by (g, a)(1 × H) 7→ (g, aH), and the quotient topology is defined in such a
way that this is continuous. The image under eq of an open set is the same as
the image under 1 × q of the same open set, and this is open. Thereforeeq is a
homeomorphism.
The mapping (g, a) 7→ (ga)H is the composition of multiplication (g, a) 7→

ga followed by q and is therefore continuous. Hence it descends to a continuous
map (g, a)(1 × H) 7→ (ga)H . If eq−1 is followed by this continuous map, the
resulting map is (g, aH) 7→ (ga)H , which is the action of G on G/H . Hence
the action is continuous.
To see that G/H is regular, we are to separate by disjoint open sets a point x

in G/H and a closed set F with x /∈ F . The continuity of the action shows that
we may assume x to be 1H . Then M = Fc is an open neighborhood of 1H in
G/H , and the continuity of the action at (1, 1H) shows that we can choose an
open neighborhood U of 1 in G and an open neighborhood N of 1H in G/H
such that UN ⊆ M . Let us see that N cl ⊆ M . Using the identity element of U ,
we see that N ⊆ M . Thus let y be in N cl − N . Since y is then a limit point of N
and sinceU−1y is an open neighborhood of y (q being open),U−1y meets N . If
z is inU−1y ∩ N , then z = u−1y for some u inU , and so y = uz is inUN ⊆ M .
Thus N cl ⊆ M and N cl ∩ F = ∅. Consequently G/H is regular.
To see that G/H is Hausdorff, consider the inverse image under q of a coset

xH . This inverse image is xH as a subset of G, and this subset is closed in G
since H is closed and translations are homeomorphisms. Thus G/H is T1, as
well as regular, and consequently it is Hausdorff.
Conclusion (a) follows from the fact that q is open, since the image under q of

a countable base of open sets is therefore a countable base for G/H . Conclusion
(b) is similarly immediate; the image of a compact neighborhood of a point is a
compact neighborhood of the image point.
In (c), letG be compact. Then H is compact as a closed subset of a compact set,

and G/H is compact as the continuous image of a compact set. In the converse
direction let U be an open cover of G. For each x in G, U is an open cover of the
subset xH of G, which is compact since it is homeomorphic to H . Let Vx be a
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finite subcover of xH , and let

Vx = {y ∈ G | yH is covered by Vx}.

We show that Vx is open in G. Let Wx be the open union of the members of
Vx . If y is in Vx , then yh is in Wx for all h in H . For each such h, we use the
continuity of multiplication to find open neighborhoods Uh of 1 and Nh of h in
G such that UhyNh ⊆ Wx . As h varies, the sets Nh cover H . If {Nh1, . . . , Nhm }
is a finite subcover, then each set (Uh1 ∩ · · · ∩Uhm )yNhj lies in Wx and hence so
does (Uh1 ∩ · · · ∩Uhm )yH . Thus (Uh1 ∩ · · · ∩Uhm )y lies in Vx , and Vx is open.
The definition of Vx makes Vx H = Vx , and thus q−1qVx = Xx . The open

sets Vx together cover G, and hence the open sets qVx cover G/H . SinceG/H is
compact, some finite subcollection {qVx1, . . . , qVxn } covers G/H . The equality
q−1qVxj = Vxj for all j implies that {Vx1, . . . , Vxn } is an open cover of G. ThenSn

j=1 Vxj is a finite subcollection of U that covers G. This proves (c).
In (d), suppose that H is group-theoretically normal, and let V be an open

neighborhood of 1 in G/H . Choose, by the continuity of the action on G/H , an
open neighborhoodU of 1 inG and an open neighborhood N of 1H inG/H such
that UN ⊆ V . Then qU and N are open neighborhoods of the identity in G/H
such that (qU)N ⊆ V . Hence multiplication in G/H is continuous at (1, 1).
Since the map G → G/H given for fixed aH by g 7→ (ga)H is continuous,
the descended map gH 7→ (gH)(aH) is continuous. Thus left translations are
continuous on G/H , and multiplication on G/H is continuous everywhere. To
see continuity of inversion on G/H , let V be an open neighborhood of 1 in
G/H , and let U be an open neighborhood of 1 in G with U−1 ⊆ q−1(V ). Then
q(U−1) ⊆ V , and inversion is continuous at the identity. Since left and right
translations are continuous on G/H , inversion is continuous everywhere. This
completes the proof. §

Proposition 6.3. If G is a topological group, then
(a) any open subgroup H ofG is closed and the quotientG/H has the discrete

topology,
(b) any discrete subgroup H ofG (i.e., any subgroupwhose relative topology

is the discrete topology) is closed.

REMARK. Despite (a), a closed subgroup need not be open. For example, the
closed subgroup Z of integers is not open in the additive group R.
PROOF. For (a), if H is an open subgroup, then every subset xH of G is open

in G. Then the formula H = G −
S

x /∈H xH shows that H is closed. Also,
since G → G/H is an open map, the openness of the subset xH of G implies
that every one-element set {xH} in G/H is open. Thus G/H has the discrete
topology.
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For (b), choose by discreteness an open neighborhood V of 1 in G such that
H ∩ V = {1}. By continuity of multiplication, choose an open neighborhoodU
of 1 with UU ⊆ V . If H is not closed, let x be a limit point of H that is not
in H . Then the neighborhood U−1x of x must contain a member h of H , and h
cannot equal x since x is not in H . Write u−1x = h with u ∈ U . Then u = xh−1

is a limit point of H that is not in H , and we can find h0 6= 1 in H such that h0

is in Uu. But Uu ⊆ UU ⊆ V , and so h0 is in H ∩ V = {1}, contradiction. We
conclude that H contains all its limit points and is therefore closed. §

A compactgroup is a topological groupwhose topology is compactHausdorff.
Similarly a locally compact group is a topological group whose topology is lo-
cally compactHausdorff. Among the examplesat thebeginningof this section, the
following are locally compact: any group with the discrete topology, the additive
groups R and C, the multiplicative groups R× and C×, the circle as a subgroup
of C×, the additive groups RN and CN , the general linear groups GL(N , R)
and GL(N , C), and the additive groups of finite-dimensional topological vector
spaces. An arbitrary direct product of compact groups, with the product topology,
is a compact group. Similarly any finite direct product of locally compact groups
is a locally compact group.
A number of interesting subgroups of GL(N , R) and GL(N , C) are defined

as the sets of matrices where certain polynomials vanish. Since polynomials are
continuous, these subgroups are closed in GL(N , R) or GL(N , C). The next
proposition says that they provide further examples of locally compact groups.

Proposition 6.4. Any closed subgroup of a locally compact group is a locally
compact in the relative topology.

PROOF. Let G be the given locally compact group, and let H be the closed
subgroup. As a subgroup of a topological group, H is a topological group. For
local compactness, choose a compact neighborhoodUh in G of any element h of
H . ThenUh∩H is a compact set in H since H is closed, and it is a neighborhood
of h in the relative topology. Thus h has a compact neighborhood, and H is a
locally compact group. §

EXAMPLES OF CLOSED SUBGROUPS OF GL(N , R) AND GL(N , C).

(1) Affine group of the line. This consists of all matrices
≥
a b
0 1

¥
with a and b

real and with a > 0.
(2) Upper triangular group over R or C. This consist of all matrices whose

entries on the diagonal are all nonzero, whose entries above the diagonal are
arbitrary, and whose entries below the diagonal are 0.
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(3) Commutator subgroup of previous example. This consists of all matrices
whose entries on the diagonal are all 1, whose entries above the diagonal are
arbitrary in R or C, and whose entries below the diagonal are 0.
(4) Special linear group SL(N , F) with F equal to R or C. This consists of all

N -by-N matrices with determinant 1.
(5) Symplectic group Sp(N , F) with F equal to R or C. This consists of all

2N -by-2N matrices g with determinant 1 such that gtr
≥

0 1N
−1N 0

¥
g =

≥
0 1N

−1N 0

¥
.

(6) Unitary groupU(N ). This consists of all N -by-N complex matrices g that
are unitary in the sense that ḡtrg = 1. The group is compact; the compactness of
the topology follows since the members of U(N ) form a closed bounded subset
of a Euclidean space. The group SU(N ) is the subgroup of all g in U(N ) with
determinant 1; it is a closed subgroup of U(N ) and hence is compact.
(7) Orthogonal group O(N ) and rotation group SO(N ). The group O(N )

consists of all N -by-N realmatrices that areorthogonal in the sense that gtrg = 1;
it is the intersection1 of the unitary group U(N ) with GL(n, R). Members of
O(N ) have determinant±1. The subgroup SO(N ) consists of those members of
O(N ) with determinant 1, i.e., the rotations. The groups O(N ) and SO(N ) are
compact.

Proposition 6.5. If G is a locally compact group, then
(a) any compact neighborhood V of 1 with V = V−1 has the property that

H =
S∞

n=1 V n is a σ -compact open subgroup,
(b) G is normal as a topological space.
PROOF. The set V n is the result of applying the multiplication mapping to

V × · · · × V with n factors. This mapping is continuous, and hence V n is
compact. Thus H is σ -compact. Since V nVm = Vm+n , H is closed under
multiplication. Since V = V−1, we have V n = (V−1)n = (V n)−1, and H is
closed under inversion. Thus H is a subgroup. Since V is a neighborhood of 1,
V x is a neighborhood of x . Therefore V n+1 is a neighborhood of each member
of V n , and H is open. This proves (a).
Let H be as in (a). The subspace H ofG is σ -compact and hence Lindelöf, and

Tychonoff’s Lemma2 shows that it is normal as a topological subspace. Let {xα}
be a complete system of coset representatives for H inG, so thatG =

S
α xαH is

exhibited as the disjoint union of open closed sets, each of which is topologically
normal. If E and F are disjoint closed sets in G, then E ∩ xαH and F ∩ xαH
are disjoint closed sets in xαH . Hence there exist disjoint open sets Uα and Vα

in xαH such that E ∩ xαH ⊆ Uα and F ∩ xαH ⊆ Vα. Then U =
S

α Uα and

1This fact provides justification for using the term “unitary” in Proposition 2.6 even when F = R.
2Proposition 10.9 of Basic.
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V =
S

α Vα are disjoint open sets inG such that E ⊆ U and F ⊆ V . This proves
(b). §

The final proposition of the section shows that members of Ccom(G) are
uniformly continuous in a certain sense that can be defined without the aid of
a metric.

Proposition 6.6. If G is a locally compact group and f is in Ccom(G), then
for any ≤ > 0, there is an open neighborhood W of the identity with W = W−1

such that xy−1 ∈ W implies | f (x) − f (y)| < ≤.

PROOF. Let S be the support of f , and let ≤ > 0 be given. For each y in S, let
Uy be an open neighborhood of y such that x ∈ Uy implies | f (x)− f (y)| < ≤/2.
Since Uy y−1 is a neighborhood of 1, we can find an open neighborhood Vy of 1
with Vy = Vy−1 and VyVy ⊆ Uy y−1. As y varies through S, the sets Vy y
form an open cover of S. Let {Vy1 y1, . . . , Vyn yn} be a finite subcover, and put
W = Vy1 ∩ · · · ∩ Vyn . This will be the required neighborhood of 1.
To see thatW has the property asserted, let xy−1 be inW . If f (x) = f (y) = 0,

then | f (x) − f (y)| < ≤. If f (y) 6= 0, then for some k, y is in Vyk yk ⊆
Uyk y

−1
k yk = Uyk and thus | f (yk) − f (y)| < ≤/2. Also, x = (xy−1)y is in

WVyk yk ⊆ Vyk Vyk yk ⊆ Uyk y
−1
k yk ⊆ Uyk and thus | f (x) − f (yk)| < ≤/2. Hence

| f (x) − f (y)| < ≤. Finally if f (x) 6= 0, then W = W−1 implies that yx−1 is in
W , the roles of x and y are interchanged, and the proof that | f (x) − f (y)| < ≤
goes through as above. §

Corollary 6.7. If G is a locally compact group and f is in Ccom(G), then the
map of G × G into C(G) given by (g, g0) 7→ f (g( · )g0) is continuous.

PROOF. We first prove two special cases. If g0 ∈ G and ≤ > 0 are given,
then Proposition 6.6 produces an open neighborhood W of the identity such
that supx∈G | f (gx − f (g0x)| < ≤ for gg−1

0 in W , and hence g 7→ f (g( · )) is
continuous. Applying this result to the function ef given by ef (x) = f (x−1)
and using continuity of the inversion map x 7→ x−1 within G, we see that
g0 7→ f (( · )g0) is continuous.
Now we reduce the general case to these two special cases. If (g0, g0

0) is given
in G × G, then

| f (gxg0) − f (g0xg0
0)| ≤ | f (gxg0) − f (g0xg0)| + | f (g0xg0) − f (g0xg0

0)|

≤ sup
x∈G

| f (gx) − f (g0x)| + sup
x∈G

| f (xg0) − f (xg0
0)|.

The two special cases show that the right side tends to 0 as (g, g0) tends to (g0, g0
0),

and the corollary follows. §
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If G is a group and X is a set, a group action of G on X is a function
G × X → X , often written (g, x) 7→ gx , such that

(i) 1x = x for all x in X ,
(ii) g1(g2x) = (g1g2)x for all x in X and all g1 and g2 in G.

If G is a topological group and X has a Hausdorff topology, a continuous group
action is a group action such that the map (g, x) 7→ gx is continuous. In this case
we say that G acts continuously on X . The fundamental example is the action of
G on the quotient space G/H by a closed subgroup: (g, g0H) 7→ (gg0)H .
An orbit for a group action of G on X is any subset Gx of X . The action

is transitive if there is just one orbit, i.e., if Gx = X for some, or equivalently
every, x in X . This is the situation with the fundamental example above. The
action of the general linear group GL(N , R) on RN by matrix multiplication is a
continuous group action that is not transitive; it has two orbits, one open and the
other closed.
LetG act continuously on X , fix x0 in X , and let H be the subgroup of elements

h inGwith hx0 = x0. This is the isotropy subgroup at x0. It is a closed subgroup,
being the inverse image in G of the closed set {x0} under the continuous function
g 7→ gx0. Proposition 6.2 shows that the quotient topology on the setG/H of left
cosets is Hausdorff. Since G/H has the quotient topology, the continuous map
G → Gx0 given by g 7→ gx0 descends to a one-one continuous map G/H →
Gx0. In favorable cases the map G/H → Gx0 is a homeomorphism with its
image, and Problems 2–4 at the end of the chapter give sufficient conditions for
it to be a homeomorphism. Sometimes the ability to do serious analysis on X
depends on having the map be a homeomorphism. A case in which it is not a
homeomorphism is the action of the discrete additive line G on the ordinary line
X = R by translation.

2. Existence and Uniqueness of Haar Measure

The point of view in Basic in approaching the Riesz Representation Theorem
for a locally compact Hausdorff space X was that the steps in the construction
of Lebesgue measure work equally well with X . The only thing that is missing
is some device to encode geometric data—to provide a generalization of length.
That missing ingredient is captured by any positive linear functional onCcom(X),
but there is no universal source of interesting such functionals.
For the next few sections we shall impose additional structure on X , assuming

now that X is a locally compact group in the sense of Section 1. We shall see in
this case that a nonzero positive linear functional always exists with the property
that it takes equal values on a function and any left translate of the function.
In other words the positive linear functional has the same kind of invariance
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property under translation as the Riemann integral. The corresponding regular
Borel measure, which is Lebesguemeasure in the case of the line, is called a (left)
“Haar measure” and is the main object of study in Sections 2–5 of this chapter.
Several examples of locally compact groups were given in Section 1. Among

them are the circle group, the additive group RN , and the general linear groups
GL(N , C) andGL(N , R), which consist of all N -by-N nonsingular matrices and
have matrix multiplication as the group operation. Proposition 6.4 showed that
any closed subgroup of a locally compact group is itself a locally compact group.
Special linear groups, unitary groups, orthogonal groups, and rotation groups are
among the examples that were mentioned.
Thus let G be a locally compact group. We shall write the group multiplica-

tively exceptwhenweare dealingwith special exampleswhere a different notation
is more suitable. Ordinarily no special symbol will be used for a translation map
in G. Thus left translations are simply the homeomorphisms x 7→ gx for g in G,
and right translations are the maps x 7→ xg.
Let us consider these as special cases of what any continuous mapping does.

The notationwill be clearer if we distinguish the domain from the image. Thus let
8 be a continuousmapping of a locally compact Hausdorff space X into a locally
compact Hausdorff space Y . The mapping 8 carries subsets of X to subsets of
Y by the rule 8(E) = {8(x) | x ∈ E}.
If8 is a homeomorphism, it preserves the topological character of sets. Thus

compact sets go to compact sets, Gδ’s go to Gδ’s, and so on. Consequently Borel
sets map to Borel sets, and Baire sets map to Baire sets.
By contrast a scalar-valued function f on Y pulls back to the scalar-valued

function f 8 on X given by f 8(x) = f (8(x)), with continuity being preserved.
A Borel measure µ on X pushes forward to a measure µ8 on Y given by
µ8(E) = µ(8−1(E)); the measure µ8 is defined on Borel sets but need not be
finite on compact sets. If 8 is a homeomorphism, however, then µ8 is a Borel
measure, and regularity of µ implies regularity of µ8.
Of great importance for current purposes is the effect of 8 on integration,

where the effect is that of a change of variables. The formula is

Z

X
f 8 dµ =

Z

Y
f dµ8

if f is a Borel function ∏ 0, for example. To prove this formula, we first
take f to be the indicator function IE of a subset E of Y . On the left side we
have I8

E (x) = IE(8(x)) = I8−1(E)(x). Hence the left side equals
R
X I

8
E dµ =

µ(8−1(E)) = µ8(E), which in turn equals the right side
R
Y IE dµ8. Linearity

allowsus to extend this conclusion to nonnegative simple functions, andmonotone
convergence allows us to pass to Borel functions ∏ 0.
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An important consequence of the boxed formula is the formula

(F dµ)8 = F8−1
dµ8.

In fact, if we set f = F8−1 IE in the boxed formula, then we obtain
R
X F I

8
E dµ =

R
Y F

8−1 IE dµ8. Thus
R
8−1(E) F dµ =

R
E F

8−1 dµ8 and (F dµ)8(E) =

(F dµ)(8−1(E)) =
R
8−1(E) F dµ =

R
E F

8−1 dµ8 = (F8−1 dµ8)(E).
The Euclidean change-of-variables formula3 is a special case of the boxed

formula, and the content of the theoremamounts to an explicit identificationofµ8.
Let ϕ : U → ϕ(U) be a diffeomorphism with detϕ0(x) nowhere 0. If y = ϕ(x),
then the formula gives dy = | detϕ0(x)| dx . Since dy = d(ϕ(x)) = (dx)ϕ−1 , the
formula is saying that (dx)ϕ−1 = | detϕ0(x)| dx . We recover the usual Euclidean
integration formula by applying the boxed formula with 8 = ϕ−1, X = ϕ(U),
Y = U , dµ = dy, and dµϕ−1 = | detϕ0(x)| dx , and then by letting F = f ϕ−1 .
The result is

R
ϕ(U) F(y) dy =

R
U F(ϕ(x))| detϕ0(x)| dx , as it should be.

The rule for composition for points and sets is that (9 ◦ 8)(x) = 9(8(x))
and (9 ◦ 8)(E) = 9(8(E)). But for functions and measures the rules are
f 9◦8 = ( f 9)8 and µ9◦8 = (µ8)9 . In other words, when 8 is followed by
9 in operating on points and sets, 8 is again followed by 9 in pushing forward
measures, but 9 is followed by 8 in pulling back functions. In the special
case that X = Y = G, this feature will mean that certain expressions that we
might want to write as triple products do not automatically satisfy an expected
associativity property without some adjustment to the notation.
First consider left translation. On points, left translation Lh by h sends x to

hx , and left translation by g sends this to g(hx) = (gh)x . The behavior on
sets is similar. On functions and measures we therefore have f Lgh = f Lg Lh =
( f Lh )Lg and µLgh = µLgLh = (µLh )Lg . To obtain group actions on functions and
measures, we therefore define

(g f )(x) = f L
−1
g (x) = f (g−1x) and (gµ)(E) = µLg (E) = µ(g−1E)

for g in G. With these definitions we have g(h f ) = (gh) f and g(hµ) = (gh)µ,
consistently with the formulas for a group action.
With right translation the effect on points is that right translation by h sends x

to xh, and right translation by g sends this to (xh)g = x(hg). The behavior on
sets is similar. We want the same kind of formula with functions and measures,
and to get it we define

( f g)(x) = f (xg−1) and (µg)(E) = µ(Eg−1)

3Theorem 6.32 of Basic.
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for g in G. With these definitions we have ( f h)g = f (hg) and (µh)g = µ(hg).
These are the formulas of what we might view as a “right group action.”
A nonzero regular Borel measure on G invariant under all left translations is

called a left Haar measure on G. A right Haar measure on G is a nonzero
regular Borel measure invariant under all right translations. The main theorem,
whose proof will occupy much of the remainder of this section, is as follows.

Theorem 6.8. IfG is a locally compact group, thenG has a left Haar measure,
and it is unique up to a multiplicative constant. Similarly G has a right Haar
measure, and it is unique up to a multiplicative constant.

Before coming to the proof, we give some examples. Checking the invariance
in each case involves using the boxed formula above for some homeomorphism
8. In Euclidean situations we can often evaluate µ8 directly by the change-of-
variables formula for multiple integrals. In an abelian group the left and right
Haar measures are the same, and we speak simply of Haar measure; but this need
not be true in nonabelian groups, as one of the examples will illustrate.

EXAMPLES.
(1) G = RN under addition. Lebesgue measure is a Haar measure.
(2) G = GL(N , R). Problem 4 in Chapter VI of Basic showed that if MN is

the N 2-dimensional Euclidean space of all real N -by-N matrices and if dx refers
to its Lebesgue measure, then

Z

MN

f (gx)
dx

| det x |N
=

Z

MN

f (x)
dx

| det x |N

for each nonsingular matrix g and Borel function f ∏ 0. In the formula, gx is
the matrix product of g and x . Problem 10 in the same chapter showed that the
zero locus of any polynomial that is not identically zero has Lebesgue measure 0.
Thus the set where det x = 0 hasmeasure 0, andwe can rewrite the above formula
as Z

GL(N ,R)

f (gx)
dx

| det x |N
=

Z

GL(N ,R)

f (x)
dx

| det x |N
,

where dx is still Lebesgue measure on the underlying Euclidean space of all
N -by-N matrices. This formula says that dx

| det x |N is a left Haar measure on
GL(N , R). This measure happens to be also a right Haar measure.

(3) G =
n≥

a b
0 1

¥o
with real entries and a > 0. Then a−2 da db is a left Haar

measure and a−1 da db is a right Haar measure. To check the first of these asser-
tions, let ϕ be left translation by

≥
a0 b0
0 1

¥
. Since

≥
a0 b0
0 1

¥ ≥
a b
0 1

¥
=

≥
a0a a0b+b0
0 1

¥
,
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we can regard ϕ as the vector function ϕ
° a
b

¢
=

≥
a0a

a0b+b0

¥
with ϕ0

° a
b

¢
=

≥
a0 0
0 a0

¥

and
Ø
Ø detϕ0

° a
b

¢ Ø
Ø = a20. Then (da db)ϕ−1 = a20 da db and (a−2 da db)ϕ−1 =

(a−2)ϕ(da db)ϕ−1 = (a0a)−2a20 da db = a−2 da db. So a−2 da db is indeed a
left Haar measure. By a similar argument, a−1 da db is a right Haar measure.

We shall begin the proof of Theorem 6.8 with uniqueness. The argument will
use Fubini’s Theorem for certain Borel measures on G, and we need to make two
adjustments to make Fubini’s Theorem apply. One is to work with Baire sets,
rather than Borel sets, so that the product σ -algebra from the Baire sets of G
times the Baire sets of G is the σ -algebra of Baire sets for G × G.4 The other is
to arrange that the spaces we work with are σ -compact. The device for achieving
the σ -compactness is Proposition 6.5, which shows that G always has an open
σ -compact subgroup H . Imagine that we understand the restriction of a left Haar
measure µ to H . We form the left cosets gH , all of which are open in G. Any
compact set is covered by all these cosets, and there is a finite subcover. That
means that any compact set K is contained in the union of finitely many cosets
gH , say in g1H ∪ · · · ∪ gnH . We can compute µ on any gH by translating the
set by g−1. This fact and the formula µ(K ) =

Pn
j=1 µ(K ∩ gj H) together show

that we can compute µ(K ) from a knowledge of µ on H . Thus there is no loss
of generality in the uniqueness question in assuming that G is σ -compact.

PROOF OF UNIQUENESS IN THEOREM 6.8. As remarked above, G has a
σ -compact open subgroup H , and it is enough to prove the uniqueness for H .
Changing notation, we may assume that our given group is σ -compact. We work
with Baire sets in this argument.
Letµ1 andµ2 be left Haar measures. Then the sumµ = µ1+µ2 is a left Haar

measure, andµ(E) = 0 impliesµ1(E) = 0. By the Radon–Nikodym Theorem,5
there exists a Baire function h1 ∏ 0 such that µ1 = h1 dµ. Fix g in G. By the
left invariance of µ1 and µ, we have

Z

G
f (x)h1(g−1x) dµ(x) =

Z

G
f (gx)h1(x) dµ(x) =

Z

G
f (gx) dµ1(x)

=
Z

G
f (x) dµ1(x) =

Z

G
f (x)h1(x) dµ(x)

for every Baire function f ∏ 0. Therefore the measures h1(g−1x) dµ(x) and
h1(x) dµ(x) are equal, and h1(g−1x) = h1(x) for almost every x ∈ G (with
respect to dµ). We can regard h1(g−1x) and h1(x) as functions of (g, x) ∈ G×G,

4Proposition 11.17 of Basic.
5Theorem 9.16 of Basic.
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and these are Baire functions since the group operations are continuous. For each
g, they are equal for almost every x . By Fubini’s Theorem they are equal for
almost every pair (g, x) (with respect to the productmeasure), and then for almost
every x they are equal for almost every g. Pick one such x , say x0. Then it follows
that h1(x) = h1(x0) for almost every x . Thus dµ1 = h1(x0) dµ. So dµ1 is a
multiple of dµ, and so is dµ2. §

Nowwe turn our attention to existence. The shortest and best-motivated known
proof dates from 1940 andmodifies Haar’s original argument in two ways that we
shall mention. First let us consider that original argument, in which the setting is
a locally compact separable metric topological group. In trying to construct an
invariant measure, there is not much to work with, the situation being so general.
We can get an idea how to proceed by examining RN , where we are trying to
construct Lebesgue measure out of almost nothing. We do have some rough
comparisons of size because of the compactness. If we take a compact geometric
rectangle and an open geometric rectangle, the latter centered at the origin, the
compactness ensures that finitely many translates of the open rectangle together
cover the compact rectangle. The smallest such number of translates is a rough
estimate of the ratio of their Lebesgue measures. This integer estimate in some
sense becomes more refined as the open rectangle gets smaller, but the integer in
question grows in size also. To take this scaling factor into account, we compare
this integer ratio with the integer ratio for some standard compact rectangle as
the open rectangle gets small. This ratio of two integer ratios appears to be a
good approximation to the ratio of the measure of the general compact rectangle
to the measure of the standard compact rectangle. In fact, one easily shows that
this ratio of ratios is bounded above and below as the open rectangle shrinks
in size through a sequence of rectangles to a point. The Bolzano–Weierstrass
Theorem gives a convergent subsequence for the ratio of ratios. It turns out that
this convergence has to be addressed only for countably many of the compact
rectangles, and this we can do by the Cantor diagonal process. Then we obtain
a value for the measure of each compact rectangle in the countable set and, as
a result, for all compact rectangles. It then has to be shown that we can build a
measure out of this definition of the measure on compact rectangles.
Two things are done to modify the above argument to obtain a general proof

for locally compact groups. One is to replace the Cantor diagonal process by an
application of the Tychonoff Product Theorem. The other is to bypass the long
process of constructing a measure on Borel sets from its values on compact sets
by instead using positive linear functionals and applying the Riesz Representation
Theorem. Once an initial comparison can be made with continuous functions of
compact support, rather than compact sets and open sets, the path to the theorem
is fairly clear. It is Lemma 6.9 below that says that the initial comparison can be
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carried out with such functions. For a locally compact group G, let C+
com(G) be

the set of nonnegative elements in Ccom(G).

Lemma 6.9. If f and ϕ are nonzero members of C+
com(G), then there exist

a positive integer n, finitely many members g1, . . . , gn of G, and real numbers
c1, . . . , cn all > 0 such that

f (x) ≤
nX

j=1
cjϕ(gj x) for all x .

REMARK. We let H( f, ϕ) be the infimum of all finite sums
P

j cj as in the
statement of the lemma. The expression H( f, ϕ) is called the value of the Haar
covering function at f and ϕ.

PROOF. Fix c > k f ksup/kϕksup. The set U = {x | cϕ(x) > k f ksup} is open
and nonempty, and the sets hU , for h ∈ G, form an open cover of the support
of f . Choose a finite subcover, writing

support( f ) ⊆ h1U ∪ · · · ∪ hnU.

For 1 ≤ j ≤ n, we then have

hjU = {x | h−1
j x ∈ U} = {x | cϕ(h−1

j x) > k f ksup}

⊆ {x | f (x) ≤
Pn

j=1 cϕ(h−1
j x)}.

Hence
support( f ) ⊆ {x | f (x) ≤

Pn
j=1 cϕ(h−1

j x)}.

The lemma follows with gj = h−1
j and with all cj equal to c. §

Lemma 6.10. The Haar covering function has the properties that
(a) H(g f, ϕ) = H( f, ϕ) for g in G,
(b) H( f1 + f2, ϕ) ≤ H( f1, ϕ) + H( f2, ϕ),
(c) H(c f, ϕ) = cH( f, ϕ) for c > 0,
(d) f1 ≤ f2 implies H( f1, ϕ) ≤ H( f2, ϕ),
(e) H( f, √) ≤ H( f, ϕ)H(ϕ,√),
(f) H( f, ϕ) ∏ k f ksup

±
kϕksup.

PROOF. Properties (a) through (d) are completely elementary. For (e), the
inequalities f (x) ≤

P
i ciϕ(gi x) and ϕ(x) ≤

P
j dj√(hj x) together imply that

f (x) ≤
P

i, j ci dj√(hj gi x). Therefore

H( f, √) ≤ inf
P

i, j ci dj =
°
inf

P
i ci

¢°
inf

P
j dj

¢
= H( f, ϕ)H(ϕ,√).
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For (f), the fact that a continuous real-valued function on a compact set attains its
maximum value allows us to choose y such that f (y)=k f ksup. Then k f ksup=
f (y) ≤

P
j cjϕ(gj y) ≤

P
j cjkϕksup and hence k f ksup

±
kϕksup ≤

P
j cj . Tak-

ing the infimum over systems of constants cj gives k f ksup
±
kϕksup ≤ H( f, ϕ).

§

Following the outline above, we now perform the normalization. Fix a nonzero
member f0 of C+

com(G). If ϕ and f are nonzero members of C+
com(G), define

`ϕ( f ) = H( f, ϕ)
±
H( f0, ϕ).

After listing some elementary properties of `ϕ , we shall prove in effect that `ϕ is
close to being additive if the support of ϕ is small.

Lemma 6.11. `ϕ( f ) has the properties that
(a) 0 < 1

H( f0, f ) ≤ `ϕ( f ) ≤ H( f, f0),
(b) `ϕ(g f ) = `ϕ( f ) for g in G,
(c) `ϕ( f1 + f2) ≤ `ϕ( f1) + `ϕ( f2),
(d) `ϕ(c f ) = c`ϕ( f ) if c > 0 is a constant.

PROOF. Properties (b), (c), and (d) are immediate from (a), (b), and (c) of
Lemma 6.10. For (a), we apply Lemma 6.10e with ϕ there equal to f0 and with
√ there equal to ϕ, and the resulting inequality is H( f, ϕ) ≤ H( f, f0)H( f0, ϕ).
Thus `ϕ( f ) ≤ H( f, f0). Then we apply apply Lemma 6.10e with f there equal
to f0, ϕ there equal to f , and √ there equal to ϕ. The resulting inequality is
H( f0, ϕ) ≤ H( f0, f )H( f, ϕ). Thus 1/H( f0, f ) ≤ `ϕ( f ). §

Lemma 6.12. If f1 and f2 are nonzero members of C+
com(G) and if ≤ > 0 is

given, then there exists an open neighborhood V of the identity in G such that

`ϕ( f1) + `ϕ( f2) ≤ `ϕ( f1 + f2) + ≤

for every nonzero ϕ in C+
com(G) whose support is contained in V .

PROOF. Let K be the support of f1 + f2, and let F be a member of Ccom(G)
with values in [0, 1] such that F is 1 on K . The number ≤ > 0 is given in the
statement of the lemma, and we let δ be a positive number to be specified. Define
f = f1 + f2 + δF , h1 = f1/ f , and h2 = f2/ f , with the convention that h1 and
h2 are 0 on the set where f is 0.
The functions h1 and h2 are continuous: In fact, there is no problem on the

open set where f (x) 6= 0. At a point x where f (x) = 0, the functions h1 and h2
are continuous unless x is a limit point of the set where f1 + f2 is not 0. This



228 VI. Compact and Locally Compact Groups

set is contained in K , and thus x must be in K . On the other hand, F is 1 on K ,
and hence f is ∏ δ on K . Hence there are no points x where h1 or h2 fails to be
continuous.
Let η > 0 be another number to be specified. By Proposition 6.6 let V be an

open neighborhood of the identity such that V = V−1 and also
|h1(x) − h1(y)| < η and |h2(x) − h2(y)| < η

whenever xy−1 is in V . If ϕ ∈ C+
com(G) has support in V and if positive constants

cj and group elements gj are chosen such that f (x) ≤
P

j cjϕ(gj x) for all x ,
then every x for which ϕ(gj x) > 0 has the property that

|h1(g−1
j ) − h1(x)| < η and |h2(g−1

j ) − h2(x)| < η.

Hence
f1(x) = f (x)h1(x) ≤

X

j
cjϕ(gj x)h1(x) ≤

X

j

°
cj (h1(g−1

j ) + η)
¢
ϕ(gj x).

Consequently
H( f1, ϕ) ≤

X

j

°
cj (h1(g−1

j ) + η)
¢
.

Similarly
H( f2, ϕ) ≤

X

j

°
cj (h2(g−1

j ) + η)
¢
.

Adding, we obtain

H( f1, ϕ) + H( f2, ϕ) ≤
X

j

°
cj (h1(g−1

j ) + h2(g−1
j ) + 2η)

¢
≤

X

j
cj (1+ 2η)

since h1 + h2 ≤ 1. Taking the infimum over the cj ’s and the gj ’s gives
H( f1, ϕ) + H( f2, ϕ) ≤ H( f, ϕ)(1+ 2η).

Therefore
`ϕ( f1) + `ϕ( f2)

≤ `ϕ( f )(1+ 2η)

≤
°
`ϕ( f1 + f2) + δ`ϕ(F)

¢
(1+ 2η) by (c) and (d) in Lemma 6.11

≤ `ϕ( f1 + f2) +
°
δH(F, f0) + 2δηH(F, f0) + 2ηH( f1 + f2, f0)

¢
,

the last inequality holding by Lemma 6.11a. This proves the inequality of the
lemma if δ and η are chosen small enough that

δH(F, f0) + 2δηH(F, f0) + 2ηH( f1 + f2, f0) < ≤. §

Lemma 6.13. There exists a nonzero positive linear functional ` on Ccom(G)
such that `( f ) = `(g f ) for all g ∈ G and f ∈ Ccom(G).
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PROOF. For each nonzero f in C+
com(G), let Sf be the closed interval

[1/H( f0, f ), H( f, f0)]. Let S be the compact Hausdorff space

S = ×
f ∈C+

com(G),

f 6=0

Sf .

A member of S is a function that assigns to each nonzero member f of C+
com(G)

a real number in the closed interval Sf , and `ϕ( f ) is such a function, according
to Lemma 6.11a. For each open neighborhood V of the identity in G, define

EV =
©
`ϕ

Ø
Ø ϕ ∈ C+

com(G), ϕ 6= 0, support(ϕ) ⊆ V
™

as a nonempty subset of S. If V ⊆ V 0, then EV ⊆ EV 0 and hence also EclV ⊆ EclV 0 .
Thus if V1, . . . , Vn are open neighborhoods of the identity, then

EclV1∩···∩Vn ⊆ EclV1 ∩ · · · ∩ EclVn .

Consequently the closed sets EclV have the finite-intersection property. Since S is
compact, they have nonempty intersection. Let ` be a point of S lying in their
intersection. For ` to be in EclV for a particular V means that for each ≤ > 0 and
each finite set f1, . . . , fn of nonzero members of C+

com(G), there is a nonzero ϕ
in C+

com(G) with support in V such that

|`( f j ) − `ϕ( f j )| < ≤ for 1 ≤ j ≤ n. (∗)

On the nonzero functions in C+
com(G), let us observe the following facts:

(i) `( f ) ∏ 0 and `( f0) = 1, the latter because `ϕ( f0) = 1 for all ϕ.
(ii) `( f ) = `(g f ) for g ∈ G, since for any ≤ > 0, |`( f ) − `(g f )| ≤

|`( f )− `ϕ( f )|+ |`ϕ( f )− `ϕ(g f )|+ |`ϕ(g f )− `(g f )| < 2≤ by Lemma
6.11b if V and ϕ are as in (∗) for the two functions f and g f .

(iii) `( f1 + f2) = `( f1) + `( f2) because if ≤ > 0 is given, if V is chosen for
this ≤ according to Lemma 6.12, and if ϕ is chosen for f1, f2, and f as in
(∗), then we have `( f1 + f2) ≤ `ϕ( f1 + f2) + ≤ ≤ `ϕ( f1) + `ϕ( f2) + ≤
≤ `( f1) + `( f2) + 3≤ and `( f1) + `( f2) ≤ `ϕ( f1) + `ϕ( f2) + 2≤ ≤
`ϕ( f1 + f2) + 3≤ ≤ `( f1 + f2) + 4≤, the next-to-last inequality holding
by Lemma 6.12.

(iv) `(c f ) = c`( f ) for c > 0 because if V and ϕ are as in (∗) for ≤ > 0
and the two functions f and c f , then we have `(c f ) ≤ `ϕ(c f ) + ≤ =
c`ϕ( f )+≤ ≤ c`( f )+(c+1)≤ and c`( f ) ≤ c`ϕ( f )+c≤ = `ϕ(c f )+c≤ ≤
`(c f ) + (c + 1)≤.

Becauseof (iii) and (iv), ` extends to a linear functional onCcom(G), and this linear
functional is positive by (i) and satisfies the invariance condition `( f ) = `(g f )
by (ii). §
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PROOF OF EXISTENCE IN THEOREM 6.8. Fix a nonzero function f0 in C+
com(G),

and let µ be the measure given by the Riesz Representation Theorem as corre-
sponding to the positive linear functional ` in Lemma 6.13. If K0 is a nonempty
compact Gδ and if { fn} is a decreasing sequence in Ccom(G)with pointwise limit
IK0 , then we have

R
G g fn dµ =

R
G fn dµ for all g ∈ G and all n. Passing to

the limit and applying dominated convergence gives
R
G gIK0 dµ =

R
G IK0 dµ.

Now gIK0(x) = IK0(g−1x) = IgK0(x), and hence µ(gK0) = µ(K0) for all g.
In other words, the regular Borel measures g−1µ and µ agree on compact Gδ’s.
This equality is enough6 to force the equality g−1µ = µ for all g. Finally µ is
not the 0 measure since

R
G f0 dµ = 1. §

3. Modular Function

We continue with G as a locally compact group. From now on, we shall often
denote particular left and right Haar measures on G by dl x and dr x , respectively.
An important property of left and right Haar measures is that

any nonempty open set has nonzero Haar measure.

In fact, in the case of a left Haarmeasure, if any compact set is given, finitelymany
left translates of the given open set together cover the compact set. If the open set
had 0 measure, so would its left translates and so would every compact set. Then
the measure would be identically 0 by regularity. A similar argument applies to
any right Haar measure. We shall occasionally make use of this property without
explicit mention.
Actually, left Haar measure and right Haar measure have the same sets of

measure 0, as will follow from Proposition 6.15c below. Thus we are completely
justified in using the expression “nonzero Haar measure” above.
Fix a left Haar measure dl x . Since left translations on G commute with right

translations, dl( · g) is a left Haar measure for any g ∈ G. Left Haar measures
are proportional, and we therefore define themodular function1 : G → R+ of
G by

dl( · g) = 1(g−1) dl( · ).

Lemma 6.14. For any regular Borel measure µ on G, any g0 in G, and any p
with 1 ≤ p < ∞, the limit relations

limg→g0
R
G | f (gx) − f (g0x)|p dµ(x) = 0

limg→g0
R
G | f (xg) − f (xg0)|p dµ(x) = 0and

6Propositions 11.19 and 11.18 of Basic.
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hold for each f in Ccom(G). In particular,

g 7→
R
G f (gx) dµ(x) and g 7→

R
G f (xg) dµ(x)

are continuous scalar-valued functions for such f .
PROOF. Corollary 6.7 shows that g 7→ f (g( · )) is continuous from G into

C(G). Let ≤ > 0 be given, and choose a neighborhood N of g0 such that
supx∈G | f (gx)− f (g0x)| ≤ ≤ for g in N . If K is a compact neighborhood of g0,
then the set of products K support( f ) is compact, being the continuous image of a
compact subset of G×G under multiplication. It therefore has finite µmeasure,
say C . When g is in K ∩ N , we have

R
G | f (gx) − f (g0x)|p dµ(x) ≤ ≤ pµ(K support( f )) = C≤ p,

and the first limit relation follows. Taking p = 1, we have
Ø
Ø R

G f (gx) dµ(x) −
R
G f (g0x) dµ(x)

Ø
Ø ≤

R
G | f (gx) − f (g0x)| dµ(x),

and we have just seen that the right side tends to 0 as g tends to g0. This proves
the first conclusion about continuity of scalar-valued functions.
For the other limit relation and continuity result, we replace f by the function

ef with ef (x) = f (x−1), and we apply to ef what has just been proved, taking into
account the continuity of the inversion mapping on G. §

Proposition 6.15. The modular function1 for G has the properties that
(a) 1 : G → R+ is a continuous group homomorphism,
(b) 1(g) = 1 for g in any compact subgroup of G,
(c) dl(x−1) and 1(x) dl x are right Haar measures and are equal,
(d) dr (x−1) and 1(x)−1 dr x are left Haar measures and are equal,
(e) dr (g · ) = 1(g) dr ( · ) for any right Haar measure on G.

PROOF. For (a), we take dµ(x) = dl x in Lemma 6.14 and see that the function
g 7→

R
G f (xg) dl x =

R
G f (x) dl(xg−1) = 1(g)

R
G f (x) dl x is continuous if f

is in Ccom(G). Since there exist functions f in Ccom(G) with
R
G f (x) dl x 6= 0,

g 7→ 1(g) is continuous. The homomorphismproperty follows from the fact that
1(hg) dl x=dl(x(hg)−1)=dl((xg−1)h−1)=1(h) dl(xg−1)=1(h)1(g) dl x .
For (b), the image under 1 of any compact subgroup of G is a compact

subgroup of R+ and hence is {1}.
In (c), put dµ(x) = 1(x) dl x . This is a regular Borel measure since 1 is

continuous by (a). Since1 is a homomorphism, we have
R
G f (xg) dµ(x) =

R
G f (xg)1(x) dl x =

R
G f (x)1(xg−1) dl(xg−1)

=
R
G f (x)1(x)1(g−1)1(g) dl x

=
R
G f (x)1(x) dl x =

R
G f (x) dµ(x).
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Hence dµ(x) is a rightHaarmeasure. Meanwhile, dl(x−1) is a rightHaarmeasure
because

R
G f (xg) dl(x−1) =

R
G f (x−1g) dl x =

R
G f ((g−1x)−1) dl x

=
R
G f (x−1) dl x =

R
G f (x) dl(x−1).

Thus Theorem 6.8 for right Haar measures implies that dl(x−1) = c1(x) dl x for
some constant c > 0. Changing x to x−1 in this formula, we obtain

dl x = c1(x−1) dl(x−1) = c21(x−1)1(x) dl x = c2 dl x .

Hence c = 1, and (c) is proved.
For (d) and (e) there is no loss of generality in assuming that dr x = dl(x−1) =

1(x) dl x , in view of (c). Conclusion (d) is immediate from this identity if we
replace x by x−1. For (e) we have
R
G f (x) dr (gx) =

R
G f (g−1x) dr x=

R
G f (g−1x)1(x) dl x=

R
G f (x)1(gx) dl x

= 1(g)
R
G f (x)1(x) dl x = 1(g)

R
G f (x) dr x,

and we conclude that dr (g · ) = 1(g) dr ( · ). §

The locally compact group G is said to be unimodular if every left Haar
measure is a right Haar measure (and vice versa). In this case we can speak of
Haar measure on G.
In view of Proposition 6.15e, G is unimodular if and only if 1(t) = 1 for all

t ∈ G. Locally compact abelian groups are of course unimodular. Proposition
6.15b shows that compact groups are unimodular.
Any commutator ghg−1h−1 in G is carried to 1 by the modular function 1.

Consequently any group that is generated by commutators, such as SL(N , R),
is unimodular. More generally any group that is generated by commutators,
elements of the center, and elements of finite order is unimodular; GL(N , R) is
an example.

Theorem 6.16. Let G be a separable locally compact group, and let S and T
be closed subgroups such that S ∩ T is compact, multiplication S × T → G is
an open map, and the set of products ST exhausts G except possibly for a set of
Haar measure 0. Let1T and1G denote the modular functions of T andG. Then
the left Haar measures on G, S, and T can be normalized so that

Z

G
f (x) dl x =

Z

S×T
f (st)

1T (t)
1G(t)

dls dl t

for all Borel functions f ∏ 0 on G.
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REMARK. The assumption of separability avoids all potential problems with
using Fubini’s Theorem in the course of the proof. Problems 21–22 at the end of
the chapter give a condition under which multiplication S × T → G is an open
map, and they provide examples.

PROOF. Let ƒ ⊆ G be the set of products ST , and let K = S ∩ T . The group
S×T acts continuously onƒ by (s, t)ω = sωt−1, and the isotropy subgroup at 1
is diag K . Thus the map (s, t) 7→ st−1 descends to a map (S× T )/diag K → ƒ.
This map is a homeomorphism since multiplication S × T → G is assumed to
be an open map.
Hence any Borel measure on ƒ can be reinterpreted as a Borel measure on

(S×T )/diag K . We apply this observation to the restrictionof a leftHaarmeasure
dl x for G from G to ƒ, obtaining a Borel measure dµ on (S × T )/diag K . On
ƒ, we have

dl(s0xt−10 ) = 1G(t0) dl x,

and the action unwinds to

dµ((s0, t0)(s, t)(diag K )) = 1G(t0) dµ((s, t)(diag K )) (∗)

on (S × T )/diag K . Using the Riesz Representation Theorem, define a measure
deµ(s, t) on S × T in terms of a positive linear functional on Ccom(S × T ) by

Z

S×T
f (s, t) deµ(s, t) =

Z

(S×T )/diag K

h Z

K
f (sk, tk) dk

i
dµ((s, t)(diag K )),

where dk is a Haar measure on K normalized to have total mass 1. From (∗) it
follows that

deµ(s0s, t0t) = 1G(t0) deµ(s, t).

The same proof as for the uniqueness in Theorem 6.8 shows that any two Borel
measures on S× T with this property are proportional, and1G(t) dls dl t is such
a measure. Therefore

deµ(s, t) = 1G(t) dls dl t

for a suitable normalization of dls dl t .
The resulting formula is

Z

ƒ

f (x) dl x =
Z

S×T
f (st−1)1G(t) dls dl t

for all Borel functions f ∏ 0 on ƒ. On the right side the change of variables
t 7→ t−1 makes the right side become

Z

S×T
f (st)1G(t)−1 dls1T (t) dl t,
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according to Proposition 6.15c, and we can replaceƒ by G on the left side since
the complement of ƒ in G has measure 0 by assumption. This completes the
proof. §

4. Invariant Measures on Quotient Spaces

If H is a closed subgroup of G, then we can ask whether G/H has a nonzero G
invariant Borel measure. Theorem 6.18 belowwill give a necessary and sufficient
condition for this existence, butweneed somepreparation. Fix a leftHaarmeasure
dlh for H . If f is in Ccom(G), define

f #(g) =
Z

H
f (gh) dlh.

This function is invariant under right translation by H , and we can define

f ##(gH) = f #(g).

The function f ## has compact support on G/H .

Lemma 6.17. The map f 7→ f ## carries Ccom(G) onto Ccom(G/H), and a
nonnegative member of Ccom(G/H) has a nonnegative preimage in Ccom(G).

PROOF. Let π : G → G/H be the quotient map. Let F ∈ Ccom(G/H) be
given, and let K be a compact set in G/H with F = 0 off K . We first produce
a compact set eK in G with π(eK ) = K . For each coset in K , select an inverse
image x and let Nx be a compact neighborhood of x in G. Since π is open, π of
the interior of Nx is open. These open sets cover K , and a finite number of them
suffices. Then we can take eK to be the intersection of the closed set π−1(K )with
the compact union of the finitely many Nx ’s.
Next let KH be a compact neighborhood of 1 in H . Since nonempty open

sets always have positive Haar measure, the left Haar measure on H is positive
on KH . Let eK 0 be the compact set eK 0 = eKKH , so that π(eK 0) = π(eK ) = K .
Choose f1 ∈ Ccom(G) with f1 ∏ 0 everywhere and with f1 = 1 on eK 0. If g is in
eK 0, then

R
H f1(gh) dlh is ∏ the H measure of KH , and hence f ##1 is > 0 on K .

Define

f (g) =






f1(g)
F(π(g))
f ##1 (π(g))

if π(g) ∈ K ,

0 otherwise.

Then f ## equals F on K and equals 0 off K , and therefore f ## = F everywhere.
Certainly f has compact support. To see that f is continuous, it suffices to

check that the two formulas for f (g) fit together continuously at points g of the
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closed setπ−1(K ). It is enough to check points where f (g) 6= 0. Say gα → g for
a net {gα}. We must have F(π(g)) 6= 0. Since F is continuous, F(π(gα)) 6= 0
eventually. Thus for all α sufficiently large, f (gα) is given by the first of the two
formulas. Thus f is continuous. §

Theorem 6.18. LetG be a locally compact group, let H be a closed subgroup,
and let 1G and 1H be the respective modular functions. Then a necessary and
sufficient condition forG/H to have a nonzeroG invariant regular Borel measure
is that the restriction to H of1G equal1H . In this case such a measure dµ(gH)
is unique up to a scalar, and it can be normalized so that

Z

G
f (g) dlg =

Z

G/H

h Z

H
f (gh) dlh

i
dµ(gH)

for all f ∈ Ccom(G).
PROOF. Let dµ(gH) be a nonzero invariant regular Borel measure on G/H .

Using the function f ## defined above, we can define a measure deµ(g) on G via
a linear functional on Ccom(G) by

Z

G
f (g) deµ(g) =

Z

G/H
f ##(gH) dµ(gH).

Since f 7→ f ## commutes with left translation by G, deµ is a left Haar measure
on G. By Theorem 6.8, deµ is unique up to a scalar; hence dµ(gH) is unique up
to a scalar.
Under the assumption that G/H has a nonzero invariant Borel measure, we

have just seen in essence that we can normalize the measure so that the boxed
formula holds. If we replace f in the boxed formula by f ( · h0), then the left
side is multiplied by1G(h0), and the right side is multiplied by1H (h0). Hence
1G

Ø
Ø
H = 1H is necessary for existence.
Let us prove that this condition is sufficient for existence. If h in Ccom(G/H)

is given, we can choose f in Ccom(G) by Lemma 6.17 such that f ## = h. Then
we define L(h) =

R
G f (g) dlg. If L is well defined, then it is a linear functional,

Lemma 6.17 shows that it is positive, and L certainly is the same on a function as
on itsG translates. By the Riesz RepresentationTheorem, L defines aG invariant
Borel measure dµ(gH) on G/H such that the boxed formula holds.
Thus all we need to do is see that L is well defined if 1G

Ø
Ø
H = 1H . We are

thus to prove that if f ∈ Ccom(G) has f # = 0, then
R
G f (g) dlg = 0. Let √

be in Ccom(G). Since Fubini’s Theorem is applicable to continuous functions of
compact support, we have

0 =
R
G √(g) f #(g) dlg

=
R
G

£ R
H √(g) f (gh) dlh

§
dlg
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=
R
H

£ R
G √(g) f (gh) dlg

§
dlh

=
R
H

£ R
G √(gh−1) f (g) dlg

§
1G(h) dlh by definition of 1G

=
R
G f (g)

£ R
H √(gh−1)1G(h) dlh

§
dlg

=
R
G f (g)

£ R
H √(gh)1G(h)−11H (h) dlh

§
dlg by Proposition 6.15c

=
R
G f (g)√#(g) dlg since 1G

Ø
Ø
H = 1H .

By Lemma 6.17 we can choose √ ∈ Ccom(G) such that √## = 1 on the image in
G/H of the support of f . Then the right side of the above display is

R
G f (g) dlg,

and the conclusion is that this is 0. Thus L is well defined, and existence is
proved. §

EXAMPLE. Let G = SL(2, R), and letH be the upper half plane in C, namely
{z | Im z > 0}. The group G acts continuously on H by linear fractional
transformations, the action being

µ
a b
c d

∂
(z) =

az + b
cz + d

.

This action is transitive since
µ
y1/2 xy−1/2

0 y−1/2

∂
(i) = x + iy if y > 0, (∗)

and the subgroup that leaves i fixed, by direct computation, is the rotation
subgroup K , which consists of the matrices

≥
cos θ − sin θ

sin θ cos θ

¥
. The mapping of

G to H given by g 7→ g(i) therefore descends to a one-one continuous map
of G/K onto H, and Problem 3 at the end of the chapter shows that this map
is a homeomorphism. The group G is generated by commutators and hence is
unimodular, and the subgroup K is unimodular, being compact. Theorem 6.18
therefore says thatH has aG-invariant Borel measure that is unique up to a scalar
factor. Let us see for p = −2 that the measure y p dx dy is invariant under the
subgroup acting in (∗). We have

µ
y1/20 x0y

−1/2
0

0 y−1/2
0

∂
(x + iy) = y0(x + iy) + x0 = (y0x + x0) + iy0y. (∗∗)

If ϕ denotes left translation by the matrix on the left in (∗∗), then (dx dy)ϕ−1 =
y20 dx dy. Hence (y−2 dx dy)ϕ−1 = (y−2)ϕ (dx dy)ϕ−1 = (y−2

0 y−2)(y20 dx dy) =
y−2 dx dy, and y−2 dx dy is preserved by every matrix in (∗∗). The group G is
generated by the matrices in (∗∗) and the one additional matrix

≥
0 1

−1 0

¥
. Since

µ
0 1

−1 0

∂
(x + iy) =

1
(−1)(x + iy)

=
−x + iy
x2 + y2

,
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≥
0 1

−1 0

¥
sends y−2 dx dy to

° y
x2+y2

¢−2
| det J | dx dy, where J is the Jacobian

matrix of F(x, y) =
°

−x
x2+y2 ,

y
x2+y2

¢
, namely J =

√ x2−y2
(x2+y2)2

2xy
(x2+y2)2

−2xy
(x2+y2)2

x2−y2
(x2+y2)2

!

. Cal-

culation gives | det J | = (x2 + y2)−2, and therefore
≥

0 1
−1 0

¥
sends y−2 dx dy to

itself. Consequently y−2 dx dy is, up to a multiplicative constant, the one and
only G-invariant measure onH.

5. Convolution and L p Spaces

We turn our attention to the way that Haar measure arises in real analysis. This
section will introduce convolution, and aspects of Fourier analysis in the setting
of various kinds of locally compact groups will be touched upon in later sections
and in the problems at the end of that chapter. In most such applications of
Haar measure to Fourier analysis, one assumes that the group under study is
unimodular, even if some of its closed subgroups are not.
Thus let G be a locally compact group. We assume throughout this section

that G is unimodular. We can then write dx for a two-sided Haar measure on G.
Proposition 6.15c shows that we have

R
G f (x−1) dx =

R
G f (x) dx for all Borel

functions f ∏ 0. We abbreviate L p(G, dx) as L p(G).

Proposition 6.19. Let G be unimodular, let 1 ≤ p < ∞, and let f be a Borel
function in L p. Then g 7→ g f and g 7→ f g are continuous functions from G
into L p.
PROOF. Lemma 6.14 gives the result for f in Ccom(G). Proposition 11.21 of

Basic shows that Ccom(G) is dense in L p(G). Given g0 ∈ G and ≤ > 0, find h in
Ccom(G) with k f − hkp ≤ ≤. Then

kg f − g0 f kp ≤ kg f − ghkp + kgh − g0hkp + kg0h − g0 f kp
= 2k f − hkp + kgh − g0hkp by left invariance of dx

≤ 2≤ + kgh − g0hkp,

and hence lim supg→g0 kg f − g0 f kp ≤ 2≤. Since ≤ is arbitrary, we see that g f
tends to g0 f in L p(G) as g tends to g0. Similarly f g tends to f g0 in L p(G) as
g tends to g0. §

A key tool for real analysis on G is convolution, just as it was with RN . On a
formal level the convolution f ∗ h of two functions f and h is

( f ∗ h)(x) =
Z

G
f (xy−1)h(y) dy =

Z

G
f (y)h(y−1x) dy.
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The formal equality of the two integrals comes about by changing y into y−1 in the
first integral and then replacing xy by y. If G is abelian, then xy−1 = y−1x ; thus
the first integral for f ∗ h equals the second integral for h ∗ f , and the conclusion
is that convolution is commutative. However, convolution is not commutative if
G is nonabelian.
To make mathematical sense out of f ∗ h, we adapt the corresponding known

discussion7 for the special case G = RN . Let us begin with the case that f and h
are nonnegativeBorel functions onG. The question iswhether f ∗h ismeaningful
as a Borel function ∏ 0. In fact, (x, y) 7→ f (xy−1) is the composition of the
continuous function F : G×G → G given by F(x, y) = xy−1, followed by the
Borel function f : G → [0,+∞]. If U is open in [0,+∞], then f −1(U) is in
B(G), and an argument like the one for Proposition6.8 shows that ( f ◦F)−1(U) =
F−1( f −1(U)) is in B(G × G). Then the product (x, y) 7→ f (xy−1)g(y) is a
Borel function, and we would like to use Fubini’s Theorem to conclude that
x 7→ ( f ∗ h)(x) is a Borel function∏ 0. Unfortunately we do not know whether
the σ -algebras match properly, specifically whether B(G ×G) = B(G) ×B(G).
On the other hand, this kind of product relation does hold for Baire sets. We

therefore repeat the above argument with nonnegative Baire functions in place of
nonnegative Borel functions. Now the only possible difficulty comes from the
fact that Haar measure onG might not be σ -finite. This problem is easily handled
by the same kind of localization argument as with the proof of uniqueness for
Theorem 6.8: Suppose thatG is not σ -compact and that f ∏ 0 is a Baire function
on G. If E is any subset of [0,+∞], then f −1(E) and f −1(Ec) are disjoint
Baire sets. Since any two Baire sets that fail to be σ -bounded have nonempty
intersection, only oneof f −1(E) and f −1(Ec) can fail to beσ -bounded. It follows
that there is exactly onemember c of [0,+∞] forwhich f −1(c) is not σ -bounded.
So as to avoid unimportant technicalities, let us assume for all Baire functions
under discussion that this value is 0, i.e., that each Baire function considered
in some convolution vanishes off some σ -bounded set. Any σ -bounded set is
contained in some σ -compact open subgroup G0 of G, and thus the convolution
effectively takes place on the σ -compact open subgroup G0; the convolution is 0
outside G0.

Proposition 6.20. Suppose that f and h are nonnegative Baire functions on
G, each vanishing off a σ -bounded subset of G. Let 1 ≤ p ≤ ∞, and let p0

be the dual index. Then convolution is finite almost everywhere in the following
cases, and then the indicated inequalities of norms are satisfied:

(a) for f in L1(G) and h in L p(G), and then k f ∗ hkp ≤ k f k1khkp,
for f in L p(G) and h in L1(G), and then k f ∗ hkp ≤ k f kpkhk1,

7The discussion in question appears in Section VI.2 of Basic.
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(b) for f in L p(G) and h in L p0
(G), and then k f ∗ hksup ≤ k f kpkhkp0 ,

for f in L p0
(G) and h in L p(G), and then k f ∗ hksup ≤ k f kp0khkp.

Consequently f ∗ h is defined in the above situations even if the scalar-valued
functions f and h are not necessarily∏ 0, and the estimates on the norm of f ∗ h
are still valid. In case (b), the function f ∗ h is actually continuous.

REMARK. The proof of the continuity in (b) will show actually that f ∗ h is
uniformly continuous in a certain sense.

PROOF. The argument for measurability has been given above. The argument
for the norm inequalities is proved in the same way8 as in the special case that
G = RN . Namely, we use Minkowski’s inequality for integrals to handle (a),
and we use Hölder’s inequality to handle (b).
Now consider the question of continuity in (b). At least one of the indices

p and p0 is finite. First suppose that p is finite. We observe for g ∈ G that
g( f ∗h)(x) = ( f ∗h)(g−1x) =

R
G f (g−1xy−1)h(y) dy =

R
G(g f )(xy−1)h(y) dy

= (g f ) ∗ h(x). Then we use the bound k f ∗ hksup ≤ k f kpkhkp0 to make the
estimate, for g ∈ G, that

kg( f ∗ h) − ( f ∗ h)ksup = k(g f ) ∗ h − f ∗ hksup
= k(g f − f ) ∗ hksup ≤ kg f − f kpkhkp0 .

Proposition 6.19 shows that the right side tends to 0 as g tends to 1, and hence
limg→1( f ∗ h)(g−1x) = ( f ∗ h)x . If instead p0 is finite, we argue similarly
with right translations of h, finding first that ( f ∗ h)g = f ∗ (hg) and then that
k( f ∗ h)g − ( f ∗ h)ksup ≤ k f kpkhg − hkp0 . Application of Proposition 6.19
therefore shows that limg→1( f ∗ h)(xg−1) = ( f ∗ h)(x). §

Corollary 6.21. Convolution makes L1(G) into an associative algebra
(possibly without identity) in such a way that the norm satisfies k f ∗ hk1 ≤
k f k1khk1 for all f and h in L1(G).

PROOF. The norm inequality was proved in Proposition 6.20a, and it justifies
the interchange of integrals in the calculation

(( f1 ∗ f2) ∗ f3)(x) =
R
G

R
G f1(y) f2(y−1z) f3(z−1x) dy dz

=
R
G

R
G f1(y) f2(y−1z) f3(z−1x) dz dy

=
R
G

R
G f1(y) f2(z) f3(z−1y−1x) dz dy under z 7→ yz

= ( f1 ∗ ( f2 ∗ f3))(x),

which in turn proves associativity. §

8Propositions 6.14 and 9.10 of Basic.



240 VI. Compact and Locally Compact Groups

We shall need the following result in proving the Peter–Weyl Theorem in
Section 7.

Proposition 6.22. Let G be a compact group, let f be in L1(G), and let h
be in L2(G). Put F(x) =

R
G f (y)h(y−1x) dy. Then F is the limit in L2(G)

of a sequence of functions, each of which is a finite linear combination of left
translates of h.

REMARK. For a comparable result in RN , see Corollary 6.17 of Basic. We
know from Proposition 6.15b that compact groups are unimodular.

For the proof we require a lemma.

Lemma 6.23. Let G be a compact group, and let h be in L2(G). For any
≤ > 0, there exist finitely many yi ∈ G and Borel sets Ei ⊆ G such that the Ei
disjointly cover G and

kh(y−1x) − h(y−1
i x)k2,x < ≤ for all i and for all y ∈ Ei .

PROOF. By Proposition 6.19 choose an open neighborhood U of 1 such
that kh(gx) − h(x)k2,x < ≤ whenever g is in U . For each z0 ∈ G, we have
kh(gz0x) − h(z0x)k2,x < ≤ whenever g is in U . The set Uz0 is an open
neighborhood of z0, and such sets cover G as z0 varies. Find a finite subcover,
sayUz1, . . . ,Uzn , and letUi = Uzi . Define Fj = Uj −

S j−1
i=1 Ui for 1 ≤ j ≤ n.

Then the lemma follows with yi = z−1i and Ei = F−1
i . §

PROOF OF PROPOSITION 6.22. Given ≤ > 0, choose yi and Ei as in Lemma
6.23, and put ci =

R
Ei f (y) dy. Then

∞
∞ R

G f (y)h(y−1x) dy −
P

i ci h(y
−1
i x)

∞
∞
2,x

≤
∞
∞P

i
R
Ei | f (y)||h(y

−1x) − h(y−1
i x)| dy

∞
∞
2,x

≤
P

i
R
Ei | f (y)| kh(y

−1x) − h(y−1
i x)k2,x dy

≤
P

i
R
Ei | f (y)|≤ dy = ≤k f k1. §

6. Representations of Compact Groups

The subject of functional analysis always suggests trying to replace a mathe-
matical problem about functions by a problem about a space of functions and
working at solving the latter. By way of example, this point of view is what lay
behind our approach in Section I.2 to certain kinds of boundary-value problems
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by using the method of separation of variables. In some of the cases of separation
of variables we considered, as well as in other situations arising in nature, the
problem has some symmetry to it, and that symmetry gets passed along to the
space of functions under study. Mathematically the symmetry is captured by a
group, since the set of symmetries is associative and is closed under composition
and inversion. The subject of representation theory deals with exploiting such
symmetry, at least in cases for which the problem about functions is linear.
We shall begin with a definition and some examples of finite-dimensional rep-

resentations of an arbitrary topological group, and then we shall develop a certain
amount of theory of finite-dimensional representations under the assumption that
the group is compact. The main theorem in this situation is the Peter–Weyl
Theorem, which we take up in the next section. In Section 8 we introduce
infinite-dimensional representations because vector spaces of functions that arise
in analysis problems are frequently infinite-dimensional; in that section we study
what happenswhen the group is compact, but a considerable body ofmathematics
beyond the scope of this book investigates what can happen for a noncompact
group.
Historically the original representations that were studied were matrix rep-

resentations. An N -by-N matrix representation of a topological group G
is a continuous homomorphism 8 of G into the group GL(N , C) of invert-
ible complex matrices. In other words, 8(g) is an N -by-N invertible com-
plex matrix for each g in G, the matrices are related by the condition that
8(gh)i j =

PN
k=18(g)ik8(h)k j , and the functions g 7→ 8(g)i j are continuous.

Eventually it was realized that sticking to matrices obscures what is really
happening. For one thing the group GL(N , C) is being applied to the space CN

of column vectors, and some vector subspaces of CN seem more important than
others when they are really not. Instead, it is better to replace CN by a finite-
dimensional complex vector space V and consider continuous homomorphisms
ofG into the groupGLC(V ) of invertible linear transformations on V . Specifying
an ordered basis of V allows one to identify GLC(V ) with GL(N , C), and then
the homomorphism gets identified with a matrix representation. In the special
case that V = CN , this identification can be taken to be the usual identification of
linear functions andmatrices. The point, however, is that it is unwise to emphasize
one particular ordered basis in advance, and it is better to work with a general
finite-dimensional complex vector space.
Thus we define a finite-dimensional representation of a topological group

G on a finite-dimensional complex vector space V to be a continuous homomor-
phism8 of G into GLC(V ). The continuity condition means that in any basis of
V the matrix entries of 8(g) are continuous for g ∈ G. It is equivalent to say
that g 7→ 8(g)v is a continuous function from G into V for each v in V , i.e.,
that for each v in V , if 8(g)v is expanded in terms of a basis of V , then each
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entry is a continuous function of g. The vector space V is allowed to be CN in
the definition, and thus matrix representations are part of the theory.
Before coming to a list examples, let us dispose of two easy kinds of examples

that immediately suggest themselves.
For anyG the trivial representationofG on V is the representation8 ofG for

which8(g) = 1 for all g ∈ G. Sometimeswhen the term “trivial representation”
is used, it is understood that V = C; sometimes the case V = C is indicated by
referring to the “trivial 1-dimensional representation.”
If G is a group of real or complex invertible N -by-N matrices, then G is

a subgroup of GL(N , C), and the relative topology from GL(N , C) makes G
into a topological group. The inclusion mapping 8 of G into GL(N , C) is
a representation known as the standard representation of G. The following
question then arises: If G is such a group, why consider representations of G
when we already have one? The answer, from an analyst’s point of view, is that
representations are thrust on us by some mathematical problem that we want to
solve, and we have to work with what we are given; other representations than
the standard one may occur in the process.

EXAMPLES OF FINITE-DIMENSIONAL REPRESENTATIONS.
(1) One-dimensional representations. A continuous homomorphism of a topo-

logical group G into the multiplicative groupC× of nonzero complex numbers is
a representation because we can regard C× as GL(1, C). Of special interest are
the representations of this kind that take values in the unit circle {eiθ }. These are
calledmultiplicative characters.

(a) The exponential functions that arise in Fourier series are examples; the
group G in this case is the circle group S1, namely the quotient of R modulo the
subgroup 2πZ of multiples of 2π , and for each integer n, the function x 7→ einx
is a multiplicative character of R that descends to a well-defined multiplicative
character of S1.

(b) The exponential functions that arise in the definition of the Fourier
transform on RN , namely x 7→ eix ·y , are multiplicative characters of the additive
group RN .

(c) Let Jm be the cyclic group {0, 1, 2, . . . ,m−1} of integers modulo m
under addition, and let ≥m = e2π i/m . For each integern and for k in Jm , the formula
χn(k) = (≥ nm)k defines a multiplicative character χn of Jm . These multiplicative
characters are distinct for 0 ≤ n ≤ m − 1.

(d) If G is the symmetric group Sn on n letters, then the sign mapping
σ 7→ sgn σ is a multiplicative character.

(e) The integer powers of the determinant are multiplicative characters of
the unitary group U(N ).
(2) Some representations of the symmetric groupS3 on three letters.
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(a) The trivial character and the sign character defined in Example 1d above
are the only multiplicative characters.

(b) For each permutation σ , let 8(σ) be the 3-by-3 matrix of the
linear transformation carrying the standard ordered basis (e1, e2, e3) of C3 to
the ordered basis (eσ(1), eσ(2), eσ(3)). To check that 8 is indeed a representa-
tion, we start from 8(σ)ej = eσ( j); applying 8(τ) to both sides, we obtain
8(τ)8(σ)ej = 8(τ)eσ( j) = eτ(σ ( j)) = e(τσ )( j) = 8(τσ)ej , and we conclude
that 8(τ)8(σ) = 8(τσ). The vector e1 + e2 + e3 is fixed by each 8(σ), and
therefore the 1-dimensional vector subspaceC(e1 + e2 + e3) is “invariant” in the
sense of being carried to itself under 8(S3).

(c) Place an equilateral triangle in the plane R2 with its center at the origin
and with vertices given in polar coordinates by (r, θ) = (1, 0), (1, 2π/3), and
(1, 4π/3). Let the vertices be numbered 1, 2, 3, and let 8(σ) be the matrix of
the linear transformation carrying vertex j to vertex σ( j) for each j . Then 8 is
given on the transpositions ( 1 2 ) and ( 2 3 ) by

8(( 1 2 )) =

µ
−1/2

p
3/2p

3/2 1/2

∂
and 8(( 2 3 )) =

µ
1 0
0 −1

∂

and is given on any product of these two transpositions by the corresponding
product of the above two matrices. The eigenspaces for8(( 2 3 )) are Ce1 and
Ce2, and these subspaces are not eigenspaces for 8(( 1 2 )). Consequently the
only vector subspaces carried to themselves by8(S3) are the trivial ones, namely
0 and C2. The functions on S3 of the form σ 7→ 8(σ)i j will play a role similar
to the role of the functions x 7→ einx in Fourier series, and we record their values
here:

σ 8(σ)11 8(σ)12 8(σ)21 8(σ)22

(1) 1 0 0 1
(123) −1/2 −

p
3/2

p
3/2 −1/2

(132) −1/2
p
3/2 −

p
3/2 −1/2

(12) −1/2
p
3/2

p
3/2 1/2

(23) 1 0 0 −1
(13) −1/2 −

p
3/2 −

p
3/2 1/2

(3) A family of representations of the unitary group G = U(N ). Let V
consist of all polynomials in z1, . . . , zN , z̄1, . . . , z̄N homogeneous of degree k,
i.e., having every monomial of total degree k, and let

8(g)P








z1
...
zN



 ,




z̄1
...
z̄N







 = P



g−1




z1
...
zN



 , ḡ−1




z̄1
...
z̄N







 .

Thevector subspaceV 0 ofholomorphicpolynomials (thosewith no z̄’s) is carried
to itself by all 8(g), and therefore V 0 is an invariant subspace in the sense of
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being carried to itself by 8(G). The restriction of the 8(g)’s to V 0 is thus itself
a representation. When k = 1, this representation on V 0 may at first seem to be
the standard representation of U(N ), but it is not. In fact, V 0 for k = 1 consists
of all linear combinations of the N linear functionals




z1
...
zN



 7→ z1 through




z1
...
zN



 7→ zN .

In other words, V 0 is actually the space of all linear functionals on CN . The
definition of 8 by 8(g)`(z) = `(g−1z) for z ∈ CN and for ` in the space of
linear functionals involves no choice of basis. The representation on V 0 when
N = 1 is the “contragredient” of the standard representation, in a sense that will
be defined for any representation in Example 6 below.
(4) A family of representations of the special unitary group G = SU(2) of

all 2-by-2 unitary matrices of determinant 1, namely all matrices
≥

α β

−β̄ ᾱ

¥
with

|α|2 + |β|2 = 1. Let V be the space of homogeneous holomorphic polynomials
of degree n in z1 and z2, let8 be the representation defined in the same way as in
Example 3, and let V 0 be the space of all holomorphic polynomials in z of degree
n with

80

µ
α β

−β̄ ᾱ

∂
Q(z) = (β̄z + α)nQ

µ
ᾱz − β

β̄z + α

∂
.

Define E : V → V 0 by (EP)(z) = P
° z
1
¢
. Then E is an invertible linear

mapping and satisfies E8(g) = 80(g)E for all g, and we say that E exhibits 8
and 80 as equivalent (i.e., isomorphic).
(5) A family of representations for G equal to the orthogonal group O(N ) or

the rotation subgroup SO(N ). Let V consist of all polynomials in x1, . . . , xN
homogeneous of degree k, and let

8(g)P








x1
...
xN







 = P



g−1




x1
...
xN







 .

Then 8 is a representation. When we want to emphasize the degree, let us write
8k and Vk . Define the Laplacian operator as usual by

1 =
@2

@x21
+ · · · +

@2

@x2N
.

This carries Vk to Vk−2, and one checks easily that it satisfies 18k(g) =
8k−2(g)1. This commutativity property implies that the kernel of 1 is an
invariant subspace of Vk , the space of homogeneous harmonic polynomials
of degree k.
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(6) Contragredient representation. Let G be any topological group, and let
8 be a finite-dimensional representation of G on the complex vector space V .
The contragredient of8 is the representation8c of G on the space of all linear
functionals on V defined by (8c(g)`)(v) = `(8(g−1)v) for any linear functional
` and any v in V .

Having given a number of examples, let us return to a general topological
groupG. An important equivalent definition of finite-dimensional representation
is that8 is a continuous group action ofG on a finite-dimensional complex vector
space V by linear transformations. In this case the assertion about continuity is
that the map G × V → V is continuous jointly, rather than continuous only as a
function of the first variable.
Let us deduce the joint continuity from continuity in the first variable. To do

so, it is enough to verify continuity of G × V → V at g = 1 and v = 0. Let
dimC V = N . The topology on V is obtained, as was spelled out above, by
choosing an ordered basis and identifying V with CN . The resulting topology
makes V into a topological vector space, and the topology does not depend on the
choice of ordered basis; the independence of basis follows from the fact that every
linear mapping on CN is continuous. Thus we fix an ordered basis (v1, . . . , vN )

and regard the map {ci }Ni=1 7→
PN

i=1 civi as a homeomorphism of CN onto V .
Put

∞
∞PN

i=1 civi
∞
∞ =

°PN
i=1 |ci |2

¢1/2. Given ≤ > 0, choose for each i between 1
and N a neighborhood Ui of 1 in G such that k8(g)vi − vik < 1 for g ∈ Ui . If
g is in

TN
i=1Ui and if v =

P
i civi has kvk < ≤, then

k8(g)vk ≤
∞
∞8(g)

°P
civi

¢
−

°P
civi

¢∞∞ + kvk

≤
P

|ci |k8(g)vi − vik + kvk

≤
°P

|ci |2
¢1/2N 1/2 + kvk by the Schwarz inequality

≤ (N 1/2 + 1)≤.

This proves the joint continuity at (g, v) = (1, 0), and the joint continuity
everywhere follows by translation in the two variables separately.
A representation on a nonzero finite-dimensional complex vector space V

is irreducible if it has no invariant subspaces other than 0 and V . Every
1-dimensional representation is irreducible, and we observed that Example 2c
is irreducible. We observed also that Examples 2b and 3 are not irreducible.
A representation8 on the finite-dimensional complex vector space V is called

unitary if an inner product, always assumed Hermitian, has been specified for V
and if each8(g) is unitary relative to that inner product (i.e., has8(g)∗8(g) = 1
and hence8(g)∗ = 8(g)−1 for all g ∈ G). On the level of the inner product for
V , a unitary representation has the property that (8(g)u, v) = (u,8(g)∗v) =
(u,8(g)−1v) = (u,8(g−1)v).
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The question of whether a representation is unitary is important for analysis
because it gets at the notion of exploiting symmetries by using representation
theory. Specifically for a unitary representation the orthogonal complement U⊥

of an invariant vector subspace U is an invariant subspace because

(8(g)u⊥, u) = (u⊥,8(g−1)u) ∈ (u⊥,U) = 0 for u⊥ ∈ U⊥, u ∈ U.

Thus when an analysis problem leads us to a unitary representation and we locate
an invariant vector subspace, the orthogonal complement will be an invariant
vector subspace also. In this way the analysis problemmay have been subdivided
into two simpler problems.
Now let us suppose that the topological groupG is compact. One of the critical

properties of such a group for representation theory is that G has, up to a scalar
multiple, a unique two-sided Haar measure, i.e., a nonzero regular Borel measure
that is invariant under all left and right translations. This result was proved in
Theorem 6.8 and Proposition 6.15b. Let us normalize this Haar measure so
that it has total measure 1. Since the normalized measure is unambiguous, we
usually write integrals with respect to normalized Haar measure by expressions
like

R
G f (x) dx , dropping any name like µ from the notation. Also, we write

L1(G) and L2(G) in place of L1(G, dx) and L2(G, dx).
We shall want to use convolution of functions on G, and we therefore need

to confront the technical problem that the measurability in Fubini’s Theorem can
break downwith Borel measurable functions ifG is not separable. For this reason
we shall stick to Baire measurable functions, where no such difficulty occurs.9
In particular the spaces L1(G) and L2(G) will be understood to have the Baire
sets as the relevant σ -algebras.10
The prototypes for the theory with G compact are the cases that G is the circle

group S1 and that G is a finite group, such as the symmetric groupS3. The Haar
measure is 1

2π dx in the first case, where this time we retain the convention that
dx is Lebesgue measure. The Haar measure is 16 times the counting measure in
the second case, the 16 having the effect of making the total measure be 1.

Proposition 6.24. If 8 is a representation of a compact group G on a finite-
dimensional complex vector space V , then V admits an inner product such that
8 is unitary.

9Corollary 11.16 of Basic shows that every continuous function of compact support on a locally
compact Hausdorff space is Baire measurable.

10Problem 3 at the end of Chapter XI of Basic shows for any regular Borel measure on a compact
Hausdorff space that every Borel measurable function can be adjusted on a Borel set of measure 0 to
be Baire measurable. Consequently the spaces L1(G) and L2(G) as Banach spaces are unaffected
by specifying Baire measurability rather than Borel measurability if the Borel measure is regular.
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PROOF. Let h · , · i be any Hermitian inner product on V , and define

(u, v) =
R
G h8(x)u,8(x)vi dx .

It is straightforward to see that ( · , · ) has the required properties. §

Corollary 6.25. If 8 is a representation of a compact group G on a finite-
dimensional complex vector space V , then 8 is the direct sum of irreducible
representations. In other words, V = V1 ⊕ · · · ⊕ Vk , with each Vj an invariant
vector subspace on which 8 acts irreducibly.

REMARK. The “direct-sum” notation V = V1 ⊕ · · · ⊕ Vk means that each
element of V has a unique expansion as a linear combination of k vectors, one
from each Vj . If G is the noncompact group of all complex matrices

≥
a b
0 1

¥
, then

the standard representation ofG onC2 hasCe1 as an invariant subspace, but there
is no other invariant subspace V 0 such that C2 = Ce1 ⊕ V 0. Thus the corollary
breaks down if the hypothesis of compactness is dropped completely.

PROOF. Form ( · , · ) as in Proposition 6.24. Find an invariant subspace U 6=
0 of minimal dimension and take its orthogonal complement U⊥. Since the
representation is unitary relative to ( · , · ),U⊥ is an invariant subspace. Repeating
the argument with U⊥ and iterating, we obtain the required decomposition. §

Proposition 6.26 (Schur’s Lemma, part 1). Suppose that 8 and 80 are ir-
reducible representations of a compact group G on finite-dimensional complex
vector spaces V and V 0, respectively. If L : V → V 0 is a linear map such that
80(g)L = L8(g) for all g ∈ G, then L is one-one onto or L = 0.

PROOF. We see easily that ker L and image L are invariant subspaces of V and
V 0, respectively, and then the only possibilities are the ones listed. §

Corollary 6.27 (Schur’s Lemma, part 2). Suppose 8 is an irreducible repre-
sentation of a compact group G on a finite-dimensional complex vector space V .
If L : V → V is a linear map such that 8(g)L = L8(g) for all g ∈ G, then L
is scalar.

REMARK. This is the first place where we make use of the fact that the scalars
are complex, not real.

PROOF. Let ∏ be an eigenvalue of L . Then L − ∏I is not one-one onto, but it
does commute with 8(g) for all g ∈ G. By Proposition 6.26, L − ∏I = 0. §
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Corollary 6.28. Every irreducible finite-dimensional representation of a com-
pact abelian group G is given, up to equivalence, by a multiplicative character.

PROOF. If G is abelian and 8 is irreducible, we apply Corollary 6.27 with
L = 8(g0) and see that 8(g0) is scalar. All the members of 8(G) are therefore
scalar, and every vector subspace is invariant. For irreducibility the representation
must then be 1-dimensional. Fixing a basis {v} of the 1-dimensional vector
space and forming the corresponding 1-by-1 matrices, we obtain a multiplicative
character. §

EXAMPLE 1a, CONTINUED. For the circle group S1 = R
±
2πZ, we observed

that we obtain a family of multiplicative characters parametrized by the integers,
the nth such character being

x 7→ einx .

The corresponding 1-dimensional representation is x 7→ multiplication by einx .
In the next corollary we shall prove that the multiplicative characters are orthogo-
nal in L2(S1) in the same sense that the exponential functions are orthogonal. The
knowncompletenessof the orthonormal systemof exponential functions therefore
gives a proof, though not the simplest proof, that the exponential functions are
the only multiplicative characters of S1. A simpler proof can be constructed via
real-variable theory by making direct use of the multiplicative property and the
continuity.

EXAMPLES 2a AND 2c, CONTINUED. We noted that the trivial character and
the sign character are the only multiplicative characters of S3. These are the
following two functions of σ ∈ S3:

σ 8 = 1 8 = sign

(1) 1 1
(123) 1 1
(132) 1 1
(12) 1 −1
(23) 1 −1
(13) 1 −1

For this example the corollary below will say that these two functions on S3,
together with the four functions listed earlier for Example 2c, form an orthogonal
set of six functions. They are not quite orthonormal since the four functions f
listed earlier have k f k2 =

q
1
2 relative to the normalized counting measure. The

interpretation of
q
1
2 is that its square is the reciprocal of the dimension of the

underlying vector space.
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Corollary 6.29 (Schur orthogonality relations).
(a) Let8 and80 be inequivalent irreducible unitary representations of a com-

pact groupG on finite-dimensional complex vector spaces V and V 0, respectively,
and let the understood inner products be denoted by ( · , · ). Then

Z

G
(8(x)u, v)(80(x)u0, v0) dx = 0 for all u, v ∈ V and u0, v0 ∈ V .

(b) Let 8 be an irreducible unitary representation on a finite-dimensional
complex vector space V , and let the understood inner product be denoted by
( · , · ). Then

Z

G
(8(x)u1, v1)(8(x)u2, v2) dx =

(u1, u2)(v1, v2)
dim V

for u1, v1, u2, v2 ∈ V .

REMARK. The proof of (b) will make use of the notion of the “trace” of a square
matrix or of a linear map from a finite-dimensional vector space V to itself. For
an n-by-n square matrix A the trace is the sum of the diagonal entries. This is
(−1)n−1 times the coefficient of ∏n−1 in the polynomial det(A − ∏1). Because
of the multiplicative property of the determinant, this polynomial is the same for
A as for BAB−1 if B is invertible. Hence A and BAB−1 have the same trace.
Then it follows that the trace Tr L of a linear map L from V to itself is well
defined as the trace of the matrix of the linear map relative to any basis. For
further background about the trace, see Section II.5.

PROOF. (a) Let l : V 0 → V be any linear map, and form the linear map

L =
R
G 8(x)l80(x−1) dx .

(This integration can be regarded as occurring for matrix-valued functions and
is to be handled entry-by-entry.) Because of the left invariance of dx , we obtain
8(y)L80(y−1) = L , so that 8(y)L = L80(y) for all y ∈ G. By Proposition
6.26 and the assumed inequivalence, L = 0. Thus (Lv0, v) = 0. For the particular
choice of l as l(w0) = (w0, u0)u, we have

0 = (Lv0, v) =
R
G (8(x)l80(x−1)v0, v) dx

=
R
G

°
8(x)(80(x−1)v0, u0)u, v

¢
dx =

R
G (8(x)u, v)(80(x−1)v0, u0) dx,

and (a) results since (80(x−1)v0, u0) = (80(x)u0, v0).
(b) We proceed in the same way, starting from l : V → V , and obtain L = ∏I

from Corollary 6.27. Taking the trace of both sides, we find that

∏ dim V = Tr L = Tr l,
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so that ∏ = (Tr l)
±
dim V . Thus

(Lv2, v1) =
Tr l
dim V

(v1, v2).

Choose l(w) = (w, u2)u1, so that Tr l = (u1, u2). Then

(u1, u2)(v1, v2)
dim V

=
Tr l
dim V

(v1, v2) = (Lv2, v1) =
R
G (8(x)l8(x−1)v2, v1) dx

=
R
G

°
8(x)(8(x−1)v2, u2)u1, v1

¢
dx =

R
G (8(x)u1, v1)(8(x−1)v2, u2) dx,

and (b) results since (8(x−1)v2, u2) = (8(x)u2, v2). §

We can interpret Corollary 6.29 as follows. Let {8(α)} be a maximal set
of mutually inequivalent finite-dimensional irreducible unitary representations
of the compact group G. For each 8(α), choose an orthonormal basis for the
underlying vector space, and let 8(α)

i j (x) be the matrix of 8(α)(x) in this basis.
Then the functions {8(α)

i j (x)}i, j,α form an orthogonal set in the space L2(G) of
square integrable functions on G. In fact, if d(α) denotes the degree of 8(α)

(i.e., the dimension of the underlying vector space), then {(d(α))1/28
(α)
i j (x)}i, j,α

is an orthonormal set in L2(G). The Peter–Weyl Theorem in the next section will
generalize Parseval’s Theorem in the subject of Fourier series by showing that
this orthonormal set is an orthonormal basis.
We can use Schur orthogonality to get a qualitative idea of the decomposi-

tion into irreducible representations in Corollary 6.25 when 8 is a given finite-
dimensional representation of the compact group G. By Proposition 6.24 there
is no loss of generality in assuming that 8 is unitary. If 8 is a unitary finite-
dimensional representation of G, amatrix coefficient of8 is any function on G
of the form (8(x)u, v). The character or group character of 8 is the function

χ8(x) = Tr 8(x) =
X

j
(8(x)uj , uj ),

where {ui } is an orthonormal basis. This functiondepends only on the equivalence
class of 8 and satisfies

χ8(gxg−1) = χ8(x) for all g, x ∈ G.

If 8 is the direct sum of representations81, . . . ,8n , then

χ8 = χ81
+ · · · + χ8n

.

Any multiplicative character is the group character of the corresponding
1-dimensional representation.
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EXAMPLE 4, CONTINUED. Characters for SU(2). Let 8n be the representation
of SU(2) on the homogeneous holomorphic polynomials of degree n in z1 and
z2. A basis for V consists of the monomials zk1z

n−k
2 for 0 ≤ k ≤ n, and we

easily check that 8 of the diagonal matrix tθ = diag
°
eiθ , e−iθ¢ has zk1z

n−k
2 as an

eigenvector with eigenvalue ei(n−2k)θ . Therefore

χ8n
(tθ ) = Tr8n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ .

Every element of SU(2) is conjugate to somematrix tθ , and therefore this formula
determines χ8n

on all of SU(2).

Corollary 6.30. IfG is a compact group, then the characterχ of an irreducible
finite-dimensional representation has L2 norm satisfying kχk2 = 1. If χ and χ 0

are characters of inequivalent irreducible finite-dimensional representations, thenR
G χ(x)χ 0(x) dx = 0.

PROOF. These formulas are immediate from Corollary 6.29 since characters
are sums of matrix coefficients. §

Now let8 be a given finite-dimensional representation ofG, andwrite8 as the
direct sum of irreducible representations81, . . . ,8n . If τ is an irreducible finite-
dimensional representation of G, then the sum formula for characters, together
with Corollary 6.30, shows that

R
G χ8(x)χτ (x) dx is the number of summands

8i equivalent to τ . Evidently this integer is independent of the decomposition of
8 into irreducible representations. It is called themultiplicity of τ in 8.

7. Peter–Weyl Theorem

The goal of this section is to extend Parseval’s Theorem for the circle group
S1 = R

±
2πZ to a theorem valid for all compact groups. The extension is the

Peter–Weyl Theorem. We continue with the notation of the previous section,
letting G be the group, dx be a two-sided Haar measure normalized to have
total measure one, and, in cases when G is not separable, working with Baire
measurable functions rather than Borel measurable functions.
For S1, we observed in Corollary 6.28 that the irreducible finite-dimensional

representations are 1-dimensional, hence are given by multiplicative characters.
The exponential functions x 7→ einx are examples of multiplicative characters,
and it is an exercise in real-variable theory, not hard, to prove that there are no
other examples. The matrix coefficients of the 1-dimensional representations
are just the same exponential functions x 7→ einx . The Peter–Weyl Theorem
specialized to this group says that the vector space of finite linear combinations
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of exponential functions is dense in L2(S1); the statement is a version of Fejér’s
Theorem for L2 but without the precise detail of Fejér’s Theorem. In view of
the known orthogonality of the exponential functions, an equivalent formulation
of the result for S1 is that {einx}∞n=−∞ is a maximal orthonormal set in L2(S1).
By Hilbert-space theory, {einx}∞n=−∞ is an orthonormal basis of L2(S1). For
general compactG, the Peter–Weyl Theorem asserts that the vector space of finite
linear combinations of all matrix coefficients of all irreducible finite-dimensional
representations is again dense in L2(G). The new ingredient is that wemust allow
irreducible representations of dimension > 1; indeed, examination of the group
S3 shows that the 1-dimensional representations are not enough. An equivalent
formulation in terms of orthonormal bases will be given in Corollary 6.32 below
and will use Schur orthogonality (Corollary 6.29).

Theorem 6.31 (Peter–Weyl Theorem). If G is a compact group, then the
linear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations of G is dense in L2(G).
PROOF. If h(x) = (8(x)u, v) is such a matrix coefficient, then the following

functions of x are also matrix coefficients for the same representation:

h(x−1) = (8(x)v, u),

h(gx) = (8(x)u,8(g−1)v),

h(xg) = (8(x)8(g)u, v).

Then the closure U in L2(G) of the linear span of all matrix coefficients of
all finite-dimensional irreducible unitary representations is stable under the map
h(x) 7→ h(x−1) and under left and right translation. Arguing by contradiction,
suppose thatU 6= L2(G). ThenU⊥ 6= 0, andU⊥ is closed under h(x) 7→ h(x−1)
and under left and right translation.
We first prove that there is a nonzero continuous function in U⊥. Thus let

H 6= 0 be in U⊥. For each open neighborhood N of 1 that is a Gδ, we define

fN (x) = 1
|N | (IN ∗ H)(x) = 1

|N |

R
G IN (y)H(y−1x) dy,

where IN is the indicator function of N and |N | is the Haar measure of N .
Since IN and H are in L2(G), Proposition 6.20 shows that fN is continuous. As
N shrinks to {1}, the functions fN tend to H in L2 by the usual approximate-
identity argument; hence some fN is not 0. Finally each linear combination of
left translates of H is in U⊥, and fN is therefore in U⊥ by Proposition 6.22.
Thus U⊥ contains a nonzero continuous function. Using translations and

scalar multiplications, we can adjust this function so that it becomes a continuous
function F1 in U⊥ with F1(1) real and nonzero. Set

F2(x) =
R
G F1(yxy

−1) dy.
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Then F2 is continuous, F2(gxg−1) = F2(x) for all g ∈ G, and F2(1) = F1(1)
is real and nonzero. To see that F2 is in U⊥, we argue as follows: Corollary
6.7 shows that the map (g, g0) 7→ F1(g( · )g0) is continuous from G × G into
C(G), and hence the restriction y 7→ F1(y( · )y−1) is continuous from G into
C(G). The domain is compact, and therefore the image is compact, hence totally
bounded. Consequently if ≤ > 0 is given, then there exist y1, . . . , yn such that
each y ∈ G has some yj such that kF1(y( · )y−1) − F1(yj ( · )y−1

j )ksup < ≤. Let
Ej be the subset of y’s such that j is the first index for which this happens, and
let |Ej | be its Haar measure. Then
Ø
Ø R

G F1(yxy
−1) dy −

P
j |Ej | F1(yj xy

−1
j )

Ø
Ø

=
Ø
ØP

j
R
Ej [F1(yxy

−1) − F1(yj xy−1
j )] dy

Ø
Ø

≤
P

j
R
Ej |F1(yxy

−1)−F1(yj xy−1
j )| dy ≤

P
j ≤

R
Ej dy = ≤,

and we see that F2 is the uniform limit of finite linear combinations of group
conjugates of F1. Each such finite linear combination is in U⊥, and hence F2 is
in U⊥.
Finally put

F(x) = F2(x) + F2(x−1).

Then F is continuous and is in U⊥, F(gxg−1) = F(x) for all g ∈ G, F(1) =
2F2(1) is real and nonzero, and F(x) = F(x−1). In particular, F is not the 0
function in L2(G).
Form the continuous function K (x, y) = F(x−1y) and the integral operator

T f (x) =
R
G K (x, y) f (y) dy =

R
G F(x−1y) f (y) dy for f ∈ L2(G).

Then K (x, y) = K (y, x) and
R
G×G |K (x, y)|2 dx dy < ∞. Also, T is not 0

since F 6= 0. The Hilbert–Schmidt Theorem (Theorem 2.4) applies to T as a
linear operator from L2(G) to itself, and there must be a real nonzero eigenvalue
∏, the corresponding eigenspace V∏ ⊆ L2(G) being finite dimensional.
Let us see that the subspace V∏ is invariant under left translation by g, which

we write as (L(g) f )(x) = f (g−1x). In fact, f in V∏ implies

T L(g) f (x) =
R
G F(x−1y) f (g−1y) dy =

R
G F(x−1gy) f (y) dy

= T f (g−1x) = ∏ f (g−1x) = ∏L(g) f (x).

By Proposition 6.19, g 7→ L(g) f is continuous fromG into L2(G), and therefore
L is a representation of G in the finite-dimensional space V∏. By dimensionality,
V∏ contains an irreducible invariant subspace W∏ 6= 0.
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Let ( f1, . . . , fn) be an ordered orthonormal basis of W∏. The matrix coeffi-
cients for W∏ are the functions

hi j (x) = (L(x) f j , fi ) =
R
G fj (x−1y) fi (y) dy

and by definition are in U . Since F is in U⊥, we have

0 =
R
G F(x)hii (x) dx =

R
G

R
G F(x) fi (x−1y) fi (y) dy dx

=
R
G

R
G F(x) fi (x−1y) fi (y) dx dy

=
R
G

R
G F(yx−1) fi (x) fi (y) dx dy

=
R
G

£R
G F(x−1y) fi (y) dy

§
fi (x) dx since F(gxg−1) = F(x)

=
R
G [T fi (x)] fi (x) dx = ∏

R
G | fi (x)|2 dx

for all i , in contradiction to the fact that W∏ 6= 0. We conclude that U⊥ = 0 and
therefore that U = L2(G). §

Corollary 6.32. If {8(α)} is a maximal set of mutually inequivalent finite-
dimensional irreducible unitary representations of a compact group G and if
{(d(α))1/28

(α)
i j (x)}i, j,α is a corresponding orthonormal set of matrix coefficients,

then {(d(α))1/28
(α)
i j (x)}i, j,α is an orthonormal basis of L2(G). Consequently any

f in L2(G) has the property that

k f k22 =
X

α

X

i, j
dα |( f,8(α)

i j )|2,

where ( · , · ) is the L2 inner product.
REMARK. The displayed formula, which extends Parseval’s Theorem from S1

to the compact group G, is called the Plancherel formula for G.
PROOF. The linear span of the orthonormal set in question equals the linear

span of all matrix coefficients for all finite-dimensional irreducible unitary rep-
resentations of G. Theorem 6.31 implies that the orthonormal set is maximal.
Hilbert-space theory then shows that the orthonormal set is an orthonormal basis
and that Parseval’s equality holds, and the latter fact yields the corollary. §

As is implicit in the proof ofCorollary 6.32, the partial sums in the expansion of
f in terms of the orthonormal set of normalizedmatrix coefficients are converging
to f in L2(G). Thenext result along these lines gives an analogofFejér’sTheorem
for Fourier series of continuous functions. Taking a cue from the theory of Fourier
series, let us refer to any finite linear combination of the functions8

(α)
i j (x) in the

above corollary as a trigonometric polynomial.
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Corollary6.33 (ApproximationTheorem). There exists a netT (β)of uniformly
bounded linear operators from C(G) into itself such that for every f in C(G),
T (β) f is a trigonometric polynomial for each β and limβ T (β) f = f uniformly
on G.
PROOF. The directed set will consist of pairs β = (N , ≤), where N is an open

Gδ containing the identity of G and where 1 ∏ ≤ > 0, and the partial ordering
is that (N , ≤) ≤ (N 0, ≤0) if N ⊇ N 0 and ≤ ∏ ≤0. If β = (N , ≤) is given, let
|N | be the Haar measure of N , and let √N = |N |−1 IN be the positive multiple
of the indicator function of N that makes √N have k√Nk1 = 1. Since √N is
in L2(G), Theorem 6.31 shows that we can find a trigonometric polynomial ϕβ

such that k√N − ϕβk2 ≤ ≤. The operator T (β) will be given by convolution:
T (β) f = ϕβ ∗ f .
Since k√N − ϕβk1 ≤ k√N − ϕβk2 ≤ ≤ ≤ 1, we have kϕβk1 ≤ 2. Therefore

the operator norm of T (β) on C(G) is ≤ 2.
To see that T (β) f converges uniformly to f , we use a variant of a familiar

argument with approximate identities. We write

kT (β) f − f ksup ≤ k(ϕβ − √N ) ∗ f ksup + k√N ∗ f − f ksup.

The first term on the right is ≤ kϕβ − √Nk1k f ksup ≤ kϕβ − √Nk2k f ksup ≤
≤k f ksup. For the second term we have

|√N ∗ f (x) − f (x)| =
Ø
Ø R

G √N (y)[ f (y−1x) − f (x)] dy
Ø
Ø

≤
R
G √N (y)| f (y−1x) − f (x)| dy

= |N |−1
R
N | f (y−1x) − f (x)| dy

≤ sup
y∈N

| f (y−1x) − f (x)|,

and Proposition 6.6 shows that this expression tends to 0 as N shrinks to {1}.
Finally we show that T (β) f is a trigonometric polynomial, i.e., that there are

only finitely many irreducible representations8, up to equivalence, such that the
L2 inner product (T (β) f,8i j ) can be nonzero. This inner product is equal to

R
G (ϕβ ∗ f )(x)8i j (x) dx =

RR
G×G ϕβ(xy−1) f (y)8i j (x) dx dy

=
RR

G×G ϕβ(x) f (y)8i j (xy) dx dy

=
P

k
RR

G×G ϕβ(x) f (y)8ik(x) 8k j (y) dx dy

=
P

k
R
G f (y)8k j (y)

£ R
G ϕβ(x)8ik(x) dx

§
dy,

and Schur orthogonality (Corollary 6.29) shows that the expression in brackets
is 0 unless8 is equivalent to one of the irreducible representations whose matrix
coefficients contribute to ϕβ . §
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8. Fourier Analysis Using Compact Groups

In the discussion of the representation theory of compact groups in the previous
two sections, all the representations were finite dimensional. A number of appli-
cations of compact groups to analysis, however, involve naturally arising infinite-
dimensional representations, and a theory of such representations is needed. We
address this problemnow, andwe illustrate how the theory of infinite-dimensional
representations can be used to simplify analysis problems having a compact group
of symmetries.
We continue with the notation of the previous two sections, letting G be the

compact group and dx be a two-sided Haar measure normalized to have total
measure one. In cases inwhichG is not separable,weworkwithBairemeasurable
functions rather than Borel measurable functions.
Recall from Section II.4 and Proposition 2.6 that if V is a complex Hilbert

space with inner product ( · , · ) and norm k · k, then a unitary operatorU on V is
a bounded linear operator from V into itself such that U∗ is a two-sided inverse
of U , or equivalently is a linear operator from V to itself that preserves norms
and is onto V , or equivalently is a linear operator from V to itself that preserves
inner products and is onto V .
From the definition the unitary operators on V form a group. Unlike what

happens with the N -by-N unitary group U(N ), this group is not compact if V
is infinite-dimensional. A unitary representation of G on the complex Hilbert
space V is a homomorphism of G into the group of unitary operators on V such
that a certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in the finite-dimensional case because not all possible
definitions of continuity are equivalent here. The continuity property we choose
is that the group action G × V → V , given by g × v 7→ 8(g)v, is continuous.
When 8 is unitary, this property is equivalent to strong continuity, namely that
g 7→ 8(g)v is continuous for every v in V .
Let us see this equivalence. Strong continuity results fromfixing the V variable

in the definition of continuity of the group action, and therefore continuity of
the group action implies strong continuity. In the reverse direction the triangle
inequality and the equality k8(g)k = 1 give

k8(g)v − 8(g0)v0k ≤ k8(g)(v − v0)k + k8(g)v0 − 8(g0)v0k
= kv − v0k + k8(g)v0 − 8(g0)v0k,

and it follows that strong continuity implies continuity of the group action.
With this definition of continuity in place, an example of a unitary repre-

sentation is the left-regular representation of G on the complex Hilbert space
L2(G), given by (l(g) f )(x) = f (g−1x). Strong continuity is satisfied according
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to Proposition 6.19. The right-regular representation of G on L2(G), given by
(r(g) f )(x) = f (xg), also satisfies this continuity property.
In working with a unitary representation 8 of G on V , it is helpful to define

8( f ) for f in L1(G) as a smeared-out version of the various 8(x)’s for x in
G. Formally 8( f ) is to be

R
G f (x)8(x) dx . But to avoid integrating functions

whose values are in an infinite-dimensional space, we define 8( f ) as follows:
The function

R
G f (x)(8(x)v, v0) dx of v and v0 is linear in v, conjugate linear

in v0, and bounded in the sense that
Ø
Ø R

G f (x)(8(x)v, v0) dx
Ø
Ø ≤ k f k1kvkkv0k.

Hilbert-space theory shows as a consequence11 that there exists a unique linear
operator8( f ) such that

(8( f )v, v0) =
Z

G
f (x)(8(x)v, v0) dx for all v and v0 in V

and that this operator is bounded with

k8( f )k ≤ k f k1.

From the existence and uniqueness of8( f ), it follows that8( f ) depends linearly
on f .
Let us digress for a moment to consider 8( f ) if 8 happens to be finite-

dimensional. If {ui } is an ordered orthonormal basis of the underlying finite-
dimensional vector space, then the matrix corresponding to 8( f ) in this basis
has (i, j)th entry (8( f )ui , uj ) =

R
G f (x)(8(x)ui , uj ) dx . The expression

P
i, j |(8( f )ui , uj )|2 =

P
i, j

Ø
Ø R

G f (x)(8(x)ui , uj ) dx
Ø
Ø2

is, on the one hand, the kind of term that appears in the Plancherel formula in
Corollary 6.32 and, on the other hand, is what in Section II.5 was called the
Hilbert–Schmidt norm squared k8( f )k2HS of 8( f ). It has to be independent of
the basis here in order to yield consistent formulas as we change orthonormal
bases, and that independence of basis was proved in Section II.5. Using the
Hilbert–Schmidt norm, we can rewrite the Plancherel formula in Corollary 6.32
as

k f k2 =
X

α

dα k8(α)( f )k2HS.

Unlike the formula in Corollary 6.32, this formula is canonical, not depending on
any choice of bases.

11See the remarks near the beginning of Section XII.3 of Basic.
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Returning from our digression, let us again allow8 to be infinite-dimensional.
The mapping f 7→ 8( f ) for f in L1(G) has two other properties of note. The
first is that

8( f )∗ = 8( f ∗),

where f ∗(x) = f (x−1). To prove this formula, we simply write everything out:

(8( f )∗v, v0) = (v,8( f )v0) =
R
G (v, f (x)8(x)v0) dx

=
R
G f (x)(v,8(x)v0) dx =

R
G f (x−1)(v,8(x−1)v0) dx

=
R
G f ∗(x)(8(x)v, v0) dx = (8( f ∗)v, v0).

The other property concerns convolution and is that

8( f ∗ h) = 8( f )8(h).

The formal computation to prove this is

8( f ∗ h) =
R
G

R
G f (xy−1)h(y)8(x) dy dx =

R
G

R
G f (xy−1)h(y)8(x) dx dy

=
R
G

R
G f (x)h(y)8(xy) dx dy =

R
G

R
G f (x)h(y)8(x)8(y) dx dy

= 8( f )8(h).

Tomake this computation rigorous, we put the appropriate inner products in place
and use Fubini’s Theorem to justify the interchange of order of integration:

(8( f ∗ h)v, v0)

=
R
G

R
G f (xy

−1)h(y)(8(x)v, v0) dy dx=
R
G

R
G f (xy

−1)h(y)(8(x)v, v0) dx dy
=

R
G

R
G f (x)h(y)(8(xy)v, v0) dx dy=

R
G

R
G f (x)h(y)(8(x)8(y)v, v0) dx dy

=
R
G

R
G f (x)h(y)(8(y)v,8(x)∗v0) dx dy

=
R
G

R
G f (x)h(y)(8(y)v,8(x)∗v0) dy dx =

R
G f (x)(8(h)v,8(x)∗v0) dx

=
R
G f (x)(8(x)8(h)v, v0) dx = (8( f )8(h)v, v0).

Thiskindof computation translatinga formal argument about8( f ) into a rigorous
argument is one that we shall normally omit from now on.
An important instance of a convolution f ∗ h is the case that f and h are

characters of irreducible finite-dimensional representations. The formula in this
case is

χτ ∗ χτ 0 =

Ω d−1
τ χτ if τ ∼= τ 0 and dτ is the degree of τ ,

0 if τ and τ 0 are inequivalent.
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This follows by expanding the characters in terms of matrix coefficients and
computing the integrals using Schur orthogonality (Corollary 6.29).
If f ∏ 0 vanishes outside an open neighborhood N of 1 that is a Gδ in G and

if
R
G f (x) dx = 1, then (8( f )v−v, v0) =

R
G f (x)(8(x)v−v, v0) dx . When

kv0k ≤ 1, the Schwarz inequality therefore gives

|(8( f )v−v, v0)| ≤
Z

N
f (x)k8(x)v − vkkv0k dx ≤ sup

x∈N
k8(x)v − vk.

Taking the supremum over v0 with kv0k ≤ 1 allows us to conclude that

k8( f )v − vk ≤ sup
x∈N

k8(x)v − vk.

We shall make use of this inequality shortly.
An invariant subspace for a unitary representation 8 on V is, just as in the

finite-dimensional case, a vector subspaceU such that8(g)U ⊆ U for all g ∈ G.
This notion is useful mainly when U is a closed subspace. In any event if U is
invariant, so is the closed orthogonal complementU⊥ since u⊥ ∈ U⊥ and u ∈ U
imply that

(8(g)u⊥, u) = (u⊥,8(g)∗u) = (u⊥,8(g)−1u) = (u⊥,8(g−1)u)

is in (u⊥,U) = 0. If V 6= 0, the representation is irreducible if its only closed
invariant subspaces are 0 and V .
Two unitary representations of G, 8 on V and 80 on V 0, are said to be

equivalent if there is a bounded linear E : V → V 0 with a bounded inverse
such that 80(g)E = E8(g) for all g ∈ G.

Theorem 6.34. If 8 is a unitary representation of the compact group G on
a complex Hilbert space V , then V is the orthogonal sum of finite-dimensional
irreducible invariant subspaces.

REMARK. The new content of the theorem is for the case that V is infinite
dimensional. The theorem says that if one takes the union of orthonormal bases
for each of certain finite-dimensional irreducible invariant subspaces, then the
result is an orthonormal basis of V .

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces, and letU be the closure of the sum.
Arguing by contradiction, suppose that U is not all of V . Then U⊥ is a nonzero
closed invariant subspace. Fix v 6= 0 inU⊥. For each open neighborhood N of 1
that is a Gδ in G, let fN be the indicator function of N divided by the measure of
N . Then fN is an integrable function ∏ 0 with integral 1. It is immediate from
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the definition of (8( fN )v, u) that8( fN )v is inU⊥ for every N and every u ∈ U .
The inequality k8( fN )v − vk ≤ supx∈N k8(x)v − vk and strong continuity of
8 show that 8( fN )v tends to v as N shrinks to {1}. Hence some 8( fN )v is not
0. Fix such an N .
Choose by the Peter–Weyl Theorem (Theorem 6.31) a function h in the lin-

ear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations such that k fN − hk2 ≤ 1

2k8( fN )vk
±
kvk. Then

k8( fN )v − 8(h)vk = k8( fN − h)vk ≤ k fN − hk1kvk

≤ k fN − hk2kvk ≤ 1
2k8( fN )vk.

Hence

k8(h)vk ∏ k8( fN )vk − k8( fN )v − 8(h)vk ∏ 1
2k8( fN )vk > 0,

and 8(h)v is not 0.
The function h lies in some finite-dimensional vector subspace S of L2(G)

that is invariant under left translation. Let h1, . . . , hn be a basis of S, and write
hj (g−1x) =

Pn
i=1 ci j (g)hi (x). The formal computation

8(g)8(hj )v = 8(g)
R
G hj (x)8(x)v dx =

R
G hj (x)8(gx)v dx

=
R
G hj (g

−1x)8(x)v dx =
Pn

i=1 ci j (g)
R
G hi (x)8(x)v dx

=
Pn

i=1 ci j (g)8(hi )v

suggests that the vector subspace
Pn

j=1 C8(hj )v, which is finite dimensional
and lies in U⊥, is an invariant subspace for 8 containing the nonzero vector
8(h)v. To justify the formal computation, we argue as in the proof of the formula
8( f ∗ h) = 8( f )8(h), redoing the calculation with an inner product with
v0 in place throughout. The existence of this subspace of U⊥ contradicts the
maximality of U and proves the theorem. §

Corollary 6.35. Every irreducible unitary representation of a compact group
is finite dimensional.

PROOF. This is immediate from Theorem 6.34. §

Corollary 6.36. Let8 be a unitary representation of the compact group G on
a complex Hilbert space V . For each irreducible unitary representation τ ofG, let
Eτ be the orthogonal projection on the sum of all irreducible invariant subspaces
of V that are equivalent to τ . Then Eτ is given by dτ8(χτ ), where dτ is the
degree of τ and χτ is the character of τ , and the image of Eτ is the orthogonal
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sum of irreducible invariant subspaces that are equivalent to τ . Moreover, if τ
and τ 0 are inequivalent, then Eτ Eτ 0 = Eτ 0Eτ = 0. Finally every v in V satisfies

v =
X

τ

Eτ v,

with the sum an infinite sum over a set of representatives τ of all equivalence
classes of irreducible unitary representations of G and taken in the sense of
convergence in the Hilbert space.
REMARK. For each τ , the projection Eτ is called the orthogonal projection on

the isotypic subspace of type τ .
PROOF. Let τ be irreducible with degree dτ , and put E 0

τ = dτ8(χτ ). Our
formulas for characters and for operators8( f ) give us the two formulas

E 0
τ E

0
τ 0 = dτdτ 08(χτ )8(χτ 0) = dτdτ 08(χτ ∗ χτ 0) = 0 if τ ¿ τ 0,

E 0
τ
2 = d2τ 8(χτ ∗ χτ ) = dτ8(χτ ) = E 0

τ .

The first of these says that E 0
τ E 0

τ 0 = E 0
τ 0E 0

τ = 0 if τ and τ 0 are inequivalent,
and the second says that E 0

τ is a projection. In fact, E 0
τ is self adjoint and is

therefore an orthogonal projection. To see the self-adjointness, we let {ui } be an
orthonormal basis of the vector space on which τ operates by unitary transfor-
mations. Then χτ

∗(x) = χτ (x−1) =
P

i (τ (x−1)ui , ui ) =
P

i (ui , τ (x−1)ui ) =P
i (τ (x)ui , ui ) = χτ (x). Therefore

E 0
τ
∗ = dτ8(χτ )

∗ = dτ8(χτ
∗) = dτ8(χτ ) = E 0

τ ,

and the projection Eτ 0 is an orthogonal projection.
Let U be an irreducible finite-dimensional subspace of V on which 8

Ø
Ø
U

is equivalent to τ , and let u1, . . . , un be an orthonormal basis of U . If we
write 8(x)uj =

Pn
i=18i j (x)ui , then 8i j (x) = (8(x)uj , ui ) and χτ (x) =Pn

i=18i i (x). Thus a formal computation with Schur orthogonality gives

E 0
τuj = dτ

R
G χτ (x)8(x)uj dx = dτ

R
G

P
i,k 8kk(x)8i j (x)ui dx = uj ,

and we can justify this computation by using inner products with v0 throughout.
As a result, we see that E 0

τ is the identity on every irreducible subspace of type τ .
Now let us apply E 0

τ to a Hilbert space orthogonal sum V =
P

Vα of the kind
in Theorem 6.34. We have just seen that E 0

τ is the identity on Vα if Vα is of type
τ . If Vα is of type τ 0 with τ 0 not equivalent to τ , then E 0

τ 0 is the identity on Vα,
and we have E 0

τu = E 0
τ E 0

τ 0u = 0 for all u ∈ Vα. Consequently E 0
τ is 0 on Vα,

and we conclude that E 0
τ = Eτ . This completes the proof. §

EXAMPLE. The right-regular representation r of G on L2(G). Let τ be an
abstract irreducible unitary representation of G, let (u1, . . . , un) be an ordered
orthonormal basis of the space on which τ acts, and form matrices relative to
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this basis that realize each τ(x). The formula is τi j (x) = (τ (x)uj , ui ). The
computation (r(g)τi j )(x) = τi j (xg) =

P
k τik(x)τk j (g) =

P
i 0 τi 0 j (g)τi i 0(x)

shows that the matrix coefficients corresponding to a fixed row, those with i fixed
and j varying, form an invariant subspace for r . The matrix of this representation
is [τi 0 j (g)], and thus the representation is irreducible of type τ . Since these spaces
are orthogonal to one another by Schur orthogonality, the dimension of the image
of Eτ is at least d2τ . On the other hand, Corollary 6.32 says that such matrix
coefficients relative to an orthonormal basis, as τ varies through representatives of
all equivalence classes of irreducible representations, form a maximal orthogonal
system in L2(G). The coefficients corresponding to any τ 0 not equivalent to τ
are in the image of Eτ 0 and are not of type τ . Therefore the orthogonal sum of the
spaces of matrix coefficients for each fixed row equals the image of Eτ , and the
dimension of the image equals d2τ . The corollary tells us that the formula for the
projection is Eτ f = r(dτχτ ) f . To see what this is concretely, we use the defini-
tions to compute that (Eτ f, h) = (r(dτχτ ) f, h) =

R
G dτχτ (x)(r(x) f, h) dx =R

G
R
G dτχτ (x)(r(x) f )(y)h(y) dy dx =

R
G

R
G dτχτ (x) f (yx)h(y) dy dx =R

G
R
G dτχτ (x−1) f (yx)h(y) dx dy = ( f ∗ dτχτ , h). Therefore the orthogonal

projection is given by Eτ f = f ∗ dτχτ .

Corollary 6.36 is a useful result in taking advantage of symmetries in analysis
problems. Imagine that the problem is to understand some linear operator on the
space in question, and suppose that the space carries a representation of a compact
group that commutes with the operator. This is exactly the situation with some
of the examples of separation of variables in partial differential equations as in
Section I.2. The idea is that under mild assumptions, the operator carries each
isotypic subspace to itself. Hence the problem gets reduced to an understanding
of the linear operator on each of the isotypic subspaces.
In order to have a concrete situation for purposes of illustration, let us assume

that the linear operator is bounded, has domain the whole Hilbert space, and
carries the space into itself. The following proposition then applies.

Proposition 6.37. Let T : V → V be a bounded linear operator on the Hilbert
space V , and suppose that 8 is a unitary representation of the compact group G
on V such that T8(g) = 8(g)T for all g in G. Let τ be an abstract irreducible
unitary representation of G, and let Eτ be the orthogonal projection of V on the
isotypic subspace of type τ . Then T Eτ = EτT .
PROOF. For v and v0 in V , (T Eτ v, v0) is equal to

(Eτ v, T ∗v0) = dτ

R
G χτ (x)(8(x)v, T ∗v0) dx = dτ

R
G χτ (x)(T8(x)v, v0) dx

= dτ

R
G χτ (x)(8(x)T v, v0) dx = (EτT v, v0) dx,

and the result follows. §
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EXAMPLE. The Fourier transform on L2(RN ) commutes with each member ρ
of theorthogonalgroupO(N )because if f hasFourier transform bf , then bf (ρy) =R

RN f (x)e−2π i x ·ρy dx =
R

RN f (x)e−2π iρ−1x ·y dx =
R

RN f (ρx)e−2π i x ·y dx says
that x 7→ f (ρx) has Fourier transform y 7→ bf (ρy). Proposition 6.37 says that
the Fourier transform carries each isotypic subspace of L2(RN ) under O(N ) into
itself. Let us return to Example 5 in Section 6, in which we dealt with the vector
space Vk of all polynomials on RN homogeneous of degree k. We saw that the
vector subspace Hk of harmonic polynomials homogeneous of degree k is an
invariant subspace under O(N ). In fact, more is true. One can show that Hk is
irreducible and that the Laplacian1 carries Vk onto |x |2Vk−2. It follows from the
latter fact that the space of restrictions to the unit sphere SN−1 of all polynomials
is the same as the space of restrictions to SN−1 of all harmonic polynomials,
with each irreducible representation Hk of O(N ) occurring with multiplicity 1.
Applying the Stone–Weierstrass Theorem on SN−1 and untangling matters, we
find for L2(SN−1) that the isotypic subspaces under O(N ) are the restrictions of
the members of Hk , each having multiplicity 1. Passing to L2(RN ) and thinking
in terms of spherical coordinates, we see that each relevant τ for L2(RN ) is the
representation on some Hk and that the image of Eτ is the space of L2 functions
that are finite linear combinations

P
j h j f j (|x |) of products of a member of Hk

and a function of |x |, the members of Hk being linearly independent. According
to the proposition, this image is carried to itself by the Fourier transform. The
restriction of the Fourier transform to this image still commutes with members
of O(N ), and the idea is to use Schur’s Lemma (Corollary 6.27) to show that
the Fourier transform has to send any hj (x) f (|x |) to hj (x)g(|x |); the details are
carried out in Problem 14 at the end of the chapter. Thus we can see on the
basis of general principles that the Fourier transform formula reduces to a single
1-dimensional integral on each space corresponding to some Hk . Armedwith this
information, one can look for a specific integral formula, and the actual formula
turns out to involve an integration and classical Bessel functions.12

CONCLUDING REMARKS. Proposition 6.37 and the above example are con-
cerned with understanding a particular bounded linear operator, but realistic
applications are more concerned with linear operators that are unbounded. For
example, when the domain of a linear partial differential operator can be arranged
in such a way that the operator is self adjoint and a compact group of symmetries
operates, then one wants to exploit the symmetry group in order to express the
space of all functions annihilated by the operator as the limit of the sum of those
functions in an isotypic subspace. In mathematical physics the very hope that
this kind of reduction is possible has itself been useful, even without knowing
in advance the differential operator and the group of symmetries. The reason

12Bessel functions were defined in Section IV.8 of Basic.
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is that numerical invariants of the compact group, such as the dimensions of
some of the irreducible representations, appear in physical data. One can look
for an appropriate group yielding those numerical invariants. This approach
worked long ago in analyzing spin, it workedmore recently in attempts to classify
elementary particles, and it has been used still more recently in order to guess at
the role of group theory in string theory.

9. Problems

1. Let G be a topological group.
(a) Prove that the connected component of the identity element of G, i.e., the

union of all connected sets containing the identity, is a closed subgroup that is
group-theoreticallynormal. This subgroup is called the identity component
of G.

(b) Give an example of a topological group whose identity component is not
open.

2. The rotation group SO(N ) acts continuously on the the unit sphere SN−1 in RN

by matrix multiplication.
(a) Prove that the subgroup fixing the first standard basis vector is isomorphic

to SO(N − 1).
(b) Prove that the action by SO(N ) is transitive on SN−1 for N ∏ 2.
(c) Deduce that there is a homeomorphism SO(N )/SO(N − 1) → SN−1 for

N ∏ 2 that respects the action by SO(N ).
3. LetG be a separable locally compact group, and suppose thatG has a continuous

transitive group action on a locally compact Hausdorff space X . Suppose that
x0 is in X and that H is the (closed) subgroup of G fixing x0, so that there is a
one-one continuous map π of G/H onto X . Using the Baire Category Theorem
for locally compact Hausdorff spaces (Problem 3 of Chapter X of Basic), prove
that π is an open map and that π is therefore a homeomorphism.

4. Let G1 and G2 be separable locally compact groups, and let π : G1 → G2 be a
continuous one-one homomorphism onto. Prove that π is a homeomorphism.

5. Let T 2 = {(eiθ , eiϕ)}. The line R1 acts on T 2 by
°
x, (eiθ , eiϕ)

¢
7→ (eiθ+i x , eiϕ+i x

p
2 ).

Let p be the point (1, 1) of T 2 corresponding to θ = ϕ = 0. The mapping of R1
into T 2 given by x 7→ xp is one-one. Is it a homeomorphism? Explain.

6. Let G be a noncompact locally compact group, and let V be a bounded open set.
By using the fact that G cannot be covered by finitely many left translates of V ,
prove that G must have infinite left Haar measure, i.e., that a Haar measure for
a locally compact group can be finite only if the group is compact.
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7. (a) Suppose thatG is a compact group, ∏ is a left Haarmeasure, ρ is a right Haar
measure, and E is a Baire set. By evaluating

R
G×G IE (xy) d(ρ × ∏)(x, y)

as an iterated integral in each order, prove that ∏(E)ρ(G) = ∏(G)ρ(E).
(b) Deduce the uniqueness of Haar measure for compact groups, together with

the unimodularity, from (a) and the existence of left and right Haar measures
for the group.

8. Suppose that {Gn}∞n=1 is a sequence of separable compact groups. Let G
(n) =

G1 × · · · ×Gn , and let G be the direct product of all Gn . Let µn , µ(n), and µ be
Haar measures on Gn , G(n), and G, all normalized to have total measure 1.
(a) Why is µ(n) equal to the product measure µ1 × · · · × µn?
(b) Show that µ(n) defines a measure on a certain σ -algebra of Borel sets of G

that is consistent with µ.
(c) Show that the smallest σ -algebra containing, for every n, the “certain

σ -algebra of Borel sets of G” as in (b), is the σ -algebra of all Borel sets of
G, so that µ can be regarded as the infinite product of µ1, µ2, . . . .

9. Let G be a locally compact topological group with a left Haar measure dl x , and
let 8 be an automorphism of G as a topological group, i.e., an automorphism
of the group structure that is also a homeomorphism of G. Prove that there is a
positive constant a(8) such that dl(8(x)) = a(8) dl x .

10. Let G be a locally compact group with two closed unimodular subgroups S and
T such that G = S × T topologically and such that T is group-theoretically
normal. Write elements of G as st with s ∈ S and t ∈ T . Let ds and dt be Haar
measures on S and T . Since t 7→ sts−1 is an automorphism of T for each s ∈ S,
the previous problem produces a constant δ(s) such that d(sts−1) = δ(s) dt .
(a) Prove that ds dt is a left Haar measure for G.
(b) Prove that δ(s) ds dt is a right Haar measure for G.

11. This problem leads to the same conclusion as Proposition 4.8, that any locally
compact topological vector space overR is finite-dimensional, but it gives amore
conceptual proof than the one in Chapter IV. Let V be such a space. For each
real c 6= 0, let |c|V be the constant a(8) from Problem 9 when the measure is an
additive Haar measure for V and 8 is multiplication by c. Define |0|V = 0.
(a) Prove that c 7→ |c|V is a continuous function fromR into [0,+∞) such that

|c1c2|V = |c1|V |c2|V and such that |c1| ≤ |c2| implies |c1|V ≤ |c2|V .
(b) If W is a closed vector subspace of V , use Theorem 6.18 to prove that

|c|V = |c|W |c|V/W .
(c) Using (b), Proposition 4.5, Corollary 4.6, and the formula |c|RN = |c|N ,

prove that V has to be finite-dimensional.
12. Let 8 be a finite-dimensional unitary representation of a compact group G on a

finite-dimensional inner-product space V . The members of the dual V ∗ are of
the form `v = ( · , v)with v in V , by virtue of the Riesz Representation Theorem
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for Hilbert spaces. Define (`v1, `v2) = (v2, v1). Prove that the result is the inner
product on V ∗ giving rise to the Banach-space norm on V ∗, and prove that the
contragredient representation 8c has 8c(x)`v = `8(x)v and is unitary in this
inner product.

13. Let 8 and 80 be two irreducible unitary representations of a compact group
G on the same finite-dimensional vector space V , and suppose that they are
equivalent in the sense that there is some linear invertible E : V → V with
E8(g) = 80(g)E for all g ∈ G. Prove that8 and80 are unitarily equivalent in
the sense that this equality for some invertible E implies this equality for some
unitary E .

14. This problem seeks to fill in the argument concerning Schur’s Lemma in the
example near the end of Section 8. Introduce an inner product in the space
Hk of harmonic polynomials on RN homogeneous of degree k to make the
representation of O(N ) on Hk be unitary, and let {hj } be an orthonormal basis.
The representation8 on Hk and its correspondingmatrices [8(ρ)i j ] are given by
(8(ρ)hj )(x) = hj (ρ−1x) =

P
i 8(ρ)i j hi (x). LetF be the Fourier transformon

RN , and fix a function f (|x |) such that |x |k f (|x |) is in L2(RN ). Define a matrix
F(|y|) = [ fi j (|y|)] for each |y| by F(hj (x) f (|x |))(y) =

P
i hi (y) fi j (|y|).

(a) Assuming that the functions f and F are continuous functions of |x |, prove
that F(|y|)[8(ρ)i j ] = [8(ρ)i j ]F(|y|) for all ρ.

(b) Deduce from (a) and Corollary 6.27 that F(h(x) f (|x |)) is of the form
h(y)g(|y|) if h is in Hk and the continuity hypothesis is satisfied.

(c) Show how the continuity hypothesis can be dropped in the above argument.

15. Making use of the result of Problem 12, show that the matrix coefficients of the
contragredient 8c of a finite-dimensional representation 8 of a compact group
are the complex conjugates of those of 8 and the characters satisfy χ8c = χ8.

16. An example in Section 8 examined the right-regular representation r of a compact
group G, given by (r(g) f )(x) = f (xg), and showed that the linear span of the
matrix coefficients of an irreducible τ equals the whole isotypic space of type
τ , a decomposition of this space into irreducible representations being given by
the decomposition into rows. Show similarly for the left-regular representation
l, given by (l(g) f )(x) = f (g−1x), that the linear span of the matrix coefficients
of the irreducible τ equals the whole isotypic space of type τ c, a decomposition
of this space into irreducible representations being given by the decomposition
into columns.

17. Let G be a compact group, and let V be a complex Hilbert space.
(a) For G = S1, prove that the left-regular representation l of G on L2(G) is

not continuous in the operator norm topology, i.e., that g 7→ l(g) is not
continuous from G into the Banach space of bounded linear operators on
L2(G).
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(b) Suppose that g 7→ 8(g) is a homomorphismofG into unitaryoperators onV
that is weakly continuous, i.e., that has the property that g 7→ (8(g)u, v)

is continuous for each u and v in V . Prove that g 7→ 8(g) is strongly
continuous in the sense that g 7→ 8(g)v is continuous for each v in V , i.e.,
that 8 is a unitary representation.

18. Let G be a compact group.
(a) Let 8 be an irreducible unitary representation of G, and let f be a linear

combination of matrix coefficients of the contragredient8c of8. Prove that
f (1) = d Tr8( f ), where d is the degree of f .

(b) Let {8(α)} be a maximal set of mutually inequivalent irreducible unitary
representations of G, and let d(α) be the degree of 8(α). Prove that each
trigonometric polynomial f on G satisfies the Fourier inversion formula
f (1) =

P
α d(α) Tr8(α)( f ), the sum being a finite sum in the case of a

trigonometric polynomial.
(c) Deduce the Plancherel formula for trigonometric polynomials onG from (b).
(d) If G is a finite group, prove that every complex-valued function on G is a

trigonometric polynomial.
19. Let G be a compact group.

(a) Prove that if h is any member ofC(G) such that h(gxg−1) = h(x) for every
g and x in G, then h ∗ f = f ∗ h for every f in L1(G).

(b) Prove that if f is a trigonometric polynomial, then x 7→
R
G f (gxg−1) dg is

a linear combination of characters of irreducible representations.
(c) Using the Approximation Theorem, prove that any member of C(G) such

that h(gxg−1) = h(x) for every g and x in G is the uniform limit of a
sequence of linear combinations of irreducible characters.

(d) Prove that the irreducible characters form an orthonormal basis of the
closed vector subspace of all members h of L2(G) satisfying h(x) =R
G h(gxg

−1) dg almost everywhere.
20. Let G be a finite group, let {8(α)} be a maximal set of inequivalent irreducible

representations of G, and let d(α) be the degree of 8(α).
(a) Prove that

P
α (d(α))2 equals the number of elements in G.

(b) Using (d) in the previous problem, prove that the number of8(α)’s equals the
number of conjugacy classes of G, i.e., the number of equivalence classes of
G under the equivalence relation that x ∼ y if x = gyg−1 for some g ∈ G.

(c) In a symmetric group Sn , two elements are conjugate if and only if they
have the same cycle structure. InS4, two of the irreducible representations
are 1-dimensional. Using this information and the above facts, determine
how many 8(α)’s there are forS4 and what degrees they have.

Problems 21–22 concern Theorem 6.16, its hypotheses, and related ideas. In the
theory of (separable) “Lie groups,” if S and T are closed subgroups of a Lie group G
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whose intersection is discrete and the sum of whose dimensions equals the dimension
of G, then multiplication S × T → G is an open map. These problems deduce
this open mapping property in a different way without any knowledge of Lie groups,
and then they apply the result to give two explicit formulas for the Haar measure of
SL(2, R) in terms of measures on subgroups.
21. LetG be a separable locally compact group, and let S and T be closed subgroups

such that the image of multiplication as a map S × T → G is an open set in G.
Using the result of Problem 3, prove that S × T → G is an open map.

22. For the groupG = SL(2, R), let K =
n
kθ =

≥
cos θ − sin θ

sin θ cos θ

¥o
, M = {m± = ±1},

A =
n
ax =

≥
ex 0
0 e−x

¥o
, N =

n
ny =

≥
1 y
0 1

¥o
, and V =

n
vt =

≥
1 0
t 1

¥o
.

(a) Prove that AN is a closed subgroup and that every element of G is uniquely
the product of an element of K and an element of AN . Using Theorem 6.16,
show that the formula

`( f ) =
R 2π
θ=0

R ∞
x=−∞

R ∞
y=−∞ f (kθaxny)e2x dy dx dθ

defines a translation-invariant linear functional on Ccom(G).
(b) Prove that MAN is a closed subgroup and that every element

≥
a b
c d

¥
of G

with a 6= 0, and no other element of G, is a product of an element of V and
an element of MAN . Assume that the subset of elements

≥
a b
c d

¥
of G with

a = 0 has Haar measure 0. Using Theorem 6.16, show that the formula

`( f ) =
P

m±∈M
R ∞
t=−∞

R ∞
x=−∞

R ∞
y=−∞ f (vtm±axny)e2x dy dx dv

defines a translation-invariant linear functional on Ccom(G).
Problems 23–27 do some analysis on the group G = SU(2) of 2-by-2 unitary
matrices of determinant 1. Following the notation introduced in Example 4 in
Section 6 and in its continuation later in that section, let 8n be the representation
of G on the homogeneous holomorphic polynomials of degree n in z1 and z2 given
by (8n(g)P)

≥ z1
z2

¥
= P

≥
g−1

≥ z1
z2

¥¥
. Let T = {tθ }, with tθ = diag

°
eiθ , e−iθ

¢
, be

the diagonal subgroup. The text calculated that the character χn of 8n is given on T
by

χn(tθ ) = Tr8n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

Take for granted that 8n is irreducible for each n ∏ 0.
23. Take as known from linear algebra that every member of SU(2) is of the form

gtθg−1 for some g ∈ SU(2) and some θ . Show that the only ambiguity in tθ is
between θ and−θ . Prove that the linear mapping ofC(G) toC(T ) carrying f in
C(G) to the function tθ 7→

R
G f (gtθg−1) dg has image all functions ϕ ∈ C(T )

with ϕ(t−θ ) = ϕ(tθ ).
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24. Reinterpret the image in the previous problem as all continuous functions on the
quotient space T/{1, √}, where √ : T → T interchanges t−θ and tθ . Why is
this space compact Hausdorff? Why then can it be identified with [0, π]?

25. Prove that there is a Borel measure µ on [0, π] such that
R
G f (x) dx =

R
[0,π]

R
G f (gtθg−1) dg dµ(θ)

for all f in C(G).
26. Follow these steps to identify dµ(θ) in the previous problem and thereby have

a formula for integrating over G = SU(2) by first integrating over conjugacy
classes. Such a formula can be obtained by computations with coordinates and
use of the change-of-variables formula formultiple integrals, but themethod here
is shorter.
(a) Using the orthogonality relations

R
G χn(x)χ0(x) dx = δn0, prove thatR

[0,π] dµ(θ) = 1 and that
R
[0,π] (e

ikθ + e−ikθ ) dµ(θ) is −1 for k = 2
but is 0 for k = 1 and k ∏ 3.

(b) Extendµ to [−π, π] by setting it equal to 0 on [−π, 0), defineµ0 on [−π, π]
by µ0(E) = 1

2
°
µ(E) + µ(−E)

¢
, observe that µ0 is even, and check thatR

[−π,π] cos nθ dµ0(θ) is equal to 1 for n = 0, to −1 for n = 2, and to 0 for
n = 1 and n ∏ 3.

(c) Deduce that the periodic extension of µ0 from (−π, π] to R is given by its
Fourier–Stieltjes series dµ0(θ) = 1

2π (1− cos 2θ) dθ .
(d) (Special case ofWeyl integration formula) Conclude that

R
G f (x) dx = 1

π

R π
π

£ R
G f (gt±θg−1) dg

§
sin2 θ dθ.

27. Prove that every irreducible unitary representation of SU(2) is equivalent to
some 8n .

Problems 28–32 concern locally compact topological fields. Each such is of interest
from the point of view of the present chapter because its additive group is a locally
compact abelian group and its nonzero elements form another locally compact abelian
group under multiplication. A topological field is a field with a Hausdorff topology
such that addition, negation, multiplication, and inversion are continuous. The fields
R andC are examples. Another example is the fieldQp of p-adic numbers, where p is
a prime. To construct this field, onedefineson the rationalsQ a function | · |p by setting
|0|p = 0 and taking |pnr/s|p equal to p−n if r and s are relatively prime integers.
Then d(x, y) = |x− y|p is a metric onQ, and themetric space completion isQp. The
function | · |p extends continuously toQp and is called the p-adic norm. It satisfies
something better than the triangle inequality, namely |x+ y|p ≤ max{|x |p, |y|p}; this
is called the ultrametric inequality. Problems 27–31 of Chapter II of Basic show
that the arithmetic operations on Q extend continuously to Qp and that Qp becomes
a topological field such that |xy|p = |x |p|y|p. Because of the ultrametric inequality
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the subset Zp of Qp with |x |p ≤ 1 is a commutative ring with identity; it is called
the ring of p-adic integers. It is a topological ring in that its addition, negation, and
multiplication are continuous. Moreover, it is compact because every closed bounded
subset ofQp can be shown to be compact. The subset I of Zp with |x |p ≤ p−1 is the
unique maximal ideal of Zp, and the quotient Zp/I is a field of p elements.

28. Prove that every compact topological field is finite.

29. Let F be a locally compact topological field, and let F× be the group of nonzero
elements, the group operation being multiplication.
(a) Let c be in F×, and define |c|F to be the constant a(8) from Problem 9

when the measure is an additive Haar measure and8 is multiplication by c.
Define |0|F = 0. Prove that c 7→ |c|F is a continuous function from F into
[0,+∞) such that |c1c2|F = |c1|F |c2|F .

(b) If dx is a Haar measure for F as an additive locally compact group, prove
that dx/|x |F is a Haar measure for F× as a multiplicative locally compact
group.

(c) Let F = R be the locally compact field of real numbers. Compute the
function x 7→ |x |F . Do the same thing for the locally compact field F = C
of complex numbers.

(d) Let F = Qp be the locally compact field of p-adic numbers, where p is a
prime. Compute the function x 7→ |x |F .

(e) For the field F = Qp of p-adic numbers, suppose that the ring Zp of p-adic
integers has additive Haar measure 1. What is the additive Haar measure of
the maximal ideal I of Zp?

30. Consider Qp as a locally compact abelian group under addition.
(a) Prove from the continuity that any multiplicative character of the additive

group Qp is trivial on some subgroup pnZp for sufficiently large n.
(b) Tell how to define a multiplicative character ϕ0 of the additive group Qp in

such a way that ϕ0 is 1 on Zp and ϕ0(p−1) = e2π i/p.
(c) If ϕ is any multiplicative character of the additive groupQp, prove that there

exists a unique element k of Qp such that ϕ(x) = ϕ0(kx) for all x in Qp.

31. Let P = {∞} ∪ {primes}. For v in P , let Qv be the field of p-adic numbers if v
is a prime p, or R if v = ∞. For v in P , define | · |v onQv as follows: this is to
be the p-adic norm on Qp if v is a prime p, and it is to be the ordinary absolute
value on R if v = ∞. Each member of the rationals Q can be regarded as a
member of Qv for each v in P . Prove that each rational number x has |x |v 6= 1
for only finitely many v.

32. (Artin product formula) For each nonzero rational number x , the fact that
|x |v 6= 1 for only finitely many v in P shows that

Q
v |x |v is a well-defined

rational number. Prove that actually
Q

v |x |v = 1.
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Problems 33–38 concern the ring AQ of adeles of the rationals Q and the group of
ideles defined in terms of it. These objects are important tools in algebraic number
theory, and they provide interesting examples of locally compact abelian groups. Part
of the idea behind them is to study number-theoretic questions about the integers, such
as the solving of Diophantine equations or the factorization of monic polynomials
with integer coefficients, by first studying congruences. One studies a congruence
modulo each power of any prime, as well as any limitations imposed by treating
the coefficients as real. The ring AQ of adeles of Q is a structure that incorporates
simultaneously information about all congruencesmodulo each primepower, together
with information aboutR. Its definition makes use of the construction of direct limits
of topological spaces as in Problems 26–30 in Chapter IV, as well as the material
concerning p-adic numbers in Problems 29–32 above.

33. The construction of restricted direct products in Problem 30 at the end of Chap-
ter IV assumed that I is a nonempty index set, S0 is a finite subset, Xi is a locally
compact Hausdorff space Xi for each i ∈ I , and Ki is a compact open subset of
Xi for each i /∈ S0. As in that problem, for each finite subset S of I containing
S0, let

X (S) =
°×i∈S Xi

¢
×

°×i /∈SKi
¢
,

giving it the product topology. Suppose that each Xi , for i ∈ I , is in fact a locally
compact group and Ki , for i /∈ S0, is a compact open subgroup of Xi . Prove
that each X (S), with coordinate-by-coordinate operations, is a locally compact
group and that the direct limit X acquires the structure of a locally compact group.
Prove also that if each Xi is a locally compact topological ring and each Ki is a
compact subring, then each X (S) is a locally compact topological ring and so is
the direct limit X .

34. In the construction of the previous problem, let I = P = {∞} ∪ {primes}
and S0 = {∞}, and form the restricted direct product of the various topo-
logical fields Qv for v ∈ P with respect to the compact open subrings Zv .
The above constructions lead to locally compact commutative rings AQ(S) for
each finite subset S of P containing S0, and the direct limit AQ is the locally
compact commutative topological ring of adeles for Q. Show that each AQ(S)
is an open subring of AQ. Show that we can regard elements of AQ as tuples
x = (x∞, x2, x3, x5, . . . , xv, . . . ) = (xv)v∈P in which all but finitely many
coordinates xp are in Zp.

35. For each rational number x , the fact that |x |v ≤ 1 for all but finitely many v

allows us to regard the tuple (x, x, x, . . . ) as a member of AQ. Thus we may
regard Q, embedded “diagonally,” as a subfield of the ring AQ. Prove that Q is
discrete, hence closed.

36. In the setting of the previous problem, prove that AQ/Q is compact.
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37. For the ringsQv , Zv , andAQ, letQ×
v , Z×

v , andA×
Q be the groups consisting of the

members of the rings whosemultiplicative inverses are in the rings. GiveQ×
v and

Z×
v the relative topology. In the case of A×

Q, define the topology as a restricted
direct product of the locally compact groups Q×

v for v ∈ P with respect to the
compact open subgroups Z×

v . The locally compact groupA×
Q is called the group

of ideles ofQ. Show that the set-theoretic inclusion ofA×
Q intoAQ is continuous

but is not a homeomorphism of A×
Q with its image.

38. This problem constructs Haar measure on the ring AQ considered as an additive
group. As in Problem 34, S denotes any finite subset of P containing {∞}.
(a) Fix S. This part of the problem constructs Haar measure on AQ(S). For

each prime p in S, define Haar measure µp on Qp to be normalized so
that µp(Zp) = 1. Form a measure µS on AQ(S) as follows: On the product
X (S) ofR and theQp for p prime in S, use the product of Lebesguemeasure
and µp. On the product Y (S) of all Zp for p /∈ S, use the Haar measure on
the infinite product of the Zp’s obtained as in Problem 8. Then AQ(S) =
X (S) × Y (S). Show that Haar measure µS on AQ(S) may be taken as the
product of these measures on X (S) and Y (S) and that the resultingmeasures
are consistent as S varies.

(b) Show that each measure µS defines a set function on a certain σ -subalgebra
B(S) of Borel sets ofAQ that is the restriction to B(S) of a Haar measure on
all Borel subsets of AQ.

(c) Show that the smallest σ -algebra for AQ containing, for every finite S con-
taining {∞}, the σ -algebra B(S) as in (b) is the σ -algebra of all Borel sets
of AQ.

Problems 39–47 concern almost periodic functions on topological groups. Let G be
any topological group. Define a bounded continuous function f : G → C to be left
almost periodic if every sequence of left translates of f , i.e., every sequence of the
form {gn f } with (gn f )(x) = f (g−1

n x), has a uniformly convergent subsequence;
equivalently the condition is that the closure in the uniform norm of the set of left
translates of f is compact. Define right almost periodic functions similarly; it will
turn out that left almost periodic and right almost periodic imply each other. Take for
granted that the set of left almost periodic functions, call it LAP(G), is a uniformly
closed algebra stable under conjugation and containing the constants. Application of
the Stone Representation Theorem (Theorem 4.15) to LAP(G) produces a compact
Hausdorff space S1, a continuous map p : G 7→ S1 with dense image, and a norm-
preserving algebra isomorphism of LAP(G) onto C(S1). The space S1 is called the
Bohr compactification of G. These problems show that S1 has the structure of a
compact group and that the map of G into S1 is a continuous group homomorphism.
Application of the Peter–Weyl Theorem to S1 will give a Fourier analysis of LAP(G)

and an approximation property for its members in terms of finite-dimensional unitary
representations of G.
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39. Suppose that K is a compact group and that ∂ : G → K is a continuous
homomorphism.
(a) Prove that every member of C(K ) is left almost periodic and right almost

periodic on K .
(b) If F is in C(K ), let f be the function on G defined by f (x) = F(∂(x)) for

x ∈ G. Prove that f is left almost periodic and right almost periodic on G.

40. Let 8 be a finite-dimensional unitary representation of G, and let f be a matrix
coefficient of 8. Prove that f is left almost periodic and right almost periodic.

41. Let f be left almost periodic on G, let L f be the subset of C(G) consisting of
the left translates of f , and let K f be the closure in C(G) of L f . The set K f is
compact by definition of left almost periodicity.
(a) Prove that f is left uniformly continuous in the sense that for any ≤ > 0,

there is a neighborhoodU of {1} such that kg f − f ksup < ≤ for all g in U .
(b) Each member of the group G acts on L f with g0(g f ) = (g0g) f . Prove that

this operation of g0 on L f is an isometry of L f onto itself.
(c) Prove that the operation of each g0 on L f extends uniquely to an isometry

∂ f (g0) of K f onto itself.

42. Let X be a compact metric space with metric d, and let 0 be the group of
isometries of X onto itself. Make 0 into a metric space (0, ρ) by defining
ρ(ϕ1, ϕ2) = supx∈X d(ϕ1(x), ϕ2(x)).
(a) Prove that 0 is compact as a metric space.
(b) Prove that 0 is a topological group in this topology, hence a compact group.
(c) Prove that the group action 0 × X → X given by (∞, x) 7→ ∞ (x) is

continuous.

43. Let 0 f be the isometry group of K f , and consider 0 f as a compact metric space
with metric as in the previous problem.
(a) Prove that the mapping ∂ f : G → 0 f defined in Problem 41c is continuous.
(b) Prove that if h is in K f , then the definition Ff (h)(∞ ) = (∞ −1h)(1) for

∞ ∈ 0 f yields a continuous function on 0 such that h(g0) = Ff (h)(∂ f (g0)).
(c) Conclude fromthe foregoing that f is right almostperiodicandhence that left

almost periodic functions can now be considered as simply almost periodic.

44. For each almost periodic function f on G, let ∂ f : G → 0 f be the continu-
ous homomorphism discussed in Problems 41c and 43a. Let 0 =

Q
f 0 f be

the product of the compact groups 0 f , and define ∂(g) =
Q

f ∂ f (g), so that
∂ : G → 0 is a continuous homomorphism. Problem 39b shows that if F is in
C(0), then the function h defined on G by h(x) = F(∂(x)) is almost periodic.
Prove that every almost periodic function on G arises in this way from some
continuous F on this particular 0.
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45. Let K be the closure of ∂(G) in the compact group 0 in the previous problem, let
S1 be the Bohr compactification ofG, and let p : G → S1 be the continuousmap
defined by evaluations at the points of G. Prove that there is a homeomorphism
8 : S1 → K such that 8 ◦ p = ∂, so that the construction of K can be regarded
as imposing a compatible group structure on the Bohr compactification of G.

46. Apply the Approximation Theorem to prove that every almost periodic function
on G can be approximated uniformly by linear combinations of matrix coeffi-
cients of finite-dimensional unitary representations of G.

47. Suppose thatG is abelian, and let p : G → K be the continuous homomorphism
of G into its Bohr compactification. Prove that the continuous multiplicative
characters ofG coincidewith the continuousmultiplicative characters of K under
an identification by p. (Educational note: It is known from “Pontryagin duality”
that if the group bK of continuousmultiplicative characters of the compact abelian
group K is given the discrete topology, then K is isomorphic to the compact group
of multiplicative characters of bK , the topology on this character group being the
relative topology as a subset of the unit ball of the dual of C(bK ) in the weak-
star topology. Thus K may be obtained by forming the group of continuous
multiplicative characters of G, imposing the discrete topology, and forming the
group of multiplicative characters of the result.)



CHAPTER VII

Aspects of Partial Differential Equations

Abstract. This chapter provides an introduction to partial differential equations, particularly linear
ones, beyond the material on separation of variables in Chapter I.
Sections 1–2 give an overview. Section 1 addresses the question of how many side conditions

to impose in order to get local existence and uniqueness of solutions at the same time. The
Cauchy–Kovalevskaya Theorem is stated precisely for first-order systems in standard form and
for single equations of order greater than one. When the system or single equation is linear with
constant coefficients and entire holomorphic data, the local holomorphic solutions extend to global
holomorphic solutions. Section 2 comments on some tools that are used in the subject, particularly
for linear equations, and it gives some definitions and establishes notation.
Section 3 establishes the basic theorem that a constant-coefficient linear partial differential

equation Lu = f has local solutions, the technique being multiple Fourier series.
Section 4 proves a maximum principle for solutions of second-order linear elliptic equations

Lu = 0 with continuous real-valued coefficients under the assumption that L(1) = 0.
Section 5 proves that any linear elliptic equation Lu = f with constant coefficients has a

“parametrix,” and it shows how to deduce from the existence of the parametrix the fact that the
solutions u are as regular as the data f . The section also deduces a global existence theoremwhen f
is compactly supported; this result uses the existence of the parametrix and the constant-coefficient
version of the Cauchy–Kovalevskaya Theorem.
Section 6 gives a brief introduction to pseudodifferential operators, concentrating on what is

needed to obtain a parametrix for any linear elliptic equation with smooth variable coefficients.

1. Introduction via Cauchy Data

The subject of partial differential equations is a huge and diverse one, and a
short introduction necessarily requires choices. The subject has its origins in
physics andnowadayshas applications that includephysics, differential geometry,
algebraic geometry, and probability theory. A small amount of complex-variable
theory will be extremely helpful, and this will be taken as known for this chapter.
We shall ultimately concentrate on single equations, as opposed to systems, andon
partial differential equations that are linear. After the first two sections the topics
of this chapter will largely be ones that can be approached through a combination
of functional analysis and Fourier analysis.

275
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Let us for now use subscript notation for partial derivatives, as in Section I.1.
A system of p partial differential equations in N variables for the unknown
functions u(1), . . . , u(m) consists of p expressions

Fk(u(1), . . . , u(m), u(1)
x1 , . . . , u(m)

x1 , . . . , u(1)
xN , . . . , u(m)

xN , u(1)
x1x1, . . . , u

(m)
x1x1, . . . ) = 0,

1 ≤ k ≤ p, in an open set of RN ; it is assumed that the partial derivatives
that appear as variables have bounded order. When p = 1, we speak of simply
a partial differential equation. The highest order of a partial derivative that
appears is the order of the equation or system. We might expect that it would be
helpful if the number p of equations in a system equals the numberm of unknown
functions, but one does not insist on this condition as a matter of definition. A
system in which the number p of equations equals the number m of unknown
functions is said to be “determined,” but nothing is to be read into this terminology
without a theorem. We shall work only with determined systems. The equation
or system is linear homogeneous if each Fk is a linear function of its variables.
It is linear if each Fk is the sum of a linear function and a function of the N
domain variables that is taken as known.
The classical equations that we would like to include in a more general theory

are the three studied in Section I.2 in connection with the method of separation
of variables—the heat equation, the Laplace equation, and the wave equation—
and one other, namely the Cauchy–Riemann equations. With 1 denoting the
Laplacian1u = ux1x1 +· · ·+ uxN xN , the first three of these equations in N space
variables are

ut = 1u, 1u = 0, and utt = 1u.

The Cauchy–Riemann equations are ordinarily written as a system
ux = vy, uy = −vx ,

but they can be written also as a single equation if we think of u and v as real and
write f = u + iv. Then the system is equivalent to the single equation

@ f
@ z̄

= 0 or fz̄ = 0, where
@

@ z̄
=

@

@x
+ i

@

@y
.

Guided in part by the theory of ordinary differential equations of Chapter IV in
Basic, we shall be interested in existence-uniqueness questions for our equation
or system, both local and global, and in qualitative properties of solutions, such
as regularity, the propagation of singularities, and any special features. For a
particular equation or systemwe might be interested in any of the following three
problems:

(i) to find one or more particular solutions,
(ii) to find all solutions,
(iii) to find those solutions meeting some initial or boundary conditions.
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Problems of the third type as known as boundary-value problems or initial-
value problems.1 The method of separation of variables in Section I.2 is partic-
ularly adapted to solving this kind of problem in special situations.
For ordinarydifferential equationsand systems these threeproblemsare closely

related, as we saw in the course of investigating existence and uniqueness in
Chapter IV of Basic. For partial differential equations they turn out to be
comparatively distinct. We can, however, use the kind of setup with first-order
systems of ordinary differential equations to get an idea how much flexibility
there is for the solutions to the system. Let us treat one of the variables x
as distinguished2 and suppose, in analogy with what happened in the case of
ordinary differential equations, that the system consists of an expression for the
derivative with respect to x of each of the unknown functions in terms of the
variables, the unknown functions, and the other first partial derivatives of the
functions. Writing down general formulas involves complicated notation that
may obscure the simple things that happen; thus let us suppose concretely that
the independent variables are x, y and that the unknown functions are u, v. The
system is then to be

ux = F(x, y, u, v, uy, vy),
vx = G(x, y, u, v, uy, vy).

With x still regarded as special, let us suppose that u and v are known when
x = 0, i.e., that

u(0, y) = f (y),
v(0, y) = g(y).

The real-variable approach of Chapter IV of Basic is not very transparent for this
situation; an approach via power series looks much easier to apply. Thus we
assume whatever smoothness is necessary, and we look for formal power series
solutions in x, y. The question is then whether we can determine all the partial
derivatives of all orders of u and v at a point like (0, 0). It is enough to see that the
system and the initial conditions determine @ku

@xk (0, y) and
@kv
@xk (0, y) for all k ∏ 0.

For k = 0, the initial conditions give the values. For k = 1, we substitute x = 0
into the system itself and get values, provided we know values of all the variables
at (0, y). The values of u and v come from k = 0, and the values of uy and vy

1The distinction between these terms has nothing to do with the mathematics and instead is a
question of whether all variables are regarded as space variables or one variable is to be interpreted
as a time variable.

2It is natural to think of this variable as representing time and to say that the differential equation
and any conditions imposed at a particular value of this variable constitute an initial-value problem.
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come from differentiating those expressions with respect to y. For k = 2, we
differentiate each equation of the systemwith respect to x and then put x = 0. For
each equation we get a sum of partial derivatives of F , evaluated as before, times
the partial of each variable with respect to x . For the latter we need expressions
for ux , vx , uxy , and vxy; we have them since we know ux(0, y) and vx(0, y) from
the step k = 1. This handles k = 2. For higher k, we can proceed inductively by
continuing to differentiate the given system, but let us skip the details. The result
is that the initial values of u(0, y) and v(0, y) are enough to determine unique
formal power-series solutions satisfying those initial values.
Next, under the hypothesis that F , G, f , and g are holomorphic functions of

their variables near an initial point, one can prove convergence of the resulting
two-variable power series near (0, 0). This fact persists when the number of
equations and the number of unknown functions are increased but remain equal,
andwhen the domain variables are arbitrary in number. The theorem is as follows.

Theorem 7.1 (Cauchy–Kovalevskaya Theorem, first form). Let a system of
p partial differential equations with p unknown functions u(1), . . . , u(p) and N
variables x1, . . . , xN of the form

u(1)
x1 = F1(u(1), . . . , u(p), u(1)

x2 , . . . , u(p)
x2 , . . . , u(1)

xN , . . . , u(p)
xN ),

... (∗)

u(p)
x1 = Fp(u(1), . . . , u(p), u(1)

x2 , . . . , u(p)
x2 , . . . , u(1)

xN , . . . , u(p)
xN ),

be given, subject to the initial conditions

u(1)(0, x2, . . . , xN ) = f1(x2, . . . , xN ),

... (∗∗)

u(p)(0, x2, . . . , xN ) = fp(x2, . . . , xN ).

Suppose that f1, . . . , fp are holomorphic in a neighborhood inCN−1 of the point
(x2, . . . , xN ) = (x02 , . . . , x

0
N ) and that F1, . . . , Fp are holomorphic in a neighbor-

hood inCNp of thevalueof the argumentu(1), . . . , u(p)
xN of the Fj ’s that corresponds

to (0, x02 , . . . , x0N ). Then there exists a neighborhood of (x1, x2, . . . , xN ) =
(0, x02 , . . . , x0N ) in CN in which the system (∗) has a holomorphic solution satis-
fying the initial conditions (∗∗). Moreover, on any connected subneighborhood
of (0, x02 , . . . , x0N ), there is no other holomorphic solution satisfying the initial
conditions.
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We omit the proof since we shall use the theorem in this generality only as a
guide for howmuch in the way of initial conditions needs to be imposed to expect
uniqueness without compromising existence. Initial conditions of the form (∗∗)
for a system of equations (∗) are called Cauchy data.
We shall, however, make use of a special case of Theorem 7.1, where a better

conclusion is available.

Theorem 7.2. In the Cauchy–Kovalevskaya system of Theorem 7.1, suppose
that the functions Fk in the system (∗) are of the form

Fk(u(1), . . . , u(p), u(1)
x2 , . . . , u(p)

x2 , . . . , u(1)
xN , . . . , u(p)

xN )

=
pX

i=1
aiu(i) +

pX

i=1

NX

j=2
ci j u(i)

xj + hk(x1, . . . , xN )

with the ai and ci j constant and with each hj a given entire holomorphic function
onCN . Suppose further that the functions f j (x2, . . . , xN ) in the initial conditions
(∗∗) are entire holomorphic functions on CN . Then the system (∗) has an entire
holomorphic solution satisfying the initial conditions (∗∗).

This theorem is proved in Problems 6–9 at the end of the chapter without
making use of Theorem 7.1. We shall use it in proving Theorem 7.4 below,
which in turn will be applied in Section 5.
Since our interest is really in single equations and we want to allow order> 1,

we can ask whether we can carry over to partial differential equations the familiar
device for ordinary differential equations of introducing new unknown functions
to change a higher-order equation to a first-order system.
Recallwith anordinarydifferential equationof ordern for anunknown function

y(t) when the equation is y(n) = F(t, y, y0, . . . , y(n−1)): we can introduce
unknown functions y1, . . . , yn satisfying y1 = y, y2 = y0, . . . , yn = y(n−1),
and we obtain an equivalent first-order system y0

1 = y2, . . . , y0
n−1 = yn ,

y0
n = F(t, y1, y2, . . . , yn). Values for y, y0, . . . , y(n−1) at t = t0 correspond to
values at t = t0 for y1, y2, . . . , yn and give us equivalent initial-value problems.
For a single higher-order partial differential equation of order m in which the

mth derivative of the unknown function with respect to one of the variables x
is equal to a function of everything else, the same kind of procedure changes a
suitable initial-value problem into an initial-value problem for a first-order system
as above. But if we ignore the initial values, the solutions of the single equation
need not match the solutions of the system. Let us see what happens for a single
second-order equation in two variables x, y for an unknown function u under the
assumption that we have solved for uxx . Thus consider the equation

uxx = F(x, y, u, ux , uy, uxy, uyy)
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with initial data

u(0, y) = f (y),
ux(0, y) = g(y).

This is another instance in which the initial data are known as Cauchy data:
the equation has order m, and we are given the values of u and its derivatives
through order m − 1 with respect to x at the points of the domain where x =
0. For this example, introduce variables u, p, q, r, s, t equal, respectively, to
u, ux , uy, uxx , uxy, uyy . With these interpretations of the variables, the given
equation becomes r = F(x, y, u, p, q, s, t), and we differentiate this identity
to make it more convenient to use. Then u yields a solution of a system of six
first-order equations, namely

ux = p,
px = r,
qx = py,
rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft ,
sx = ry,
tx = sy .

The choice here of qx = py rather than qx = s is important; we will not be able
to invert the initial-value problem without it. The initial data will be values of
u, p, q, r, s, t at (0, y), and we can read off what we must use from the above
values of u(0, y) and ux(0, y), namely

u(0, y) = f (y),
p(0, y) = g(y),
q(0, y) = f 0(y),
r(0, y) = F(0, y, f (y), g(y), f 0(y), g0(y), f 00(y)),
s(0, y) = g0(y),
t (0, y) = f 00(y).

If u satisfies the initial-value problem for the single equation, then the definitions
of u, p, q, r, s, t give us a solution of the initial-value problem for the system.
Let us show that a solution u, p, q, r, s, t of the initial-value problem for the

system has to make u be a solution of the initial-value problem for the single
equation. What needs to be shown is that uy = q, uxy = s, and uyy = t . We use
the same kind of argument with all three.
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For uy = q, we see from the system that (uy)x = (ux)y = py = qx , so that
(uy−q)x = 0. Therefore uy(x, y)−q(x, y) = h(y) for some function h. Setting
x = 0 gives h(y) = uy(0, y) − q(0, y) = f 0(y) − f 0(y) = 0. Thus h(y) = 0,
and we obtain uy = q.
Similarly foruxy = s, we start fromuxxy = pxy = ry = sx , so that (uxy−s)x =

0. Therefore uxy(x, y) − s(x, y) = k(y) for some function k. Setting x = 0
gives k(y) = uxy(0, y) − s(0, y) = py(0, y) − s(0, y) = g0(y) − g0(y) = 0.
Thus k(y) = 0, and we obtain uxy = s.
Finally foruyy = t , we start fromuxyy = (uxy)y = sy = tx , so that (uyy−t)x =

0. Therefore uyy(x, y)− t (x, y) = l(y) for some function l. Setting x = 0 gives
l(y) = uyy(0, y) − t (0, y) = f 00(y) − f 00(y) = 0. Thus l(y) = 0, and we obtain
uyy = t .
The conclusion is that the given second-order equation with two initial con-

ditions is equivalent to the system of six first-order equations with six initial
conditions. In other words the Cauchy data for the single equation lead to Cauchy
data for an equivalent first-order system. It turns out that if a single equation of
order m has one unknown function and is written as solved for the mth derivative
of one of the variables x , and if the given Cauchy data consist of the values at
x = x0 of the unknown function and its derivatives through order m − 1, then
the equation can always be converted in this way into an equivalent first-order
system with given Cauchy data. The steps of the reduction to Theorem 7.1 are
carried out in Problems 10–11 at the end of the chapter. The result is as follows.

Theorem 7.3 (Cauchy–Kovalevskaya Theorem, second form). Let a single
partial differential equation of orderm in the variables (x, y) = (x, y1, . . . , yN−1)
of the form

Dm
x u = F(x, y; u; all Dk

x D
α
y u with k < m and k + |α| ≤ m) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Here α is assumed to be a multi-index α = (α1, . . . , αN−1) corresponding to the
y variables. Suppose that f (0), . . . , f (m−1) are holomorphic in a neighborhood
in CN−1 of the point (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1) and that F is holomor-

phic in a neighborhood of the value of its argument corresponding to x = 0
and (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1). Then there exists a neighborhood of

(x, y1, . . . , yN−1) = (0, y01 , . . . , y0N−1) in CN in which the system (∗) has a
holomorphic solution satisfying the initial conditions (∗∗). Moreover, on any
connected subneighborhood of (0, y01 , . . . , y0N−1), there is no other holomorphic
solution satisfying the initial conditions.
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In the special case that F is the sumof a known entire holomorphic function and
a linear combination with constant coefficients of x , y, and the various Dk

x Dα
y u,

the steps that reduce Theorem7.3 to Theorem7.1 perform a reduction to Theorem
7.2. We therefore obtain a better conclusion under these hypotheses, as follows.

Theorem 7.4. Let a single partial differential equation of order m in the
variables (x, y) = (x, y1, . . . , yN−1) of the form

Dm
x u = ax+b1y1+· · ·+bN−1yN−1+

X

0≤k<m
k+|α|≤m

ck,αDk
x D

α
y u+h(x, y1, . . . , yN−1) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Suppose that f (0), . . . , f (m−1) are entire holomorphic onCN−1 and that h is entire
holomorphic on CN . Then the equation (∗) has an entire holomorphic solution
satisfying the initial conditions (∗∗).

The steps in the reduction of this theorem to Theorem 7.2 are indicated for
N = 2 in Problem 11 at the end of the chapter, and the steps for general N
are similar. We shall make use of Theorem 7.4 to prove the existence of certain
“fundamental solutions” in Section 5.
Aswe said, in this reduction from an initial-value problem for a single equation

to an initial-value problem for a first-order system, the equation without initial
values is not always equivalent to the system without initial values. A simple
example will suffice. In the second-order setup as above, let the given equation
be uxx = −uyy + 4. That is, let F(x, y, u, ux , uy, uxy, uyy) = −uyy + 4. This
equation has u = x2 + y2 as a solution, for example. If we introduce variables
u, p, q, r, s, t as above, we find that F(x, y, u, p, q, s, t) = −t + 4, and we
obtain the system

ux = p,
px = r,
qx = py,
rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft = −sy,
sx = ry,
tx = sy .

If we put
u = x2, p = 2x, q = s = 0, r = t = 2,
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we find that this tuple (u, p, q, r, s, t) solves the system. But u = x2 is not a
solution of uxx = −uyy + 4.
There is a still more general Cauchy–Kovalevskaya Theorem than anythingwe

have considered, still involving local holomorphic systems, data, and solutions.
It amounts to whatever one can get by combining the Implicit Function Theorem,
the technique of reduction of order via an increase in the number of equations,
and Theorem 7.1. We omit the precise statement. The word “noncharacteristic”
is used to describe situations in which the Implicit Function Theorem applies for
this purpose.
Cauchy data are not the only kinds of initial data that one might consider.

In fact, none of the examples with separation of variables in Section I.2 used
Cauchy data. A typical example from that section is the Dirichlet problem for
the Laplacian in the unit disk. The equation can be written as uxx = −uyy , and
Cauchy data would consist of values of u(x0, y) and ux(x0, y). This amounts to
two functions on a piece of a line in the plane, and one could handle two functions
of a suitable curve in the plane after applying the Implicit Function Theorem. By
contrast, theDirichlet problemrequires just a single functionon theunit circle for a
unique solution. Amore apt comparison is to think of a Sturm–Liouville problem
as being an ordinary-differential-equations analog of the Dirichlet problem. A
particular Sturm–Liouville problem to compare with the Dirichlet problem for
the disk is the equation uxx = 0 with boundary conditions u(0) = u(π) = 0.
The region is a ball in 1-dimensional space, and the function is specified on the
boundary; the function is uniquely determined without specifying the derivative
on the boundary. However, if the equation is changed to uxx = −∏u for some
positive constant ∏, then there is a nonunique solution when ∏ is the square of a
nonzero integer.

2. Orientation

After this essay on what is appropriate for existence and uniqueness, let us turn to
some other aspects of partial differential equations and systems. A few principles
and observations will influence what we do in the upcoming sections of this
chapter.

The subjects of linear systems and nonlinear systems of partial differential
equations cannot be completely separated.
For example let a(x, y) and b(x, y) be given functions on an open set in R2,

and consider the single linear equation

a(x, y)ux + b(x, y)uy = 0
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for an unknown function u(x, y). If we look for curves c(t) = (x(t), y(t))
along which such a function u(x, y) is constant, the condition on c is that° d
dt

¢
u(x(t), y(t)) = 0, hence that

x 0(t)ux(x(t), y(t)) + y0(t)uy(x(t), y(t)) = 0.

One way for this equation to be satisfied is that c(t) = (x(t), y(t)) satisfy the
system

x 0(t) = a(x, y),
y0(t) = b(x, y),

of two ordinary differential equations. This system is nonlinear, and the condition
for c(t) to solve it is that c(t) be an integral curve. Thus u is a solution if it is
constant along each integral curve. If we introduce two parameters, one varying
along an integral curve and the other indexing a family of integral curves, then
we obtain solutions by letting u be any function of the second parameter. Under
reasonable assumptions, these solutions turn out to be the only solutions locally,
and thus the solution of a certain linear partial differential equation reduces to
solving a nonlinear system in fewer variables. Despite this circumstance the
partial differential equations of interest to us will be the linear ones.

As we have seen, there is a distinction between the reduction of a partial
differential equation to a first-order system of Cauchy type and the reduction of
a Cauchy problem for the equation to the corresponding Cauchy problem for the
first-order system.
One consequence is that finding a several-parameter set of solutions of a partial

differential equation may not be very helpful in solving a specific boundary-
value problem about the equation. With an eye on the wave equation, let us take
as an example a homogeneous linear equation with constant coefficients. Let
P : RN+1 → C be a polynomial such as P(x0, x1, . . . , xN ) = x20 − x21 −· · ·− x2N
in the case of the wave equation, x0 being the time variable. Wewrite the equation
in our notation with D as

P(D)u = 0,
understanding as usual that @

±
@xj is to be substituted in P everywhere that xj

appears. If a is any (N + 1)-tuple, then (@
±
@xj )ea·x = ajea·x . Consequently

P(D)ea·x = P(a)ea·x , and ea·x solves the equation P(D)u = 0whenever P(a) =
0. Concretelywith thewave equation, letα be a real number, letβ = (β1, . . . , βN )

be inRN , and write x = (t, x 0). Then eαt−β·x 0 solves the wave equation whenever
α2 = |β|2. Apart from the one constraint α2 = |β|2, we obtain an N -parameter
family of solutions of the wave equation. But this family of solutions is not of
any obvious help in solving boundary-value problems such as those encountered
in Section I.2. We shall discuss this example further shortly.
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Global problems involving linear partial differential equations with constant
coefficients lend themselves to use of the Fourier transform.
The reason is that the Fourier transform carries differentiation into multipli-

cation by a function. Specifically under suitable conditions on f , the relevant
formula is F

° @ f
@xj

¢
(ξ) = 2π iξj (F f )(ξ) if we use ξ for the Fourier transform

variable.
Thus, at least on a formal level, to find a solution of an inhomogeneous

equation P(D)u = f , we can take the Fourier transform of both sides, obtaining
P(2π iξ)(Fu)(ξ) = (F f )(ξ). Then we divide by P(2π iξ) and take the inverse
Fourier transform. In Section III.1 we carried out the steps of this process for
the equation (1 − 1)u = f when f is in the Schwartz space. In this case the
polynomial is 1+4π2|ξ |2, and we found that there is a solution u in the Schwartz
space.
In practice the function P(2π iξ) may be zero in some places, and then we

have to check what happens with the division. There will also be a matter of
ensuring that the inverse Fourier transform is well defined where we want it to
be.
In Section 3 we shall use multiple Fourier series to see that a linear equation

P(D)u = f with constant coefficients and with f in C∞
com(RN ) always has a

solution in a neighborhood of a point. It is of interest also to know what happens
when f is replaced by a function with fewer derivatives or even by a distribution
of compact support. This matter is addressed in Problem 5 at the end of the
chapter.

For a linear partial differential equation of order m, the terms with differen-
tiations of total order m are especially important. Moreover, a linear equation
with variable coefficients can sometimes be studied near a point x0 of the domain
by applying a “freezing principle.”
We explain the notion of a freezing principle in a moment. We shall nowmake

use of the notation of Chapter V for linear differential operators L , often writing
an equation under study as Lu = f with f known and u unknown. Here L is
given by

L = P(x, D) =
X

|α|≤m
aα(x)Dα

for some m, or we can write

L = P(x, Dx) =
X

|α|≤m
aα(x)Dα

x

if the variable x of differentiation needs emphasis. It is customary to assume that
m is the order of L , in which case some aα(x)with |α| = m is not identically zero.
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The domain is to be an open set in real Euclidean space, usuallyRN ; thus x varies
in that open set, and the multi-index α is an N -tuple of nonnegative integers.
The idea of a freezing principle is that the behavior of solutions of P(x, D)u =

f near x = x0 can sometimes be studied by considering solutions of the equa-
tion (P(x0, Dx)u)(x) = f (x) and making estimates for how much effect the
variability of x might have. For equations that are “elliptic” in a sense that
we define shortly, the classical approach to the equations via something called
“Gårding’s inequality” used this idea and worked well. We shall indicate a more
recent approach via “pseudodifferential operators” in Section 6 and will omit any
discussion of details concerning Gårding’s inequality in our development. The
freezing principle is somewhat concealed within the mechanism of pseudodif-
ferential operators, but it is at least visible in the notation that is used for such
operators.
As far as theorems for nonelliptic operators are concerned, the idea of a

freezing principle is meaningful but has its limitations. We have noted that linear
differential equations with constant coefficients are at least locally solvable, a
result that will be proved in Section 3. But the same is not always true for
equations with variable coefficients. In 1957 Hans Lewy gave an example in R3
involving the linear differential operator

P(x, D) = −(D1 + i D2) + 2i(x1 + i x2)D3.

For a certain function f of class C∞ that is nowhere real analytic, the equation
P(x, D)u = f admits no solution in any nonempty open set. By contrast, if f
is holomorphic, the Cauchy–Kovalevskaya Theorem (Theorem 7.3) ensures the
existence of local solutions.
In the linear differential operator P(x, Dx) =

P
|α|≤m aα(x)Dα

x , the terms of
highest order are of special interest; we group them and give them their own
name:

Pm(x, Dx) =
X

|α|=m
aα(x)Dα

x .

In line with the freezing principle, when one takes a Fourier transform, one
does not apply the Fourier transform to the coefficients of L , only to the various
Dα
x ’s. Recalling that Dα

x goes into multiplication by (2π i)|α|ξα under the Fourier
transform, we introduce the expressions3

3The Fourier transform variable ξ lies in the dual space of RN . To take maximum advantage of
this fact in more advanced treatments, one wants to identify RN with the tangent space at x to the
domain open set. Then ξ is to be regarded as a member of the dual of the tangent space of x , and
to some extent, the formalism makes sense on smooth manifolds. We elaborate on these remarks in
Chapter VIII.
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P(x, 2π iξ) =
X

|α|≤m
aα(x)(2π iξ)α

Pm(x, 2π iξ) =
X

|α|=m
aα(x)(2π iξ)α.and

These are called the symbol and the principal symbol of L , respectively.

EXAMPLES. The Laplacian, thewave operator, and the heat operator have order
m = 2, while the Cauchy–Riemann operator hasm = 1. In all these cases except
the heat operator, the symbol and the principal symbol coincide. The operators
written with the notation D are

1 = 1x = D21 + · · · + D2N in RN (Laplacian),
@

@ z̄
= D1 + i D2 (Cauchy–Riemann operator),

§ = D20 − 1x in RN+1 (wave operator),

D0 − 1x in RN+1 (heat operator).

The principal symbols Pm(x, 2π iξ) in each case are independent of x and are as
follows:

−4π2(ξ 21 + · · · + ξ 2N ) (Laplacian),
2π iξ1 − 2πξ2 (Cauchy–Riemann operator),

−4π2ξ 20 + 4π2(ξ 21 + · · · + ξ 2N ) (wave operator),

4π2(ξ 21 + · · · + ξ 2N ) (heat operator).

Complex analysis inevitably plays an important role in the study of partial
differential equations.
We already saw that complex analysis is useful in addressing the Cauchy

problem. The Lewy example shows that complex analysis has to play a role in
drawing a distinction between linear equations with constant coefficients, where
we always have local existence of solutions, and linear equations with variable
coefficients, where local existence can fail if the inhomogeneous term of the
equation is merely C∞. Actually, the complex analysis that enters the local
existence theorem in Section 3 for linear equations with constant coefficients
is rather primitive and can be absorbed into facts about polynomials in several
variables. Complex analysis enters in a more serious way for more advanced
theorems about partial differential equations, but we shall not pursue theorems
that go in this direction beyond one application in Section 5 of Theorem 7.4.
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Linear partial differential equations can exhibit behavior of kinds not seen in
ordinary differential equations.
Theoperator L onanopen set inRN is said tobe ellipticat x if Pm(x, 2π iξ) = 0

for ξ ∈ RN only when ξ = 0. The operator L is elliptic if it is elliptic at every
point x of its domain. The Laplacian and the Cauchy–Riemann operator are
elliptic, but the wave operator and the heat operator are not. A linear ordinary
differential operatorwith nonvanishing coefficient for the highest-order derivative
is automatically elliptic. We shall be especially interested in elliptic operators,
which are relatively easy to handle.
In Section I.2 we considered the Dirichlet problem for the unit disk in R2,

namely the problem of finding a function u satisfying 1u = 0 in the interior
and taking prescribed values on the boundary. The problem was solved by the
Poisson integral formula. No matter how rough the function on the boundary
was, the solution u in the interior was a smooth function. Theorem 3.16 extended
this conclusion of smoothness, showing that solutions of 1u = 0 in any open
set of RN are automatically C∞. This behavior is typical of solutions of linear
elliptic differential equations with smooth coefficients.
Other partial differential equations can behave quite differently. Consider the

wave equation
°°

@
@t

¢2
− 1x

¢
u = 0 with x ∈ Rn . We have seen that u(t, x) =

eαt−β·x is a solution if α is a number and β is a vector withα2 = |β|2. But actually
the exponential function is not important here. If f is any C2 function of one
variable, then f (αt −β · x) is a solution as long as α2 = |β|2 is satisfied: in fact,°°

@
@t

¢2
−1x

¢
f (αt−β ·x) = f 00(αt−β ·x)(α2−|β|2). Such a solution represents

an undistorted progressing wave; the roughness of the wave is maintained as time
progresses. Again, this kind of behavior is not exhibited by elliptic equations.
In the special case that L is of order 2 with real coefficients and a point x0 is

specified, we can make a linear change of variables in ξ to bring the order-two
terms of the operator into a certain standard form at x0 that makes the question of
ellipticity transparent. This change of variables amounts to replacing the standard
basis e1, . . . , eN used for determining the first partial derivatives D1, . . . , DN by a
new basis e0

1, . . . , e
0
N and the corresponding first partial derivatives D0

1, . . . , D
0
N .

The result is as follows.

Proposition 7.5. If L = P(x, D) is of order 2 and has real coefficients in
an open set of RN and if a point x0 is specified, then there exists a nonsingular
N -by-N realmatrixM = [Mi j ] such that the definition D0

j =
P

k Mjk Dk exhibits
L at x0 as of the form ∑1D0

1
2 + · · · + ∑N D0

N
2 with each ∑j equal to+1, −1, or 0.

The principal symbol of L at x0 is then −4π2
P

j ∑jξ
0
j
2, where ξ 0

j =
P

k Mjkξk .

REMARKS. We see immediately that L is elliptic at x0 if and only if all ∑j
are +1 or all are −1. This is the situation with the Laplacian. In Section 4 we
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shall prove a maximum principle for certain elliptic operators of order 2 with
real coefficients, generalizing the corresponding result for the Laplacian given in
Corollary 3.20. If one ∑j is+1 and the others are−1, or if one is−1 and the others
are +1, the operator is said to be hyperbolic at x0; this is the situation with the
wave operator. Much is known about hyperbolic operators of this kind and about
generalizations of them, but the study of such operators remains a continuing
subject of investigation.

Lemma 7.6 (Principal Axis Theorem). If B is a real symmetric matrix, then
there exist a nonsingular real matrix M and a diagonal matrix C whose diagonal
entries are each +1, −1, or 0 such that B = M trCM .
PROOF. By the finite-dimensional Spectral Theorem for self-adjoint operators,

choose an orthogonal matrix P such that PBP−1 is some real diagonal matrix E .
Any real number is the product of a square and one of +1, −1, and 0, and thus
E = QCQ with C as in the lemma and with Q = Qtr diagonal and nonsingular.
Since P is orthogonal, P−1 = P tr, and therefore B = P trQtrCQP . This proves
the lemma with M = QP . §

PROOF OF PROPOSITION 7.5. Let the principal symbol be

P2(x, 2π iξ) =
X

|α|=2
aα(x)(2π iξ)α = −4π2

X

|α|=2
aα(x)ξα.

We rewrite this in matrix notation, viewing ξ = (ξ1, . . . , ξN ) as a column vector
and converting {aα(x)} into a matrix by defining

bj j (x) = aα(x) if α is 2 in the j th entry and 0 elsewhere,

bjk(x) = 1
2aα(x) if α is 1 in the j th and kth entries and 0 elsewhere.

Then B(x) = [bjk(x)] is a symmetric matrix, and

P2(x, 2π iξ) = −4π2
X

j,k
bjk(x)ξjξk = −4π2ξ trB(x)ξ.

We apply the lemma to the real symmetric matrix B = B(x0) to obtain B(x0) =
M trC(x0)M with M nonsingular and with C(x0) diagonal of the form in the
lemma. Define C(x) by B(x) = M trC(x)M , write C(x) = [cjk(x)] and
M = [mjk], and put ξ 0 = Mξ . Then P2(x, 2π iξ) = −4π2ξ trB(x)ξ =
−4π2ξ tr(M trC(x)M)ξ = −4π2ξ 0 trC(x)ξ 0. If we set D0

j =
P

k Mjk Dk , then
the algebraic manipulations for the order-two part of L are the same as with
the principal symbol and show that the order-two part of the operator is given
by P2(x, D) =

P
j,k bjk(x)Dj Dk =

P
j,k cjk(x)D0

j D
0
k . The matrix C(x0) is

diagonal with diagonal entries +1, −1, and 0, and the proposition follows. §
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Ways are needed for making routine the passage via the Fourier transform
between differentiations and multiplications by polynomials.
We are going to be using the Fourier transform to transform any linear equation

Lu = f , at least in the constant-coefficient case, into a problem involving division
by a polynomial and inversion of a Fourier transform. It is inconvenient to check
repeatedly the technical conditions in Proposition 8.1 ofBasic that relate differen-
tiations andmultiplicationsby polynomials. Weakderivatives andSobolev spaces
as discussed in Chapter III, and distributions as discussed in Chapter V, all help
us handle easily the passage via the Fourier transform between differentiations
and multiplications by polynomials.

“Fundamental solutions” are useful for obtaining all solutions of a linear
partial differential equation, especially for constant-coefficient equations. In the
case of an elliptic equation, a substitute for a fundamental solution that is easier
to find is a “parametrix,” which at least reveals qualitative properties of solutions.
In Section I.3 we encountered Green’s functions in connection with Sturm–

Liouville theory. The operator L under study in that section was a second-order
ordinary differential operator, and a Green’s functionwas the kernel of an integral
operator T1 that we used. To understand symbolically what was happening there,
let us take r = 1 in Section I.3, and then the operator T , which is the same as the
operator T1 for r = 1 in that section, sets up a one-one correspondence between a
class of functions u and a class of functions f , the relationship being that u = T f
and Lu = f . In other words T was a two-sided inverse of L . The operator T
was of the form T f (x) =

R b
a G(x, y) f (y) dy. If we think symbolically of taking

f to be a point mass δx0 at x0, then we find that T (δx0)(x) = G(x, x0), and the
relationship is to be L(G( · , x0)) = δx0 . In other words the Green’s function at x0
is a fundamental solution u of the equation Lu = f in the sense that application
of L to it yields a point mass at x0.
These matters can easily be made rigorous with distributions of the kind intro-

duced in Chapter V. In the case that L has constant coefficients, the notion of a
fundamental solution is especially useful because the operator L commutes with
translations. If a certain u produces Lu = δ0, then translation of that u by some
x0 produces a solution of Lu = δx0 . In short, one obtains a fundamental solution
for each point by finding it just for one point, and all solutions may be regarded
as the sum of a weighted average of fundamental solutions at the various points
plus a solution of Lu = 0. In practice we can carry out this process of weighted
average by means of convolution of distributions. Corollary 5.23 carried out the
details for the Laplacian in RN , once Theorem 5.22 had identified a fundamental
solution at 0.
In the case of the Laplacian in all of RN , Theorem 5.22 showed that a funda-

mental solution at 0 is amultiple of |x |−(N−2) if N > 2. But fundamental solutions
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are at best inconvenient to obtain for other equations, and a certain amount of
the qualitative information they yield, at least in the elliptic case, can be obtained
more easily from a “parametrix,” which is a kind of approximate fundamental
solution. To illustrate matters, consider the inhomogeneous version 1u = f of
the Laplace equation, which is known as Poisson’s equation. Suppose that f
is in C∞

com(RN ) and we seek information about a possible solution u. We shall
use the Fourier transform, and therefore u had better be a function or distribution
whose Fourier transform is well defined. But let us leave aside the question of
what kind of function u is, going ahead with the computation. If we take the
Fourier transform of both sides, we are led to ask whether the following inverse
Fourier transform is meaningful:

−4π2
Z

RN
e2π i x ·ξ |ξ |−2 bf (ξ) dξ.

Here bf (ξ) is in the Schwartz space, but the singularity of |ξ |−2 at the origin does
not put |ξ |−2 bf (ξ) into any evident space of Fourier transforms. To compensate,
we use Proposition 3.5f to introduce a functionχ ∈ C∞

com(RN ) that is identically 0
near the origin and is identically 1 away from the origin. Then χ(ξ)|ξ |−2 bf (ξ)
has no singularity and is in fact in the Schwartz space. It thus makes sense to
define

Q f (x) = −4π2
Z

RN
e2π i x ·ξχ(ξ)|ξ |−2 bf (ξ) dξ,

where Q f (x) is the Schwartz function with

dQ f (ξ) = −4π2χ(ξ)|ξ |−2 bf (ξ).

Since 1 f is in C∞
com(RN ) and Q f is a Schwartz function, Q1 f and 1Q f are

Schwartz functions. Applying the Fourier transform operator F, as it is defined
on the Schwartz space, we calculate that

F(Q1 f ) = χ bf = F(1Q f ).

Hence F(Q1 f − f ) = F(1Q f − f ) = (χ − 1) bf .

The function χ − 1 on the right side is in C∞
com(RN ), and it is therefore the

Fourier transform of some Schwartz function K . Since F carries convolutions
into products, we have bK bf = \K ∗ f , and consequently

Q1 = 1Q = 1+ (convolution by K ).

The operator of convolution by K is called a “smoothing operator” because,
as follows from the development of Chapter V, it carries arbitrary distributions of
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compact support into smooth functions. The operator Q that gives a two-sided
inverse for 1 except for the smoothing term is called a parametrix for 1.
The parametrix does not solve our equation for us, but it does supply useful

information. As we shall see in Section 5, a parametrix will enable us to see that
whenever u is a distribution solution of 1u = f on an open set U , with f an
arbitrary distribution onU , then u is smooth wherever f is smooth. In particular,
any distribution solution of 1u = 0 is a smooth function. The argument will
apply to any elliptic linear partial differential equation with constant coefficients.
A first application of the method of pseudodifferential operators in Section 6
shows that the same conclusion is valid for any elliptic linear partial differential
equation with smooth variable coefficients.

3. Local Solvability in the Constant-Coefficient Case

We come to the local existence of solutions to linear partial differential equations
with constant coefficients.

Theorem7.7. LetU be an open set inRN containing 0, and let f be inC∞(U).
If P(D) is a linear differential operator with constant coefficients and with order
∏ 1, then the equation P(D)u = f has a smooth solution in a neighborhood of 0.

The proof will use multiple Fourier series as in Section III.7. Apart from that,
all that we need will be somemanipulationswith polynomials in several variables
and an integration. As in Section III.7, let us write ZN for the set of all integer
N -tuples and [−π, π]N for the region of integration defining the Fourier series.
We shall give the idea of the proof, state a lemma, prove the theorem from

the lemma, and then return to the proof of the lemma. The idea of the proof of
Theorem 7.7 is as follows: We begin by multiplying f by a smooth function
that is identically 1 near the origin and is identically 0 off some small ball
containing the origin (existence of the smooth function by Proposition 3.5f),
so that f is smooth of compact support, the support lying well inside [−π, π]N .
If we regard f as extended periodically to a smooth function, we can write
f (x) =

P
k∈ZN dkeik·x by Proposition 3.30e. Let the unknown function u be

given by u(x) =
P

k∈ZN ckeik·x . Then P(D)u(x) is given by

P(D)u(x) =
X

k∈ZN

ck P(ik)eik·x ,

and thus we want to take ck P(ik) = dk . We are done if dk
P(ik) decreases faster

than any |k|−n , by Proposition 3.30c and our computations. So we would like to
prove that

|P(ik)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN
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and for some constantsC and M , and then we would be done. Unfortunately this
is not necessarily true; the polynomial P(x) = |x |2 is a counterexample. What is
true is the statement in the following lemma, and we can readily adjust the above
idea to prove the theorem from this lemma.

Lemma 7.8. If R(x) is any complex-valued polynomial not identically 0 on
RN , then there exist α ∈ RN and constants C and M such that

|R(k + α)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN .

PROOF OF THEOREM 7.7. Apply the lemma to R(x) = P(i x). Because of the
preliminary step ofmultiplying f by something,we are assuming that f is smooth
and has support near 0. Instead of extending f to be periodic, as suggested in
the discussion before the lemma, we extend the function f (x)e−iα·x to be smooth
and periodic. Thus write

f (x)e−iα·x =
X

k∈ZN

dkeik·x ,

and put ck = dk
R(k+α)

. Since the |dk | decrease faster than |k|−n for any n,
Lemma 7.8 and Proposition 3.30c together show that

P
k∈ZN ckeik·x is smooth

and periodic. Define

u(x) = eiα·x
X

k∈ZN

ckeik·x =
X

k∈ZN

ckei(k+α)·x .

This function is smooth but maybe is not periodic. Application of P(D) gives

P(D)u(x) =
X

k∈ZN

ck P(i(k + α))ei(k+α)·x

= eiα·x
X

k∈ZN

dk
R(k + α)

P(i(k + α))eik·x

= eiα·x
X

k∈ZN

dkeik·x = eiα·x( f (x)e−iα·x) = f (x),

and hence u solves the equation for the original f in a neighborhood of the origin.
§

The proof of Lemma 7.8 requires two lemmas of its own.
Lemma 7.9. For each positive integer m and positive number δ < 1

m , there
exists a constant C such that

R 1
−1 |x − c1|−δ · · · |x − cm |−δ dx ≤ C

for any m complex numbers c1, . . . , cm .
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PROOF. For 1 ≤ j ≤ m, let Ej be the subset of [−1, 1] where |x − cj |−δ is the
largest of the m factors in the integrand. The integral in question is then

≤
Pm

j=1
R
Ej |x − c1|−δ · · · |x − cm |−δ dx

≤
Pm

j=1
R
Ej |x − cj |−mδ dx ≤

Pm
j=1

R 1
−1 |x − cj |−mδ dx

≤
Pm

j=1
R 1
−1 |x − Re cj |−mδ dx ≤ m supr∈R

R 1
−1 |x − r |−mδ dx .

On the right side the integrand decreases pointwise with |r | when |r | ∏ 1, and
hence the expression is equal to

m sup−1≤r≤1
R 1
−1 |x − r |−mδ dx

= m sup−1≤r≤1
° R r

−1 (r − x)−mδ dx +
R 1
r (x − r)−mδ dx

¢

= m(1− mδ)−1 sup−1≤r≤1
°
(1+ r)1−mδ + (1− r)1−mδ

¢

≤ 22−mδm(1− mδ)−1. §

Lemma 7.10. If R(x) is any complex-valued polynomial on RN of degree
m > 0, then |R(x)|−δ is locally integrable whenever δ < 1

m .

PROOF. We first treat the special case that xm1 has coefficient 1 in R(x) and that
integrability on the cube [−1, 1]N is to be checked. Write x 0 for (x2, . . . , xN ),
so that x = (x1, x 0). Then R(x) = xm1 +

Pm−1
j=0 x

j
1 pj (x 0), where each pj is a

polynomial. For fixed x 0, R(x1, x 0) is a monic polynomial of degree m in x1 and
factors as (x1−c1) · · · (x1−cm) for some complex numbers c1, . . . , cm depending
on x 0. Applying Lemma 7.9, we see that

R 1
−1 |R(x1, x 0)|−δ dx1 ≤ C . Integration

in the remaining N − 1 variables therefore gives
R
[−1,1]N |R(x)|−δ dx ≤ 2N−1C .

Turning to the general case, suppose that R(x) and a point x0 are given. We
want to see that F(x) = R(x + x0) has the property that |F(x)|−δ is integrable
on some neighborhood of the origin in RN . The function F is still a polynomial
of degree m. Let Fm be the sum of all its terms of total degree m. This cannot be
identically 0 on the unit sphere since it is a nonzero homogeneous function,4 and
thus Fm(v1) 6= 0 for some unit vector v1. Extend {v1} to an orthonormal basis
of RN , and define G(y1, . . . , yN ) = Fm(y1v1 + · · · + yNvN ). The function G is
a polynomial of degree m whose coefficient of ym1 is Fm(v1) and hence is not 0,
and it is obtained by applying an orthogonal transformation to the variables of
F . Therefore |G|−δ and |F |−δ have the same integral over a ball centered at the
origin. The special case shows that |G|−δ is integrable over some such ball, and
hence so is |F |−δ. §

4A function Fm of several variables is homogeneous of degree m if Fm(r x) = rm Fm(x) for all
r > 0 and all x 6= 0.
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PROOF OF LEMMA 7.8. Let R have degreem, which wemay assume is positive
without loss of generality. The function S(x) = |x |2mR

° x
|x |2

¢
is then a polynomial

of degree ≤ 2m, and Lemma 7.10 shows that any number δ with δ < 1
2m has

the property that |R|−δ and |S|−δ are integrable for |x | ≤ 1. Using spherical
coordinates and making the change of variables r 7→ 1/r in the radial direction,
we see that

R
|x |∏1 |R(x)|−δ|x |−2N dx =

R ∞
r=1

R
ω∈SN−1 |R(rω)|−δr−2N dω r N−1 dr

=
R 1
r=0

R
ω∈SN−1 |R(r−1ω)|−δ dω r N−1 dr

=
R
|x |≤1 |R(x/|x |2)|−δ dx

=
R
|x |≤1 |S(x)|−δ|x |2mδ dx

≤
R
|x |≤1 |S(x)|−δ dx .

The right side is finite. Since (1+ |x |2)−N ≤ 1+ |x |−2N , we see that

R
RN |R(x)|−δ(1+ |x |2)−N dx < ∞.

Define E = {α ∈ RN | 0 ≤ αj < 1 for all j}. By complete additivity, we can
rewrite the above finiteness condition as

R
α∈E

£P
k∈ZN |R(k + α)|−δ(1+ |k + α|2)−N

§
dα < ∞.

Every pair (l, β)with l ∈ Z and β ∈ [0, 1) has (l+β)2 ≤ 2(1+ l2). Summing N
such inequalities gives |k + α|2 ≤ 2N + 2|k|2 ≤ 2N (1+ |k|2). Thus we obtain
1+ |k + α|2 ≤ 3N (1+ |k|2), (1+ |k + α|2)−N ∏ (3N )−N (1+ |k|2)−N , and

R
α∈E

£P
k∈ZN |R(k + α)|−δ(1+ |k|2)−N

§
dα < ∞.

Therefore
P

k∈ZN |R(k+α)|−δ(1+|k|2)−N is finite almost everywhere [dα]. Fix
an α for which the sum is finite. If

P
k∈ZN |R(k + α)|−δ(1+ |k|2)−N = K < ∞,

then |R(k + α)|−δ(1 + |k|2)−N ≤ K for all k ∈ ZN and hence |R(k + α)|−1 ≤
K 1/δ(1+ |k|2)N/δ for all k ∈ ZN . This proves Lemma 7.8. §
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4. Maximum Principle in the Elliptic Second-Order Case

In this section we work with a second-order linear homogeneous elliptic equation
Lu = 0 with continuous real-valued coefficients in a bounded connected open
subset U of RN . It will be assumed that only derivatives of u, and not u itself,
appear in the equation; in other words we assume that L(1) = 0. The conclusion
will be that a real-valued C2 solution u cannot have an absolute maximum or
an absolute minimum inside U without being constant. This result was proved
already in Corollary 3.20 for the special case that L is the Laplacian1.
Let us use notation for L of the kind in Proposition 7.5 and its proof. Then L

is of the form
Lu =

X

i, j
bi j (x)Di Dju +

X

k
ck(x)Dku

with the matrix [bi j (x)] real-valued and symmetric. Ellipticity of L at x means
that

P
i, j bi j (x)ξiξj 6= 0 for ξ 6= 0. Thus

Ø
ØP

i, j bi j (x)ξiξj
Ø
Ø has a positive

minimum value µ(x) on the compact set where |ξ | = 1. By homogeneity ofØ
ØP

i, j bi j (x)ξiξj
Ø
Ø and |ξ |2, we conclude that

Ø
Ø
X

i, j
bi j (x)ξiξj

Ø
Ø ∏ µ(x)|ξ |2

for some µ(x) > 0 and all ξ . The positive number µ(x) is called the modulus
of ellipticity of L at x .

EXAMPLE. Let L be the sum of the Laplacian and first-order terms, i.e.,
Lu = 1u +

P
k ck(x)Dku. Suppose that u is a real-valued C2 function on U

and that u attains a local maximum at x0 in U . By calculus, Diu(x0) = 0 for
each i and D2i u(x0) ≤ 0, so that Lu(x0) ≤ 0. Therefore if we know that Lu(x)
is > 0 everywhere in U , then u can have no local maximum in U . To obtain
a maximum principle, we want to relax two conditions and still get the same
conclusion. One is that we want to allow more general second-order terms in L ,
and the other is that we want to get a conclusion from knowing only that Lu(x)
is ∏ 0 everywhere. The first step is carried out in Lemma 7.11 below, and the
second step will be derived from the first essentially by perturbing the situation
in a subtle way.

Lemma 7.11. Let L =
P

i, j bi j (x)Di Dj +
P

k ck(x)Dk , with [bi j (x)] sym-
metric, be a second-order linear elliptic operator with real-valued coefficients in
an open subset U of RN such that for every x in U , there is a number µ(x) > 0
such that

P
i, j bi j (x)ξiξj ∏ µ(x)|ξ |2 for all ξ ∈ RN . If u is a real-valued C2

function on U such that Lu > 0 everywhere in U , then u has no local maximum
in U .
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PROOF. Suppose that u has a local maximum at x0. Applying Proposition 7.5,
we can find a nonsingular matrix M such that the definition D0

i =
P

j Mi j Di

makes the second-order terms of L at x0 take the form ∑1D0
1
2 + · · · + ∑N Dk 0

N
2

with each ∑i equal to +1, −1, or 0. Examining the hypotheses of the lemma, we
see that all ∑i must be +1. Hence the change of basis at x0 via M converts the
second-order terms of L into the form D0

1
2 + · · · + D0

N
2. The argument in the

example above is applicable at x0, and the lemma follows. §

Theorem 7.12 (Hopf maximum principle). Let

L =
X

i, j
bi j (x)Di Dj +

X

k
ck(x)Dk,

with [bi j (x)] symmetric, be a second-order linear elliptic operator with real-
valued continuous coefficients in a connected open subset U of RN . If u is a
real-valued C2 function on U such that Lu = 0 everywhere in U , then u cannot
attain its maximum or minimum values in U without being constant.

PROOF. First we normalize matters suitably. We have
Ø
ØP

i, j bi j (x)ξiξj
Ø
Ø ∏

µ(x)|ξ |2 with µ(x) > 0 at every point. By continuity of the coefficients and
connectedness of U , the expression within the absolute value signs on the left
side is everywhere positive or everywhere negative. Possibly replacing L by−L ,
we shall assume that it is everywhere positive:

X

i, j
bi j (x)ξiξj ∏ µ(x)|ξ |2 for all x ∈ U.

Because of the continuity of the coefficients of L , the coefficient functions are
bounded on any compact subset ofU and the functionµ(x) is bounded below by a
positive constant on any such compact set. Since u can always be replaced by−u,
a result about absolute maxima is equivalent to a result about absolute minima.
Thus we may suppose that u attains its absolute maximum value M at some x1 in
U , and we are to prove that u is constant inU . Arguing by contradiction, suppose
that x0 is a point in U with u(x0) < M .
The idea of the proof is to use x0 and x1 to produce an open ball B with Bcl ⊆ U

and a point s in the boundary @B of B such that u(s) = M and u(x) < M for all
x in Bcl − {s}. See Figure 7.1. For a suitably small open ball B1 centered at s,
we then produce a C2 function w on RN such that Lw > 0 in B1 and w attains
a local maximum at the center s of B1. The existence of w contradicts Lemma
7.11, and thus the configuration with x0 and x1 could not have occurred.
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x1

x2

ex x 0 seB B1

B

x0

FIGURE 7.1. Construction in the proof of the Hopf maximum principle.

Since U is a connected open set in RN , it is pathwise connected. Let
p : [0, 1] → U be a path with p(0) = x0 and p(1) = x1. Let τ be the first
value of t such that u(p(t)) = M; necessarily 0 < τ ≤ 1. Define x2 = p(τ ).
Choose d > 0 such that B(d; p(t))cl ⊆ U for 0 ≤ t ≤ τ , and then fix a
point ex = p(t) with 0 ≤ t < τ and with |ex − x2| < 1

2d. By definition of d,
B(d;ex)cl ⊆ U . Let eB be the largest open ball contained in U , centered atex , and
having u(x) < M for x ∈ eB. Since u(x2) = M and |ex − x2| < 1

2d, eB has radius
< 1

2d. Thus eBcl ⊆ B(d;ex)cl ⊆ U . The construction of eB and the continuity of
u force some point s of the boundary @eB to have u(s) = M . Let B be any open
ball properly contained in eB and internally tangent to eB at s. Then Bcl ⊆ eB∪{s},
and hence u(x) < M everywhere on Bcl except at s, where u(s) = M . Write
B = B(R; x 0).
To construct B1, fix R1 > 0 with R1 < 1

2 R, and let B1 = B(R1; s). If x is
in Bcl1 , then |x − ex | ≤ |x − s| + |s − ex | ≤ R1 + 1

2d < 1
2 R + 1

2d ≤ d, and
hence Bcl1 ⊆ B(d;ex)cl ⊆ U . Since Bcl and Bcl1 are compact subsets of U , the
coefficients of L are bounded on Bcl∪ Bcl1 , and the ellipticity modulus is bounded
below by a positive number. Let us say that

|bi j (x)| ≤ β, |ck(x)| ≤ ∞, µ(x) ∏ µ > 0 for x ∈ Bcl ∪ Bcl1 .

The next step is to construct an auxiliary function z(x) on RN to be used in
the definition of w(x). Let α be a (large) positive number to be specified, and set

z(x) = e−α|x−x 0|2 − e−αR2 .

The function z(x) is > 0 on B, is 0 on @B, and is < 0 off Bcl. Let us see that
we can choose α large enough to make L(z)(x) > 0 for x in B1. Performing the
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differentiations explicitly, we obtain

L(z)(x) = 2αe−α|x−x 0|2
≥
2α

X

i, j
bi j (x)(xi − x 0

i )(xj − x 0
j )

−
X

k

°
bkk(x) − ck(x)(xk − x 0

k)
¢¥

∏ 2αe−α|x−x 0|2°2αµ|x − x 0|2 − (β + ∞ |x − x 0|)
¢
.

All points x in B1 have 12 R < |x − x 0| < 3
2 R and therefore satisfy

L(z)(x) ∏ 2αe−α|x−x 0|2(2αµ 1
4 R

2 − (β + 3
2∞ R)).

Consequently we can choose α large enough so that L(z)(x) > 0 for x in B1. Fix
α with this property.
Let ≤ > 0 be a (small) positive number to be specified, and define

w = u + ≤z.

For x in B1, we have Lw = Lu + ≤Lz > 0. Also,

w(s) = u(s) + ≤z(s) = u(s) = M since s is in @B.

Let us see that we can choose ≤ to make w(x) < M everywhere on @B1. We
consider @B1 in two pieces. LetC0 = @B1∩Bcl. SinceC0 is a subset of Bcl−{s},
u(x) < M at every point of C0. By compactness of C0 and continuity of u, we
must therefore have u(x) ≤ M − δ on C0 for some δ > 0. Since the function
z(x) is everywhere ≤ 1− e−αR2 , any x in C0 must have

w(x) = u(x) + ≤z(x) ≤ M − δ + ≤(1− e−αR2).

By taking ≤ small enough, we can arrange that w(x) ≤ M − 1
2δ on C0. Fix such

an ≤. The remaining part of @B1 is @B1 − C0. Each x in this set has

w(x) = u(x) + ≤z(x) ≤ M + ≤z(x) < M.

Thus w(x) < M everywhere on @B1, as asserted.
Sincew(s) = M andw(x) < M everywhere on @B1,w attains itsmaximum in

Bcl1 somewhere in the open set B1. Since Lw > 0 on B1, we obtain a contradiction
to Lemma 7.11. This completes the proof. §
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5. Parametrices for Elliptic Equations with Constant Coefficients

In this section we use distribution theory to derive some results about an elliptic
equation P(D)u = f with constant coefficients. Initially we work on RN , yet
in the end we will be able to work on any nonempty open set. We think of f as
known and u as unknown. But we allow f to vary, so that we can see the effect
on u of changing f . It will be important to be able to allow solutions that are not
smooth functions, and thus u will be allowed to be some kind of distribution.
We begin by obtaining a parametrix, which at first will be a tempered distri-

bution that approximately inverts P(D) on S 0(RN ). More specifically it inverts
P(D) on S 0(RN ) up to an error term given by an operator equal to convolution
with a Schwartz function.
At this point we can use the version Theorem 7.4 of the Cauchy–Kovalevskaya

Theorem to obtain a fundamental solution, i.e., a member u of D 0(RN ) such
that P(D)u = δ. This step is carried out in Corollary 7.15 below. Convolution
of P(D)u = δ with a member f of E 0(RN ) shows that Corollary 7.15 implies a
global existence theorem: any elliptic equation P(D)u = f with f in E 0(RN )
has a solution in D 0(RN ).
But it is not necessary, for purposes of examining regularity of solutions, to

have an existence theorem. The next step is to modify the parametrix to have
compact support. Once that has been done, the parametrix will invert P(D)
on D 0(RN ), up to a smoothing term, and we will deduce a regularity theorem
about solutions saying that the singular support of u is contained in the singular
support of f . In particular, solutions of P(D)u = 0 on RN are smooth. Finally
we localize this result to see that the inclusion of singular supports persists even
when the equation P(D) = f is being considered only on an open set U .
The starting point for our investigation is the following lemma.

Lemma 7.13. If P(D) is an elliptic operator with constant coefficients, then
the set of zeros of P(2π iξ) in RN is compact.

REMARK. The polynomial P(2π iξ) is the symbol of P(D), as defined in
Section 2. The important fact about the symbol is that the Fourier transform
satisfies F(P(D)T ) = P(2π iξ)F(T ), which follows immediately from the
formula F(DαT ) = (2π i)|α|ξαF(T ). This fact accounts for our studying the
particular polynomial P(2π iξ).

PROOF. Let P have order m, and let Z be the set of zeros of P(2π iξ) in RN .
Since P(D) is elliptic, the principal symbol Pm(2π iξ) is nowhere 0 on the unit
sphere ofRN . By compactness of the sphere, |Pm(2π iξ)| ∏ c > 0 there, for some
constant c. Taking into account the homogeneity of Pm , we see that |Pm(2π iξ)| ∏
c|ξ |m for all ξ in RN . If we write P(2π iξ) = Pm(2π iξ) + Q(2π iξ), then



5. Parametrices for Elliptic Equations with Constant Coefficients 301

Q(2π iξ)| ≤ C|ξ |m−1 for |ξ | ∏ 1 and for some constant C . If ξ is in Z and
|ξ | ∏ 1, then we have c|ξ |m ≤ Pm(2π iξ)| = |Q(2π iξ)| ≤ C|ξ |m−1, and we
conclude that |ξ | ≤ C/c. This proves the lemma. §

Fix an elliptic operator P(D), and choose R > 0 by the lemma such that all the
zeros in RN of P(2π iξ) lie in the closed ball of radius R centered at the origin.
Fix numbers R0 and R00 with R0 > R00 > R. Let χ be a smooth function on RN

with values in [0, 1] such that χ(ξ) is 0 when |ξ | ≤ R00 and is 1 when |ξ | ∏ R0.
The formal computation is as follows: if we define v in terms of f by

v(x) =
Z

RN
e2π i x ·ξ

F( f )(ξ)

P(2π iξ)
χ(ξ) dξ,

then Fourier inversion gives

(P(D)v)(x) =
Z

RN
e2π i x ·ξF( f )(ξ)χ(ξ) dξ

= f (x) +
Z

RN
e2π i x ·ξ (χ(ξ) − 1)F( f )(ξ) dξ,

and the second term on the right side will be seen to be a smoothing term. Let
us now state a precise result and use properties of distributions to make this
computation rigorous.

Theorem 7.14. Let P(D) be an elliptic operator on RN with constant coef-
ficients. Then there exist a distribution k ∈ S 0(RN ) and a Schwartz function
h ∈ F−1(C∞

com(RN )) such that

P(D)k = δ + Th,

as an equality in S 0(RN ). Here δ is the Dirac distribution hδ, ϕi = ϕ(0). Con-
sequently whenever f is in E 0(RN ), then the distribution v = k ∗ f is tempered
and satisfies P(D)v = f + (h ∗ f ).

REMARKS. The convolution operator f 7→ k ∗ f is called a parametrix for
P(D) on E 0(RN ). More precisely it is a right parametrix, and a left parametrix
can be defined similarly. The operator f 7→ h∗ f is called a smoothing operator
because h ∗ f is in C∞(RN ) whenever f is in E 0(RN ). To see the smoothing
property, we observe that h, as a Schwartz function, is identified with a tempered
distribution when we pass to Th . Theorem 5.21 shows that Th ∗ f is a tempered
distribution with Fourier transform F(h)F( f ). Both factors F(h) and F( f ) are
smooth functions, and F(h) has compact support. Therefore F(h ∗ f ) is smooth
of compact support, and h ∗ f is a Schwartz function.



302 VII. Aspects of Partial Differential Equations

PROOF. The function σ(ξ) = χ(ξ)/P(2π iξ) is smooth and is bounded on
RN because, in the notation used in the proof of Lemma 7.13, |P(2π iξ)| ∏
|Pm(2π iξ)|− |Q(2π iξ)| ∏ (c|ξ |−C)|ξ |m−1 and because (c|ξ |−C)|ξ |m−1 ∏ 1
as soon as |ξ | is large enough. Since σ is bounded, integration of the product of σ
and any Schwartz function is meaningful, and Tσ is therefore in S 0(RN ). Define
k = F−1(Tσ ). This is in S 0(RN ) and has F(k) = Tσ . Define h = F−1(χ − 1).
Since χ − 1 is in C∞

com(RN ), h is in S(RN ).
Now let f in E 0(RN ) be given, and define v = k ∗ f . Theorem 5.21 shows

that v is in S 0(RN ) and that F(v) = F(k)F( f ) = σF( f ). Then

F(P(D)v) = P(2π iξ)F(v) = P(2π iξ)σ (ξ)F( f )
= χ(ξ)F( f ) = F( f ) + (χ(ξ) − 1)F( f ) = F( f ) + F(h)F( f ).

Taking the inverse Fourier transform of both sides yields P(D)v = f + h ∗ f
as asserted. For the special case f = δ, we have v = k ∗ δ = k, and then
P(D)k = δ + Th . This completes the proof. §

The function h is the inverse Fourier transform of a member of C∞
com(RN ),

specifically h(x) =
R

RN e2π i x ·ξ (χ(ξ) − 1) dξ . Since the integration is really
taking place on a compact set, we see that we can replace x by a complex variable
z and obtain a holomorphic function in all of CN . In other words, h extends
to a holomorphic function on CN . If we single out any variable, say x1, then
the ellipticity of P(D) implies that Dm

x1 has nonzero coefficient in P(D), and
P(D)w = h is therefore an equation to which the global Cauchy–Kovalevskaya
Theorem applies in the form of Theorem 7.4. The theorem says that the equation
P(D)w = h, in the presence of globally holomorphic Cauchy data, has not just a
local holomorphic solution but a global holomorphic one. Therefore P(D)w =
h has an entire holomorphic solution w. Let us regard w and h as yielding
distributions Tw and Th on C∞

com(RN ), so that the equation reads P(D)Tw = Th .
Subtracting this from P(D)k = δ + Th yields P(D)(k − Tw) = δ. In summary
we have the following corollary.

Corollary 7.15. If P(D) is an elliptic operator on RN with constant coeffi-
cients, then there exists e in D 0(RN ) with P(D)e = δ.

The distribution e is called a fundamental solution for P(D) in D 0(RN ).
A consequence of the existence of e is that P(D)u = f has a solution u in
D 0(RN ) for each f in E 0(RN ). This represents an improvement in the conclusion
(fundamental solution vs. parametrix) of Theorem 7.14.
Think of Corollary 7.15 as being an existence theorem. We now turn to a

discussion of the regularity of solutions. For this we do not need the existence
result, and thus we shall proceed without making further use of Corollary 7.15.
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Proposition 7.16. Let P(D) be an elliptic operator on RN with constant
coefficients. Then the tempered distribution k = F−1(Tσ ), where σ(ξ) =
χ(ξ)/P(2π iξ), is a smooth function on RN − {0}. Therefore, for any neigh-
borhood of 0, the elliptic operator P(D) has a parametrix k0 ∈ E 0(RN ) with
compact support in that neighborhood. In particular, there is a smooth function
h1 with support in that neighborhood such that whenever f is in E 0(RN ), then
the distribution v = k0 ∗ f is in E 0(RN ) and satisfies P(D)v = f + (h1 ∗ f ).

SKETCH OF PROOF. One checks that

Dβ(ξαk) = (2π i)|β|(−2π i)−|α|F−1(TξβDασ ).

Here ξβDασ is a C∞ function, and we are interested in its integrability. It is
enough to consider what happens for |ξ | ∏ R0, where σ(ξ) = 1/P(2π iξ). The
function 1/P(2π iξ) is bounded above by a multiple of |ξ |−m , and an inductive
argument on the order of the derivative shows that |ξβDασ | ≤ C|ξ ||β|−|α|−m for
|ξ | ∏ R0, for a constant C independent of ξ .
Take β = 0. If |α| is large enough, we see that Dασ is in L1(RN ). Then

F−1(Dασ ) = (2π i)|α|ξαk is given by the usual integral formula for F, but with
e−2π i x ·ξ replaced by e2π i x ·ξ . Therefore ξαk is a bounded continuous function
when |α| is large enough. Applying this observation to

°Pn
j=1 |ξj |2l

¢
k for large

enough l, we find that k is a continuous function on RN − {0}.
Next take |β| = 1 and increase l by 1, writing α0 for the new α. Then ξβDα0

σ

is integrable, and it follows5 that ξα0k has a pointwise partial derivative of type β
and is continuous. Thus the same thing is true of k on RN − {0}.
Iterating this argument by adding 1 to one of the entries of β to obtain β 0,

we find for each β that we consider, that the functions Dβ
°Pn

j=1 |ξj |2l
0¢k and

Dβ 0°Pn
j=1 |ξj |2l

0¢k are integrable for l 0 sufficiently large, andwe deduce that Dβk
has all first partial derivatives continuous. Since β 0 is arbitrary, k equals a smooth
function on RN − {0}.
Tofinish the argument, let k andh be as inTheorem7.14, and let√ inC∞

com(RN )
be identically 1 near 0 and have support in whatever neighborhood of 0 has been
specified. If we write k = √k+ (1−√)k, then k0 = √k has support in that same
neighborhood, and T = (1 − √)k is of the form Th0 for some smooth function
h0, by what we have shown. Substituting k = k0+ Th0 into P(D)k = δ + Th , we
find that P(D)k0 = δ +Th −TP(D)h0 . The function h1 = h− P(D)h0 is smooth,
and it must have compact support since P(D)k0 and δ have compact support. §

Corollary 7.17. If u is in D 0(RN ) and P(D) is elliptic, then sing supp u ⊆
sing supp P(D)u, where “sing supp” denotes singular support.

5The precise result to use is Proposition 8.1f of Basic.
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REMARK. At first glance it might seem that the rough spots of P(D)u are
surely at least as bad as the rough spots of u for any D. But consider a function
on R2 of the form u(x, y) = g(y) and apply P(D) = @/@x . The result is 0, and
thus sing supp u can properly contain sing supp P(D)u for P(D) = @/@x . The
corollary says that this kind of thing does not happen if P(D) is elliptic.

PROOF. Let E = (sing supp P(D)u)c. By definition the restriction of P(D)u
to C∞

com(E) is of the form T√ with √ in C∞(E). Let U be any nonempty open
set with U cl compact and with U cl ⊆ E . It is enough to exhibit a smooth
function η equal to u on U . Choose an open set V with V cl compact such that
U cl ⊆ V ⊆ V cl ⊆ E . Multiply √ by a smooth function of compact support in E
that equals 1 on V cl, obtaining a function√0 ∈ C∞

com(E) such that √0 = √ on V .
Choose an open neighborhood W of 0 such that W = −W and such that the

set of sumsU cl+W cl is contained in V . Applying Proposition 7.16, we can write
P(D)k0 = δ + h0 with k0 ∈ E 0(RN ) and h0 ∈ C∞

com(RN ). The proposition allows
us to insist that the support of k∨

0 be contained in W . Then also h0 has support
contained in W .
We are to produce η ∈ C∞(U) with hTη, ϕi = hu, ϕi for all ϕ ∈ C∞

com(U).
Our choice of W forces k∨

0 ∗ ϕ to have support in V . Hence

hk0∗P(D)u, ϕi = hP(D)u, k∨
0 ∗ϕi = hT√, k∨

0 ∗ϕi = hT√0, k
∨
0 ∗ϕi = hk0∗√0, ϕi.

On the other hand, application of Corollary 5.14 gives

hk0 ∗ P(D)u, ϕi = hP(D)k0 ∗ u, ϕi = h(δ + h0) ∗ u, ϕi = hu, ϕi + hh0 ∗ u, ϕi.

Combining the two computations, we see that hu, ϕi = hk0 ∗√0− h0 ∗ u, ϕi, and
the proof is complete if we take η to be k0 ∗ √0 − h0 ∗ u. §

The final step is to localize the result of Corollary 7.17.

Corollary 7.18. If P(D) is ellipticwith constant coefficients, ifU is nonempty
and open in RN , and if u and f are members of D 0(U) with P(D)u = f , then
sing supp u ⊆ sing supp f . Consequently if f is a smooth function on U , then
so is u.

REMARKS. For the Laplacian this result gives something beyond the results in
Chapter III: Part of the statement is that any distribution solution u of1u = 0 on
an open set U equals a smooth function on U . Previously the best result of this
kind that we had was Corollary 3.17, which says that any distribution solution
equal to a C2 function is a smooth function.
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PROOF. It is enough to prove that E ∩ sing supp u ⊆ E ∩ sing supp f for each
open set E with Ecl compact and Ecl ⊆ U . Choose √ in C∞

com(U) with √ equal
to 1 on Ecl. The equality h√u, ϕi = hu, √ϕi = hu, ϕi for all ϕ ∈ C∞

com(E) shows
that E ∩ sing supp u = E ∩ sing supp√u. Regard √u as in E 0(RN ), and define
g = P(D)(√u). Both √u and g are in E 0(RN ), and every ϕ ∈ C∞

com(E) satisfies

hg, ϕi = hP(D)(√u), ϕi = h√u, P(D)trϕi

= hu, P(D)trϕi = hP(D)u, ϕi = h f, ϕi.

Hence E ∩ sing supp g = E ∩ sing supp f . Application of Corollary 7.17
therefore gives

E ∩ sing supp u = E ∩ sing supp√u ⊆ E ∩ sing supp g = E ∩ sing supp f,

and the result follows. §

6. Method of Pseudodifferential Operators

Linear elliptic equations with variable coefficients were already well understood
by the end of the 1950s. The methods to analyze them combined compactness
arguments for operators between Banach spaces with the use of Sobolev spaces
and similar spaces of functions. Those methods were of limited utility for other
kinds of linear partial equations, but some isolated methods had been developed
to handle certain cases of special interest. In the 1960s a general theory of
pseudodifferential operators was introduced to include all these methods under
a single umbrella, and it and its generalizations are now a standard device for
studying linear partial differential equations. They provide a tool for taking
advantage of point-by-point knowledge of the zero locus of the principal symbol.
As with distributions, pseudodifferential operators make certain kinds of cal-

culations quite natural, and many verifications lie behind their use. We shall omit
most of this detail and concentrate on some of the ideas behind extending the
theory of the previous section to variable-coefficient operators.
We startwith a nonemptyopen subsetU ofRN and a linear differential operator

P(x, D) =
P

|α|≤m aα(x)Dα whose coefficients aα(x) are in C∞(U). If u is in
C∞
com(U), we can regard u as in C∞

com(RN ). The function u is then a Schwartz
function, and the Fourier inversion formula holds:

u(x) =
Z

RN
e2π i x ·ξbu(ξ) dξ,
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wherebu is the Fourier transformbu(ξ) =
R

RN e−2π i x ·ξu(x) dx . Applying P gives

P(x, D)u(x) =
X

|α|≤m
aα(x)(2π i)|α|

Z

RN
e2π i x ·ξ ξαbu(ξ) dξ

=
Z

RN
e2π i x ·ξ

≥ X

|α|≤m
aα(x)(2π i)|α|ξα

¥
bu(ξ) dξ =

Z

RN
e2π i x ·ξ P(x, 2π iξ)bu(ξ) dξ,

where P(x, 2π iξ) is the symbol. The basic idea of the theory is to enlarge the
class of allowable symbols, thereby enlarging the class of operators under study,
at least enough to include the parametrices and related operators of the previous
section. The enlarged class will be the class of pseudodifferential operators.
In the constant-coefficient case, in which P(x, 2π iξ) reduces to P(2π iξ),

what we did in essencewas to introduce an operator of the above kind, at first with
1/P(2π iξ) in the integrand in place of P(2π iξ) but then with χ(ξ)/P(2π iξ)
instead of 1/P(2π iξ) in the integrand in order to eliminate the singularities.
When we composed the two operators, the result was the sum of the identity and
a smoothing operator.
In the variable-coefficient case, the operator we use has to be more com-

plicated. Suppose that we want P(x, D)G = 1 + smoothing, with G given
by the same kind of formula as P(x, D) but with its symbol g(x, ξ) in some
wider class. If the equation in question is P(x, D)u = f , then our computation
above shows that we want to work with P(x, D)

° R
RN e2π i x ·ξg(x, ξ) bf (ξ) dξ

¢
.

The effect of putting P(x, D) under the integral sign is not achieved by in-
cluding P(x, 2π iξ) in the integrand, because the product e2π i x ·ξg(x, ξ) is being
differentiated. A brief formal computation shows that Dα(e2π i x ·ξg(x, ξ)) =
e2π i x ·ξ ((Dx + 2π iξ)αg(x, ξ)), where the subscript x is included on Dx to
emphasize that the differentiation is with respect to x . Thus we want
P(x, Dx + 2π iξ)g(x, ξ) to be close to identically 1, differing by the symbol of
a “smoothing operator.” We cannot simply divide by P(x, Dx + 2π iξ) because
of the presence of the Dx . What we can do is expand in terms of degrees of
homogeneity in ξ and sort everything out. When degrees of homogeneity are
counted, ξα has degree |α| while Dx has degree 0. Expansion of P gives

P(x, Dx + 2π iξ) = Pm(x, 2π iξ) +
m−1X

j=0
pj (x, ξ, Dx),

where Pm is the principal symbol and pj is homogeneous in ξ of degree j . No
Dx is present in Pm because degree m in ξ can occur only from terms (2π iξ)α in
(Dx + 2π iξ)α. Since the constant function of ξ has homogeneity degree 0 and
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since degrees of homogeneity add, let us look for an expansion of g(x, ξ) in the
form

g(x, ξ) =
∞X

j=0
gj (x, ξ),

with gj homogeneous in ξ of degree −m − j . Expanding the product

°
Pm(x, 2π iξ) +

Pm−1
k=0 pk(x, ξ, Dx)

¢°P∞
j=0 gj (x, ξ)

¢
= 1

and collecting terms by degree of homogeneity, we read off equations

Pm(x, 2π iξ)g0(x, ξ) = 1,
Pm(x, 2π iξ)g1(x, ξ) + pm−1(x, ξ, Dx)g0(x, ξ) = 0,

Pm(x, 2π iξ)g2(x, ξ) + pm−1(x, ξ, Dx)g1(x, ξ) + pm−2(x, ξ, Dx)g0(x, ξ) = 0,

and so on. Dividing each equation by Pm(x, 2π iξ), we obtain recursive formulas
for the gj (x, ξ)’s, except for the problem that Pm(x, 2π iξ) vanishes for ξ = 0. To
handle this vanishing, we again have to introduce a function like χ(ξ) by which
to multiply gj , and it turns out that in order to produce convergence, χ has to be
allowed to depend on j . After the gj ’s have been adjusted, we need to assemble an
adjusted g from themand forma right parametrix, namely the pseudodifferential
operatorG corresponding to symbol g(x, ξ) such that P(x, D)G = 1+R, where
R is a “smoothing operator.”
To make all this at all precise, we need to be more specific about a class of

symbols, about the definition of the corresponding pseudodifferential operators,
about the recognition of “smoothing operators,” and about the assembly of the
symbol from the sequence of homogeneous terms.
Fix a nonempty open set U in RN , and fix a real number m, not necessarily

an integer. The symbol class known as Sm1,0(U) and called the class of standard
symbols of order m consists of the set of all functions g in C∞(U × RN ) such
that for each compact set K ⊆ U and each pair of multi-indices α and β, there
exists a constant CK ,α,β with6

|Dα
ξ D

β
x g(x, ξ)| ≤ CK ,α,β(1+ |ξ |)m−|α| for x ∈ K , ξ ∈ RN .

Then Dα
ξ D

β
x g will be a symbol in the class Sm−|α|

1,0 (U). Let S−∞
1,0 (U) be the

intersection of all S−n
1,0(U) for n ∏ 0.

6The symbol class Sm1,0(U) is not the historically first class of symbols to have been studied, but
it has come to be the usual one. Classes Smρ,δ(U) occur frequently as well, but we shall not discuss
them.



308 VII. Aspects of Partial Differential Equations

EXAMPLES.
(1) If P(x, D) =

P
|α|≤m aαDα with all aα in C∞(U), then its symbol

P(x, 2π iξ) =
P

|α|≤m aα(x)(2π i)|α|ξα is in Sm1,0(U).
(2) If P(x, D) in Example 1 is elliptic, then the parametrix g(x, ξ) that we

construct will be in S−m
1,0 (U).

(3)With P and g formed as inExamples 1 and 2, the error term r(x, ξ) such that
P(x, Dx + 2π iξ)g(x, ξ) = 1+ r(x, ξ) will be in S−∞

1,0 (U). The corresponding
pseudodifferential operatorwill be a “smoothing operator” in a sense to be defined
below.

To a standard symbol g, we associate a pseudodifferential operator G =
G(x, D) first on smooth functions and then on distributions.7 The associated
G : C∞

com(U) → C∞(U) for a symbol g ∈ Sm1,0(U) is given by

(Gϕ)(x) =
Z

RN
e2π i x ·ξg(x, ξ)bϕ(ξ) dξ for ϕ ∈ C∞

com(U), x ∈ U.

One readily checks thatGϕ is indeed inC∞(U) and thatG : C∞
com(U) → C∞(U)

is continuous. The associated G : E 0(U) → D 0(U) is given by8

hG f, ϕi =
Z

RN

h Z

U
e2π i x ·ξg(x, ξ)ϕ(x) dx

i
F( f )(ξ) dξ for f ∈ E 0(U).

(Recall thatF( f ) is a smooth function, according to Theorem 5.20.) One readily
checks that hG f, ϕi is well defined, that G f is in D 0(U), and that when f = T√

for some √ ∈ C∞
com(U), then G(T√) = TG√ .

The error term in constructing a parametrix is ultimately handled by the fol-
lowing fact: if g is a symbol in S−∞

1,0 (U), then G carries E 0(U) into C∞(U). For
this reason the pseudodifferential operators with symbol in S−∞

1,0 (U) are called
smoothing operators.
With the definitionsmade, let us return to the construction of a right parametrix

for the elliptic differential operator P(x, D). Let us write pm(x, ξ, Dx) for
the principal symbol Pm(x, 2π iξ) in order to make the notation uniform. The

7Pseudodifferential operators can be used with other domains, such as Sobolev spaces, in order
to obtain additional quantitative information. But we shall not pursue such lines of investigation
here. Further comments about this matter occur in Section VIII.8.

8Our standard procedure for defining operations on distributions has consistently been to define
the operation on smooth functions, to exhibit an explicit formula for the transpose operator on
smooth functions and observe that the transpose is continuous, and to use the transpose operator
to define the operator on distributions. This procedure avoids the introduction of topologies on
spaces of distributions. In the present discussion of the operation of a pseudodifferential operator
on distributions, we defer the introduction of transpose to Section VIII.6.
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recursive computation given above produces expressions gj (x, ξ) for j ∏ 0 such
that °Pm

k=0 pk(x, ξ, Dx)
¢°P∞

j=0 gj (x, ξ)
¢

= 1

in a formal sense. The actual gj (x, ξ)’s are not standard symbols because the
formula for gj (x, ξ) involves division by (pm(x, ξ)) j+1 and because pm(x, ξ)

vanishes at ξ = 0. However, the product χj (ξ)gj (x, ξ) is a standard symbol if χj
is a smooth function identically 0 near ξ = 0 and identically 1 off some compact
set. Thus we attempt to form the sum

g(x, ξ) =
∞X

j=0
χj (ξ)gj (x, ξ)

and use it as parametrix. Again we encounter a problem: we find that con-
vergence is not automatic. More care is needed. What works is to define
χj (ξ) = χ(R−1

j |ξ |), where χ : R → [0, 1] is a smooth function that is 0 for
|t | ≤ 1

2 and is 1 for |t | ∏ 1. One shows that positive numbers Rj tending
to infinity can be constructed so that the partial sums in the series for g(x, ξ)
converge in C∞(U × RN ) and the result is in the symbol class S−m

1,0 (U). Let G
be the pseudodifferential operator corresponding to g(x, ξ).
A little computation shows that

P(x, Dx + ξ)g(x, ξ) = 1+ r(x, ξ),

r(x, ξ) = −1+ χ0(ξ) −
∞X

j=1
rj (x, ξ)where

rj (x, ξ) =
min{ j,m}X

k=1
[χj−k(ξ) − χj (ξ)]pm−k(x, ξ, Dx)gj−k(x, ξ).and

The function rj (x, ξ) is in C∞(U × RN ) and vanishes for |ξ | > Rj . This fact,
the identities already established, and the construction of the numbers Rj allow
one to see that

P∞
j=n+1 rj (x, ξ) is in S−n

1,0(U). Since the remaining finite number
of terms of r(x, ξ) have compact support in ξ , they too are in S−n

1,0(U) and then so
is r(x, ξ). Since n is arbitrary, r(x, ξ) is in S−∞

1,0 (U). Hence the corresponding
pseudodifferential operator is a smoothing operator. Consequently we obtain, as
an identity on C∞

com(U) or on E 0(U),

P(x, D)G = 1+ R

with R a smoothing operator. Therefore G is a right parametrix for P(x, D).
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From the existence of a right parametrix, it can be shown that P(x, D)u = f is
locally solvable.9 If we could obtain a left parametrix, i.e., a pseudodifferential
operator H with HP(x, D) = 1 + S for a smoothing operator S, then it would
follow that singular supports satisfy
sing supp u = sing supp f whenever f is in E 0(U) and P(x, D)u = f .

Inclusion in one direction follows from the local nature of P(x, D) in its action
on u: sing supp f = sing supp P(x, D)u ⊆ sing supp u. Inclusion in the reverse
direction uses the “pseudolocal” property of any pseudodifferential operator and
of H in particular, namely that sing supp H f ⊆ sing supp f . It goes as follows:

sing supp u = sing supp (1+ S)u = sing supp HP(x, D)u
= sing supp H f ⊆ sing supp f.

In particular, if f is in C∞
com(U), then u is in C∞(U). Constructing a left

parametrix H with the techniques discussed so far is, however, more difficult
than constructing the right parametrix G because we cannot so readily determine
the symbol of HP(x, D) for a general pseudodifferential operator H .
Let us again work with the general theory, taking g to be in Sm1,0(U) and

denoting the corresponding pseudodifferential operatorG : C∞
com(U) → C∞(U)

by
(Gϕ)(x) =

Z

RN
e2π i x ·ξg(x, ξ)bϕ(ξ) dξ for ϕ ∈ C∞

com(U).

The distribution TGϕ , which we write more simply as Gϕ, acts on a function √
in C∞

com(U) by
hGϕ,√i =

R
RN

R
U e

2π i x ·ξg(x, ξ)√(x)bϕ(ξ) dx dξ

=
R

RN

R
U

R
U e

2π i(x−y)·ξg(x, ξ)√(x)ϕ(y) dy dx dξ.

If we think of√(x)ϕ(y) as a particular kind of functionw(x, y) inC∞
com(U ×U),

then we can extend the above formula to define a linear functional G on all of
C∞
com(U ×U) by

hG, wi =
Z

RN

h Z

U×U
e2π i(x−y)·ξg(x, ξ)w(x, y) dx dy

i
dξ.

It is readily verified that G is continuous on C∞
com(U × U) and hence lies in

D 0(U ×U). The expression written formally as

G(x, y) =
Z

RN
e2π i(x−y)·ξg(x, ξ) dξ

is called the distribution kernel of the pseudodifferential operator G. This
expression is not to be regarded as a function but as a distribution that is evaluated
by the formula for hG, wi above.
The first serious general fact in the theory is as follows.
9More detail about this matter is included in Section VIII.8.
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Theorem 7.19. If G is a pseudodifferential operator on an open set U in RN ,
then the distribution kernel G ofG is a smooth function off the diagonal ofU×U ,
and G is pseudolocal in the sense that

sing suppG f ⊆ sing supp f for all f ∈ E 0(U).

We give only a few comments about the proof, omitting all details. The first
conclusionof the theorem is proved by using the knowndecrease of the derivatives
of g(x, ξ). For example, to see that G is given by a continuous function, one uses
the decrease of Dα

ξ g(x, ξ) in the ξ variable to exhibit (x− y)αG, for |α| > m+N ,
as equal to a multiple of the continuous function

R
RN e2π i(x−y)·ξDα

ξ g(x, ξ) dξ .
The second conclusion of the theorem, the pseudolocal property, can be derived
as a consequence by using an approximate-identity argument.
To establish a general theory of pseudodifferential operators, the next step is

to come to grips with the composition of two pseudodifferential operators. If we
have two pseudodifferential operatorsG and H on the open setU , then eachmaps
C∞
com(U) into C∞(U), and their composition G ◦ H need not be defined. But the
composition is sometimes defined, as in the case that H is a differential operator
and in the case that H is replaced by √(x)H , where √ is a fixed member of
C∞
com(U). Thus let us for the moment ignore this problem concerning the image
of H and make a formal calculation of the symbol of the composition anyway.
Say that G = G(x, D) and H = H(x, D) are defined by the symbols g(x, ξ)
and h(x, ξ). Substituting from the definition of H(x, D)ϕ(x) and allowing any
interchanges of limits that present themselves, we have

G(x, D)H(x, D)ϕ(x) = G(x, D)
R

RN e2π i x ·ξh(x, ξ)bϕ(ξ) dξ

=
R

RN G(x, Dx)[e2π i x ·ξh(x, ξ)]bϕ(ξ) dξ

=
R

RN e2π i x ·ξ
°
e−2π i x ·ξG(x, Dx)[e2π i x ·ξh(x, ξ)]

¢
bϕ(ξ) dξ.

This formula suggests that the composition J = G ◦ H ought to be a pseudo-
differential operator with symbol

j (x, ξ) = e−2π i x ·ξG(x, Dx)[e2π i x ·ξh(x, ξ)]

= e−2π i x ·ξ R
RN e2π i x ·ηg(x, η)[e2π i x ·ξh(x, ξ)]b(η) dη.

Let us suppose that the Fourier transform of h(x, ξ) in the first variable is mean-
ingful, as it is when h( · , ξ) has compact support. Writebh( · , ξ) for this Fourier
transform. Then the above expression is equal to

R
RN e2π i x ·(η−ξ)g(x, η)bh(η − ξ, ξ) dη =

R
RN e2π i x ·ηg(x, η + ξ)bh(η, ξ) dη.
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If we form the infinite Taylor series expansion of g(x, η + ξ) about η = 0 and
assume that it converges, we have

g(x, η + ξ) =
P

α
1
α! D

α
ξ g(x, ξ) ηα.

Substituting and interchanging sum and integral, we can hope to get

j (x, ξ) =
P

α
1
α!

R
RN e2π i x ·ηDα

ξ g(x, ξ)ηα bh(η, ξ) dη

=
P

α
(2π i)−|α|

α! Dα
ξ g(x, ξ)

R
RN e2π i x ·η(Dα

x h)b(η, ξ) dη.

In view of the Fourier inversion formula, we might therefore expect to obtain

j (x, ξ) =
X

α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)Dα
x h(x, ξ).

We shall see that such a formula is meaningful, but in an asymptotic sense and
not as an equality.
This discussion suggests four mathematical questions that we want to address:
(i) If we are given a possibly divergent infinite series of symbols as on the
right side of the formula for j (x, ξ) above, how can we extract a genuine
symbol to represent the sum of the series?

(ii) Put G(x, Dx + ξ)ϕ(x) =
R

RN e2π i x ·ηg(x, η + ξ)bϕ(η) dη. In what sense
of ∼ is it true that G(x, Dx + ξ)ϕ(x) ∼

P
α

(2π i)−|α|

α! Dα
ξ g(x, ξ)Dα

x ϕ(x)?
(iii) How can we handle the matter of compact support?
(iv) How can we show, under suitable hypotheses that take (iii) into account,

that j (x, ξ) is given by G(x, Dx + ξ)
°
h(x, ξ)

¢
and therefore that we

obtain a formula from (ii) for j (x, ξ) involving ∼ ?
The path that we shall follow is direct but not optimal. In Section VIII.6 we shall
take note of an approach that is tidier and faster, but insufficiently motivated by
the present considerations.
Question (i) is fully addressed by the following theorem.

Theorem 7.20. Suppose that {mj }j∏0 is a sequence in R decreasing to −∞,
and suppose for j ∏ 0 that gj (x, ξ) is a symbol in Smj

1,0(U). Then there exists a
symbol g(x, ξ) in Sm01,0(U) such that for all n ∏ 0,

g(x, ξ) −
n−1X

j=0
gj (x, ξ) is in Smn

1,0(U).

The theorem is proved in the same way that we constructed a right parametrix
for an elliptic differential operator earlier in this section. We can now give a
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precise meaning to ∼ in terms of a notion of an asymptotic series. If {mj }j∏0
is a sequence in R decreasing to −∞, if g(x, ξ) is a symbol in Sm01,0(U), and if
gj (x, ξ) is a symbol in Smj

1,0(U) for each j ∏ 0, then we write

g(x, ξ) ∼
∞X

j=0
gj (x, ξ)

if for all n ∏ 0,

g(x, ξ) −
n−1X

j=0
gj (x, ξ) is in Smn

1,0(U).

If the given sequence {mj }j∏0 is a finite sequence ending with mr , we can
extend it to an infinite sequence with gj (x, ξ) = 0 for j > r , and in this case the
definition of ∼ is to be interpreted to mean that g(x, ξ) −

Pr
j=0 gj (x, ξ) is the

symbol of a smoothing operator.
For (ii), we have just attached a meaning to∼. We defineG(x, Dx +ξ)ϕ(x) =R

RN e2π i x ·ηg(x, η + ξ)bϕ(η) dη. The precise statement that is proved to yield the
asymptotic expansion of (ii) is the following.

Proposition 7.21. Let U be open in RN , fix g in Sm1,0(U), and let K be a
compact subset of U . Then for any nonnegative integers M and R such that
R > m + N , there exists a constant C such that

Ø
ØG(x, Dx + ξ)ϕ(x) −

P
|α|<n

(2π i)−|α|

α! Dα
ξ g(x, ξ)Dα

x ϕ(x)
Ø
Ø

≤ C
©
(1+ |ξ |m)

R
|ξ+η|≤|ξ |/2 |bϕ(η| dη

+
P

|α|=N |ξ |m−R supy
£
|Dαϕ(y)|(1+ |ξ ||x − y|)−M

§™

for all ϕ in C∞
K , all x in K , and all ξ with |ξ | ∏ 1.

We shall not make further explicit use of this proposition. The proof of the
result is long, and we omit any discussion of it.
We turn to questions (iii) and (iv). Question (iii) is addressed by a definition

and some remarks concerning it, and question (iv) is addressed by the theorem
that comes after those remarks. Continuing with our pseudodifferential operator
G on the open setU , we say thatG isproperly supported if the subset support(G)
ofU×U has compact intersectionwith K×U andwithU×K for every compact
subset K of U . See Figure 7.2.
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K ⊆ U

U

FIGURE 7.2. Nature of the support of the distribution kernel
of a properly supported pseudodifferential operator. The
open set U in this case is an open interval, and the oval-
shaped region represents support(G). The shaded region

is an example of a set (U × K ) ∩ support(G).

Suppose that G is properly supported, K is compact inU , and ϕ is inC∞
com(U)

with support contained in K . Introduce projections p1(x, y) = x and p2(x, y) =
y. Define L = p1

°
(U × K ) ∩ support(G)

¢
; the set L is compact since G is

properly supported and since the continuous image of a compact set is compact.
Let us see that Gϕ has support contained in L . To do so, we write √ ⊗ ϕ for the
function (x, y) 7→ √(x)ϕ(y), and then we have

hGϕ,√i =
R

RN

R
U

R
U e

2π i(x−y)·ξg(x, ξ)√(x)ϕ(y) dy dx dξ = hG, √ ⊗ ϕi.

If √ is in C∞
com(Lc ∩ U), then F = p−1

1 (support √) ∩ p−1
2 (support ϕ) is the

compact support of √ ⊗ ϕ, and

F ∩ support(G) ⊆ p−1
1 (Lc) ∩ (U × K ) ∩ support(G) = p−1

1 (Lc) ∩ p−1
1 (L) = ∅.

Thus hG, √ ⊗ ϕi = 0, hGϕ,√i = 0, and Gϕ is supported in L .
Thus the properly supported pseudodifferential operator G carries C∞

com(U)
into itself, and Lemma 5.2 shows that it does so continuously. Then G is
continuous also as a mapping of the dense vector subspace C∞

com(U) of C∞(U)
into C∞(U). Because of the completeness of C∞(U), G extends to a continuous
map of C∞(U) into itself.
Similarly one checks that any properly supported pseudodifferential operator

carries E 0(U) into E 0(U). Therefore the compositionG ◦ H of two pseudodiffer-
ential operators, whether regarded as acting on C∞

com(U) or as acting on E 0(U),
is well defined if H is properly supported.
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Theorem 7.22. Let U be an open subset of RN .
(a) If G is a pseudodifferential operator on U , then there exists a properly

supported pseudodifferential operator G# on U such that G − G# is in S−∞
1,0 (U),

hence such that G − G# is a smoothing operator.
(b) If G and H are properly supported pseudodifferential operators onU with

symbols g in Sm1,0(U) and h in Sm0

1,0(U), then G ◦ H is a properly supported
pseudodifferential operator with symbol j in Sm+m0

1,0 (U), and

j (x, ξ) ∼
X

α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)Dα
x h(x, ξ).

All that is needed from (b) in many cases is the following weaker statement.

Corollary 7.23. Let U be an open subset of RN . If G and H are properly
supported pseudodifferential operators on U with symbols g in Sm1,0(U) and h in
Sm0

1,0(U), then G ◦ H is a properly supported pseudodifferential operator whose
symbol j (x, ξ) is in Sm+m0

1,0 (U) and has the property that

j (x, ξ) − g(x, ξ)h(x, ξ)

is a symbol in Sm+m0−1
1,0 (U).

This is enough of the general theory so that we can see how to prove a the-
orem with consequences beyond the subject of pseudodifferential operators. A
pseudodifferential operator G on U with symbol g(x, ξ) in Sm0,1(U) is said to be
elliptic of order m if for each compact subset K of U , there are constants CK
and MK such that

|g(x, ξ)| ∏ CK (1+ |ξ |)m for x ∈ K and |ξ | ∏ MK .

In particular, an elliptic differential operator of orderm satisfies this condition. A
(two-sided) parametrix H for a properly supported pseudodifferential operator
G with symbol g ∈ Sm1,0(U) is a properly supported pseudodifferential operator
H of order−m such that H ◦G = 1+ smoothing and G ◦ H = 1+ smoothing.

Theorem7.24. IfG is a properly supported elliptic pseudodifferential operator
of order m, then G has a parametrix H .

REMARKS. We saw in Theorem 7.19 that sing suppG f ⊆ sing supp f for f in
E 0(U). The same argument as with the left parametrix before that theorem shows
now from the parametrix of Theorem 7.24 that sing suppG f ⊇ sing supp f and
therefore that sing suppG f = sing supp f for f inE 0(U). In particular, solutions
of elliptic equations are smooth wherever the given data are smooth.



316 VII. Aspects of Partial Differential Equations

PARTIAL PROOF. Let ρ : U × Rn → [0, 1] be a smooth function with the
properties that

(i) ρ equals 1 in a neighborhood of each point (x, ξ) where g(x, ξ) = 0,
(ii) for each compact subset K ofU , there is a constantTK such thatρ(x, ξ) =

0 for x in K and |ξ | ∏ TK .
We omit the verification that ρ exists and is the symbol of a smoothing operator.
Put

h0(x, ξ) = (1− ρ(x, ξ))g(x, ξ)−1.

This is a smooth function by (i), and we omit the step of checking that h0 is
in S−m

1,0 (U). Let H0 be the pseudodifferential operator with symbol h0. Apply
Theorem 7.22a to find a properly supported H#

0 whose symbol h#0 has h#0 ∼ h0.
We write h#0 = h0 + r0 with r0 in S−∞

1,0 (U).
Corollary 7.23 shows that H#

0G is a well-defined properly supported operator
whose symbol j0(x, ξ) is in S01,0(U) and has the property that j0 − h#0g is in
S−1
1,0(U). Since

j0 − h#0g = j0 − (h0 + r0)g = j0 − [(1− ρ)g−1 + r0]g = j0 − 1+ ρ − r0g

and since ρ and r0g are the symbols of smoothing operators, j0 − 1 must be in
S−1
1,0(U). Therefore H#

0G = 1 + R for a pseudodifferential operator R whose
symbol r is in S−1

1,0(U).
The equality H#

0G = 1+ R shows that R is properly supported. By Corollary
7.23, Rk is a properly supported pseudodifferential operator for all integers k ∏ 1,
and its symbol rk is in S−k

1,0(U). We form the asymptotic series

1− r1 + r2 − r3 + · · ·

anduseTheorems7.20and7.22a toobtainaproperly supportedpseudodifferential
operator E whose symbol is in S01,0(U) and has

e ∼ 1− r1 + r2 − r3 + · · · . (∗)

For any integer n ∏ 1, we have

(1− R + R2 − R3 + · · · ± Rn−1)H#
0G

= (1− R + R2 − R3 + · · · ± Rn−1)(1+ R) = 1∓ Rn. (∗∗)

Because of (∗), E − (1 − R + R2 − R3 + · · · ± Rn−1) has symbol in S−n
1,0(U).

Since the symbol j0 of H#
0G is in S01,0(U), the product

°
E − (1− R + R2 − R3 + · · · ± Rn−1)

¢
H#
0G has symbol in S−n

1,0(U).
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Also, (∗∗) implies that

(1− R + R2 − R3 + · · · ± Rn−1)H#
0G − 1 = ∓Rn has symbol in S−n

1,0(U).

Adding shows that

EH#
0G − 1 has symbol in S−n

1,0(U).

Since n is arbitrary, EH#
0G − 1 is a smoothing operator. Thus H = EH#

0 is a
left parametrix for G.
In similar fashion we can use the assumption “properly supported” to obtain a

right parametrix eH for G. We omit the details. The operators H and eH give us
equations

HG = 1+ S and G eH = 1+ eS
for suitable properly supported smoothing operators S and eS. Computing the
product HG eH in two ways shows that

HG eH = (1+ S) eH = eH + S eH = eH + smoothing

HG eH = H(1+ eS) = H + HeS = H + smoothing.and

Hence H = eH + S0 with S0 properly supported smoothing. Consequently

GH = G eH + GS0 = 1+ eS + GS0 = 1+ smoothing,

and the left parametrix H is also a right parametrix. §

BIBLIOGRAPHICAL REMARKS. The proof of Theorem 7.7 is adapted from
Taylor’s Pseudodifferential Operators, and the proof of Theorem 7.12 is taken
from the book by Bers, John, and Schechter. The approach to pseudodifferential
operators used in Section 6 is now considered outdated, and a more streamlined
approach requiring additional motivation appears in Section VIII.6.

7. Problems

1. Suppose that P(x, D) =
P

|α|≤m aα(x)Dα with each aα in C∞(ƒ). Prove that
if P(x, D)u = 0 for all functions u ∈ Cm(ƒ), then all the coefficients aα are 0.

2. (Harmonic measure) Let ƒ be a bounded nonempty connected open subset
of RN , let @ƒ be its boundary @ƒ = ƒcl − ƒ, and let L be an elliptic linear
differential operator onƒof the form L(u) =

P
i, j bi j (x)Di Dju+

P
k ck(x)Dku

with real-valued coefficients of classC2 such that bi j (x) = bji (x) for all i and j .
Let S be the vector subspace of real-valued continuous functions u on ƒcl such
that Lu(x) = 0 for all x ∈ ƒ. Prove for each point p in ƒ that there exists a
Borel measure µp on @ƒ with µp(@ƒ) = 1 such that u(p) =

R
@ƒ u(x) dµp(x)

for all u in S.
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3. This problem identifies a fundamental solution of the Cauchy–Riemann operator
in R2. It makes use of Green’s Theorem, which relates line integrals in R2 with
double integrals, for an annulus centered at the origin.
(a) For ϕ inC∞

com(R2), let P(x, y) = xϕ(x,y)
x2+y2 and Q(x, y) = yϕ(x,y)

x2+y2 . Prove that
limε↓0

H
|(x,y)|=ε (P dx + Q dy) = 0.

(b) With P and Q as in (a), verify that @Q
@x − @P

@y = yϕx−xϕy
x2+y2 .

(c) Conclude from (a) and (b) that
RR

R2
yϕx−xϕy
x2+y2 dx dy = 0.

(d) Repeat (a) with P(x, y) = − yϕ(x,y)
x2+y2 and Q(x, y) = xϕ(x,y)

x2+y2 , showing that
limε↓0

H
|(x,y)|=ε (P dx + Q dy) = 2πϕ(0, 0) if the line integral is taken

counterclockwise around the circle.
(e) With P and Q as in (d), verify that @Q

@x − @P
@y = xϕx+yϕy

x2+y2 .
(f) Conclude from (d) and (e) that

RR
R2

xϕx+yϕy
x2+y2 = −2πϕ(0, 0).

(g) Conclude from (c) and (f) that 1
2π

RR
R2

1
z

@ϕ
@ z̄ dx dy = −ϕ(0, 0).

(h) Let T be the locally integrable function 1
±
(2πz), regarded as a member of

D 0(R2). Prove that @
@ z̄ (T ) = δ.

4. On R1, theHeaviside distribution H is the distribution given by theHeaviside
function H(x) equal to 1 for x ∏ 0 and to 0 for x < 0.
(a) Prove that Dx H = δ, so that H is a fundamental solution for the elliptic

operator Dx on R1.
(b) Show that the function f (x) = max{x, 0} onƒ = (−1, 1) has the Heaviside

function as weak derivative on ƒ and that f is in L p1 (ƒ) for every p with
1 ≤ p < ∞.

(c) Does the restriction of the Heaviside function to ƒ = (−1, 1) have a weak
derivative on ƒ? Why or why not?

(d) Show that the distribution H×δ onR2 given by hH×δ, ϕi =
R ∞
0 ϕ(x, 0) dx

for ϕ ∈ C∞
com(R2) is a fundamental solution of the operator Dx on R2.

(e) Find the support and the singular support of the distribution H onR1 and of
the distribution H × δ on R2.

5. Let U be an open set in RN containing 0, let f be in E 0(U), and let P(D) be
a linear differential operator with constant coefficients and with order ∏ 1. By
taking into account the theory of periodic distributions in Problems 12–13 of
Chapter V and by suitably adapting the proof that Lemma 7.8 implies Theorem
7.7, prove that the equation P(D)u = f has a distribution solution in some
neighborhood of 0.

Problems 6–9 prove the global version of the Cauchy–Kovalevskaya Theorem given
as Theorem 7.2 for the linear constant-coefficient case. The result is an ingredient
used in deriving Corollary 7.15 from Theorem 7.14. For the statement the domain
variables are t and x with x = (x1, . . . , xN ), and the unknown functions are the p
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components of a function u(t, x) with values in Cp. Write Dt for @
±
@t and Dj for

@
±
@xj . The Cauchy problem in question is

Dtu =
PN

j=1 Aj Dju + Bu + F(t, x),
u(0, x) = g(x),

where Aj and B are p-by-pmatrices of complex constants, F is an entire holomorphic
function from CN+1 to Cp, and g is an entire holomorphic function from CN to Cp.
The conclusion is that the unique formal power-series solution of the Cauchy problem
converges and defines an entire holomorphic function from CN+1 to Cp that solves
the problem. For a vector v = (v1, . . . , vp) in Cp, let kvk∞ = max

©
|v1|, . . . , |vp|

™
.

6. Let α denote a multi-index α = (α1, . . . , αN ) of integers ∏ 0. Prove that

α! ≤ (|α|)!, that
P

|α|=l
1
α! = Nl

l! , and that
∞P

l=0

°q+l
l

¢
zl = (1− z)−q−1 if |z| < 1.

7. Show that iterated substitution into the system Dtu =
PN

j=1 Aj Dju + Bu + F
leads to an expression for Dm

t u as the sum of two kinds of terms: For one kind,
there are 2m terms of the form

P
T1 · · · TmDα

x u with each Ti equal to an Aji or
to B, with Dα equal to the product of the Dji for which Ti = Aji , and with the
sum taken over ji from 1 to N . For the other kind, there are

Pm−1
s=0 2s = 2m − 1

terms with something operating on F , the terms corresponding to s being the
ones

P
T1 · · · TsDα

x D
m−1−s
t F with each Ti , the Dα , and the sum all as above.

8. (a) How does one compute Dβ
x Dm

t u(0, 0) from the expression in the previous
problem?

(b) Why is it enough to prove, for any given r > 0, that the values Dβ
x Dm

t u(0, 0)
satisfy

P

m∏0

P

β

(β!m!)−1kDβ
x Dm

t u(0, 0)k∞ r |β|+m < ∞?

9. Choose a constant M ∏ 1 with kBvk∞ ≤ Mkvk∞ and kAjvk∞ ≤ Mkvk∞
for all j . Let R be a positive number to be specified. Choose C = C(R) such
that

P

m∏0

P

β

(β!m!)−1kDm
t D

β
x F(0, 0)k∞R|β|+m and

P

β

(β!)−1kDβ
x g(0)k∞R|β|

are both ≤ C .
(a) Among the 2m terms of the first kind in Problem 7, show that each one for

which k of them factors T1, . . . , Tm are B is≤ MmNm−kCR−(m−k)(m−k)!,
so that the sum of the contributions from the terms of the first kind to
kDm

t u(0, 0)k∞ is ≤
Pm

k=0
°m
k
¢
MmNm−kCR−(m−k)(m − k)!.

(b) Taking into account the result of Problem 8a, adjust the estimate in part (a)
of the present problem to bound the sum of the contributions from the terms
of the first kind to kDm

t D
β
x u(0, 0)k∞.

(c) Summing over m ∏ 0, l ∏ 0, and β with |β| = l the estimate in part (b) and
using the formulas in Problem 6, show that the contribution of the terms of
the first kind to the series in Problem 8b is finite if R is chosen large enough
so that Nr/R ≤ 1

2 and 2MrN/R < 1.
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(d) For the 2m − 1 terms of the second kind in Problem 7, replace T1 · · · Ts by
T1 · · · Tm−1, treating the missing factors as the identity I , each such factor
accompanying a differentiation Dt . If there are k factors of B, show that
the term is ≤ Mm−1(N + 1)m−1−kCR−(m−1−k)(m−1−k)!. Arguing in a
fashion similar to the previous parts to this problem, show that consequently
the contribution of the terms of the second kind to the series in Problem 8b is
finite if R is chosen large enough so that Nr/R ≤ 1

2 and 2Mr(N+1)/R < 1.
Problems 10–12 concern the reduction to a first-order system of the Cauchy problem
for a singlemth-order partial differential equation that has been solved for Dm

x u. They
generalize the discussion of a second-order equation in two variables that appeared
in Section 1 and reduce Theorems 7.3 and 7.4 to Theorems 7.1 and 7.2, respectively.
In two variables (x, y), the equation is

Dm
x u = F(x, y; u; Dxu, Dyu; D2xu, . . . ; D

m−1
x Dyu, . . . , Dm

y u),

and the Cauchy data are

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m.

10. In the case of two variables (x, y), introduce variables ui, j for i + j ≤ m. Show
that the given Cauchy problem is equivalent to the following Cauchy problem
for a first-order system

Dxui, j+1 = Dyui+1, j for i + j + 1 ≤ m,

Dxui,0 = ui+1,0 for 0 ≤ i < m,

Dxum,0 = Fx+u1,0Fu0,0+u2,0Fu1,0+(Dyu1,0)Fu0,1+· · ·+(Dyu1,m−1)Fu0,m

with Cauchy data

ui, j (0, y) = D j
y f

(i)(y) for i + j ≤ m, (i, j) 6= (m, 0),

um,0(0, y) = F(0, y; f (0)(y); f (1)(y), Dy f (0)(y); . . . , Dm
y f

(0)(y)).

11. What changes to the setup and argument in Problem 10 are needed to handle
more variables, say (x, y1, . . . , yN−1)?

12. Back in the situation of two variables (x, y) as in Problem 10, suppose that F
is a linear combination, with constant coefficients, of u, Dxu, Dyu, . . . , Dm

y u,
plus an entire holomorphic function of (x, y), and suppose that f (0), . . . , f (m−1)

are entire holomorphic functions of y. Prove that the reduction to first order as
in Problem 10 leads to a Cauchy problem for a first-order system of the type in
Problems 6–9. Conclude that the Cauchy problem for the given mth-order equa-
tion in the situation of constant coefficients has an entire holomorphic solution.



CHAPTER VIII

Analysis on Manifolds

Abstract. This chapter explains how the theory of pseudodifferential operators extends from open
subsets of Euclidean space to smooth manifolds, and it gives examples to illustrate the usefulness of
generalizing the theory in this way.
Section 1 gives a brief introduction to differential calculus on smooth manifolds. The section

defines smooth manifolds, smooth functions on them, tangent spaces to smooth manifolds, and
differentials of smooth mappings between smooth manifolds, and it proves a version of the Inverse
Function Theorem for manifolds.
Section 2 extends the theory of smooth vector fields and integral curves from open subsets of

Euclidean space to smooth manifolds.
Section 3 develops a special kind of quotient space, called an “identification space,” suitable

for constructing general smooth manifolds, vector bundles and fiber bundles, and covering spaces
out of local data. In particular, smooth manifolds may be defined as identification spaces without
knowledge of the global nature of the underlying topological space; the only problem is in addressing
the Hausdorff property.
Section 4 introduces vector bundles, including the tangent and cotangent bundles to a manifold.

A vector bundle determines transition functions, and in turn the transition functions determine the
vector bundle via the construction of the previous section. The manifold structures on the tangent
and cotangent bundles are constructed in this way.
Sections 5–8 concern pseudodifferential operators, including aspects of the theory useful in

solving problems in other areas of mathematics. The emphasis is on operators on scalar-valued
functions. Section 5 introduces spaces of smooth functions and their topologies, and it defines
spaces of distributions; the theory has to compensate for the lack of a canonical underlying measure
on the manifold, hence for the lack of a canonical way to view a smooth function as a distribution.
Section 5 goes on to study linear partial differential equations on themanifold; although the symbol of
the differential operator is not meaningful, the principal symbol is intrinsically defined as a function
on the cotangent bundle. The introduction of pseudodifferential operators on smooth manifolds
requires new results for the theory in Euclidean space beyond what is in Chapter VII. Section 6
addresses this matter. A notion of transpose is needed, and it is necessary to understand the effect of
diffeomorphisms on Euclidean pseudodifferential operators. To handle these questions, it is useful
to enlarge the definition of pseudodifferential operator for Euclidean space and to redo the Euclidean
theory from the new point of view. Once that program has been carried out, Section 7 patches
together pseudodifferential operators in Euclidean space to obtain pseudodifferential operators on
smooth separable manifolds. The notions of pseudolocal, properly supported, composition, and
elliptic extend, and the theorems are what one might expect from the Euclidean theory. Again the
principal symbol is well defined as a function on the cotangent bundle. Section 8 contains remarks
about extending the theory to handle operators carrying sections of one vector bundle to sections of
another vector bundle, about some other continuations of the theory, and about applications outside
real analysis. The section concludes with some bibliographical material.
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1. Differential Calculus on Smooth Manifolds

The goal of this chapter is to explain how aspects of the subject of linear partial
differential equations extend from open subsets of Euclidean space to smooth
manifolds. After an introduction to manifolds and their differential calculus,
we shall see the extent to which definitions and theorems about distributions,
differential operators, and pseudodifferential operators carry over from local facts
about Euclidean space to global facts about smooth manifolds. We shall see
also how certain important systems of differential equations can conveniently be
expressed globally in terms of operators from one vector bundle to another.
The present section introduces smooth manifolds, smooth functions on them,

tangent spaces to smooth manifolds, differentials of smooth mappings between
smooth manifolds, and a version of the Inverse Function Theorem for manifolds.
We begin with the definition of smooth manifold. Let M be a Hausdorff

topological space, and fix an integer n ∏ 0. A chart on M of dimension n is a
homeomorphism ∑ : M∑ → eM∑ of an open subset M∑ of M onto an open subset
eM∑ of Rn; the chart ∑ is said to be about a point p in M if p is in the domain
M∑ of ∑ . We say that M is amanifold if there is an integer n ∏ 0 such that each
point of M has a chart of dimension n about it.
A smooth structure of dimension n on a manifold M is a family F of

n-dimensional charts with the following three properties:
(i) any two charts ∑ and ∑ 0 in F are smoothly compatible in the sense that

∑ 0 ◦ ∑−1, as a mapping of the open subset ∑(M∑ ∩M∑ 0) of Rn to the open
subset ∑ 0(M∑ ∩ M∑ 0) of Rn , is smooth and has a smooth inverse,

(ii) the system of compatible charts ∑ is an atlas in the sense that the domains
M∑ together cover M ,

(iii) F is maximal among families of compatible charts on M .
A smoothmanifoldofdimensionn is amanifold togetherwith a smooth structure
of dimension n. In the presence of an understood atlas, a chart will be said to be
compatible if it is compatible with all the members of the atlas.
Once we have an atlas of compatible n-dimensional charts for a manifold M ,

i.e., once (i) and (ii) are satisfied, then the family of all compatible charts satisfies
(i) and (iii), as well as (ii), and therefore is a smooth structure. In other words, an
atlas determines one and only one smooth structure. Thus, as a practical matter,
we can construct a smooth structure for a manifold by finding an atlas satisfying
(i) and (ii), and the extension of the atlas for (iii) to hold is automatic.
Let us make some remarks about the topology of manifolds. Let M be any

manifold, let p be in M , and let ∑ : M∑ → eM∑ be a chart about p. Then eM∑

is an open neighborhood of ∑(p). Since Rn is locally compact, we can find a
compact subneighborhoodN of ∑(p) contained in eM∑ . Then ∑−1(N ) is a compact
neighborhood of p in M , and it follows that M is locally compact. Since M is
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by assumption Hausdorff, M is topologically regular. By the Urysohn Metriza-
tion Theorem1 a separable Hausdorff regular space is metrizable; therefore the
topology of a manifold is given by a metric if the manifold is separable.2
We shall not assume at any stage that M is connected, and until Section 5 we

shall not assume that M is separable.
A simple example of a smoothmanifold isRn itself, with an atlas consisting of

the single chart 1, where 1 is the identity function onRn . Another simple example
is any nonempty open subset E of a smoothmanifoldM , which becomes a smooth
manifold by taking all the compatible charts ∑ of M , replacing them by charts
∑
Ø
Ø
M∑∩E , and eliminating redundancies. In particular, any open subset of Rn

becomes a smooth manifold since Rn itself is a smooth manifold.
Two less-trivial classes of examples are spheres and real projective spaces.

They can be realized explicitly as metric spaces, and then one can specify an atlas
and hence a smooth structure in each case. The details of these examples are
discussed in Problems 1–2 at the end of the chapter.
Most manifolds, however, are constructed globally out of other manifolds or

are pieced together from local data. The Hausdorff condition usually has to be
checked, is often subtle, and is always important. We postpone a discussion of
this matter for the moment.
Let us consider functions on smooth manifolds. If p is a point of the smooth

n-dimensionalmanifoldM , a compatible chart ∑ about p can be viewed as giving
a local coordinate system near p. Specifically if the Euclidean coordinates in
eM∑ are (u1, . . . , un), then q = ∑−1(u1, . . . , un) is a general point of M∑ , and we
define n real-valued functions q 7→ xj (q) on M∑ by xj (q) = uj , 1 ≤ j ≤ n.
Then ∑ = (x1, . . . , xn). To refer the functions xj to Euclidean space Rn , we use
xj ◦ ∑−1, which carries (u1, . . . , un) to uj .
The way that the functions xj are referred to Euclidean space mirrors how

a more general scalar-valued function on an open subset of M may be referred
to Euclidean space, and then we can define the function to be smooth if it is
smooth in the sense of Euclidean differential calculus when referred to Euclidean
space. It will only occasionally be important whether our scalar-valued functions
are real-valued or complex-valued. Accordingly, we shall follow the convention
introduced in Chapter IV that F denotes the field of scalars, either R or C; either
field is allowed (consistently throughout) unless some statement is made to the
contrary.
Therefore a smooth function f : E → F on an open subset E of M is a

function with the property, for each p ∈ E and each compatible chart ∑ about p,

1Theorem 10.45 of Basic.
2Some equivalent conditions for separability of a smooth manifold are given in Problem 3 at the

end of the chapter.
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that f ◦ ∑−1 is smooth as a function from the open subset ∑(M∑ ∩ E) of Rn into
F. A smooth function is necessarily continuous.
In verifying that a scalar-valued function f on an open subset E of M is

smooth, it is sufficient, with each point in E , to check a condition for only one
compatible chart about that point. The reason is the compatibility of the charts:
if ∑1 and ∑2 are two compatible charts about p, then f ◦ ∑−1

2 is the composition
of the smooth function ∑1 ◦ ∑−1

2 followed by f ◦ ∑−1
1 .

The space of smooth scalar-valued functions on the open set E will be denoted
byC∞(E); if wewant to insist on a particular field of scalars, wewriteC∞(E, R)
or C∞(E, C). The space C∞(E) is an associative algebra under the pointwise
operations, and it contains the constants. The support of a scalar-valued function
is, as always, the closure of the set where the function is nonzero. We write
C∞
com(E) for the subset ofC∞(E) of functions whose support is a compact subset
of E . The space C∞

com(E), as well as the larger space C∞(E), separates points of
E as a consequence of the following lemma and proposition; the lemma makes
essential use of the fact that the manifold is Hausdorff.

Lemma 8.1. If M is a smooth manifold, ∑ is a compatible chart for M , and f
is a function in C∞

com(M∑), then the function F defined on M to equal f on M∑

and to equal 0 off M∑ is in C∞
com(M) and has support contained in M∑ .

PROOF. The set S = support( f ) is a compact subset of M∑ and is compact
as a subset of M since the inclusion of M∑ into M is continuous. Since M is
Hausdorff, S is closed in M . The function F is smooth at all points of M∑ and in
particular at all points of S, and we need to prove that it is smooth at points of the
complementU of S in M . If p is inU , we can find a compatible chart ∑ 0 about p
with M∑ 0 ⊆ U . The function F is 0 on M∑ 0 ∩M∑ sinceU ∩ support( f ) = ∅, and
it is 0 on M∑ 0 ∩ Mc

∑ since it is 0 everywhere on Mc
∑ . Therefore it is identically 0

on M∑ 0 and is exhibited as smooth in a neighborhood of p. Thus F is smooth. §

Proposition 8.2. Suppose that p is a point in a smooth manifold M , that ∑ is
a compatible chart about p, and that K is a compact subset of M∑ containing p.
Then there is a smooth function f : M → R with compact support contained in
M∑ such that f has values in [0, 1] and f is identically 1 on K .

PROOF. The set ∑(K ) is a compact subset of the open subset eM∑ = ∑(M∑) of
Euclidean space, and Proposition 3.5f produces a smooth function g inC∞

com( eM∑)
with values in [0, 1] that is identically 1 on ∑(K ). If f is defined to be g ◦ ∑ on
M∑ , then f is in C∞

com(M∑). Extending f to be 0 on the complement of M∑ in M
and applying Lemma 8.1, we see that the extended f satisfies the conditions of
the proposition. §
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EXAMPLE. This example shows what can go wrong if the Hausdorff condition
is dropped from the definition of smooth manifold. Let X be the disjoint union
of two copies of R, say (R,+) and (R,−), with each of them open in X . Define
an equivalence relation on X by requiring that every point be equivalent to itself
and also that (x,+) be equivalent to (x,−) for x 6= 0. The quotient space M of
X by this equivalence relation consists of the nonzero elements of one copy ofR,
together with two versions of 0, which we denote by 0+ and 0−. The topological
space M is not Hausdorff since 0+ and 0− cannot be separated by disjoint open
sets. Let R+ ⊆ M be the image of (R,+) under the quotient map, and define
R− similarly. Define ∑+ : R+ → R1 and ∑− : R− → R1 in the natural way, and
then ∑+ and ∑− together behave like an atlas of compatible charts covering M .
To proceed with a theory, it is essential to be able to separate points by smooth
functions. Smooth functions are in particular continuous, and 0+ and 0− cannot
be separated by continuous real-valued functions on M . Thus they cannot be
separated by smooth functions, and Proposition 8.2 must fail. It is instructive,
however, to see just exactly how it does fail. In the proposition let us take p = 0+,
∑ = ∑+, and K = {0+}. We can certainly construct a smooth function f on R+

with values in [0, 1] that is 1 on K = {0+} and has compact support L as a
subset of R+. However, L is not closed as a subset of M . When f is extended to
be 0 off R+, the extended function is not continuous, much less smooth. To be
continuous, it would have to be defined to be 1, rather than 0, at 0−.

Corollary 8.3. Let p be a point of a smooth manifold M , let U be an open
neighborhood of p, and let f be inC∞(U). Then there is a function g inC∞(M)
such that g = f in a neighborhood of p.

PROOF. Possibly by shrinkingU , wemay assume thatU is the domain of some
compatible chart ∑ about p. Let K be a compact neighborhood of p contained in
U , and use Proposition 8.2 to find h in C∞(M) with compact support in U such
that h is identically 1 on K . Define g to be the pointwise product h f onU and to
be 0 offU . Then g equals f on the neighborhood K of p, and Lemma 8.1 shows
that g is everywhere smooth. §

The Euclidean chain rule yields a necessary condition for a tuple of real-
valued functions to provide a local coordinate system near a point, and the Inverse
Function Theorem shows the sufficiency of the condition. The details are as in
Proposition 8.4 below. Further results of this kind appear in Problems 6–7 at the
end of the chapter.

Proposition 8.4. Let M be an n-dimensional smooth manifold, let p be in M ,
let ∑ be a chart about p, and let f1, . . . , fm be inC∞(M∑ , R). In order for there to
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exist an open neighborhood V of p such that the restriction of ∑ 0 = ( f1, . . . , fm)
to V is a compatible chart, it is necessary and sufficient that

(a) m = n and

(b) det
∑
@( fi ◦ ∑−1)

@uj

∏
6= 0 at the point u = ∑(p).

PROOF OF NECESSITY. Let ∑ 0 = ( f1, . . . , fm). If ∑ 0 is a compatible chart about
p when restricted to some neighborhood V of p, then ∑ 0 ◦ ∑−1 and ∑ ◦ ∑ 0−1 are
smooth mappings on open sets in Euclidean space that are inverse to each other.
By the chain rule the products of their Jacobian matrices in the two orders are the
identity matrices of the appropriate size. Therefore m = n, and the determinant
of the Jacobian matrix of ∑ 0 ◦ ∑−1 at ∑(p) is not 0. §

PROOF OF SUFFICIENCY. Let m = n. If (b) holds, then the Inverse Function
Theorem produces an open neighborhood V 0 of ∑ 0(p) and an open neighborhood
U 0 ⊆ eM∑ of ∑(p) such that ∑ 0 ◦ ∑−1 has a smooth inverse g mapping V 0 one-one
ontoU 0. Let V = ∑−1(U 0), and define h = ∑−1◦g. Then hmaps V 0 one-one onto
V and satisfies h◦∑ 0 = h◦(∑ 0 ◦∑−1)◦∑ = ∑−1◦(g◦(∑ 0 ◦∑−1))◦∑ = ∑−1◦∑ = 1.
Thus h = ∑ 0−1 and ∑ 0

Ø
Ø
V is a chart. To see that the chart ∑

0
Ø
Ø
V is compatible, let

∑ 00 be a chart in the given atlas such that V ∩ M∑ 00 6= ∅. Then ∑ 0 ◦ ∑ 00−1 =
(∑ 0 ◦ ∑−1) ◦ (∑ ◦ ∑ 00−1) is smooth, and so is ∑ 00 ◦ ∑ 0−1 = ∑ 00 ◦ h = (∑ 00 ◦ ∑−1) ◦ g.
Hence the chart ∑ 0

Ø
Ø
V is compatible. §

A smooth function F : E → N from an open subset E of the n-dimensional
smooth manifold M into a smooth k-dimensional manifold N is a continuous
function with the property that for each p ∈ E , each compatible M chart ∑ about
p, and each compatible N chart ∑ 0 about F(p), the function ∑ 0 ◦F ◦∑−1 is smooth
from an open neighborhood of ∑(p) in ∑(M∑ ∩ E) ⊆ Rn into Rk . The function
∑ 0 ◦ F ◦ ∑−1 is what F becomes when it is referred to Euclidean space. Let us
examine ∑ 0 ◦ F ◦ ∑−1 further.
In a compatible M chart ∑ about p, we have used (u1, . . . , un) as Euclidean

coordinateswithin eM∑ , and the local coordinate functions onM∑ are themembers
xj of C∞(M∑ , R) such that xj ◦ ∑−1(u1, . . . , un) = uj . In a compatible N chart
∑ 0 about F(p), let us use (v1, . . . , vk) as Euclidean coordinates within eN∑ 0 , and
let us denote the local coordinate functions on N∑ 0 by yi . The formula for yi is
yi ◦ ∑ 0−1(v1, . . . , vk) = vi . The function ∑ 0 ◦ F ◦ ∑−1 takes values of the form
(v1, . . . , vk), and the way to extract the i th coordinate function of ∑ 0 ◦ F ◦ ∑−1

is to follow it with yi ◦ ∑ 0−1. Thus when F is referred to Euclidean space, the
i th coordinate function of the result is yi ◦ F ◦ ∑−1. We shall write Fi for this
coordinate function.
If F : M → N is a smooth function between smooth manifolds and if F has

a smooth inverse, then F is called a diffeomorphism.
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If M and N are smooth manifolds, then the product M× N becomes a smooth
manifold in a natural way by taking an atlas of M × N to consist of all products
∑ × ∑ 0 of compatible charts of M by compatible charts of N . With this definition
of smooth structure for M × N , the projections M × N → M and M × N → N
are smooth and so are the inclusions M → M × {y} and N → {x} × N for any
y in N and x in M .
Fix a point p in M . The “tangent space” to M at p will be defined shortly in a

way so as to consist of all first-derivative operators on functions at p. Traditionally
one uses only real-valued functions inmaking the definition, butwe shall adhere to
our convention and allow scalars from eitherR orC except whenwe need tomake
a choice. Construction of the tangent space can be done in a concrete fashion,
using the coordinate functions xj , or it can be donewith amore abstract definition.
The latter approach, which we follow, has the advantage of incorporating all the
necessary analysis into the problem of sorting out the definition rather than into
incorporating it into a version of the chain rule valid for manifolds. In other
words the one result that will need proof will be a statement limiting the size of
the tangent space, and the chain rule will become purely a formality.
To the extent that a tangent vector at p is a first derivative operator at p,

its effect will depend only on the behavior of functions in a neighborhood of p.
Within the abstract approach, there are then two subapproaches. One subapproach
works with functions on a fixed but arbitrary open set containing p and looks at
a kind of first-derivative-at-p operation on them. The other subapproach works
simultaneously with all functions such that any two of them coincide on some
neighborhood of p. Either subapproach will work in our present context of
smooth manifolds. It turns out, however, that a similar formalism applies to
other kinds of manifolds—particularly to complex manifolds and to real-analytic
manifolds—and only the second subapproachworks for them. We shall therefore
introduce the idea of the tangent space to M at p by working simultaneously with
all functions such that any two of them coincide on some neighborhood of p. The
operative notion is that of a “germ” at p.
To emphasize domains, let us temporarily write ( f,U) for a member of

C∞(U). We consider all suchobjects such that p lies inU , andwedefine ( f,U) to
be equivalent to (g, V ) if f = g on somesubneighborhoodabout p of the common
domainU∩V . This notion of “equivalent” is readily checked to be an equivalence
relation, and we let Cp(M) be the set of equivalence classes. An equivalence class
is called a germ of a smooth scalar-valued function at p. The set of germs inherits
addition and multiplication from that for functions. Specifically the germ of the
sum ( f,U)+(g, V ) is defined to be the germof

°
( f

Ø
Ø
U∩V )+(g

Ø
Ø
U∩V ),U∩V

¢
. One

has to check that this definition is independent of the choice of representatives,
but that is routine. Multiplication is handled similarly. Then one checks that the
operations on germs have the usual properties of an associative algebra over F.
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Let us sketch the argument for associativity of addition. Let three germs be given,
and let ( f,U), (g, V ), and (h,W ) be representatives. A representative of the sum
of the three is defined on the intersection I = U ∩ V ∩W . On I , the restrictions
to I satisfy ( f + g) + h = f + (g + h) because of associativity for addition of
functions; hence the germs of the two sides of the associativity formula are equal,
and addition is associative in Cp(M).
The algebra Cp(M) admits a distinguished linear function into the field of

scalarsF, namely evaluation at p. If a germ is given and ( f,U) is a representative,
then the value f (p) at p is certainly independent of the choice of representative;
thus evaluation at p is well defined on Cp(M). We denote it by e. Although germs
are not functions, we often use the same symbol for a germ as for a representative
function in order to remind ourselves how germs behave. A derivation of Cp(M)
is a linear function L : Cp(M) → F such that L( f g) = L( f )e(g)+e( f )L(g). If
the germ f is the class of a function ( f,U), then we can define L on the function
to be equal to L on the germ, and the formula for L on a product of two functions
will be valid on the common domain of the two representative functions.
Any derivation L of Cp(M) has to satisfy L(1) = L(1 ·1) = L(1)1+1L(1) =

2L(1) and thus must annihilate the constant functions and their germs. The
derivations of Cp(M) are also called tangent vectors to M at p, and the space of
these derivations is called the tangent space to M at p and is denoted by Tp(M).
For M = Rn , evaluation of a first partial derivative at p is an example. More

generally we can obtain examples for any M as follows: Let ∑ be a compatible
chart with p in M∑ . The specific derivations of Cp(M) that we construct will
depend on the choice of ∑ . We obtain n examples

£
@

@xj

§
p of derivations of Cp(M),

one for each j with 1 ≤ j ≤ n, by the definition
h @ f
@xj

i

p
=

@( f ◦ ∑−1)

@uj
(∑(p)) =

@( f ◦ ∑−1)

@uj

Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

.

For f = xi , we have
h@xi
@xj

i

p
=

@(xi ◦ ∑−1)

@uj
(x1(p), . . . , xn(p)) =

@ui
@uj

(x1(p), . . . , xn(p)) = δi j .

Consequently the n derivations
£

@
@xj

§
p of Cp(M) are linearly independent.

Proposition 8.5. Let M be a smooth manifold of dimension n, let p be in M ,
and let ∑ be a compatible chart about p. Then the n derivations

£
@

@xj

§
p of Cp(M)

form a basis for the tangent space Tp(M) of M at p, and any derivation L of
Cp(M) satisfies

L =
nX

j=1
L(xj )

h @

@xj

i

p
.
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PROOF. We know that the n explicit derivations are linearly independent. To
prove spanning, let L be a derivation of Cp(M), and let ( f, E) represent a member
of Cp(M). Without loss of generality, wemay assume that E ⊆ M∑ and that ∑(E)
is an open ball in Rn . Put u0 = (u0,1, . . . , u0,n) = ∑(p), let q be a variable point
in E , and define u = (u1, . . . , un) = ∑(q). Taylor’s Theorem3 applied to f ◦∑−1

on ∑(E) gives

f ◦ ∑−1(u) = f ◦ ∑−1(u0) +
nP

j=1
(uj − u0, j ) @( f ◦∑−1)

@uj (u0)

+
P

i, j
(ui − u0,i )(uj − u0, j )Ri j (u)

with Ri j in C∞(∑(E)). Referring this formula to M , we obtain

f (q) = f (p) +
nP

j=1
(xj (q) − xj (p))

£ @ f
@xj

§
p

+
P

i, j
(xi (q) − xi (p))(xj (q) − xj (p))ri j (q)

on E , where ri j = Ri j ◦ ∑ on E . Because L annihilates constants and has the
derivation property, application of L yields

L( f ) =
nP

j=1
L(xj )

£ @ f
@xj

§
p +

P

i, j

°
L(xi )(e(xj ) − xj (p))e(ri j )

+ (e(xi )−xi (p))L(xj )e(ri j ) + (e(xi )−xi (p))(e(xj )−xj (p))L(ri j )
¢

=
nP

j=1
L(xj )

£ @ f
@xj

§
p,

as asserted. §

A smooth function F : E → N as above has a “differential” that carries the
tangent space to M at p linearly to the tangent space to N at F(p). We shall
define the differential, find its matrix relative to local coordinates, and establish
a version of the chain rule for smooth manifolds. Let L be in Tp(M), and
let g be in CF(p)(M). Regard g as a smooth function defined on some open
neighborhood of F(p), and define (dF)p(L) to be the member of TF(p)(N ) given
by (dF)p(L)(g) = L(g ◦ F). To see that (dF)p(L) is indeed in TF(p)(N ), we
need to check that L(g ◦ F) depends only on the germ of g and not on the choice
of representative function; also we need to check the derivation property.

3In the form of Theorem 3.11 of Basic.
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To check these things, let g and g∗ be functions representing the same germ at
F(p). Then g = g∗ in a neighborhood of F(p), and the continuity of F ensures
that g ◦ F = g∗ ◦ F in a neighborhood of p. The derivation L depends only
on a germ at p, and thus (dF)p(L)(g) depends only on the germ of g. For the
derivation property we have

(dF)p(L)(g1g2) = L((g1g2) ◦ F) = L((g1 ◦ F)(g2 ◦ F))

= L(g1 ◦ F)(g2(F(p))) + (g1(F(p)))L(g2 ◦ F)

= (dF)p(L)(g1)(g2(F(p))) + (g1(F(p)))(dF)p(L)(g2),

and thus (dF)p(L) is in TF(p)(N ).
The mapping (dF)p : Tp(M) → TF(p)(N ) is evidently linear, and it is called

the differential of F at p. We may write dFp for it if there is no ambiguity; later
we shall denote it by dF(p) as well. Proposition 8.5 gives us bases of Tp(M)
and TF(p)(N ), and we shall determine the matrix of dFp relative to these bases.

Proposition 8.6. Let M and N be smooth manifolds of respective dimensions
n and k, and let F : M → N be a smooth function. Fix p in M , let ∑ be an
M chart about p, and let ∑ 0 be an N chart about F(p). Relative to the basesh @

@xj

i

p
of Tp(M) and

h @

@yi

i

F(p)
of TF(p)(N ), the matrix of the linear function

dFp : Tp(M) → TF(p)(N ) is
h@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

i
.

REMARK. In other words it is the Jacobian matrix of the set of coordinate
functions of the function obtained by referring F to Euclidean space. Hence the
differential is the object for smooth manifolds that generalizes the multivariable
derivative for Euclidean space. Accordingly, let us make the definition

h@Fi
@xj

i

p
=

h@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

i
.

PROOF. Application of the definitions gives

dFp
≥h @

@xj

i

p

¥
(yi ) =

h @

@xj

i

p
(yi ◦ F)

=
@(yi ◦ F ◦ ∑−1)

@uj
(x1(p), . . . , xn(p))

=
@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

.
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The formula in Proposition 8.5 allows us to express any member of TF(p)(N ) in
terms of its values on the local coordinate functions yi , and therefore

dFp
≥h @

@xj

i

p

¥
=

kX

i=1

@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

h @

@yi

i

p
.

Thus the matrix is as asserted. §

Proposition 8.7 (chain rule). Let M , N , and R be smooth manifolds, and let
F : M → N and G : N → R be smooth functions. If p is in M , then

d(G ◦ F)p = dGF(p) ◦ dFp.

PROOF. If L is in Tp(M) and h is in CG(F(p))(R), then the definitions give

d(G ◦ F)p(L)(h) = L(h ◦ G ◦ F) = dFp(L)(h ◦ G) = dGF(p)(dFp(L)(h)),

as asserted. §

2. Vector Fields and Integral Curves

A vector field on an open subset U of Rn was defined in Chapter IV of Basic
as a function X : U → Rn . The vector field is smooth if X is a smooth
function. In classical notation, X is written X =

Pn
j=1 aj (x1, . . . , xn)

@
@xj , and

the function carries (x1, . . . , xn) to (a1(x1, . . . , xn), . . . , an(x1, . . . , xn)). The
traditional geometric interpretationof X is to attach to each point p ofU the vector
X (p) as an arrow based at p. This interpretation is appropriate, for example, if X
represents the velocity vector at each point in space of a time-independent fluid
flow.
Taking the interpretation with arrows into account and realizing that the use

of arrows implicitly takes F = R, we see that an appropriate generalization in
the case of a smooth manifold M is this: a vector field attaches to each p in M a
member of the tangent space Tp(M). Let us make this definition more precise.
If M is a smooth n-dimensional manifold, let

T (M) = {(p, L) | p ∈ M and L ∈ Tp(M)},

and let π : T (M) → M be the projection to the first coordinate. A vector field
X on an open subsetU of M is a function fromU to T (M) such that π ◦ X is the
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identity on U ; so X is indeed a function whose value at any point p is a tangent
vector at p. The value of X at p will be written Xp.
We shall be mostly interested in vector fields that are “smooth.” Ultimately

this smoothness will be defined by making T (M) into a smooth manifold known
as the tangent bundle of M . The local structure of this smooth manifold is easily
accessible via Proposition 8.5. That proposition shows that having a chart ∑ of M
singles out an ordered basis of the tangent space at each point in M∑ . Identifying
all these tangent spaces with Fn by means of this ordered basis, we obtain an
identification of {(p, L) | p ∈ M∑ and L ∈ Tp(M)} with M∑ × Fn and hence
with eM∑ ×Fn . The result is a chart for T (M) that we shall include in our atlas. It
will be fairly easy to see how these charts are to be patched together compatibly.
The problem in obtaining the structure of a smooth manifold is in proving that
T (M) is Hausdorff. Although the Hausdorff property may look evident at first
glance, it perhaps looks equally evident for the example with R+ and R− in
the previous section, and there the Hausdorff property fails. Thus some care is
appropriate. We shall study this matter more carefully in Section 3 and complete
the construction of the smooth structure on the tangent bundle in Section 4.
For now we shall proceed with a more utilitarian definition of smoothness of

a vector field. A vector field X on M carries C∞(U), for any open subset U of
M , to a space of functions on M by the rule (X f )(p) = Xp( f ). We say that the
vector field X on M is smooth if X f is in C∞(U) wheneverU is open in M and
f is in C∞(U).

Proposition 8.8. Let X be a vector field on a smooth n-dimensional manifold
M . If ∑ = (x1, . . . , xn) is a compatible chart and if f is in C∞(M∑), then

X f (p) =
X

i

@ f
@xi

(p) (Xxi )(p) for p ∈ M∑ .

The vector field X is smooth if and only if Xxi is smooth for each coordinate
function xi of each compatible chart on M .
PROOF. The displayed formula is immediate from Proposition 8.5. To see that

if X is smooth, then Xxi is smooth on M∑ , let q be a point of M∑ and choose, by
Proposition 8.2, a function g in C∞(M) such that g = xi in a neighborhood of
q. Then @g

@xj (p) = δi j identically for p in that neighborhood of q. The displayed
formula shows that Xg(p) = Xxi (p) for p in that neighborhood. Since Xg is
smooth everywhere, Xxi must be smooth in that neighborhood of q.
Conversely suppose that each Xxi is smooth. Let f be inC∞(M). Since @ f

@xi (p)
means @( f ◦∑−1)

@ui

Ø
Ø
u=∑(p) and since f ◦ ∑−1 is in C∞( eM∑), the function p 7→ @ f

@xi (p)
is inC∞(U). Since each Xxi is inC∞(M∑) by assumption, X f

Ø
Ø
M∑
is inC∞(M∑).

Then X f must be C∞(M) because the compatible chart ∑ is arbitrary. §
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A smooth curve c(t) on the smooth manifold M is a smooth function c from
an open interval of R1 into M . The smooth curve c(t) is an integral curve for a
smooth real-valued vector field X if Xc(t) = dct

° d
dt

¢
for all t in the domain of c.

Integral curves in open subsets of Euclidean space were discussed in Section IV.2
of Basic. We shall now transform those results into results about integral curves
on smooth manifolds.
Let M be a smooth manifold of dimension n, let ∑ = (x1, . . . , xn) be a com-

patible chart, and let X =
nP

j=0
aj (x) @

@xj be the local expression from Proposition

8.8 for a smooth real-valued vector field X on M within M∑ , so that aj is in
C∞(M∑ , R). Let c(t) be a smooth curve on U . Define bj (y) = aj (∑−1(y)) for
y ∈ eM∑ ⊆ Rn , and let y(t) = (y1(t), . . . , yn(t)) = ∑(c(t)), so that y(t) is a
smooth curve on eM∑ . Then we have

Xc(t) f =
nP

i=1

h
ai (x)

@ f
@xi

i

c(t)
=

nP

i=1
(ai ◦ ∑−1) ◦ (∑(c(t))

h @ f
@xi

i

c(t)

=
nP

i=1
bi (y(t))

h @ f
@xi

i

c(t)

and

dct
≥ d
dt

¥
( f ) =

d
dt

( f ◦ c)(t) =
d
dt

( f ◦ ∑−1 ◦ y)(t)

=
nP

i=1

h@( f ◦ ∑−1)

@ui

i

u=y(t)

hdyi (t)
dt

i

t
=

nP

i=1

hdyi (t)
dt

i

t

h @ f
@xi

i

c(t)
.

The two left sides are equal for all f , i.e., c(t) is an integral curve for X on M∑

in M , if and only if the two right sides are equal for all f , i.e., y(t) satisfies

dyj
dt

= bj (y) for 1 ≤ j ≤ n.

The latter condition is the condition for y(t) to be an integral curve for the vector

field
nP

j=0
bj (y) @

@yj on
eM∑ in Rn . Applying Proposition 4.4 of Basic, which in turn

is an immediate consequence of the standard existence-uniqueness results for
systems of ordinary differential equations, we obtain the following generalization
to manifolds.

Proposition 8.9. Let X be a smooth real-valued vector field on a smooth
manifold M , and let p be in M . Then there exist an ε > 0 and an integral curve
c(t) defined for −ε < t < ε such that c(0) = p. Any two integral curves c and
d for X having c(0) = d(0) = p coincide on the intersection of their domains.
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As in the Euclidean case, the interest is not only in Proposition 8.9 in isolation
but also in what happens to the integral curves when X is part of a family of vector
fields.

Proposition 8.10. Let X (1), . . . , X (m) be smooth real-valued vector fields on
a smooth n-dimensional manifold M , and let p be in M . Let V be a bounded
open neighborhood of 0 in Rm . For ∏ in V , put X∏ =

Pm
j=1 ∏j X ( j). Then there

exist an ε > 0 and a system of integral curves c(t, ∏), defined for t ∈ (−ε, ε)
and ∏ ∈ V , such that c( · , ∏) is an integral curve for X∏ with c(0, ∏) = p. Each
curve c(t, ∏) is unique, and the function c : (−ε, ε) × V → M is smooth. If
m = n, if the vectors X (1)(p), . . . , X (n)(p) are linearly independent, and if δ is
any positive number less than ε, then c(δ, · ) is a diffeomorphism from an open
subneighborhood of 0 (depending on δ) onto an open subset of M , and its inverse
defines a chart about p.

PROOF. All but the last sentence is just a translation of Proposition 4.5 of
Basic into the setting with manifolds. For the last sentence, Proposition 4.5 of
Basic establishes that the the Jacobian matrix at ∏ = 0 of the function ∏ 7→
c(δ, ∏) transferred to Euclidean space is nonsingular, and the rest follows from
Proposition 8.4. §

3. Identification Spaces

We saw in a 1-dimensional example in Section 1 that the Hausdorff condition
is subtle (and does not always hold) when one tries to build a smooth manifold
out of smooth charts. In Section 2 we saw that it would be desirable to obtain a
smooth manifold structure on the tangent bundle of a smooth manifold in order to
make the definition of smoothness of vector fields more evident from the smooth
structure, and the natural way of proceeding was to piece the structure together
from charts that were products of charts for the smooth manifold by mappings on
whole Euclidean spaces. The example in Section 1 serves as a reminder, however,
that we should not take the Hausdorff condition for granted in working with the
tangent bundle.
In fact, the construction in both instances appears in a number of important

situations in mathematics. One is in constructing “vector bundles” and more
general “fiber bundles” out of local data, and another is in constructing covering
spaces in the theory of fundamental groups. Still a third is in the construction of
restricted direct products4 in Problem 30 in Chapter IV.

4In fairness it should be said that restricted direct products, which involve a direct limit, are more
easily handled by the method in Chapter IV than by a construction analogous to that of the tangent
bundle.
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For a clearer picture of what is happening, let us abstract the situation. The
idea is to build complicated topological spaces out of simpler ones by piecing
together local data. For lack of a better name for the abstract construction, we
shall call the result an “identification space.” A simple example of the use of
charts in defining manifold structures will point the way to the general definition.

EXAMPLE. Suppose, by way of being concrete, that we have overlapping open
setsU1 andU2 inRn . We takeU1 andU2 as completely understood, and we want
to describe U1 ∪ U2 as a topological space. Let X be the disjoint union of U1
and U2, which we write as X = U1 t U2. By definition, X as a set is the set
of all pairs (x, i) with x in Ui , and i takes on the values 1 and 2. We identify
U1 ⊆ U1 t U2 with the set of pairs (x, 1) and U2 ⊆ U1 t U2 with the set of
pairs (y, 2). A subset E of X is defined to be open if E ∩ U1 is open in U1 and
E ∩U2 is open in U2. The resulting collection of open sets is a topology for X ,
and the embedded copies of U1 and U2 in X are open. We define (x, 1) ∼ (y, 2)
if x = y as members of Rn , and the identification space is X/∼. We give X/∼
the quotient topology, and it is not hard to see that X/∼ is homeomorphic to the
union U1 ∪U2 as a topological subspace of the metric space Rn .

Let us come to the general definition. We are given a set of topological spaces
Wi for i in some nonempty index set I , and we assume, for each ordered pair
(i, j), that we have a homeomorphism √j i of an open subset Wji of Wi onto an
open subset Wi j of Wj (possibly with Wji and Wi j both empty) such that

(i) √i i is the identity on Wii = Wi ,
(ii) √i j ◦ √j i is the identity on Wji , and
(iii) Wki ∩ Wji = √i j (Wkj ∩ Wi j ), and √k j ◦ √j i = √ki on this set.

We form the disjoint union X =
F

i Wi , i.e., the set of pairs (x, i) with x in Wi .
We topologize X by requiring that each Wi be open in X . Then we introduce a
relation∼ on X by saying that (x, i) ∼ (y, j) if√j i (x) = y. The three properties
(i), (ii), and (iii) show that ∼ is an equivalence relation, and X/ ∼ is called an
identification space. It is given the quotient topology.
Let us see the effect of this construction in the special case that we reconstruct

a general smooth n-dimensional manifold out of an atlas of its charts. If ∑i is a
chart in the atlas, we take Wi to be the image eM∑i of ∑i . With two such charts ∑i
and ∑j , define

Wji = ∑i ( eM∑i ∩ eM∑j ), Wi j = ∑j ( eM∑i ∩ eM∑j ), √j i = ∑j ◦ ∑−1
i .

It is a routine matter to check (i), (ii), and (iii). The disjoint union
F

i ∑
−1
i of

the maps ∑−1
i is a continuous open function from X =

F
i Wi onto M . Let

q : X → X/ ∼ be the quotient map. If (x, i) ∼ (y, j), then √j i (x) = y and
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hence ∑j ◦ ∑−1
i (x) = y and ∑−1

i (x) = ∑−1
j (y). Thus equivalent points in X map

to the same point in M , and we obtain a factorization
F

i ∑
−1
i = ϕ ◦ q for a

continuous open map ϕ : X/∼ → M . Since the only identifications in M are the
ones determined by the charts, i.e., the ones of the form (x, i) ∼ (y, j) as above,
ϕ is one-one and consequently is a homeomorphism. We can recover the charts
of M as well, since the restriction of q to a single Wi is one-one. The i th chart is
the function q−1 ◦ ϕ−1

Ø
Ø
M∑i

: M∑i → eM∑i .
Thus an identification space is a suitable device for reconstructing a smooth

manifold from its charts. We can therefore try to use identification spaces to
build new smooth manifolds out of what ought to be their charts. Proposition
8.11 below simplifies the checking of the Hausdorff condition. Proposition 8.12
shows, under natural additional assumptions, that the identification space is a
smooth manifold if it has been shown to be Hausdorff.

Proposition 8.11. In the situation of an identification space formed from a
disjoint union X =

F
i Wi and an equivalence relation ∼, the quotient mapping

q : X → X/∼ is necessarily open. Consequently the identification space X/∼
is Hausdorff if and only if the set of equivalent pairs in X × X is closed.

REMARKS. In applications we may expect that the given topological spaces
Wi are Hausdorff, and then their disjoint union X will be Hausdorff, and so will
X × X . In this case the theory of nets becomes a handy tool for deciding whether
the set of equivalent pairs within X×X is closed. Thus supposewe have nets with
xα ∼ yα in X and that xα → x0 and yα → y0. We are to prove that x0 ∼ y0. Let
x0 be inWi , and let y0 be inWj . SinceWi andWj are open in X , xα is eventually
inWi and yα is eventually inWj . In other words, the Hausdorff condition depends
on only two sets Wi at a time and is as follows: We may assume that xα and x0
are inWi with xα → x0, that yα and y0 are inWj with yα → y0, and that xα ∼ yα
for all α. What needs proof is that x0 ∼ y0.

PROOF. The second statement follows from the first in view of Proposition
10.40 of Basic. Thus we have only to show that the quotient map is open.
If U is open in X , we are to show that q−1(q(U)) is open in X . The direct
image of a function respects arbitrary unions, and thus q(U) =

S
j q(U ∩ Wj ).

Hence q−1(q(U)) =
S

j q−1(q(U ∩Wj )), and it is enough to prove that a single
q−1(q(U ∩ Wj )) is open. Since X is the disjoint union of the open sets Wi , it
is enough to prove that each Wi ∩ q−1(q(U ∩ Wj )) is open. This intersection
is the subset of elements in Wi that get identified with elements in U ∩ Wj ,
namely √i j (U ∩ Wi j ). Since √i j is a homeomorphism of Wi j with Wji , the set
√i j (U ∩ Wi j ) is open in Wji . Since Wji is open in Wi , √i j (U ∩ Wi j ) is open in
Wi . §



3. Identification Spaces 337

Proposition 8.12. Let the topological spaceM be obtained as an identification
space from a disjoint union X =

F
i Wi in which each Wi is an open subset of

Rn . Suppose that each identification √j i : Wji → Wi j is a smooth function,
and suppose that q : X → M denotes the quotient mapping. Assume that the
set of equivalent pairs in X × X is a closed subset, so that M is a Hausdorff
space. Then M becomes a smooth n-dimensional manifold under the following
definition of an atlas of compatible charts: For each i , letUi = q(Wi ), and define
∑i : Ui → Wi to be the inverse of q

Ø
Ø
Wi
: Wi → Ui . The charts of the atlas are

the maps ∑i .
PROOF. The mapping q is open according to Proposition 8.11. Since Wi is

open in X , Ui = q(Wi ) is open in M . To see that q is one-one from Wi to Ui ,
suppose that two members of Wi are equivalent. We know that the members of
Wi are of the form (w, i), and the equivalence relation is given by the statement

(wi , i) ∼ (wj , j) if and only if √j i (wi ) = wj . (∗)

In particular wi must be in the domain of √j i , which is Wji . Then two members
of Wi , say (w, i) and (w0, i), can be equivalent only if √i i (w) = w0. Since
√i i is the identity function, w = w0. Therefore q is one-one on Wi and is a
homeomorphism of Wi onto the open subset Ui of M . Consequently ∑i is well
defined as a homeomorphism of the open subset Ui of M with the open subset
Wi of Euclidean space Rn .
We have to check the compatibility of the charts. We have

Ui ∩Uj = q(Wi ) ∩ q(Wj )

=
©
classes of {q(wi , i) | √j i is defined on wi }

™
= q(Wji ).

Then
∑i (Ui ∩Uj ) = ∑i

°
(q

Ø
Ø
Wi

)(Wji )
¢

= Wji ,

and similarly ∑j (Ui ∩Uj ) = Wi j . Hence ∑j ◦ ∑−1
i carriesWji ontoWi j . If (wi , i)

is a member of Wji , we show that

∑j (∑
−1
i ((wi , i))) = (√j i (wi ), j). (∗∗)

If we drop the second entries of our pairs, which are present only to emphasize
that X is a disjoint union, equation (∗∗) says that ∑j ◦∑−1

i equals√j i onWji . Since
√j i is smooth by assumption, the verification of (∗∗) will therefore complete the
proof of the proposition. Taking (∗) into account, we have

∑−1
i ((wi , i)) = q((wi , i)) = q((√j i (wi ), j)) = ∑−1

j ((√j i (wi ), j)).

Application of ∑j to both sides of this identity yields (∗∗) and thus completes the
proof. §
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4. Vector Bundles

In this sectionwe introduce general vector bundles over a smoothmanifoldM . Of
particular interest are the tangent and cotangent bundles. The tangent bundle as
a set is to be identifiable with

S
p∈M Tp(M), and one realization of the cotangent

bundle as a set will be the same kind of union of the dual vector spaces T ∗
p (M)

to Tp(M). To construct these bundles as manifolds, we shall form them as
identification spaces in the sense of Section 3, and that step will be carried out in
this section.
We continue with the convention of writing F for the field of scalars, which is

to be R or C. The fiber of any vector bundle will be Fn for some n, and we speak
of real and complex vector bundles in the two cases.
Let M be a smooth manifold of dimension m, and let {∑} be an atlas of

compatible charts, where ∑ is the map ∑ : M∑ → eM∑ . Denote by GL(n, F)
the general linear group of all n-by-n nonsingular matrices with entries in F. A
smooth coordinate vector bundle of rank n over M relative to this atlas consists
of a smooth manifold B called the bundle space, a smooth mapping π of B
onto M called the projection from the bundle space to the base space M , and
diffeomorphisms φ∑ : M∑ × Fn → π−1(M∑) called the coordinate functions
such that

(i) πφ∑(p, v) = p for p ∈ M∑ and v ∈ Fn ,
(ii) the smoothmapsφ∑,p : Fn → π−1(M∑) defined for p inM∑ byφ∑,p(v) =

φ∑(p, v) are such that φ−1
∑ 0,p ◦ φ∑,p : Fn → Fn is in GL(n, F) for each ∑

and ∑ 0 and for all p in M∑ ∩ M∑ 0 ,
(iii) the map g∑ 0∑ : M∑ ∩ M∑ 0 → GL(n, F) defined by g∑ 0∑(p) = φ−1

∑ 0,p ◦ φ∑,p
is smooth.

The maps p 7→ g∑ 0∑(p)will be called the transition functions5 of the coordinate
vector bundle.
An atlas of compatible charts of the coordinate vector bundle may be taken to

consist of the maps (∑ × 1) ◦ φ−1
∑ : π−1(M∑) → eM∑ × Fn . The dimension of B

is m + n if F = R and is m + 2n if F = C.

EXAMPLE. Data for the tangent bundle. Although we have not yet introduced
the topology on the bundle space in this instance, we can identify the functionsφ∑ ,
φ∑ 0 , and g∑ 0∑ explicitly. Let the local expressions for ∑ and ∑ 0 be ∑ = (x1, . . . , xn)

and ∑ 0 = (y1, . . . , yn). Let c =

√ c1
...
cn

!

and d =

√ d1
...
dn

!

be members of Fn . The

set π−1(M∑) is to consist of all tangent vectors at points of M∑ , and Proposition

5The terms coordinate transformations and transition matrices are used also.
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8.5 shows that these are all expressions
Pn

j=1 cj
£

@
@xj

§
p, where

£ @ f
@xj

§
p concretely

means @( f ◦∑−1)
@uj (∑(p)). The formulas for φ∑ and φ∑ 0 are then

φ∑,p(c) =
nP

j=1
cj

£
@

@xj

§
p

φ∑ 0,p(d) =
nP

j=1
dj

£
@

@yj

§
p.and

The other relevant formula is the formula for the matrix of the differential of
a smooth mapping relative to compatible charts in the domain and range. The
formula is given in Proposition 8.6 and is

dFp
°£

@
@xj

§
p

¢
=

nP

i=1

£
@Fi
@xj

§
p

£
@

@yi

§
p.

We apply this formula with F equal to the identity mapping, whose local expres-
sion is ∑ 0 ◦ ∑−1 and therefore has Fi = yi ◦ ∑−1. Since the differential of the
identity is the identity, we have

£
@

@xj

§
p =

nP

i=1

£ @yi
@xj

§
p

£
@

@yi

§
p.

Substituting into the formula for φ∑,p(c), we obtain

φ∑,p(c) =
nP

i=1

≥ nP

j=1
cj

£ @yi
@xj

§
p

¥ £
@

@yi

§
p.

Therefore φ−1
∑ 0,pφ∑,p(c) = d, where di =

nP

j=1
cj

£ @yi
@xj

§
p =

≥£ @yi
@xj

§
p c

¥

i
, and we

conclude that
g∑ 0∑(p) =

£ @yi
@xj

§
p.

Returning to case of a general coordinate vector bundle, let us observe a simple
property of the transition functions.

Proposition 8.13. Let M be an m-dimensional smooth manifold M , fix an
atlas {∑} for M , and let π : B → M be a smooth vector bundle of rank n with
transition functions p 7→ g∑ 0∑(p). Then

g∑ 00∑ 0(p)g∑ 0∑(p) = g∑ 00∑(p) for all p ∈ M∑ ∩ M∑ 0 ∩ M∑ 00 .

Consequently the transition functions satisfy the identities g∑∑(p) = 1 for p ∈ M∑

and g∑∑ 0(p) = (g∑ 0∑(p))−1 for p ∈ M∑ ∩ M∑ 0 .
PROOF. We have g∑ 00∑ 0(p)g∑ 0∑(p) = φ−1

∑ 00,pφ∑ 0,pφ
−1
∑ 0,pφ∑,p = φ−1

∑ 00,pφ∑,p =
g∑ 00∑(p). Putting ∑ = ∑ 0 = ∑ 00 yields g∑∑(p)g∑∑(p) = g∑∑(p); thus g∑∑(p) = 1.
Putting ∑ = ∑ 00 yields g∑∑ 0(p)g∑ 0∑(p) = g∑∑(p) = 1. §
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The main abstract result about vector bundles for our purposes will be a
converse to Proposition 8.13, enabling us to construct a vector bundle from an
atlas of M and a system of smooth functions p 7→ g∑ 0∑(p) defined onM∑ ∩M∑ 00 if
these functions satisfy the conditions of the proposition. This result will be given
as Proposition 8.14 below. In the case of the tangent bundle, we saw above that
g∑ 0∑(p) is given by g∑ 0∑(p) =

£ @yi
@xj

§
p. The identity g∑ 00∑ 0(p)g∑ 0∑(p) = g∑ 00∑(p)

follows from the chain rule, and thus the abstract result will complete the con-
struction of the tangent bundle as a smooth manifold. We shall construct the
cotangent bundle similarly.
One can equally construct other vector bundles of interest in analysis, as we

shall see, but we shall omit the details for most of these. It is fairly clear from
the example above that one can make local calculations with vector bundles by
working with the transition functions. Here is an example.

EXAMPLE. Suppose for a particular coordinate vector bundle that we have a
systemof functions f∑ : eM∑×Fn → Swith range equal to some set S independent
of ∑ . Let us determine the circumstances under which the system { f∑} is the local
form of some globally defined function f : B → S. A necessary and sufficient
condition is that whenever (x, v) ∈ eM∑ × Fn and (y, v0) ∈ eM∑ 0 × Fn correspond
to the same point of B, then f∑(x, v) = f∑ 0(y, v0). The maps from eM∑ × Fn and
eM∑ 0 × Fn into B are φ∑ ◦ (∑−1 × 1) and φ∑ 0 ◦ (∑ 0−1 × 1). Thus (x, v) and (y, v0)
correspond to the samemember of B if and only if φ∑(∑

−1x, v) = φ∑ 0(∑ 0−1y, v0).
We must have ∑−1x = ∑ 0−1y for this equality. In this case let us put p = ∑−1x =
∑ 0−1y, and then it is necessary and sufficient that φ∑,p(v) = φ∑ 0,p(v

0), hence
that φ−1

∑ 0,p ◦ φ∑,p(v) = v0, hence that g∑ 0∑(p)(v) = v0. Thus (x, v) and (y, v0)

correspond to the same point in B if and only if y = ∑ 0∑−1x and g∑ 0∑(∑
−1x)(v) =

v0. Consequently the functions f∑ define a global f if and only if

f∑(x, v) = f∑ 0

°
∑ 0∑−1x, g∑ 0∑(∑

−1x)(v)
¢

whenever ∑ 0∑−1x is defined. In the case of the tangent bundle, we saw in the
previous example that g∑ 0∑ =

£ @yi (x)
@xj

§
. Thus the condition is that

f∑(x, v) = f∑ 0

°
y,

£ @yi (x)
@xj

§
(v)

¢

whenever y = ∑ 0∑−1(x); here the fiber dimension n is also the dimension of the
base manifold M .

Before getting to the converse result to Proposition 8.13, let us address the
question of when, for given n, F, M , B, and π , we get the “same” coordinate
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vector bundle from a different but compatible atlas {∏} and different coordinate
functions φ∏. The condition that we impose, which is called strict equivalence,
is that if we set up the transition functions corresponding to a member ∑ of the
first atlas and a member ∏ of the second atlas, namely

ḡ∏∑(p) = φ0
∏,p

−1 ◦ φ∑,p for p ∈ M∑ ∩ M∏,

then each ḡ∏∑(p) lies in GL(n, F) and the function p 7→ ḡ∏∑(p) is smooth from
M∑ ∩ M∏ into GL(n, F). In other words, strict equivalence means that the union
of the two atlases, along with the associated data, is to make π : B → M into a
coordinate vector bundle. Strict equivalence is certainly reflexive and symmetric.
Since we can discard some charts from the construction of a coordinate vector
bundle as long as the remaining charts cover M , strict equivalence is transitive.
An equivalence class of strictly equivalent coordinate vector bundles is called a
vector bundle, real or complex according as F is R or C.
With the definition of smooth structure for a smooth manifold, we were able

to make the atlas canonical by assuming that it was maximal. Every atlas of
compatible charts could be extended to one and only one maximal such atlas,
and therefore smooth manifolds were determined by specifying any atlas of
compatible charts, not necessarily a maximal one. We do not have to address
the corresponding question about vector bundles—whether the atlas of M used
in defining a coordinate vector bundle can be enlarged to a maximal atlas of M
and still define a coordinate vector bundle. The reason is that the specific vector
bundles with which we work are all definable immediately by maximal atlases of
M .
Now let us proceed with the converse result.

Proposition 8.14. If a smooth m-dimensional manifold M is given, along
with an atlas {∑} of compatible charts and a system of smooth functions
g∑ 0∑ : M∑ ∩ M∑ 0 → GL(n, F) satisfying the property g∑ 00∑ 0(p)g∑ 0∑(p) = g∑ 00∑(p)
for all p in M∑ ∩ M∑ 0 ∩ M∑ 00 , then there exists a coordinate vector bundle
π : B → M with the functions g∑ 0∑ as transition functions. The result is
unique in the following sense: if π : B → M and π 0 : B 0 → M are two
such coordinate vector bundles, with coordinate functions φ∑ and φ0

∑ , then there
exists a diffeomorphism h : B → B 0 such that π 0 ◦ h = π and φ0

∑ = h ◦ φ∑ for
all charts ∑ in the atlas.
PROOF OF UNIQUENESS OF COORDINATE VECTOR BUNDLE UP TO FUNCTION h.

Define a diffeomorphism h∑ : π−1(M∑) → π 0−1(M∑) by h∑ = φ0
∑ ◦ φ−1

∑ , so
that h∑ ◦ φ∑ = φ0

∑ . Evaluating both sides at (p, Fn) with p in M∑ , we obtain
h∑(π

−1(p)) = π 0−1(p). Thus π 0 ◦ h∑ = π on π−1(M∑).
Since the map h∑,p = h∑

Ø
Ø
π−1(p) carries π−1(p) to π 0−1(p), we can write

h∑,p ◦ φ∑,p = φ0
∑,p. If p is also in M∑ 0 , then we have h∑ 0,p ◦ φ∑ 0,p = φ0

∑ 0,p
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as well. Since B and B 0 are assumed to have the same transition functions,
g∑ 0∑(p) = φ∑ 0,p

−1φ∑,p = φ0
∑ 0,p

−1φ0
∑,p; in other words, φ∑ 0,pg∑ 0∑(p) = φ∑,p and

φ0
∑ 0,pg∑ 0∑(p) = φ0

∑,p. Therefore

h∑,pφ∑,p = φ0
∑,p = φ0

∑ 0,pg∑ 0∑(p) = h∑ 0,pφ∑ 0,pg∑ 0∑(p) = h∑ 0,pφ∑,p,

and we obtain h∑,p = h∑ 0,p. Thus the functions h∑ are consistently defined on
their common domains and fit together as a global diffeomorphism of B onto B 0.

§

PROOF OF EXISTENCE OF COORDINATE VECTOR BUNDLE. Let us construct
B as an identification space. We are writing eM∑ for ∑(M∑), and we put
eM∑ 0∑ = ∑(M∑ ∩ M∑ 0). Define W∑ = eM∑ × Fn and W∑ 0∑ = eM∑ 0∑ × Fn , and
let

√∑ 0∑(em, v) =
°
∑ 0∑−1(em), g∑ 0∑(∑

−1(em))(v)
¢

for (em, v) ∈ W∑ 0∑ .

We shall prove that X =
F

∑ W∑ , together with the functions √∑ 0∑ , defines an
identification space B = X/∼. We have to check (i), (ii), and (iii) in Section 3.
For (i), we need that √∑∑ is the identity on W∑∑ = W∑ , and the computation is

√∑∑(em, v) =
°
em, g∑∑(∑

−1(em))(v)
¢

= (em, v)

since g∑∑( · ) is identically the identity matrix. For (ii), we need that √∑∑ 0√∑ 0∑ is
the identity on W∑ 0∑ . The composition on (em, v) is

√∑∑ 0

°
∑ 0∑−1(em), g∑ 0∑(∑

−1(em))(v)
¢

=
°
∑∑ 0−1∑ 0∑−1(em), g∑∑ 0(∑ 0−1(∑ 0∑−1(em)))g∑ 0∑(∑

−1(em))(v)
¢

=
°
em, g∑∑ 0(∑−1(em))g∑ 0∑(∑

−1(em))(v)
¢
.

The second member of the right side collapses to v since g∑∑ 0(p)g∑ 0∑(p) = 1 for
all p in M∑ . This proves (ii). For (iii), we need that √∑ 00∑ 0 ◦ √∑ 0∑ = √∑ 00∑ on the
set W∑ 00∑ ∩ W∑ 0∑ = √∑∑ 0(W∑ 00∑ 0 ∩ W∑∑ 0), and the composition on (em, v)

= √∑ 00∑ 0

°
(∑ 0∑−1(em), g∑ 0∑(∑

−1(em)(v)
¢

=
°
∑ 00∑ 0−1(∑ 0∑−1(em)), g∑ 00∑ 0(∑ 0−1(∑ 0∑−1(em)))g∑ 0∑(∑

−1(em))(v)
¢

=
°
∑ 00∑−1(em), g∑ 00∑ 0(∑−1(em))g∑ 0∑(∑

−1(em))(v)
¢

=
°
∑ 00∑−1(em), g∑ 00∑(∑

−1(em))(v)
¢

= √∑ 00∑(em, v).

This proves (iii) and completes the construction of B.
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To prove that B is Hausdorff, we apply Proposition 8.11 and its remark. Thus
suppose that we have nets with xα ∼ yα in X , that xα → x0 and yα → y0, and
that xα and x0 are in W∑ and yα and y0 are in W∑ 0 . We are to prove that x0 ∼ y0.
Write xα = (emα, vα), x0 = (em0, v0), yα = (em0

α, v0
α), and y0 = (em0

0, v
0
0). The

assumed convergence says that emα → em0, vα → v0, em0
α → em0

0, and v0
α → v0

0.
The assumed equivalence xα ∼ yα says that √∑ 0∑(emα, vα) = (em0

α, v0
α), i.e.,

∑ 0∑−1(emα) = em0
α and g∑ 0∑(∑

−1(emα))(vα) = v0
α,

and we are to prove that

∑ 0∑−1(em0) = em0
0 and g∑ 0∑(∑

−1(em0))(v0) = v0
0.

The functions ∑ 0∑−1, g∑ 0∑ , and ∑−1 are continuous, and the only question is
whether em0 is in the domain of ∑ 0∑−1 and ∑−1(em0) is in the domain of g∑ 0∑ , i.e.,
whether em0 is in the subset eM∑ 0∑ = ∑(M∑ ∩ M∑ 0) of eM∑ = ∑(M∑). Assume the
contrary. Then em0 is on the boundary of ∑(M∑ ∩ M∑ 0) in ∑(M∑) and em0

0 is on
the boundary of ∑ 0(M∑ ∩ M∑ 0) in ∑ 0(M∑ 0). So ∑−1(em0) is on the boundary of
M∑ ∩ M∑ 0 in M∑ , and ∑ 0−1(em0

0) is on the boundary of M∑ ∩ M∑ 0 in M∑ 0 . This
implies that ∑−1(em0) is in M∑ but not M∑ 0 while ∑ 0−1(em0

0) is in M∑ 0 but not M∑ .
Consequently ∑−1(em0) 6= ∑ 0−1(em0

0). Since M is Hausdorff, we can find disjoint
open neighborhoods V and V 0 of ∑−1(em0) and ∑ 0−1(em0

0) in M . Since ∑−1 is
continuous, ∑−1(emα) is eventually in V ; since ∑ 0−1 is continuous, ∑ 0−1(em0

α) is
eventually in V 0. Then we cannot have ∑−1(emα) = ∑ 0−1(em0

α) eventually, hence
cannot have ∑ 0∑−1(emα) = em0

α eventually, contradiction. We conclude that B is
Hausdorff.
To complete the proof, we exhibit B as a coordinate vector bundle. Let

q : X → B be the quotient map. Application of Proposition 8.12 produces a
manifold structure on B, the charts being of the form ∑# = (q

Ø
Ø
W∑

)−1 with domain
q(W∑). If p∑ denotes the projection ofW∑ on eM∑ , we define π : q(W∑) → M to
be the composition ∑−1 p∑∑

#. To have π : B → M be globally defined, we have
to check consistency from chart to chart. Thus suppose that b = q(w∑) = q(w∑ 0)
with w∑ = (em∑ , v∑) in W∑ and w∑ 0 = (em∑ 0, v∑ 0) in W∑ 0 . We are to check that
∑−1 p∑(w∑) = ∑ 0−1 p∑ 0(w∑ 0), hence that ∑−1(em∑) = ∑ 0−1(em∑ 0). The condition
q(w∑) = q(w∑ 0) means that w∑ ∼ w∑ 0 , which means that √∑ 0∑(w∑) = w0

∑ and
therefore that

°
∑ 0∑−1(em∑), g∑ 0∑(∑

−1(em∑))(v∑)
¢

= (em∑ 0, v∑ 0). Examining the first
entries shows that ∑−1(em∑) = ∑ 0−1(em∑ 0). Therefore π is well defined.
The diffeomorphism φ∑ : M∑ ×Fn → π−1(M∑) is given by φ∑ = q ◦ (∑ × 1).

If p is in M∑ ∩ M∑ 0 , write v0 = φ−1
∑ 0,p(φ∑,p(v)). Then φ∑ 0,p(v

0) = φ∑,p(v), and
hence q(∑ 0(p), v0) = q(∑(p), v). Thus (∑ 0(p), v0) ∼ (∑(p), v), and

(∑ 0(p), v0) = √∑ 0∑(∑(p), v) =
°
∑ 0∑−1(∑(p)), g∑ 0∑(∑

−1(∑(p)))(v)
¢
.
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Examining the equality of the second coordinates, we see that v0 = g∑ 0∑(p)(v).
Therefore φ−1

∑ 0,p ◦ φ∑,p = g∑ 0∑(p), and the transition functions match the given
functions. This completes the proof. §

As we mentioned after Proposition 8.13, Proposition 8.14 enables us to in-
troduce the structure of a vector bundle on the tangent bundle T (M), since the
product formula for the transition functions g∑ 0∑(p) =

£ @yi
@xj

§
p follows from the

chain rule. The transition functions g∑ 0∑(p) =
£ @yi

@xj

§
p are real-valued and thus can

be regarded as inGL(n, R) orGL(n, C). Thus T (M), in our construction, can be
regarded as having fiber Rn or Cn , whichever is more convenient in a particular
context. We can speak of the real tangent bundle T (M, R) and the complex
tangent bundle T (M, C) in the two cases.6
We shall make use also of the cotangent bundle T ∗(M), and again we shall

allow this to be real or complex. Members of the cotangent bundle will be called
cotangent vectors. We give two slightly different realizations of T ∗(M), one
starting from T (M) as the object of primary interest and the other proceeding
directly to T ∗(M). In both cases, T ∗(M) and T (M)will be fiber-by-fiber duals of
one another, and the transition functionswill be transpose inverses of one another.
For the first construction we shall identify the dual of Tp(M) in terms of

differentials as defined inSection1. LetM ben-dimensional, let∑ be a compatible
chart about p, and let f ∈ C∞(U) be a smooth function in a neighborhood of
p. By definition from Section 1, the differential (d f )p is the linear function
(d f )p : Tp(M) → Tf (p)(F) given by

(d f )p(L)(g) = L(g ◦ f ).

Let us take g0 : F → F to be the function g0(t) = t . Since

(d f )p
£

@
@xj

§
p(g0) = @(g0◦ f )

@xj (p) = g0
0( f (p))

@ f
@xj (p) = @ f

@xj (p),

we see that (d f )p(L)(g0) = L f for all L in Tp(M). In particular, each differential
(d f )p acts as a linear functional on Tp(M). Moreover, the elements (dxi )p,
namely the differentials for f = xi , are the members of the dual basis to the basis£

@
@xj

§
p of Tp(M), and we can use them to write

(d f )p =
nP

i=1

@ f
@xi (p) (dxi )p.

We postpone a discussion of the bundle structure on T ∗(M) until after the second
construction.

6Traditionally the words “tangent bundle” refer to what is being called the real tangent bundle,
and the traditional notation for it is T (M).
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For the second construction we use the algebra Cp of germs at p. Evaluation
at p is well defined on germs at p, and we let C 0p be the vector subspace of germs
whose value at p is 0. Inside C 0p , we wish to identify the vector subspace C 1p of
germs that vanish at least to second order at p. These are7 germs of functions f
with the property that | f (q)− f (p)| is dominated by a multiple of |∑(q)−∑(p)|2
in any chart ∑ about p when q is in a sufficiently small neighborhood of p.
Within the second construction the cotangent space T ∗

p (M) is defined as the
vector space quotientC 0p /C 1p . To introduce a vector-bundle structure on T ∗(M) =S

p T ∗
p (M) by means of Proposition 8.14, we need to set up the local expression

for a member of the cotangent space and understand how it changes when we
pass from one compatible chart ∑ to another ∑ 0. We begin by observing for any
open neighborhoodU of p that there is a well-defined linear map f 7→ d f (p) of
C∞(U) onto T ∗

p (M) given by passing from f to f − f (p) in C 0p and then to the
coset representative of f − f (p) in T ∗

p (M) = C 0p /C 1p .

Proposition 8.15. Let M be a smooth manifold of dimension n, let p be in M ,
and let ∑ = (x1, . . . , xn) be a compatible chart about p. In either construction
of T ∗

p (M), the n quantities dxi (p) form a vector-space basis of T ∗
p (M), and any

smooth function f defined in a neighborhood of p has

d f (p) =
nX

i=1

@ f
@xi

(p) dxi (p).

PROOF. We have already obtained this formula for the first construction. For
the second construction,we observe as in the proof of Proposition8.5 that Taylor’s
Theorem yields an expansion for f in the chart ∑ about p as

f (q) = f (p) +
nP

i=1
(xi (q) − xi (p)) @ f

@xi (p)

+
P

i, j
(xi (q) − xi (p))(xj (q) − xj (p))ri j (q),

from which we obtain

d f (p) =
nP

i=1

@ f
@xi (p) dxi (p).

This establishes the asserted expansion and shows that the dxi (p) span the vector
space T ∗

p (M). For the linear independence suppose that
Pn

i=1 cidxi (p) = 0 with

7If we allow ourselves to peek momentarily at the tangent space, we see that C 1p is the subspace
of all members of C 0p on which all tangent vectors at p vanish.
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the constants ci not all 0. If we define f =
Pn

i=1 ci xi in M∑ , then computation
gives @ f

@xi (p) = ci and hence d f (p) =
Pn

i=1 ci dxi (p) = 0. Thus f − f (p)
vanishes at least to order 2 at p. Since f − f (p) is linear, we conclude that
f − f (p) vanishes identically near p. Hence all coefficients ci are 0. This proves
the linear independence. §

When p moves within the compatible chart ∑ , we can express all members of

the spaces T ∗
q (M) for q in that neighborhood as

nP

i=1
ξi (q) dxi (q), but the functions

ξi (q) need not always be of the form @ f
@xi (q) for a single function f . Nevertheless,

we can use the transformation properties of d f (p) for special f ’s to introduce a
natural vector-bundle structure on T ∗(M) by means of Proposition 8.14.

EXAMPLE. Direct construction of bundle structure on cotangent bundle. Con-
tinuingwith the direct analysis of T ∗(M), let us form the coordinate functions and
charts. Define T ∗(M∑) =

S
p∈M∑

T ∗
p (M). Using Proposition 8.15, we associate

to a member (p, ξ) of T ∗(M∑) the coordinates

(x1(p), . . . , xn(p); ξ1, . . . , ξn),

where ∑(p) = (x1(p), . . . , xn(p)) and ξ =
nP

i=1
ξi dxi (p). The coordinate func-

tion φ∑ is given in this notation as a composition carrying (p; ξ1, . . . , ξn) first

to (x1(p), . . . , xn(p); ξ1, . . . , ξn) and then to
nP

i=1
ξi dxi (p). That is,

φ∑(p; ξ1, . . . , ξn) =
nP

i=1
ξi dxi (p).

If p lies in another chart ∑ 0 = (y1, . . . , yn), then we similarly have

φ∑ 0(p; η1, . . . , ηn) =
nP

i=1
ηi dyi (p).

The formula of Proposition 8.15 shows that

dxi (p) =
nP

j=1

@xi
@yj (p) dyj (p).

Therefore

φ∑(p; ξ1, . . . , ξn) =
nP

i=1
ξi dxi (p) =

nP

j=1

≥ nP

i=1
ξi

@xi
@yj (p)

¥
dyj (p),
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and
φ−1

∑ 0 φ∑(p; ξ1, . . . , ξn) =
≥
p;

nP

i=1
ξi

@xi
@y1 (p), . . . ,

nP

i=1
ξi

@xi
@yn (p)

¥
.

In other words,
φ−1

∑ 0 φ∑(p; ξ1, . . . , ξn) = (p; η1, . . . , ηn)

with ηj =
nP

i=1
ξi

@xi
@yj (p). This says that the row vector ( η1 · · · ηn ) is the

product of the row vector ( ξ1 · · · ξn ) by the matrix
£

@xi
@yj (p)

§
. Taking the

transpose of this matrix equation, we see that the transition functions for the
cotangent bundle are to be

g∑ 0∑(p) =
£

@xi
@yj (p)

§tr
,

i.e., the transpose inverses of the transition functions for the tangent bundle.
In view of the boxed formula earlier in this section, a system of functions
f∑ : eM∑ × Fn → S arises from a globally defined function on the cotangent
bundle if and only if

f∑(x, ξ) = f∑ 0

°
y(x),

£ @xi (y)
@yj

§tr
(ξ)

¢
,

i.e., if and only if

f∑
°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
= f∑ 0(y, η).

If π : B → M is a smooth vector bundle, a section of B is a function
s : M → B such that π(s(p)) = p for all p ∈ M , and the section is a smooth
section if s is smooth as a function between smooth manifolds.

Proposition 8.16. Let π : B → M be a smooth vector bundle of rank n,
let s : M → B be a section, and let ∑ be a compatible chart for M . Then the
coordinate function φ∑ has the property that φ−1

∑ ◦ s(p) = (p, v∑(p)) for p in M∑

and for a function v∑( · ) : M∑ → Fn . Moreover, the section s is smooth if and
only if the function p 7→ v∑(p) is smooth for every chart ∑ in an atlas.
PROOF. Let P∑ : M∑ × Fn → M∑ be projection to the first coordinate. Let us

check that P∑ ◦φ−1
∑ = π on π−1(M∑). Suppose that p is inM∑ and φ∑(p, v) = b.

Applying π gives π(b) = πφ∑(p, v) = p by the defining property (i) of φ∑ .
Therefore φ−1

∑ (b) = (p, v) and P∑φ
−1
∑ (b) = p = π(b). Since b is arbitrary in

π−1(M∑), P∑ ◦ φ−1
∑ = π .

For a section s, the conditionπ ◦s = 1 onM therefore implies that P∑ ◦φ−1
∑ ◦s

= 1 on M∑ . Hence φ−1
∑ ◦ s(p) = (p, v∑(p)) for p in M∑ and for some function

v∑ : M∑ → Fn . Since each φ∑ : M∑ × Fn → π−1(M∑) is a diffeomorphism, s is
smooth if and only if each function φ−1

∑ ◦ s is smooth for ∑ in an atlas, and this
condition holds if and only if each v∑ is smooth. §
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EXAMPLES.
(1) Vector fields. A vector field on M is a section of the tangent bundle. In

the first example in this section, we obtained the formula φ∑(p, v) =
nP

i=1
vi

£
@

@xi

§
p

if p is in M∑ and v = (v1, . . . , vn). Applying φ∑ to the formula of Proposition

8.16, we see that s(p) = φ∑(p, v(p)) =
nP

i=1
vi (p)

£
@

@xi

§
p if the function v(p) is

(v1(p), . . . , vn(p)). On the other hand, Proposition 8.8 shows that any vector

field X acts by X f (p) =
nP

i=1

@ f
@xi (p)(Xxi )(p). If we regard X as our section s,

we see therefore that vi (p) = (Xxi )(p). Since s is smooth if and only if all
vi (p) are smooth, s is smooth if and only if all (Xxi )(p) are smooth. In view of
Proposition 8.8, we conclude that a vector field is smooth as a section if and only
if it is smooth in the sense of Section 2.
(2) Differential 1-forms. A differential 1-form on M is a section of the cotan-

gent bundle. Just before Proposition 8.16 we obtained the formula φ∑(p, ξ) =
nP

i=1
ξi dxi (p) if p is in M∑ and ξ = (ξ1, . . . , ξn). Applying φ∑ to the formula

of Proposition 8.16, we see that s(p) = φ∑(p, ξ(p)) =
nP

i=1
ξi (p) dxi (p) if the

function ξ(p) is (ξ1(p), . . . , ξn(p)). Proposition 8.16 shows that s is smooth if
and only if all the ξi (p) are smooth, and thus a differential 1-form is smooth if

and only if in each of its local expressions
nP

i=1
ξi (p) dxi (p), all the coefficient

functions ξi (p) are smooth. In particular Proposition 8.15 gives the formula

d f (p) =
nP

i=1

@ f
@xi (p) dxi (p)whenever f is a smooth function onM∑ , and therefore

d f is a smooth differential 1-form on M whenever f is in C∞(M).

5. Distributions and Differential Operators on Manifolds

The goal of Sections 5–7 is to describe the framework for extending the method
of pseudodifferential operators, as introduced in SectionVII.6, from open subsets
of Euclidean space to smooth manifolds. Just as in Section VII.6 a number of
lengthy verifications are involved, and we omit them.
Several sources of examples with F = R are worth mentioning. All of

them come about in the context of some smooth manifold with some additional
structure. All of them involve differential operators, as opposed to general pseu-
dodifferential operators, at least initially. From this point of view, the reason
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for introducing pseudodifferential operators is to have tools for working with
differential operators.
The first source is the subject of “Lie groups.” A Lie group G is a smooth

manifold that is a group in such away thatmultiplication and inversion are smooth
functions. Closed subgroups ofGL(n, F) furnish examples, but not in an obvious
way. In any event, if a tangent vector at the identity is moved to arbitrary points
of G by the differentials of the right translations of G, the result is a vector
field that can be shown to be smooth and to have an invariance property relative
to left translation. We can regard this left-invariant vector field as a first-order
differential operator on G. Out of such operators we can form further differential
operators by forming compositions, sums, and so on.
A related and larger source is quotient spaces of Lie groups. Any Lie group G

is a locally compact group in the sense of Chapter VI. If H is a closed subgroup,
then the quotient G/H turns out to have a smooth structure such that the group
action G × G/H → G/H is smooth. The quotient G/H may admit differential
operators that are invariant under the action of G. For example the Laplacian
makes sense on the unit sphere Sn−1 and is invariant under rotations. The sphere
Sn−1 is the quotient of rotation groups SO(n)/SO(n− 1), and thus the Laplacian
on the sphere falls into the category of an invariant differential operator on a
quotient space of a Lie group.
A third source, overlapping some with the previous two, is Riemannian ge-

ometry. ARiemannianmanifold M is a smooth manifold with an inner product
specified on each tangent space Tp(M) so as to vary smoothly with p. The
additional structure on M is called a Riemannian metric and can be formalized,
by the same process as for the tangent bundle itself, as a smooth section of a
suitablevectorbundleoverM . ARiemannianmanifoldcarries a naturalLaplacian
operator and other differential operators of interest that capture aspects of the
geometry. One way of creating Riemannianmanifolds is by embedding a smooth
manifold of interest in a Riemannian manifold. For example one can embed
any compact orientable 2-dimensional smooth manifold in R3, and R3 carries a
natural Riemannian metric. The inclusion of the manifold into R3 induces an
inclusion of tangent spaces, and the Riemannian metric ofR3 can be restricted to
the manifold.
A fourth source is thefield of several complex variables. TheCauchy–Riemann

operator, consisting of @
@ z̄ j in each complex variable zj , makes sense on any

open set, and the functions annihilated by it are the holomorphic functions. If a
bounded open subset ofCn has a smooth boundary, then the tangential component
of the Cauchy–Riemann operator makes sense on smooth functions defined on
the boundary. The significance of the tangential Cauchy–Riemann operator is
that the functions annihilated by it are the ones that locally have extensions to
holomorphic functions in a neighborhood of the boundary. The Lewy example,
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mentioned in Section VII.2, ultimately comes from such a construction using the
unit ball in C2.

The subject being sufficiently rich with examples, let us establish the frame-
work. Let M be an n-dimensional smooth manifold. It is customary to assume
that M is separable. This condition is satisfied in all examples of interest, and in
particular every compact manifold is separable. With the assumption of separa-
bility, we automatically obtain an exhausting sequence {Kj }∞j=1 of compact sets
such that M =

S
j Kj and Kj ⊆ Ko

j+1.
We have already introduced the associative algebras C∞(M) and C∞

com(M),
and these spaces of functions need to be topologized. For C∞(M), the topology
is to be given by a countable separating family of seminorms, and convergence is
to be uniform convergence of the function and all its derivatives on each compact
subset of M . The exact family of seminorms will not matter, but we need to see
that it is possible to specify one. Fix Kj . To each point p of Kj , associate a chart
∑p about p and associate also a compact neighborhood Np of p lying within M∑p .
For p in Kj , the interiors No

p of the Np’s cover Kj , and we select a finite subcover
No
p1, . . . , N

o
pr . Let ∑p1, . . . , ∑pr be the corresponding charts. If ϕ is in C∞(M),

the seminorms of ϕ relating to Kj will be indexed by a multi-index α and an
integer i with 1 ≤ i ≤ r , the associated seminorm being supx∈Npi

|Dα(ϕ ◦ ∑−1
pi )|.

When j is allowed to vary, the result is that C∞(M) is a complete metric space
with ametric given by countablymany seminorms. If we construct seminorms by
starting from a different exhausting sequence, then there is no difficulty in seeing
that any seminorm in either construction is ≤ a positive linear combination of
seminorms from the other construction. Thus the identity mapping of C∞(M)
with the one metric to C∞(M) with the other metric is uniformly continuous.
ForC∞

com(M), we use the inductive limit construction of Section IV.7 relative to
the sequence of compact subsets Kj . That is, we letC∞

Kj
be the vector subspace of

functions in C∞
com(M)with support in Kj , we give C∞

Kj
the relative topology from

C∞(M), and then we form the inductive limit. Again the topology is independent
of the exhausting sequence, and C∞

com(M) is an LF space in the sense of Section
IV.7.

The next step is to introduce distributions onmanifolds, and therewe encounter
an unpleasant surprise. In Euclidean space the effect hT, ϕi of a distribution on
a function was supposed to generalize the effect h f, ϕi =

R
f ϕ dx of integration

with a function f . The dx in the Euclidean case refers to Lebesgue measure. To
get such an interpretation in the case of amanifoldM , we have to use ameasure on
M , and theremay be no canonical one. If we drop any insistence that distributions
generalize integrationwith a function, thenwe encounter a different problem. The
problem is that the three global notions—smooth function, distribution, and linear



5. Distributions and Differential Operators on Manifolds 351

functional on smooth functions—each have to satisfy certain transformation rules
as wemove from chart to chart, and these transformation rules are not compatible
with having the space of distributions coincidewith the space of linear functionals
on smooth functions.
There are severalways of handling this problem, andwe use one of them. What

we shall do is fix a global but noncanonical notion of integration on M satisfying
some smoothness properties. Thuswe are constructing a positive linear functional
∏ on Ccom(M). We suppose given relative to each chart ∑ = (x1, . . . , xn) a
positive smooth function g∑(x) on eM∑ such that ∏(ϕ) =

R
eM∑

ϕ(∑−1(x))g∑(x) dx
whenever ϕ is in Ccom(M∑). Let ∑ 0 = (y1, . . . , yn) be a second chart, and put
M∑,∑ 0 = M∑ ∩ M∑ 0 . If ϕ is in Ccom(M∑,∑ 0), then we require that

R
∑(M∑,∑0 )

ϕ(∑−1(x))g∑(x) dx =
R
∑ 0(M∑,∑0 )

ϕ(∑ 0−1(y))g∑ 0(y) dy.

Substituting y = ∑ 0(∑−1(x)) on the right side, we can transform the right side intoR
∑(M∑,∑0 )

ϕ(∑−1(x))g∑ 0(∑ 0(∑−1(x)))
Ø
Ø det

£ @yi
@xj (x)

§ØØ dx by the change-of-variables
formula for multiple integrals. Thus the compatibility condition for the functions
g∑ is that

g∑(x) = g∑ 0(y(x))
Ø
Ø det

£ @yi
@xj (x)

§ØØ for x ∈ ∑(M∑,∑ 0), y(x) = ∑ 0(∑−1(x)).

Conversely if this compatibility condition on the system of g∑ ’s is satisfied, we
can use a smooth partition of unity8 to define ∏ consistently and obtain a measure
on M . This measure is a positive smooth function times Lebesgue measure in the
image of any chart, and we refer to it as a smooth measure on M . We denote it
by µg. The key formula for computing with it is

R
M ϕ dµg =

R
eM∑

ϕ(∑−1(x))g∑(x) dx

for all Borel functions ϕ ∏ 0 on M that equal 0 outside M∑ .
One can prove that a smooth measure always exists,9 and there are important

cases in which a distinguished smooth measure exists. With Lie groups, for
example, a left Haar measure is distinguished. With the quotient of a Lie group
by a closed subgroup, Theorem 6.18 gives a necessary and sufficient condition for
the existence of a nonzero left-invariant Borel measure, and that is distinguished.
With a Riemannianmanifold, there always exists a distinguished smoothmeasure
that is definable directly in terms of the Riemannian metric.

8Smooth partitions of unity are discussed in Problem 5 at the end of the chapter.
9If every connected component of M is orientable, there is a positive smooth differential n-form,

and it gives such ameasure. All components are open; anynonorientablecomponenthas anorientable
double cover with such a measure, and this can be pushed down to the given manifold.
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The smooth measure is not unique, but any two smooth measures µg and µh
are absolutely continuous with respect to each other. By the Radon–Nikodym
Theorem we can therefore write dµg = F dµh for a positive Borel function F ;
the function F may be redefined on a set of measure 0 so as to be in C∞(M),
as we see by examining matters in local coordinates. Conversely if F is any
everywhere-positive member ofC∞(M), then F dµg is another smoothmeasure.
If we fix a smooth measure µg, we can define spaces L1com(M, µg) and

L1loc(M, µg) as follows: the first is the vector subspace of all members of
L1(M, µg) with compact support, and the second is the vector space of all
functions, modulo null sets, whose restriction to each compact subset of M
is in L1com(M, µ). It will not be necessary for us to introduce a topology on
L1com(M, µg) or on L1loc(M, µg). If we replace µg by another smooth mea-
sure dµh = F dµg, then it is evident that L1com(M, µh) = L1com(M, µg) and
L1loc(M, µh) = L1loc(M, µg).
We defineD 0(M) and E 0(M) in the expected way: D 0(M), which is the space

of all distributions on M , is the vector space of all continuous linear functionals
on C∞

com(M), and E 0(M) is the vector space of all continuous linear functionals
onC∞(M). The effect of a distribution T on a function ϕ continues to be denoted
by hT, ϕi. The support of a distribution is the complement of the union of all
open subsetsU of M such that the distribution vanishes onC∞

com(U). We omit the
verification that E 0(M) is exactly the subspace of members ofD 0(M) of compact
support. It will not be necessary for us to introduce a topology on D 0(M) or
E 0(M).
With the smooth measure µg fixed, we can introduce distributions Tf corre-

sponding to certain functions f . If f is in L1loc(M, µg), we define Tf by

hTf , ϕi =
R
M f ϕ dµg for ϕ ∈ C∞

com(M).

This is a member of D 0(M). If f is in L1com(M, µg), we define Tf by

hTf , ϕi =
R
M f ϕ dµg for ϕ ∈ C∞(M).

This is a member of E 0(M).

As we did in the Euclidean case in Section V.2, we want to be able to pass from
certain continuous linear operators L on smooth functions to linear operators on
distributions. With µg replacing Lebesgue measure, the procedure is unchanged.
We have a definition of L on functions, and we identify a continuous transpose
operator L tr on smooth functions satisfying the defining condition

R
M L( f )ϕ dµg =

R
M f L tr(ϕ) dµg.
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Then we let
hL(T ), ϕi = hT, L tr(ϕ)i.

For example, if L is the operator given as multiplication by the smooth func-
tion √ , then L tr = L on smooth functions because we have

R
M L( f )ϕ dµg =R

M(√ f )(ϕ) dµg =
R
M( f )(√ϕ) dµg =

R
M f L(ϕ) dµg. Thus the definition is

h√T, ϕi = hT, √ϕi.

A lineardifferential operator L of order≤ m on amanifoldM is a continuous
linear operator from C∞(M) into itself with the property that for each point p
in M , there is some compatible chart ∑ about p and there are functions aα in
C∞(M∑) such that the operator takes the form L f (q) =

P
|α|≤m aα(q)Dα f (q)

for all f in C∞(M∑). Here if ∑ = (x1, . . . , xn), then Dα f (q) is by definition the
Euclidean expression Dα( f ◦ ∑−1)(x1, . . . , xn) evaluated at ∑(q).
If we have an expansion L f (q) =

P
|α|≤m aα(q)Dα f (q) in the chart ∑ about p

and if ∑ 0 is another compatible chart about p, then a Euclidean change of variables
shows that L f (q) is of the form

P
|β|≤m dβ(q)Dβ f (q) in the chart ∑ 0 for suitable

smooth coefficient functions dβ .
The operator L carries the vector subspaceC∞

com(M) of C∞(M) into itself and
is continuous as a mapping of C∞

com(M) into itself. One says that L has order m
if in some compatible chart, some coefficient function aα is not identically 0.
Let us compute how the transpose of a linear differential operator of order

m acts on smooth functions. The claim is that this transpose is again a linear
differential operator of orderm. Since linear differential operators onopen subsets
of Euclidean space are mapped to other such operators by diffeomorphisms, it is
enough tomake a computation in a neighborhood of a point pwithin a compatible
chart ∑ about p. Evidently the operation of taking the transpose is linear and
reverses the order of operators, and we saw that multiplication by a smooth
function is its own transpose. Thus it is enough to verify that the transpose of @

@xj
is a linear differential operator.
To simplify the notation in the verification, let us abbreviate hTf , ϕi as h f, ϕi

when f and ϕ are smooth functions on M and at least one of them has compact
support. That is, we set h f, ϕi =

R
M f ϕ dµg. Let ϕ and √ be in C∞(M∑), and

assume that one of ϕ and √ has compact support. With {g∑} as the system of
functions defining the smooth measure µg, we have

R
eM∑

@
@xj

°
(√ ◦ ∑−1)(ϕ ◦ ∑−1)g∑

¢
dx = 0.

Expanding the derivative and setting h∑ = g∑ ◦ ∑ gives
≠°

@
@xj

¢tr
ϕ, √

Æ
=

≠
ϕ, @√

@xj

Æ

=
R

eM∑
ϕ(∑−1(x)) @

@xj (√ ◦ ∑−1)(x) g∑(x) dx
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= −
R

eM∑
√(∑−1(x)) @

@xj

°
(ϕ ◦ ∑−1)g∑

¢
(x) dx

= −
R

eM∑
g∑(x)−1√(∑−1(x)) @

@xj

°
(ϕ ◦ ∑−1)g∑

¢
(x) g∑(x) dx

= −
R

eM∑
(h∑ ◦ ∑−1)(x)−1(√ ◦ ∑−1)(x) @

@xj

°
(ϕ ◦ ∑−1)(h∑ ◦ ∑−1)

¢
(x) g∑(x) dx .

Therefore
°

@
@xj

¢tr
ϕ = (h∑)

−1√ @
@xj (ϕh∑), and

°
@

@xj

¢tr is exhibited as a linear dif-
ferential operator in local coordinates.
Certainly transpose does not increase the order of a linear differential operator.

Applying transpose twice reproduces the original operator, and it follows that the
transpose differential operator has the same order as the original.
If L is a linear differential operator acting onC∞

com(M) orC∞(M), we are now
in a position to extend the definition of L to distributions. To do so, we form the
linear differential operator L tr such that hLϕ,√i = hϕ, L tr√i whenever ϕ and √
are smooth on M and at least one of them has compact support. If T is inD 0(M),
we define L(T ) in D 0(M) by hL(T ), ϕi = hT, Lϕi for ϕ in C∞

com(M). If T is in
E 0(M), then we can allow ϕ to be C∞(M), and the consequence is that L(T ) is
in E 0(M). Thus L carries D 0(M) to itself and E 0(M) to itself.

Recall from Section VII.6 that a linear differential operator
P

|α|≤m aα(x)Dα

of order m has, by definition, full symbol
P

|α|≤m aα(x)(2π i)|α|ξα and principal
symbol

P
|α|=m aα(x)(2π i)|α|ξα, with the factors of 2π i reflecting the way that

the Euclidean Fourier transform is defined in this book. When we try to extend
this definition in a coordinate-free way to smooth manifolds M , we find no ready
generalization of the full symbol, but we shall see that the principal symbol
extends to be a certain kind of function on the cotangent bundle of M .
Let L be a linear differential operator on M of order m. Fix a point p in M ,

let ∑ = (x1, . . . , xn) be a compatible chart about p, and let ϕ be in C∞(M∑).
Suppose that Dα makes a contribution to L in this chart. For t > 0 and f in
C∞(M∑), consider the expression

t−me−2π i tϕDα(e2π i tϕ f ) evaluated at p.

We are interested in this expression in the limit t → ∞. When Dα(e2π i tϕ f ) is
expanded by the Leibniz rule, each derivative that is applied to e2π i tϕ yields a
factor of t , and each derivative that is applied to f yields no such factor. Moreover,
the exponentials cancel after the differentiations. The surviving dependence on
t in each term is of the form t−r , where r ∏ m − |α|. Thus our expression
has limit 0 if |α| < m. If |α| = m, we get a nonzero contribution only when
all the derivatives from the Leibniz rule are applied to f . Thus the limit of our
expressionwith |α| = m is of the form cDα f (p), where c is a constant depending
on α and the germ of ϕ at p.
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Meanwhile, our expression is unaffected by replacing ϕ by ϕ − ϕ(p), and its
dependence on ϕ is therefore as a member of C 0p . A little checking shows that
our expression is unchanged if a member of C 1p is added to ϕ. Consequently our
expression, for α fixed with |α| = m, is a function on C 0p /C 1p = T ∗

p (M).
Let us write a general member of T ∗

p (M) as (p, ξ). We define the principal
symbol of the linear differential operator L of order m to be the scalar-valued
function σL(p, ξ) on the real cotangent bundle T ∗(M, R) given by

σL(p, ξ) f (p) = lim
t→∞

t−me−2π i tϕ(p)L(e2π i tϕ f )(p),

where ϕ is chosen so that dϕ(p) = ξ . Reviewing the construction above, we see
that this definition is independent of f and of any choice of local coordinates.
We can compute the principal symbol explicitly if an expression for L is

given in local coordinates. With our chart ∑ = (x1, . . . , xn) as above, we know
from Proposition 8.15 that the differentials dx1(p), . . . , dxn(p) form a basis
of T ∗

p (M). Let the expansion of the given cotangent vector ξ in this basis be
ξ =

P
i ξi dxi (p), and define ϕ(x) =

P
i ξi (xi − xi (p)). This function has

dϕ(p) = ξ by Proposition 8.15, and direct computation gives

σL(p, ξ) =
P

|α|=m
aα(x)(2π i)|α|ξα if L =

P

|α|≤m
aα(x)Dα.

In particular, σL(p, ξ) is homogeneous of degree m in the ξ variable.10

6. More about Euclidean Pseudodifferential Operators

Before introducing pseudodifferential operators on an n-dimensional separable
smooth manifold M , it is necessary to supplement the Euclidean theory as pre-
sented in Section VII.6. We need to understand the effect of transpose on a
Euclidean pseudodifferential operator and also the effect of a diffeomorphism.
First let us consider transpose. IfG is a pseudodifferential operator onU ⊆ Rn ,

we know that

hG tr√, ϕi = h√,Gϕi =
R

Rn

R
U

R
U e

2π i(x−y)·ξg(x, ξ)√(x)ϕ(y) dy dx dξ

for ϕ and √ in C∞
com(U). If we interchange x and y and replace ξ by −ξ , we

obtain

hG tr√, ϕi =
R

Rn

R
U

R
U e

2π i(x−y)·ξg(y,−ξ)√(y)ϕ(x) dy dx dξ.

10A function σ(p, ξ) is homogeneous of degree m in the ξ variable if σ(p, rξ) = rmσ(p, ξ)
for all r > 0 and all ξ 6= 0.
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The function that ought to play the role of the symbol of G tr is g(y,−ξ). It has a
nontrivial y dependence, unlike what happens with pseudodifferential operators
as defined in Section VII.6. Thus we cannot tell from this formula whether
G tr coincides with a pseudodifferential operator. Although it is possible to
cope with this problem directly, a tidier approach is to enlarge the definition
of pseudodifferential operator to allow dependence on y, as well as on x and ξ ,
in the function playing the role of the symbol. Then the transpose of one of the
new operators will again be an operator of the same kind, and one can develop
a theory for the enlarged class of operators.11 Remarkably, as we shall see, the
new class of operators turns out to be not so much larger than the original class.
Accordingly, let Sm1,0,0(U×U) be the set of all functions g inC∞(U×U×Rn)

such that for each compact set K ⊆ U × U and each triple of multi-indices
(α, β, ∞ ), there exists a constant C = CK ,α,β,∞ with

|Dα
ξ D

β
x D

∞
y g(x, y, ξ)| ≤ C(1+ |ξ |)m−|α| for (x, y) ∈ K and ξ ∈ Rn.

Then Dα
ξ D

β
x D∞

y g will be a symbol in the class Sm−|α|
1,0,0 (U ×U). Let S−∞

1,0,0(U ×U)

be the intersection of all S−n
1,0,0(U × U) for n ∏ 0. A function g(x, y, ξ) in

Sm1,0,0(U × U) is called an amplitude, and the generalized pseudodifferential
operator that is associated to it is given by12

Gϕ(x) =
Z

Rn

Z

U
e2π i(x−y)·ξg(x, y, ξ)ϕ(y) dy dξ

for ϕ in C∞
com(U). Such an operator is continuous from C∞

com(U) into C∞(U).
The transposed operator G tr such that hGϕ,√i = hϕ,G tr√i for ϕ and √ in
C∞
com(U) is given by

G trϕ(x) =
Z

Rn

Z

U
e2π i(y−x)·ξg(y, x, ξ)ϕ(y) dy dξ,

which becomes an operator of the same kindwhenwe change ξ into−ξ . Because
of the displayed formula for G trϕ(x), we are led to define

hG f, ϕi =
D
f,

Z

Rn

Z

U
e2π i(y−( · ))·ξg(y, · , ξ)ϕ(y) dy dξ

E

11The theory for the new operators is the “tidier and faster” approach to Euclidean pseudo-
differential operators that was mentioned just before the statement of Theorem 7.20.

12The use of the word “generalized” here is not standard terminology. It would be more standard
to use some distinctive notation for the class of operators of this kind, but we have introduced no
notation for it at all.
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for f ∈ E 0(U) and ϕ ∈ C∞
com(U). Then G f is in D 0(U). In the special case that

g is independent of its second variable, the above formula for hG f, ϕi reduces to
the formula for hG f, ϕi in Section VII.6 as a consequence of Theorem 5.20 and
an interchange of limits.13
If the amplitude of G is in S−∞

1,0,0(U ×U), then the generalized pseudodiffer-
ential operator G carries E 0(U) into C∞(U), and it is consequently said to be a
smoothing operator.
Following the pattern of the development in Section VII.6, we define a linear

functional G on C∞
com(U ×U) by the formula

hG, wi =
Z

Rn

h Z

U×U
e2π i(x−y)·ξg(x, y, ξ)w(x, y) dx dy

i
dξ.

ThenG is continuous andhence is amember ofD 0(U×U). The formal expression

G(x, y) =
Z

Rn
e2π i(x−y)·ξg(x, y, ξ) dξ

is called the distribution kernel of G; again it is not to be regarded as a function
but as an expression that defines a distribution.
With the insertion of the word “generalized” in front of “pseudodifferential

operator,” Theorem 7.19 remains true word for word; the distribution kernel is a
smooth function off the diagonal in U ×U , and the operator is pseudolocal.
We extend the definition of properly supported from pseudodifferential op-

erators to the generalized operators. Examining the extended definition along
with the formula for the distribution kernel, we see thatG is properly supported if
and only if G tr is properly supported. The main theorem concerning generalized
pseudodifferential operators is as follows.

Theorem 8.17. ForU open in Rn , let G be the generalized pseudodifferential
operator corresponding to an amplitude g(x, y, ξ) in Sm1,0,0(U ×U), and suppose
that G is properly supported. Then

(a) G is the pseudodifferential operator with symbol

g(x, ξ) = e−2π i x ·ξG(e2π i( · )·ξ ) in Sm1,0(U),

(b) the symbol g(x, ξ) has asymptotic series

g(x, ξ) ∼
X

α

(2π i)−|α|

α!
Dα

ξ D
α
y g(x, y, ξ)

Ø
Ø
y=x .

13This discussion therefore completes the justification of the definition of hG f, ϕi in Section
VII.6.
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In (a) of Theorem 8.17, the fact that G is properly supported implies that G
extends to be defined on C∞(U), and e2π i( · )·ξ is a member of this space. The
operator eG with symbol g(x, ξ) as in (a) is given by

eGϕ(x) =
R

Rn e2π i x ·ξg(x, ξ)bϕ(ξ) dξ =
R

Rn G(e2π i( · )·ξ )bϕ(ξ) dξ,

and the assertion in (a) is that this equals Gϕ(x). Consequently the assertion
is that if G is applied to the formula ϕ(x) =

R
Rn e2π i x ·ξbϕ(ξ) dξ , then G may

be moved under the integral sign. This interchange of limits is almost handled
pointwise for each x by Problem 5 in Chapter V, but we cannot take the compact
metric space K in that problem to be all of Rn . Instead, we take K to be a large
ball in Rn , apply the result of Problem 5, and do a passage to the limit.
The proof of (b) is long but reuses some of the omitted proof of Theorem

7.20. In the course of the argument, one obtains as a byproduct a conclusion that
does not make use of the hypothesis “properly supported.” Theorem 8.18 may
be regarded as an extension of Theorem 7.22a to the present setting.

Theorem 8.18. ForU open in Rn , let G be the generalized pseudodifferential
operator corresponding to an amplitude in Sm1,0,0(U × U). Then there exist a
pseudodifferential operatorG1 with symbol in Sm1,0(U) and a generalized pseudo-
differential operatorG2 corresponding to an amplitude in S−∞

1,0,0(U×U) such that
G = G1 + G2.

In any event, Theorem 8.17 is the heart of the theory of generalized pseu-
dodifferential operators in Euclidean space, and most other results are derived
from it. It is immediate from Theorem 8.17 that if G is a properly supported
pseudodifferential operator as in Chapter VII with symbol g(x, ξ) in Sm1,0(U),
then so is G tr, and furthermore the symbol gtr(x, ξ) has asymptotic series

gtr(x, ξ) ∼
X

α

(2π i)−|α|

α!
Dα

ξ D
α
x g(x,−ξ).

In the treatment of composition, the result is unchanged from Theorem 7.22b,
but the use of amplitudes greatly simplifies the proof. In fact, let G and H be
two properly supported pseudodifferential operators with respective symbols g
and h, and let htr be the symbol of H tr. Since H = (H tr)tr, we have

Hϕ(x) =
R

Rn

R
U e

2π i(x−y)·ξhtr(y,−ξ)ϕ(y) dy dξ for ϕ ∈ C∞
com(U).

Using Fourier inversion, we recognize this formula as saying that dHϕ(ξ) =R
U e

−2π iy·ξhtr(y,−ξ)ϕ(y) dy. Substituting √ = Hϕ in the formula G√(x) =R
Rn e2π i x ·ξg(x, ξ)b√(ξ) dξ therefore gives

GHϕ(x) =
R

Rn

R
U e

2π i(x−y)·ξg(x, ξ)htr(y,−ξ)ϕ(y) dy dξ.
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We conclude that GH is the generalized pseudodifferential operator with ampli-
tude g(x, ξ)htr(y,−ξ). Applying Theorem 8.17b and sorting out the asymptotic
series that the theorem gives, we obtain a quick proof of Theorem 7.22b.

We turn to the effect of diffeomorphisms on Euclidean pseudodifferential op-
erators. Let8 : U → U # be a diffeomorphism between open subsets of Rn , and
suppose that a generalized pseudodifferential operator G : C∞

com(U) → C∞(U)
is given by

Gϕ(x) =
R

Rn

R
U e

2π i(x−y)·ξg(x, y, ξ)ϕ(y) dy dξ

for ϕ inC∞
com(U). We defineG# to be the operator carryingC∞

com(U #) toC∞(U #)
and given by

G#√ = (G(√ ◦ 8)) ◦ 8−1 for √ ∈ C∞
com(U #).

Our objectives are to see that G# is a generalized pseudodifferential operator, to
obtain a formula for an amplitude of it, and to examine the effect on symbols.
Let us put x# = 8(x) and y# = 8(y). Put 81 = 8−1. Direct use of the

change-of-variables formula for multiple integrals gives

G#√(x#) = G(√ ◦ 8)(x) =
R

Rn

R
U e

2π i(x−y)·ξg(x, y, ξ)√(8(y)) dy dξ

=
R

Rn

R
U #e2π i(81(x#)−81(y#))·ξg(81(x#),81(y#),ξ)√(y#)| det((81)

0(y#))| dy#dξ.

The hard part in showing that the expression on the right side is a generalized
pseudodifferential operator is to handle the exponential factor. The starting point
is the formula

81(x#) − 81(y#) =
R 1
0 (81)

0(t x# + (1− t)y#)(x# − y#) dt,

which is valid if the line segment from x# to y# lies inU # and which follows from
the directional derivative formula and the Fundamental Theorem of Calculus.
From that, one derives the following lemma.

Lemma 8.19. About each point X = (p#, q#) ofU #×U #, there exist an open
neighborhood NX and a smooth function JX : NX → GL(n, F) such that

81(x#) − 81(y#) = JX (x#, y#)(x# − y#)

for every (x#, y#) in NX .
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The lemma allows us to write e2π i(81(x#)−81(y#))·ξ = e2π i(x#−y#)·JX (x#,y#)tr(ξ) for
(x#, y#) in NX . Thus locally we can convert the integrand for G#√(x#) into the
integrand of a generalized pseudodifferential operator. It is just a question of
fitting the pieces together. Using an exhausting sequence for U # and a smooth
partition of unity,14 one can find a sequence of points Xj and smooth functions
hj with values in [0, 1] such that hj has compact support in NXj , such that each
point ofU #×U # has a neighborhood in which only finitely many hj are nonzero,
and such that

P
j h j is identically 1. Let Jj be the function JXj of the lemma.

Sorting out the details leads to the following result.

Theorem 8.20. If 8 : U → U # is a diffeomorphism between open sets in
Rn , if G : C∞

com(U) → C∞(U) is the generalized pseudodifferential operator
with amplitude g(x, y, ξ) in Sm1,0,0(U × U), and if G# is defined by G#√ =
(G(√ ◦ 8)) ◦ 8−1, then G# is the generalized pseudodifferential operator onU #

with amplitude

g#(x#, y#, η) = | det(8−1)0(x#)|
×

°P

j
h j (x#, y#)| det Jj (x#, y#)|−1g(x, y, (Jj (x#, y#)−1)tr(η))

¢

in Sm1,0,0(U # × U #), where x = 8−1(x#) and y = 8−1(y#). If G is properly
supported, then so is G#.

Under the assumption thatG andG# are properly supported andG has symbol
g(x, ξ), let us use Theorem 8.17 to compute the symbol of G#, starting from the
formula in Theorem 8.20. For that computation all that is needed is the values
of g#(x#, y#, η) for (x#, y#) in any single neighborhood of the diagonal, however
small the neighborhood.
In Lemma 8.19, one can arrange for a single NX , say the one for X = X1, to

contain the entire diagonal of U # × U #. The point X1 can be one of the points
used in forming the partition of unity, and the corresponding function h1 can be
arranged to be identically 1 in a neighborhood of the diagonal. Thus for purposes
of computing the symbol, we may drop all the terms for j 6= 1 and write the
formula of Theorem 8.20 as

g#(x#, y#, η) ≈ | det(8−1)0(x#)|| det J1(x#, y#)|−1g(x, (J1(x#, y#)−1)tr(η)).

Theorem 8.17b says that g#(x, η) ∼
P

α
(2π i)−|α|

α! Dα
η Dα

y#g
#(x#, y#, η)

Ø
Ø
y#=x# . The

term for α = 0 in Theorem 8.17 comes from taking y# = x# in g#(x#, y#, η).
The function J1 simplifies for this calculation and gives J1(x#, x#) = (8−1)0(x#).
Let us summarize.

14Smooth partitions of unity are discussed in Problem 5 at the end of the chapter.
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Corollary 8.21. If8 : U → U # is a diffeomorphism between open sets inRn ,
if G : C∞

com(U) → C∞(U) is a properly supported pseudodifferential operator
with symbol g(x, ξ) in Sm1,0(U), and ifG# is defined byG#√ = (G(√◦8))◦8−1,
thenG# is a properly supported pseudodifferential operator onU #, and its symbol
g#(x#, η) has the property that

g#(x#, η) − g
°
8−1(x#), (((8−1)0(x#))−1)tr(η)

¢

is in Sm−1
1,0 (U #).

7. Pseudodifferential Operators on Manifolds

With the Euclidean theory and the necessary tools of manifold theory in place,
we can now introduce pseudodifferential operators on manifolds. Let M be an
n-dimensional separable smooth manifold. A typical compatible chart will be
denoted by ∑ : M∑ → eM∑ , where M∑ is open in M and eM∑ is open in Rn . Fix
a smooth measure µg on M as in Section 5, and let hϕ1, ϕ2i =

R
M ϕ1ϕ2 dµg

whenever ϕ1 and ϕ2 are in C∞(M) and at least one of them has compact support.
A pseudodifferential operator on M is going to be a certain kind of continuous

linear operator G from C∞
com(M) into C∞(M). The operator G tr : C∞

com(M) →
C∞(M) such that hGϕ1, ϕ2i = hϕ1,G trϕ2i for ϕ1 and ϕ2 in C∞

com(M) will be
another continuous linear operator of the same kind, and therefore the definition

hG(T ), ϕi = hT,G tr(ϕ)i for ϕ ∈ C∞
com(M) and T ∈ E 0(M)

extends our G to a linear function G : E 0(M) → D 0(M) in a natural way.
For any continuous linear operator G : C∞

com(M) → C∞(M), the scalar-
valued function hGϕ1, ϕ2i on C∞

com(M) × C∞
com(M) is continuous and linear in

each variable when the other variable is held fixed, and it follows from a result
known as the Schwartz Kernel Theorem15 that there exists a unique distribution
G in D 0(M × M) such that

hGϕ1, ϕ2i = hG, ϕ1 ⊗ ϕ2i for ϕ1 ∈ C∞
com(M) and ϕ2 ∈ C∞

com(M),

where ϕ1⊗ϕ2 is the function on M×M with (ϕ1⊗ϕ2)(x, y) = ϕ1(x)ϕ2(y). We
call G the distribution kernel of G. The distribution kernel Gtr of G tr is obtained
from the distribution kernel G by interchanging x and y.
In analogy with the Euclidean situation, we say that G is properly supported

if the subset support(G) of M×M has compact intersectionwith K ×M and with

15A special case of the Schwartz Kernel Theorem is proved in Problems 14–19 at the end of
Chapter V. This special case is at the heart of the matter in the general case.
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M×K for every compact subset K of M . In this case it follows for each compact
subset K ofM that there exists a compact subset L ofM such thatG(C∞

K ) ⊆ C∞
L .

Concretely the set L is p1
°
(M × K ) ∩ support(G)

¢
, where p1(x, y) = x . Then

it is immediate that G carries C∞
com(M) into C∞

com(M) and is continuous as such
a map. The same thing is true of G tr since the definition of proper support is
symmetric in x and y, and therefore the definition

hG(T ), ϕi = hT,G tr(ϕ)i for ϕ ∈ C∞
com(M) and T ∈ D 0(M)

extends the properly supported G to a linear function G : D 0(M) → D 0(M) in
a natural way.
A pseudodifferential operator of order ≤ m on M is a continuous linear

operator G : C∞
com(M) → C∞(M) with the property, for every compatible chart

∑ , that the operator G∑ : C∞
com( eM∑) → C∞( eM∑) given by

G∑(√) = G(√ ◦ ∑)
Ø
Ø
M∑

◦ ∑−1 for √ ∈ C∞
com( eM∑)

is a generalized pseudodifferential operator on eM∑ defined by an amplitude in
Sm1,0,0( eM∑ × eM∑). Theorem 8.20 shows that this condition about all compatible
charts is satisfied if it holds for all charts in an atlas.
For such an operator the distribution kernel is automatically a smooth function

away from the diagonal of M × M , as a consequence of the same fact about
Euclidean pseudodifferential operators. One has only to realize that if two distinct
points of M are given, then one can find compatible charts about the points whose
domains are disjoint and whose images are disjoint; then the union of the charts
is a compatible chart, and the fact about Euclidean operators can be applied.
For a distribution on a smoothmanifold, it makes sense to speak of the singular

supportas theunionof all open sets onwhich thedistribution is a smooth function,
and the above fact about the distribution kernel implies that any pseudodifferential
operator G on M is pseudolocal in the sense that the singular support of G(T )
is contained in the singular support of T for every T in E 0(M).
The composition of two properly supported pseudodifferential operators on

M is certainly defined as a continuous linear operator from C∞
com(M) into itself,

but a little care is needed in checking that the composition, when referred to
a compatible chart ∑ , is a generalized pseudodifferential operator on eM∑ . The
reason is that when G is properly supported on M , it does not follow that the
restriction of G to M∑ , i.e., to C∞

com(M∑), is properly supported, not even if M is
an open subset of Rn . To handle this problem, we start from this observation: if
G is any pseudodifferential operator onM , if V is open inM , and if√1 and√2 are
in C∞

com(V ), then the operator defined for ϕ in C∞
com(V ) by ϕ 7→ √1G(√2ϕ) is a

properly supported pseudodifferential operator on V ; in fact, the distribution ker-
nel of this operator is supported in the compact subset support(√2)×support(√1)
of V × V .
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This observation, the device used above for showing that distribution kernels
are smooth off the diagonal, and an argument with a partition of unity yield a
proof of the following lemma.

Lemma 8.22. If L is a properly supported pseudodifferential operator on M
of order ≤ m and K is a compact subset of M∑ for some compatible chart ∑ of
M , then there exist compatible charts ∑0, ∑1, . . . , ∑r with ∑0 = ∑ , with each M∑i

containing K and, for each i ∏ 0, with a properly supported pseudodifferential
operator Li on M∑i such that L(ϕ) =

Pr
i=0 Li (ϕ) for every ϕ in C∞

K .

PROOF. Choose K 0 compact such that ϕ ∈ C∞
K implies L(ϕ) ∈ C∞

K 0 , and let
√ ∏ 0 be a member of C∞

com(M) that is 1 in a neighborhood of K 0. Next choose
open neighborhoods N , N 0, N 00 of K such that N 00 ⊆ N 00cl ⊆ N 0 ⊆ N 0cl ⊆ N ⊆
N cl ⊆ M∑ with N cl compact. Finally choose√1 ∈ C∞

com(M)with values in [0, 1]
that is 1 on N 0 and is 0 on Nc. Then 1 − √1 is 0 on N 0 and hence has support
disjoint from K . Define √2 = (1− √1)√ .
For each x in the compact support of √2, find a compatible chart containing

x with domain Vx contained in N 00c. The sets Vx cover support(√2), and there
is a finite subcover V1, . . . , Vr . Since each Vi with i ∏ 1 is the domain of a
compatible chart and since Vi ∩ N 00 = ∅, there exists a compatible chart ∑i
with domain Vi ∪ N 00. Within the sets Vi , we can find open subsets Wi with W cl

i
compact in Vi such that theWi cover support(√2). Repeating this process, we can
find open subsets Xi with X cli compact inWi such that the Xi cover support(√2).
By choosing, for each i , a smooth function on∪Vi with values in [0, 1] that is 1 on
Xi and is 0 offW cl

i and by then dividing by the sum of these and a smooth function
that is positive on ∪Vi − ∪Wi and is 0 in a neighborhood of support(√2), we can
produce smooth functions η1, . . . , ηr on ∪Vi , all ∏ 0, with sum identically 1 in
a neighborhood of support(√2) such that ηi has compact support in Vi . Then the
operators L0(ϕ) = √1L(√1ϕ) and, for i ∏ 1, Li (ϕ) = ηi√2L(√1ϕ) have the
required properties. §

If we have a composition J = GH of properly supported pseudodifferential
operators, we apply the lemma to H to write GH(ϕ) =

P
i G(Hi (ϕ)). For

each i , all members of Hi (C∞
K ) have support in some compact subset Li of

M∑i . Thus we can apply the lemma again to G and the set Li to write G as a
certain sum in a fashion depending on i . The result is that GH is exhibited on
C∞
K as a sum of terms, each of which is the composition of properly supported

operators within a compatible chart. Since compositions of properly supported
generalized pseudodifferential operators in Euclidean space are again properly
supported generalized pseudodifferential operators, each term of the sum is a
pseudodifferential operator onM . Thus J = GH is a pseudodifferential operator
on M .
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We turn to the question of symbols. Aswith linear differential operators, which
were discussed in Section 5, we cannot expect a coordinate-free meaning for the
symbol of a pseudodifferential operator on the smooth manifold M , even if the
operator is properly supported. But we can associate a “principal symbol” to
such an operator in many cases, generalizing the result for differential operators
in Section 5. For a linear differential operator of order m, we saw that the
principal symbol is a smooth function on the cotangent bundle T ∗(M, R) that is
homogeneous of degreem in each fiber. For a pseudodifferential operator whose
order is not a nonnegative integer, the homogeneitymay disrupt the smoothness at
the origin of each fiber, and we thus have to allow for a singularity. Accordingly,
let T ∗(M, R)× denote the cotangent bundle with the zero section removed, i.e.,
the closed subset consisting of the 0 element of each fiber is to be removed. The
principal symbol of orderm for a properly supported pseudodifferential operator
G of order ≤ m on M will turn out to be, in cases where it is defined, a smooth
function on T ∗(M, R)× that is homogeneous of degree m in each fiber.
Let G be a pseudodifferential operator of order ≤ m on M , and let ∑ be

a compatible chart. Let G∑(√) = G(√ ◦ ∑)
Ø
Ø
M∑

◦ ∑−1 be the corresponding
generalizedpseudodifferential operator on eM∑ , and let g∑(x, y, ξ)be an amplitude
for it, so that g∑(x, y, ξ) is in Sm1,0,0( eM∑ × eM∑). Suppose that σ∑(x, ξ) is a smooth
function on eM∑ ×(Rn−{0}) that is homogeneous of degreem in the ξ variable for
eachfixed x in eM∑ . The functionσ∑(x, ξ) is not necessarily in Sm1,0( eM∑)becauseof
the potential singularity at ξ = 0, but the function τ(`x(ξ))σ∑(x, ξ) is in Sm1,0( eM∑)
if τ is a smooth scalar-valued function on Rn that is 0 in a neighborhood of 0 and
is 1 for |ξ | sufficiently large and if x 7→ `x is a smooth function from eM∑ into
GL(n, F). Moreover, for any two choices of τ and `x of this kind, the difference
of the two symbols τ(`x(ξ))σ∑(x, ξ) is the symbol of a smoothing operator. Fix
such a τ and `x . We say that G∑ has principal symbol σ∑(x, ξ) if there is some
ε > 0 such that g∑(x, y, ξ) − τ(`x(ξ))σ∑(x, ξ) is in Sm−ε

1,0,0(
eM∑ × eM∑). This

condition is independent of τ and `x . We say that the given pseudodifferential
operator G of order ≤ m has a principal symbol, namely the family {σ∑(x, ξ)}
as ∑ varies, if this condition is satisfied for every ∑ and if ε can be taken to be
independent of ∑ .
In this case we shall show that {σ∑(x, ξ)} is the system of local expressions for

a scalar-valued function on the part of the cotangent bundle of M where ξ 6= 0,
the dependence in the cotangent space being homogeneous of degree m at each
point of M; consequently one refers also to this function on T ∗(M, R)× as the
principal symbol. There is no assertion that a principal symbol exists, but it will
be unique when it exists.16 Moreover, this definition agrees with the definition

16Some authors define the principal symbol more broadly—the local expression being the coset
of amplitudes for G modulo amplitudes in Sm−ε

1,0,0(
eM∑ × eM∑ ). This alternative definition, however,
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in Section 5 in the case of a linear differential operator on M . To see that the
functions σ∑(x, ξ) correspond to a single function on T ∗(M, R)×, suppose that ∑
and ∑ 0 are compatible charts whose domains overlap. Let ∑ = (x1, . . . , xn) and
∑ 0 = (y1, . . . , yn). We write y = y(x) for the function ∑ 0 ◦ ∑−1 and x = x(y)
for the inverse function ∑ ◦ ∑ 0−1. Theorem 8.18 shows that there is no loss of
generality in assuming that the local expressions for G in the charts ∑ and ∑ 0

have symbols in Sm1,0( eM∑) and Sm1,0( eM∑ 0). Let these be g∑(x, ξ) and g∑ 0(y, η).
Corollary 8.21 shows that

g∑ 0(y, η) − g∑

°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢

is in Sm−1
1,0 (∑ 0(M∑ ∩ M∑ 0)). Our construction shows that

g∑ 0(y, η) − τ1(η)σ∑ 0(y, η)

g∑

°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
− τ2

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
σ∑

°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
and

are in Sm−ε
1,0 (∑ 0(M∑ ∩ M∑ 0)). Therefore

τ2
°£ @xi (y)

@yj

§−1¢tr
(η)

¢
σ∑

°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
− τ1(η)σ∑ 0(y, η)

is in Sm−ε0

1,0 (∑ 0(M∑ ∩ M∑ 0)) for ε0 = min(1, ε). For y fixed and |η| sufficiently
large, each term in this expression has the property that its value at rη is rm times
its value at η if r ∏ 1. Then the same thing is true of the difference. Since the
condition of being in Sm−ε0

1,0 (∑ 0(M∑ ∩ M∑ 0)) says that the absolute value of the
difference at rη has to be ≤ rm−ε0 times the absolute value of the difference at η,
the difference has to be 0 for η sufficiently large. Therefore

σ∑

°
x(y),

°£ @xi (y)
@yj

§−1¢tr
(η)

¢
= σ∑ 0(y, η)

for y in ∑ 0(M∑ ∩M∑ 0). According to a computation with T ∗(M) in Section 4, the
family {σ∑(x, ξ)} satisfies the correct compatibility condition to be regarded as a
scalar-valued function on T ∗(M, R)×. In short, we can treat the principal symbol
as a scalar-valued function on the cotangent bundle minus the zero section.

does not reduce to the definition made in Section 5 for linear differential operators, and it seems
wise in the present circumstances to avoid it.
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The pseudodifferential operator G on M is said to be elliptic of order m if its
principal symbol is nowhere 0 on T ∗(M, R)×. It is a simple matter to check that
ellipticity in this sense is equivalent to the condition that all the local expressions
for the operator differ by smoothing operators17 from operators that are elliptic
of order m in the sense of Chapter VII.
Theorem 7.24 extends from Euclidean space to separable smooth manifolds:

any properly supported elliptic operator G has a two-sided parametrix, i.e., a
properly supported pseudodifferential operator H having GH = 1+ smoothing
and HG = 1 + smoothing. The proof consists of using Theorem 7.24 for each
member of an atlas and patching the results together by a smooth partition of
unity. A certain amount of work is necessary to arrange that the local operators
are properly supported. We omit the details.
As usual, the existence of the left parametrix implies a regularity result—that

the singular support of G f equals the singular support of f if f is in E 0(M).

8. Further Developments

Having arrived at a point in studying pseudodifferential operators on manifolds
comparable with where the discussion stopped for the Euclidean case, let us
briefly mention some further aspects of the theory that have a bearing on parts of
mathematics outside real analysis.

1. Quantitative estimates. Much of the discussion thus far has concerned the
effect of pseudodifferential operators on spaces of smooth functions of compact
support, and rather little has concerned distributions. Useful investigations of
what happens to distributions under such operators require further tools that
distinguish some distributions from others. A fundamental such tool is the
continuous family of Sobolev spaces denoted by Hs , or more specifically by
Hs
com(M) or Hs

loc(M), with s being an arbitrary real number.
The starting point is the family of Hilbert spaces Hs(Rn) that were introduced

in Problems 8–12 at the end of Chapter III. The space Hs(Rn) consists of all
tempered distributions T ∈ S(Rn) whose Fourier transforms F(T ) are locally
square integrable functions such that

R
Rn |F(T )|2(1+|ξ |2)s dξ is finite, the norm

kTkHs being the square root of this expression. These spaces get larger as s
decreases. For K compact in Rn , let Hs

K be the vector subspace of all members
of Hs(Rn)with support in K ; this subspace is closed and hence is complete. IfU
is open in Rn , the space Hs

com(U) is the union of all spaces Hs
K with K compact

17This condition takes into account Theorem 8.18, which says that the given operator differs by a
smoothing operator from an operator with a symbol. If the local operator is defined by an amplitude
and not a symbol, then ellipticity has not yet been defined for it.
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inU , and it is given the inductive limit topology from the closed vector subspaces
Hs
K . The space H

s
loc(U) is the space of all distributions T on U such that ϕT

is in Hs
com(U) for all ϕ in C∞

com(U); this space is topologized by the separating
family of seminorms T 7→ kϕTkHs , and a suitable countable subfamily of these
seminorms suffices.
For U open in Rn , it is a consequence of Theorem 5.20 that each member of

E 0(U) lies in Hs
com(U) for some s. There is no difficulty in defining Hs

com(M)
and Hs

loc(M) for a separable smooth manifold M in a coordinate-free way, and
the result persists that E 0(M) is the union of all the spaces Hs

com(M) for s real.
We have seen that any generalized pseudodifferential operator on M carries

E 0(M) into D 0(M). The basic quantitative refinement of this result is that any
generalized pseudodifferential operator of order ≤ m carries Hs

com(M) continu-
ously into Hs−m

loc (M).

2. Local existence for elliptic operators. We have seen that a properly
supported elliptic pseudodifferential operator on a manifold has a two-sided
parametrix. The existence of the left parametrix implies the regularity result
that the elliptic operator maintains singular support. With the aid of the Sobolev
spaces in subsection (1), one can prove that the existence of a right parametrix
for an elliptic differential operator L with smooth coefficients implies a local
existence theorem for the equation L(u) = f .

3. Pseudodifferential operators on sections of vector bundles. The the-
ory presented above concerned pseudodifferential operators that mapped scalar-
valued functions on a manifold into scalar-valued functions on the manifold.
The first step of useful generalization is to pseudodifferential operators carrying
vector-valued functions to vector-valued functions; these provide a natural setting
for considering systems of differential equations. The next step of useful general-
ization is to pseudodifferential operators carrying sections of one vector bundle to
sections of another vector bundle. The prototype is the differential operator d on
a manifold, which carries smooth scalar-valued functions to smooth differential
1-forms. The latter, aswe know fromSection 4, are not to be considered as vector-
valued functions on the manifold but as sections of the cotangent bundle. The
ease of adapting our known techniques to handling the operator d in this setting
illustrates the ease of handling the overall generalization of pseudodifferential
operators to sections. In considering the equation d f = 0, for example, we can
use local coordinates and write d f (p) =

P
i

@ f
@xi (p) dxi (p), regarding

@ f
@xi as a

coefficient function for a basis vector. If d f = 0, then each coefficient must
be 0. So the partial derivatives of f in local coordinates must vanish, and f
must be constant in local coordinates. Thus we have solved the equation in local
coordinates. Whenwe pass from one local coordinate system to another, aligning
the basis vectors dxi requires taking the bundle structure into account, but that is a
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separate problem from understanding d locally. For a pseudodifferential operator
carrying sections of one vector bundle to sections of another, the formalism
is completely analogous. Locally we can regard the operator as a matrix of
generalized pseudodifferential operators of the kind considered earlier in this
section. One can introduce appropriate generalizations of the various notions
considered in this section and work with them without difficulty. In particular,
one can define principal symbol and ellipticity and can follow through the usual
kind of theory of parametrices for elliptic operators, obtaining the usual kind of
regularity result. In place of Hs

com(M) and Hs
loc(M), one works with spaces of

sections Hs
com(M, E) and Hs

loc(M, E), E being a vector bundle.

4. Pseudodifferential operators on sections when themanifold is compact.
Of exceptional interest for applications is the situation in subsection (3) above
when the underlying smooth manifold is compact. Here every pseudodiffer-
ential operator is of course properly supported, and the subscripts “com” and
“loc” for Sobolev spaces mean the same thing. Three fundamental tools in
this situation are the theory of “Fredholm operators,” a version of Sobolev’s
Theorem, saying that the members of Hs(M, E) have k continuous derivatives
if s > [ 12 dimM] + k + 1, and Rellich’s Lemma, saying that the inclusion of
Hs(M, E) into Ht(M, E) if t < s carries bounded sets into sets with compact
closure. An important consequence is that the kernel of an elliptic operator of
orderm carrying Hs(M, E) to Hs−m(M, F) is finite dimensional, the dimension
being independent of s; moreover, the image of Hs(M, E) in Hs−m(M, F) has
finite codimension independent of s. The difference of the dimensionof the kernel
and the codimension of the image is called the index of the elliptic operator and
plays a role in subsection (5) below.

5. Applications of the theory with sections over a compact manifold M .
In this discussion we shall freely use some terms that have not been defined in the
text, puttingmany of them in quotationmarks or boldface at their first occurrence.
5a. A prototype of the theory of subsection (4) is Hodge theory, which

involves “higher-degree differential forms.” The operator d carries smooth forms
of degree k to smooth forms of degree k + 1, hence is an operator from sections
of one vector bundle to sections of another. If M is Riemannian, then the space
of differential forms of each degree acquires an inner product, and there is a
well-defined Laplacian dd∗ + d∗d carrying the space of forms of each degree
into itself. Forms annihilated by this Laplacian are called harmonic. Roughly
speaking, the theory shows that the kernel of d on the space of forms of degree
k is the direct sum of the harmonic forms of degree k and the image under d of
the space of forms of degree k − 1. Consequently “de Rham’s Theorem” allows
one to identify the space of harmonic forms with the cohomology of M with
coefficients in the field of scalars F.
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5b. For any complex manifoldM , there is an operator @̄ on smooth differential
forms that plays the same role for the partial derivative operators @

@ z̄ j that d plays
for the operators @

@xj . The same kind of analysis as in subsection (5a), when done
for a compact complex manifold with a Hermitian metric and a Laplacian of the
form @̄ @̄∗ + @̄∗@̄ , identifies, roughly speaking, a suitable space of harmonic forms
as a vector-space complement to the image of @̄ in a kernel for @̄ .
5c. For aRiemann surfaceM , a holomorphic-line-bundle versionof subsection

(5b) leads to a proof18 of the Riemann–Roch Theorem, a result allowing one
to compute the dimensions of various spaces of meromorphic sections on the
Riemann surface. For a compact complexmanifold a holomorphic-vector-bundle
version of subsection (5b) leads to Hirzebruch’s generalization of the Riemann–
Roch Theorem.
5d. In place of d or @̄ , one may use a version of a “Dirac operator” in the above

kind of analysis. The result is one path that leads to the Atiyah–Singer Index
Theorem, which relates a topological formula and an analytic formula for the
index of an elliptic operator from sections of one vector bundle over the compact
manifold to sections of another such bundle. This theorem has a number of
applications relating topology and analysis, and the Hirzebruch–Riemann–Roch
Theorem may be regarded as a special case.

BIBLIOGRAPHICAL REMARKS. There are several books on pseudodifferential
operators, and the treatment here in Chapters VII and VIII has been influenced
heavily by three of them: Hörmander’s Volume III of The Analysis of Linear Par-
tial Differential Equations, Taylor’s Pseudodifferential Operators, and Treves’s
Volume 1 of Introduction to Pseudodifferential and Fourier Integral Operators.19
All three books use the definition bf (ξ) = c

R
Rn f (x)e−i x ·ξ dx for the Fourier

transform, where c = 1 for Hörmander and Treves and c = (2π)−n/2 for Taylor.
The definition here is bf (ξ) =

R
Rn f (x)e−2π i x ·ξ dx ; this change forces small dif-

ferences in the constants involved in the definition of pseudodifferential operators
and results like Theorems 7.22 and 8.17. Another difference in notation is that
these books include a power of i =

p
−1 in the definition of Dα, and this text

does not; inclusion of the power of i follows a tradition dating back to the work
of Hermann Weyl and seems an unnecessary encumbrance at this level.
The books by Hörmander and Treves assume extensive knowledge of material

in separate books by the authors concerning distributions; Taylormakes extensive
use of distributions and includes a very brief summary of them inChapter I. Treves

18Not the standard proof.
19Full references for these books and other sources may be found in the section References at

the end of the book.
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uses a smooth measure on a manifold in order to identify smooth functions with
distributions,20 but Hörmander does not.
The relevant sections of those books for the material in Sections VII.6, VIII.6,

and VIII.7 are as follows: Section 18.1 of Hörmander’s book, Sections II.1–II.5
and III.1 of Taylor’s book, and Sections I.1–I.5 of the Treves book.
The relevant portions of the three books for the mathematics in Section VIII.8

include the following: (1) Hörmander, pp. 90–91, Taylor, Section II.6; Treves,
pp. 16–18 and 47. (2) Taylor, Section VI.3; Treves, pp. 92–93. (3) Hörmander,
pp. 91–92; Treves, Section I.7. (4) Hörmander, Chapter XIX; Treves, Section
II.2.
A larger number of books use pseudodifferential operators for some particular

kind of application, sometimes developing a certain amount of the abstract theory
of pseudodifferential operators. Among these are Wells, Differential Analysis on
Complex Manifolds, which addresses applications (5a), (5b), and (5c) above;
Lawson–Michelsohn, Spin Geometry, which addresses application (5d) above;
and Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Os-
cillatory Integrals, which uses pseudodifferential operators to study the behavior
of holomorphic functions on the boundaries of domains in Cn , as well as related
topics. Hörmander’s book is another one that addresses application (5d), but it
does so less completely than Lawson–Michelsohn.
For a brief history of pseudodifferential operators and the relationship of

the theory to results like the Calderón–Zygmund Theorem, see Hörmander,
pp. 178–179. For more detail about how pseudodifferential operators capture
the idea of a freezing principle, see Stein, pp. 230–231.

9. Problems

1. Verify that the unit sphere M = Sn in Rn+1, the set of vectors of norm 1, can
be made into a smooth manifold of dimension n by using two charts defined as
follows. One of these charts is

∑1(x1, . . . , xn+1) =
° x1
1−xn+1 , . . . ,

xn
1−xn+1

¢

with domain M∑1 = Sn − {(0, . . . , 0, 1)}, and the other is

∑2(x1, . . . , xn+1) =
° x1
1+xn+1 , . . . ,

xn
1+xn+1

¢

with domain M∑2 = Sn − {(0, . . . , 0,−1)}.

20For a while, anyway.
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2. Set-theoretically, the real n-dimensional projective space M = RPn can be
defined as the result of identifying each member x of Sn in the previous problem
with its antipodal point −x . Let [x] ∈ RPn denote the class of x ∈ Sn .
(a) Show that d([x], [y]) = min{|x − y|, |x + y|} is well defined and makes

RPn into metric space such that the function x 7→ [x] is continuous and
carries open sets to open sets.

(b) For each j with 1 ≤ j ≤ n + 1, define

∑j [(x1, . . . , xn+1)] =
≥ x1
xj

, . . . ,
xj−1
xj

,
xj+1
xj

, . . . ,
xn+1
xj

¥

on the domain M∑j =
©
[(x1, . . . , xn+1)]

Ø
Ø xj 6= 0

™
. Show that the system©

∑j
Ø
Ø 1 ≤ j ≤ n+1

™
is an atlas forRPn and that the function x 7→ [x] from

Sn to RPn is smooth.
3. Let X be a smooth manifold.

(a) Prove that if X is Lindelöf, or is σ -compact, or has a countable dense set,
then X has an atlas with countably many charts.

(b) Prove that if X has an atlas with countably many charts, then X is separable.
4. The real general linear group G = GL(n, R) is the group of invertible n-by-n

matrices with entries in R, the group operation being matrix multiplication. The
space of all n-by-n real matrices A may be identified with Rn2 , and GL(n, R)

is then the open set where det A 6= 0. As an open subset of Rn2 , it is a smooth
manifold with an atlas consisting of one chart. The coordinate functions xi j (g)
yield the entries gi j of g.
(a) Prove that matrix multiplication, as a mapping of G×G into G, is a smooth

mapping. Prove that matrix inversion, as a mapping from G into G, is
smooth.

(b) If A is a matrix with entries Ai j , identify A as a member of Tg(G) by A ↔
P

i, j Ai j
£

@
@xi j

§
g . Let lg be the diffeomorphism of G given by lg(h) = gh.

Define a vector field eA by eAg f = (dlg)1(A)( f ) if f is defined near g. Prove
that eAg f =

P
i, j (gA)i j

@ f
@xi j (g).

(c) Prove that eA is smooth and is left invariant in the sense of being carried to
itself by all lg’s.

(d) Show that c(t) = g0 exp t A is the integral curve for eA such that c(0) = g0.
(e) Prove that if f is in C∞(G), then eA f (g) = d

dt f (g exp t X)
Ø
Ø
t=0.

5. This problem concerns the existence of smooth partitions of unity on a separable
smoothmanifoldM . Let {Kl}l∏1 be an exhausting sequence forM . For l = 0, put
L0 = K2 andU0 = Ko

3 . For l ∏ 1, put Ll = Ll+2 − Ko
l+1 andUl = Ko

l+3 − Kl .
Each point of M lies in some Ll and has a neighborhood lying in only finitely
many Ul ’s.
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(a) Using the exhausting sequence, find an atlas {∑α} of compatible charts such
that each point of M has a neighborhood lying in only finitely many M∑α ’s.

(b) By applying Proposition 8.2 within each member of a suitable atlas as in
(a), show that there exists ηα ∈ C∞

com(M∑α ) for each α with values in [0, 1]
such that

P
ηα is everywhere > 0. Normalizing, conclude that there exists

ϕα ∈ C∞
com(M∑α ) for each α with values in [0, 1] such that

P
ϕα is 1

identically on M .
(c) Prove that if K is compact in M and U is open with K ⊆ U , then there

exists ϕ in C∞
com(U) with values in [0, 1] such that ϕ is 1 everywhere on K .

(d) Prove that if K is compact in M and {U1, . . . ,Ur } is a finite open cover of
K , then there exist ϕj in C∞

com(Uj ) for 1 ≤ j ≤ r with values in [0, 1] such
that

Pr
j=1 ϕj is 1 on K .

Problems 6–7 concern local coordinate systems on smooth manifolds.
6. Let M and N be smooth manifolds of dimensions n and k, let p be in M ,

suppose that F : M → N is a smooth function such that dFp carries Tp(M)

onto TF(p)(N ), and suppose that ∏ is a compatible chart for N about F(p) such
that ∏ = (y1, . . . , yk). Prove that the functions y1 ◦ F, . . . , yk ◦ F can be taken
as the first k of n functions that generate a system of local coordinates near p in
the sense of Proposition 8.4.

7. Let M and N be smoothmanifolds of dimensions n and k, let p be in M , suppose
that F : M → N is a smooth function such that dFp is one-one, and suppose
that √ = (y1, . . . , yk) is a compatible chart for N about F(p).
(a) Prove that it is possible to select from the set of functions y1 ◦ F, . . . , yk ◦ F

a subset of n of them that generate a system of local coordinates near F(p)
in the sense of Proposition 8.4.

(b) Let ϕ = (x1, . . . , xn) be a compatible chart for M about p. Prove that
there exists a system of local coordinates (z1, . . . , zk) near F(p) such that
xj coincides in a neighborhood of p with zj ◦ F for 1 ≤ j ≤ n.

Problems 8–9 concern extending Sard’s Theorem (Theorem 6.35 of Basic) to sep-
arable smooth manifolds. Let M be an n-dimensional separable smooth manifold,
and let {∑α} be an atlas of charts. A subset S of M has measure 0 if ∑α(S ∩ Mα)

has n-dimensional Lebesgue measure 0 for all α. If F : M → N is a smooth map
between smooth n-dimensional manifoldsM and N , a critical point p of F is a point
where the differential (dF)p has rank < n. In this case, F(p) is called a critical
value.
8. Prove that if F : M → N is a smooth map between two smooth separable

n-dimensional manifolds M and N , then the set of critical values of F has
measure 0 in N .

9. Prove that if F : M → N is a smooth map between two separable smooth
manifolds and if dimM < dim N , then the image of F has measure 0 in N .
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Problems 10–13 introduce equivalence of vector bundles, which is the customary
notion of isomorphism for vector bundles with the same base space. Let π : B → M
and π 0 : B0 → M be two smooth coordinate vector bundles of the same rank n with
the same field of scalars and same base space M , but with distinct bundle spaces,
distinct projections, possibly distinct atlasesA = {∑j } andA0 = {∑ 0

k} for M , distinct
coordinate functions φj and φ0

k , and distinct transition functions gjk(x) and g
0
kl(x).

Let h : B → B0 be a fiber-preserving smooth map covering the identity map of M ,
i.e., a smooth map such that h(π−1(x)) = π 0−1(x) for all x in M . For each x in M ,
define hx to be the smooth map obtained by restriction hx = h

Ø
Ø
π−1(x); this carries

π−1(x) to π 0−1(x). Say that h exhibits π : B → M and π 0 : B0 → M as equivalent
coordinate vector bundles if the following two conditions are satisfied:

• whenever ∑j and ∑ 0
k are charts in A and A0 about a point x of M , then the map

ḡk j (x) = φ0
k,x

−1 ◦ hx ◦ φj,x

of Fn into itself coincides with the operation of a member of GL(n, F),
• the map ḡk j : M∑j ∩ M∑ 0

k
→ GL(n, F) is smooth.

The functions x 7→ ḡk j (x) will be called themapping functions of h.
10. Prove for coordinate vector bundles that “equivalent” is reflexive and transitive

and that strictly equivalent implies equivalent.
11. Prove that if h exhibits two coordinate vector bundles π : B → M and

π 0 : B0 → M as equivalent, then the mapping functions x 7→ ḡk j (x) of h
satisfy the conditions

ḡk j (x)gji (x) = ḡki (x) for x ∈ M∑i ∩ M∑j ∩ M∑ 0
k
,

g0
lk(x)ḡk j (x) = ḡl j (x) for x ∈ M∑j ∩ M∑ 0

k
∩ M∑ 0

l
.

12. Suppose that π : B → M and π 0 : B0 → M are two smooth coordinate vector
bundles of the same rank n with the same field of scalars relative to atlases
A = {∑j } and A0 = {∑ 0

k} of M .
(a) If smooth functions x 7→ ḡk j (x) of M∑j ∩ M∑ 0

k
into GL(n, F) are given that

satisfy the displayed conditions in Problem11, prove that there exists at most
one equivalence h : B → B0 of coordinate vector bundles having {ḡk j } as
mapping functions and that it is given by h(φj,x (y)) = φ0

k,x ḡk j (x)(y).
(b) Prove that “equivalent” for coordinate vector bundles is symmetric, and con-

clude that “equivalent” is an equivalence relation whose equivalence classes
are unions of equivalence classes under strict equivalence. (Educational
note: Therefore the notion of equivalent vector bundles is well defined.)

13. Suppose that π : B → M and π 0 : B0 → M are two smooth coordinate vector
bundles of the same rank n with the same field of scalars relative to atlases
A = {∑j } and A0 = {∑ 0

k} of M , and suppose that smooth functions x 7→ ḡk j (x)
of M∑j ∩ M∑ 0

k
into GL(n, F) are given that satisfy the displayed conditions in

Problem 11.
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(a) Define a smoothmapping hkj fromπ−1(M∑j ∩M∑ 0
k
) in B toπ 0−1(M∑j ∩M∑ 0

k
)

as follows: Ifb is in Bwith x = π(b) inM∑j ∩M∑ 0
k
, letπj (b) = φ−1

j,x (b) ∈ Fn ,
and set

hkj (b) = φ0
k,x ḡk j (x)(pj (b)).

Prove that {hkj } is consistently defined as one moves from chart to chart,
i.e., that if x lies also in M∑i ∩ M∑ 0

l
, then hkj (b) = hli (b), and conclude that

the functions hkj piece together as a single smooth function h : B → B0.
(b) Prove that the functions x 7→ ḡk j (x) coincide with the mapping functions

of h, and conclude that the existence of functions satisfying the displayed
conditions in Problem 11 is necessary and sufficient for equivalence.



CHAPTER IX

Foundations of Probability

Abstract. This chapter introduces probability theory as a system of models, based on measure
theory, of some real-world phenomena. The models are measure spaces of total measure 1 and
usually have certain distinguished measurable functions defined on them.
Section 1 begins by establishing the measure-theoretic framework and a short dictionary for

passing back and forth between terminology in measure theory and terminology in probability
theory. The latter terminology includes events, random variables, mean, probability distribution of a
random variable, and joint probability distribution of several random variables. An important feature
of probability is that it is possible to work with random variables without any explicit knowledge
of the underlying measure space, the joint probability distributions of random variables being the
objects of importance.
Section 2 introduces conditional probability and uses that to motivate themathematical definition

of independence of events. In turn, independence of events leads naturally to a definition of
independent random variables. Independent random variables are of great importance in the subject
and play a much larger role than their counterparts in abstract measure theory. Examples at the end
of the section indicate the extent to which functions of independent random variables can remain
independent. The techniques in the examples are of use in the subject of statistical inference, which
is introduced in Section 10.
Section 3 states and proves the Kolmogorov Extension Theorem, a foundational result allowing

one to create stochastic processes involving infinite sets of times out of data corresponding to finite
subsets of those times. A special case of the theorem provides the existence of infinite sets of
independent random variables with specified probability distributions.
Section 4 establishes the celebrated Strong Law of Large Numbers, which says that the Cesàro

sums of a sequence of identically distributed independent randomvariableswith finitemean converge
almost everywhere to a constant random variable, the constant being the mean. This is a theorem
that is vaguely known to the general public and is widely misunderstood. The proof is based on
Kolmogorov’s inequality.
Sections 5–8 provide background for the Central Limit Theorem, whose statement and proof

are in Section 9. Section 5 discusses three successively weaker kinds of convergence for random
variables—almost sure convergence, convergence in probability, and convergence in distribution.
Convergence in distribution will be the appropriate kind for the Central Limit Theorem. Section 6
contains the Portmanteau Lemma, which gives some equivalent formulations of convergence in
distribution, Section 7 introduces characteristic functions as Fourier transforms of probability dis-
tributions, and Section 8 proves the Lévy Continuity Theorem, which formulates convergence in
distribution in terms of characteristic functions.
Section 9 contains the statement and proof of the Central Limit Theorem, followed by some

simple examples. This theorem is the most celebrated result in probability theory and has many
applications in mathematics and other fields.
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Section 10 is a brief introduction to the subject of statistical inference, showing how the Central
Limit theorem plays a role in practice through the t test of W. S. Gosset.

1. Measure-Theoretic Foundations

Although notions of probability have been around for hundreds of years, it was
not until the twentieth century, with the introduction of Lebesgue integration, that
the foundations of probability theory could be established in any great generality.
The early work on foundations was done between 1929 and 1933 chiefly by A. N.
Kolmogorov and partly by M. Fréchet.
First of all, the idea is that probability theory consists of models for some

experiences in the real world. Second of all, these experiences are statistical in
nature, involving repetition. Thus one attaches probability 1/2 to the outcome
of “heads” for one flip of a standard coin based on what has been observed over
a period of time. One even goes so far as to attach probabilities to outcomes
that one can think of repeating even if they cannot be repeated as a practical
matter, such as the probability that a particular person will die from a certain kind
of surgery. But one does not try to incorporate probabilities into the theory for
contingencies that cannot remotely be regarded as repeatable. The philosopher
R. Carnap has asked, “What is the probability that the fair coin I have just tossed
has come up ‘heads’?” He would insist that the answer is 0 or 1, certainly
not 1/2. Mathematical probability theory leaves his question as something for
philosophers and does not address it.
The initial situation that is to be modeled is that of an experiment to be

performed; the experiment may be really simple, as with a single coin toss,
or it may have stages to it that may or may not be related to each other. For the
moment let us suppose that the number of stages is finite; later we shall relax
this condition. To fix the ideas, let us think of the outcome as a point in some
Euclidean space. Forcing the outcome to be a point in a Euclidean space may
not at first seem very natural for a single toss of a coin, but we can, for example,
identify “heads” with 1 and “tails” with 0 in R1. In any case, the experiment has
a certain range of conceivable outcomes, and these outcomes are to be disjoint
from one another. Initially we let ƒ be the set of these conceivable outcomes. If
an outcome occurs when conditions belonging to a set A are satisfied, one says
that the event A has taken place.
We imagine that probabilities have somehow been attached to the individual

outcomes, and to aggregates of them, on the basis of some experimental data. Us-
ing a frequency interpretationof probability, one is led to postulate that probability
in the model of this experiment is a nonnegative additive set function on some
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systemof subsets ofƒ that assigns the value 1 toƒ itself. Withoutmeasure theory
as a historical guide, onemight be hard pressed to postulate complete additivity as
well, but in retrospect complete additivity is not a surprising condition to impose.
At any rate, the model of the experiment within probability theory uses a

measure space (ƒ,A, P), normally with total measure P(ƒ) equal to 1, with
one or more measurable functions on ƒ to indicate the result of the experiment.
One way of setting up (ƒ,A, P) is as we just did—to let ƒ be the set of all
possible outcomes, i.e., all possible values of the measurable functions that give
the result of the experiment. Events are then simplymeasurable sets of outcomes,
and the measure P gives the probabilities of various sets of outcomes. Yet this
is not the only way, and successful work in the subject of probability theory
requires a surprising indifference to the nature of the particular ƒ used to model
a particular experiment.
We can give a rather artificial example right now, in the context of a single

toss of a standard coin, of how distinct ƒ’s might be used to model the same
experiment, and we postpone to the last two paragraphs of this section and to
the proof of Theorem 9.8 any mention of more natural situations in which one
wants to allow distinctƒ’s in general. The example occurs when the experiment
is a single flip of a standard coin. Let us identify “heads” with the real number 1
and “tails” with the real number 0. Centuries of data and of processing the data
have led to a consensus that the probabilities are to be 1/2 for each of the two
possible outcomes, 1 and 0. We can model this situation by takingƒ to be the set
{1, 0} of outcomes, A to consist of all subsets of ƒ, and P to assign weight 1/2
to each point of ƒ. The function f indicating the result of the experiment is the
identity function, with f (ω) = 1 if ω = 1 and with f (ω) = 0 if ω = 0. But it
would be just as good to take any other measure space (ƒ,A, P)with P(ƒ) = 1
and to suppose that there is some measurable subset A with P(A) = 1/2. The
measurable function f modeling the experiment has f (ω) = 1 if ω is in A and
f (ω) = 0 if not.
The problem of how to take real-world data and to extract probabilities in

preparation for defining a model is outside the domain of probability theory. This
involves a statistical part that obtains and processes the data, identifies levels of
confidence in the accuracy of the data, and assesses the effects of errors made in
obtaining the data accurately. Also it may involve making some value judgments,
such as what confidence levels to treat as decisive, and such value judgments are
perhaps within the domain of politicians. In addition, there is a fundamental
philosophical question in whether the model, once constructed, faithfully reflects
reality. This question is similar to the question of whether mathematical physics
reflects the physics of the real world, but with one complication: in physics
there is always the possibility that a single experimental result will disprove the
model, whereas probability gives no prediction that can be disproved by a single
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experimental result.
Apart from a single toss of a coin, another simple experiment whose outcome

can be expressed in terms of a single real number is the selection of a “random”
number from [0, 2]. The word “random” in this context, when not qualified in
some way, insists as a matter of definition that the experiment is governed by
normalized Lebesgue measure, that the probability of picking a number within a
set A is the Lebesgue measure of A divided by the Lebesgue measure of [0, 2]. If
we takeƒ to be [0, 2],A to be the Borel sets, and P to be 12 dx and if we use the
identity function as the measurable function telling the outcome, then we have
completely established a model.
The theory needed for setting up a model that incorporates given probabilities

is normally not so readily at hand, since one is quite often interested potentially in
infinitely many stages to an experiment and the given data concern only finitely
many stages at a time. In many cases of this kind, one invokes a fundamental
theorem of Kolmogorov to set up a measure space that can allow the set of
distinguished measurable functions to be infinite in number. We shall state and
prove this theorem in Section 3.
In the meantime let us take the measure space (ƒ,A, P) with P(ƒ) = 1 as

given to us. We refer to (ƒ,A, P) or simply (ƒ, P) as a probability space.
Probability theory has its own terminology. An event is a measurable set, thus a
set in the σ -algebraA. One speaks of the “probability of an event,” which means
the P measure of the set. The language used for an event is often slightly different
from the ordinaryway of defining a set. With the random-number example above,
one might well speak of the probability of the “event that the random number lies
in [1/2, 1]” when a more literal description is that the event is [1/2, 1]. It is not
a large point. The probability in either case, of course, is 1/4.
Let A and B be events. The event A ∩ B is the simultaneous occurrence of A

and B. The event A ∪ B is the event that at least one of A and B occurs. The
event Ac is the nonoccurrence of the event A. If A = ∅, event A is impossible; if
A = ƒ, event Amust occur. Containment B ⊆ Ameans that from the occurrence
of event B logically follows the occurrence of event A. Two events A and B are
incompatible if A ∩ B = ∅. A set-theoretic partitioning C of ƒ as a disjoint
union ƒ =

Sn
k=1 Ak corresponds to an experiment C consisting of determining

which of the events A1, . . . , An occurs. And so on.
A random variable is a real-valued measurable function on ƒ. With the

random-number example, a particular random variable is the number selected.
This is the function f that associates the real number ω to the member ω of the
spaceƒ. Theword “random” in the name “randomvariable” refers to the fact that
its value depends on which possibility inƒ is under consideration. Some latitude
needs to be made in the definition of measurable function to allow a function
taking on values “heads” and “tails” to be a random variable, but this point will
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not be important for our purposes.1 As we shall see, the random variables that
yield the result of the defining experiment of a probability model are, in a number
of important cases, coordinate functions on a setƒ given as a product, and random
variables are often indicated by letters like x suitable for coordinates.2
The mean or expectation or expected value E(x) of the random variable

x is motivated by a computation in the especially simple case that ƒ contains
finitely many outcomes/points and P(A) is computed for an event by adding the
weights attached to the outcomes ω of A. If ω is an outcome, the value of x at
ω is x(ω), and this outcome occurs with probability P({ω}). Summing over all
outcomes, we obtain

P
ω∈ƒ x(ω)P({ω}) as a reasonable notion of the expected

value. This sum suggests a Lebesgue integral, and accordingly the definition in
the general case is that E(x) =

R
ƒ x(ω) dP(ω). Probabilists say that E(x) exists

if x is integrable; cases in which the Lebesgue integral exists and is infinite are
excluded.
There is a second way of computing the mean. When ƒ is a finite set as

above, we can group all the terms in
P

ω∈ƒ x(ω)P({ω}) for which x(ω) takes
a particular value c and then sum on c. The regrouped value of the sum isP

c cP({ω | x(ω) = c}). The corresponding formula in the general case involves
the probability distribution of x , the Stieltjes measure µx on the Borel sets of
the line R defined by

µx(A) = P({ω ∈ ƒ | x(ω) ∈ A}).

The name “distribution” is traditional in probability theory to emphasize the way
in which mass has been spread in some fashion, and the adjective “probability”
refers to the fact that this measure has total mass µx(R) = P(ƒ) = 1. Although
Stieltjes measures are indeed distributions in the sense of Chapter V, it is not at all
helpful to think of them in this way in probability theory. Thus we shall usually
retain the adjective “probability” to head off any confusion.
The notion of µx , but not the name, was introduced in Section VI.10 of Basic.

The formula for the mean in terms of the probability distribution of x is E(x) =R
R x dµx ; the justification for this formula lies in the following proposition, which
was proved in Basic as Proposition 6.56a and which we re-prove here.

Proposition 9.1. If x : ƒ → R is a random variable on a probability space

1We return to this point in Section 3, where it will influence the hypotheses of the fundamental
theorem of Kolmogorov.

2In his book Measure Theory Doob writes on p. 179, “An attentive reader will observe . . . that
in other chapters a function is f or g, and so on, whereas in this chapter [on probability] a function
is more likely to be x or y, and so on, at the other end of the alphabet. This difference is traditional,
and is one of the principal features that distinguishes probability from the rest of measure theory.”
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(ƒ, P) and if µx is the probability distribution of x , then
Z

ƒ

8(x(ω)) dP(ω) =
Z

R
8(t) dµx(t)

for every nonnegative Borel measurable function 8 : R → R. The formula
extends linearly to the case in which the condition “nonnegative” on8 is dropped
if the integrals for 8+ = max(8, 0) and 8− = −min(8, 0) are both finite. It
extends to complex-valued 8 if the integral for |8| is finite.

PROOF. When8 is the indicator function IA of a Borel set A ofR, the two sides
of the identity are P(x−1(A)) and µx(A), and these are equal by definition of
µx . We can pass to nonnegative simple functions by linearity and then to general
nonnegative Borel measurable functions8 by monotone convergence. §

The qualitative conclusion of Proposition 9.1 is by itself important: the mean
of any function of a random variable can be computed in terms of the probability
distribution of the random variable—without reference to the underlyingmeasure
space ƒ.
The expression for E(x) arising from Proposition 9.1 can often be written as

a “Stieltjes integral,” which is a simple generalization of the Riemann integral,3
and thus the proposition in principle gives a way of computing means without
Lebesgue integration.4
Instead of working with the Stieltjes measure µx , one can work with an

associated monotone function on R. The particular monotone function used
by probabilists is the cumulative distribution function of x , defined by

Fx(t) = µx((−∞, t]).

The cumulative distribution function of x differs only by the additive constant
µx((−∞, 0]) from the distribution function introduced in Section VI.8 of Basic;
the value of the latter monotone function at t was

Ω
−µ((x, 0]) if x ≤ 0

µ((0, x]) if x ∏ 0.

When the probability measure µx is absolutely continuous with respect to
Lebesgue measure, we can write µx = fx(t) dt for a function fx by the Radon–
Nikodym Theorem.5 Such a function fx , which is determined up to sets of

3Stieltjes integration is developed briefly in the problems at the end of Chapter III of Basic.
4Consequently the resulting formula for means is handy pedagogically and is often exploited in

elementary probability books.
5Corollary 7.10 or Theorem 9.16 of Basic.
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measure 0, is called the density of the random variable x . In terms of monotone
functions, a density exists if and only if the cumulative distribution function
is absolutely continuous (for example, when it has a continuous derivative),
and in this case the density is the pointwise derivative a.e. of the cumulative
distribution function. If x has a density fx , the formula for the mean becomes
E(x) =

R
R t fx(t) dt ; this conclusion is just Proposition 9.1 for the Borel func-

tion 8(t) = t . More generally, E(8(x)) =
R

R 8(t) fx(t) dt for any 8 as in
Proposition 9.1.
A set of random variables is said to be identically distributed if all of them

have the same Stieltjes measure as probability distribution. As a consequence
of Proposition 9.1, identically distributed random variables have the same mean.
We shall make serious use of identically distributed random variables starting in
Section 4.
Although Proposition 9.1 allows us to compute the mean of any Borel function

of a randomvariable in termsof the probabilitydistributionof the randomvariable,
it does not help us when we have to deal with more than one random variable.
The appropriate device for more than one random variable is a “joint probability
distribution.” If x1, . . . , xN are random variables, define, for each Borel set A in
RN ,

µx1,...,xN (A) = P
°©

ω ∈ ƒ
Ø
Ø °
x1(ω), . . . , xN (ω)

¢
∈ A

™¢
.

Then µx1,...,xN is a Borel measure on RN with µx1,...,xN (RN ) = 1. It is called the
joint probability distribution of x1, . . . , xN . Referring to the definition, we see
that we can obtain the joint probability distribution of a subset of x1, . . . , xN by
dropping the relevant variables: for example, dropping xN enables us to pass from
the joint probability distribution of x1, . . . , xN to the joint probability distribution
of x1, . . . , xN−1, the formula being

µx1,...,xN−1
(B) = µx1,...,xN (B × R).

Proposition 9.2. If x1, . . . , xN are random variables on a probability space
(ƒ, P) and if µx1,...,xN is their joint probability distribution, then

Z

ƒ

8(x1(ω), . . . , xN (ω)) dP(ω) =
Z

RN
8(t1, . . . , tN ) dµx1,...,xN (t1, . . . , tN )

for every nonnegative Borel measurable function 8 : RN → R. The formula
extends linearly to the case in which the condition “nonnegative” on8 is dropped
if the integrals for 8+ = max(8, 0) and 8− = −min(8, 0) are both finite. It
extends to complex-valued 8 if the integral for |8| is finite.

PROOF. In (a), when8 is the indicator function IA of a Borel set A of RN , the
two sides of the identity are P((x1, . . . , xN )−1(A)) and µx1,...,xN (A), and these



382 IX. Foundations of Probability

are equal by definition of µx1,...,xN . We can pass to nonnegative simple functions
by linearity and then to general nonnegative Borel measurable functions 8 by
monotone convergence. §

AswithProposition9.1, the qualitative conclusionofProposition9.2 is by itself
important: the mean of any function of N random variables can be computed in
terms of their joint probability distribution—without reference to the underlying
measure spaceƒ. For example the product of the N randomvariables is a function
of them, and therefore

E(x1 · · · xN ) =
Z

RN
t1 · · · tN dµx1,...,xN (t1, . . . , tN ).

When the probabilitymeasureµx1,...,xN is absolutely continuouswith respect to
Lebesgue measure, we can writeµx1,...,xN = fx1,...,xN (t) dt for a function fx1,...,xN
by the Radon–NikodymTheorem.6 Such a function fx1,...,xn , which is determined
up to sets of measure 0, is called the joint probability density of the random
variables x1, . . . , xN .
The possibility of making such computations without explicitly using ƒ has

the effect of changing the emphasis in the subject. Often it is not that one is
given such-and-such probability space and such-and-such random variables on
it. Instead, one is given some random variables and, if not their precise joint
probability distribution, at least some properties of it. Accordingly, we can ask,
What Borelmeasuresµ onRN withµ(RN ) = 1 are joint probability distributions
of some family x1, . . . , xN of N random variables on some probability space
(ƒ, P)?
The answer is, all Borel measuresµwithµ(RN ) = 1. In fact, we have only to

take (ƒ, P) = (RN , µ) and let xj be the j th coordinate function xj (ω1, . . . , ωN )

= ωj on RN . Substituting into the definition of joint probability distribution, we
see that the value of the joint probability distribution µx1,...,xN on a Borel set A in
RN is

µx1,...,xN (A) = µ({ω ∈ RN | (x1(ω), . . . , xN (ω)) ∈ A})

= µ({ω ∈ RN | (ω1, . . . , ωN ) ∈ A}) = µ(A).

Thus µx1,...,xN equals the given measure µ.
Even for N = 1, this conclusion is useful. In the proof of the Central Limit

Theorem later in this chapter, we shall encounter the “normal distribution on R1

with mean 0 and variance σ 2.” This is the Stieltjes measure µ on R defined by

µ(A) =
1

σ
p
2π

Z

A
e−u2/(2σ 2) du

6Theorem 9.16 of Basic.
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for everyBorel set A, i.e., the absolutely continuousStieltjesmeasurewith density
(σ

p
2π)−1 e−u2/(2σ 2); it has µ(R) = 1. The above remarks show how to define

a random variable with this particular probability distribution: the underlying
space is ƒ = R, the underlying probability measure is this µ, and the random
variable is the coordinate function x on R.

2. Independent Random Variables

Thenotionof independenceof events in probability theory is amatter of definition,
but the definition tries to capture the intuition that one might attach to the term.
Thusone seeks amathematical condition saying that a set of attributes determining
a first event has no influence on a second event and vice versa. Kolmogorov
writes,7

Historically, the independence of experiments and random variables
represents the very mathematical concept that has given the theory
of probability its peculiar stamp. The classical work of LaPlace,
Poisson, Tchebychev, Liapounov, Mises, and Bernstein is actually
dedicated to the fundamental investigation of series of independent
random variables. . . . We thus see, in the concept of independence, at
least the germof the peculiar type of problem in probability theory. . . .
In consequence, one of themost important problems in the philosophy
of the natural sciences is—in addition to thewell-knownone regarding
the essence of the concept of probability itself—to make precise the
premiseswhichwouldmake it possible to regard any given real events
as independent.

The path to discovering themathematical condition that captures independence
of events begins with “conditional probability.” Let A and B be two events, and
assume that P(B) > 0. Think of A as a variable. The conditional probability of
A given B, written P(A | B), is to be a new probability measure, as A varies, and
is to be a version of P adjusted to take into account that B happens. These words
are interpreted to mean that a normalization is called for, and the corresponding
definition is therefore

P(A | B) =
P(A ∩ B)

P(B)
.

In measure-theoretic terms, we pass from the measure space (ƒ,A, P) to
the measure space

°
B, A ∩ B, P(( · ) ∩ B)

±
P(B)

¢
. Conditional probabilities

P(A | B) are left undefined when P(B) = 0.

7In his Foundations of the Theory of Probability, second English edition, pp. 8–9.
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The intuition concerning independence of A and B is that the occurrence of B
is not to influence the probability of A. Thus two events A and B are to be inde-
pendent, at least when P(B) > 0, if P(A) = P(A | B). This condition initially
looks asymmetric, but if we substitute the definition of conditional probability,
we find that the condition is P(A) = P(A∩B)

P(B)
, hence that

P(A ∩ B) = P(A)P(B).

This condition is symmetric, and it allows us to drop the assumption that
P(B) > 0. We therefore define the events A and B to be independent if
P(A ∩ B) = P(A)P(B).
As the quotation above from Kolmogorov indicates, the question of the extent

to which this definition of independence captures from nature our intuition for
what the term should mean is a deep fundamental problem in the philosophy of
science. We shall not address it further.
But a word of caution is appropriate. The assumption of mathematical inde-

pendence carries with it far-reaching consequences, and it is not to be treated
lightly. Members of the public all too frequently assume independence without
sufficient evidence for it. Here are two examples that made national news in the
first decade of the twenty-first century.

EXAMPLES.
(1) In the murder trial of a certain sports celebrity, a criminalist presented

evidence that three characteristics of some of the blood at the scene matched
the defendant’s blood, and the question was to quantify the likelihood of this
match if the defendant was not the murderer. Two of the three characteristics
amounted to the usual blood type and Rh factor, and the criminalist said that
half the people in the population had blood with these characteristics. The third
characteristic was something more unusual, and he asserted that only 4% of the
population had blood with this characteristic. He concluded that only 2% of the
population had blood for which these three characteristics matched those in the
defendant’s blood and the blood at the scene. The defense attorney jumped on the
criminalist, asking how he arrived at the 2% figure, and received a confirmation
that the criminalist had simplymultiplied the probability .5 for the blood type and
Rh factor by the .04 for the third characteristic. Upon being questioned further,
the criminalist acknowledged that he had multiplied the probabilities because he
could not see that these characteristics had anything to do with each other. The
defense attorney elicited a further acknowledgment that the criminalist was aware
of no studies of the joint probability distribution. The criminalist’s testimony was
thus discredited, and the jurors could ignore it. What the criminalist could have
said, but did not, was that anyway at most 4% of the population had blood with
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those three characteristics because of that third characteristic alone; that assertion
would not have required any independence.
(2) In the 2004 presidential election, some malfunctions involving electronic

voting machines occurred in three states in a particular way that seemed to favor
one of the twomain candidates. One national commentatorwhopursued this story
rounded up an expert who examined closely what happened in one of the states
and came upwith a rather small probability of about .1 for themalfunction to have
been a matter of pure chance. Seeing that the three states were widely separated
geographically and that communication between officials of the different states
on Election Day was unlikely, the commentator apparently concluded in his mind
that the three events were independent. So he multiplied the probabilities and
announced to the public that the probability of this malfunction in all three states
on the basis of pure chance was a decisively small .001. What he ignored was
that the machines in the three states were all made by the same company; so the
assumption of independence was doubtful.

Ofmore importance for our purposes than independence of events is the notion
of independence of random variables. Tentatively let us say that two random
variables x and y on a probability space (ƒ, P) are defined to be independent
if {x(ω) ∈ A} and {y(ω) ∈ B} are independent events for every pair of Borel
subsets A and B of R. Substituting the definition of independent events, we see
that the condition is that

P({ω | (x(ω), y(ω)) ∈ A × B}) = P({ω | x(ω) ∈ A})P({ω | y(ω) ∈ B})

for every pair of Borel subsets of R. We can rewrite this condition in terms of
their probability distributions as

µx,y(A × B) = µx(A)µy(B).

In other words, the measureµx,y onR2 agrees with the product measureµx ×µy
on measurable rectangles. By Proposition 5.45 of Basic, the two measures must
then agree on all Borel sets of R2. Conversely if the two measures agree on all
Borel sets ofR2, then they agree on all measurable rectangles. We therefore adopt
the following definition: two random variables x and y on a probability space
(ƒ, P) are independent if their joint probability distribution is the product of
their individual probability distributions, i.e., if µx,y = µx × µy .
One can go through a similar analysis, starting from conditional probability

involving N events, and be led to a similar result for N random variables. The
upshot is that N random variables x1, . . . , xN on a probability space (ƒ, P)
are defined to be independent if their joint probability distribution µx1,...,xN is
the N -fold product of the individual probability distributions µx1, . . . , µxN . An
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infinite collection of random variables is said to be independent if every finite
subcollection of them is independent.
We can ask whether arbitrarily large finite numbers of independent random

variables exist on some probability space with specified probability distributions,
and the answer is “yes.” This question is a special case of the one near the end
of Section 1. If we are given N Borel measures µ1, . . . , µN on R and we seek
independent random variables with these measures as their respective individual
probability distributions, we form the product measure µ = µ1 × · · · × µN .
Then the observation at the end of Section 1 shows us that if we take (RN , µ)
as a probability space and if we define N random variables on RN to be the N
coordinate functions, then the N random variables have µ as joint probability
distribution. Since µ is a product, the random variables are independent.
The question ismore subtle if asked about infinitelymany independent random

variables. If, for example, we are given an infinite sequence of Borel measures on
R, we do not yet have tools for obtaining a probability space with a sequence of
independent random variables having those individual probability distributions.8
We can handle an arbitrarily large finite number, and we need a way to pass to
the limit. The passage to the limit for this situation is the simplest nontrivial
application of the fundamental theorem of Kolmogorov that was mentioned in
Section 1. The theorem will be stated and proved in Section 3.
We conclude this sectionwith two propositions and some examples concerning

independence.

Proposition 9.3. If x1, . . . , xN are independent random variables on a proba-
bility space, then E(x1 · · · xN ) = E(x1) · · · E(xN ).

PROOF. If µx1,...,xN is the joint probability distribution of x1, . . . , xN , then it
was observed after Proposition 9.2 that

E(x1 · · · xN ) =
Z

RN
t1 · · · tN dµx1,...,xN (t1, . . . , tn). (∗)

The independence means that dµx1,...,xN (t1, . . . , tn) = dµx1(t1) · · · dµxN (tN ).
Then the integral on the right side of (∗) splits as the product of N integrals, the
j th factor being

R
R tj dµxj (tj ). This j

th factor equals E(xj ), and the proposition
follows. §

Proposition 9.4. Let

x1, . . . , xk1, xk1+1, . . . , xk2, xk2+1, . . . , xk3, . . . , xkm−1+1, . . . , xkm
8There is one trivial case that we can already handle. An arbitrary set of constant random

variables can always be adjoined to an independent set, and the independence will persist for the
enlarged set.
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be km independent random variables on a probability space, define k0 = 0, and
suppose that Fj : Rkj−kj−1 → R is a Borel function for each j with 1 ≤ j ≤ m.
Then the m random variables Fj (xkj−1+1, . . . , xkj ) are independent.

REMARKS. That is, functions of disjoint subsets of a set of independent random
variables are independent.

PROOF. Put yj = (xkj−1+1, . . . , xkj ), and define y = (y1, . . . , ym) and F =
(F1, . . . , Fm). LetRj be the copyofRkj−kj−1 corresponding to variablesnumbered
kj−1 + 1 through kj , and regard the probability distribution µFj (yj ) of Fj as a
measure on Rj . What needs proof is that

µF(y) = µF1(y1) × · · · × µFm(ym). (∗)

Both sides of this expression are Borel measures on Rkm . On any product set
A = A1 × · · · × Am , where Aj is a Borel subset of Rj , we have

µF(y)(A) = P({ω | F(y(ω)) ∈ A})

= P({ω | Fj (yj (ω)) ∈ Aj for all j})

= P({ω | yj (ω) ∈ F−1
j (Aj ) for all j})

=
Qm

j=1 P({ω | yj (ω) ∈ F−1
j (Aj )}) by the assumed independence

=
Qm

j=1 P({ω | Fj (yj )(ω) ∈ Aj })

=
Qm

j=1 µFj (yj )(Aj ).

Consequently the two sides of (∗) are equal on all Borel sets. §

Now let us come to some examples. Proposition 9.4 is a useful tool for
generating independent random variables, as Examples 1 and 2 will show. On
the other hand, independence of random variables is not as robust a notion as
one might hope, according to Example 3a. Examples 3b and 3c are motivated
by Example 3a and develop a change-of-variables technique that is useful in
Section 10. Example 4 is a complement to Example 3a, showing that sometimes
independence occurs in new random variables defined in terms of other random
variables even when Examples 1 and 2 do not apply; this situation will be of
critical importance in Section 10.

EXAMPLES.
(1) If x1, x2, . . . , xN are independent random variables and F1, F2, . . . , FN are

Borel functions onR1, then F1(x1), F2(x2), . . . , FN (xN ) are independent random
variables.
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(2) If x1, . . . , xN are independent random variables and if sj = x1 + · · · + xj ,
then the two random variables sj and sN − sj are independent because sj depends
only on x1, . . . , xj and sN − sj depends only on xj+1, . . . , xN .
(3) Suppose that two independent random variables x1 and x2 are given, and

suppose that we form two new random variables y1 = f1(x1, x2) and y2 =
f2(x1, x2). Let us focus on what happens under the change of variables. For
simplicity suppose that the vector-valued function f =

≥
f1
f2

¥
is smooth and is

invertible with smooth inverse given by g =
≥
g1
g2

¥
. Suppose also that x1 and x2

both have densities: µx1 = h1(t1) dt1 and µx2 = h2(t2) dt2. The joint probability
distribution of x1 and x2 is µx1,x2 = h1(t1)h2(t2) dt1 dt2 because of the assumed
independence, and thus x1 and x2 have h1(t1)h2(t2) as joint probability density.
Proposition 9.2 shows that

Z

ƒ

8(x1(ω), x2(ω)) dP(ω) =
Z

R2
8(t1, t2)h1(t1)h2(t2) dt1 dt2. (∗)

for every nonnegative Borel function 8. We shall apply this formula in three
situations.
(3a) The first question is whether y1 and y2 are independent. For testing

independence of y1 and y2, let8 be the composition8 = IA×B ◦ f , where IA×B
is the indicator function of the product set. The left side of (∗) simplifies to
µy1,y2(A× B), and we evaluate the right side by making the change of variables≥
t1
t2

¥
= g

≥
u1
u2

¥
; the tool is Theorem 6.32 of Basic. The right side equals

Z

A×B
h1(g1(u1, u2))h2(g2(u1, u2))

Ø
Ø det

£
@ti
@uj

§ØØ du1 du2, (∗∗)

and the question is whether this expression is a product ∫1(A)∫2(B) for Stieltjes
measures ∫1 and ∫2. Essentially this is the question whether the integrand is the
product of a function of u1 and a function of u2. A fairly simple case is that f
is a specific linear function from R2 to R2, say f (x1, x2) = (x1 + x2, x1 − x2)
with inverse g(y1, y2) = ( 12 (y1 + y2), 12 (y1 − y2)). Then det

£
@ti
@uj

§
is the constant

function − 1
2 , and we are to consider an integrand of the form

1
2h1(

1
2 (u1 + u2))h2( 12 (u1 − u2)).

Without some special assumption on h1 and h2, this integrand has little chance
of being the product of a function of u1 by a function of u2. Thus y1 and y2 will
fail to be independent without special additional assumptions.
(3b) The second question is how to deduce from (∗) information about the

probability distribution of a real-valued function of two variables. Let us take the
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function (x1, x2) 7→ x1+x2 as an example. The question is to find the probability
distribution of x1 + x2 when x1 and x2 are known to be independent. The device
is to view (x1, x2) 7→ x1 + x2 as one coordinate of a change of variables. We
can take the other coordinate to be (x1, x2) 7→ x2, so that we are considering the
change of variables

≥
u1
u2

¥
=

≥
t1+t2
t2

¥
with inverse

≥
t1
t2

¥
=

≥
u1−u2
u2

¥
. Let8 be the

composition of this function followed by IA×R. Formulas (∗) and (∗∗) give
Z

ƒ

IA×R

≥
x1(ω)+x2(ω)

x2(ω)

¥
dP(ω) =

Z

R2
Ia×R

≥
t1+t2
t2

¥
h1(t1)h2(t2) dt1 dt2

=
Z

R2
IA×R(u1, u2)h1(u1 − u2)h2(u2) du1 du2

=
Z

R
IA(u1)

≥ Z

R
h1(u1 − u2)h2(u2) du2

¥
du1.

The left side is just
R
A(x1(ω) + x2(ω)) dP(ω), and thus this equality says that

the density of the sum of two random variables x1 and x2 is the convolution of
the separate densities of x1 and x2.
(3c) The third question is what happens when (x1, x2) 7→ x1 + x2 in (3b) is

replaced by some more general scalar-valued function (x1, x2) 7→ ϕ(x1, x2)with
ϕ smooth. Going over what happened in (3b), we see that we can certainly embed
this in a smooth change of variables if the partial derivative ofϕ in the first variable
is everywhere positive. The change of variables is then

≥
u1
u2

¥
=

≥
ϕ(t1,t2)
t2

¥
, and

the Jacobian determinant is @ϕ
@t1 6= 0. We can invert by means of either direct

computation or the Inverse Function Theorem9 and integrate out one variable just
as in (3b). We shall use this technique in Section 10.
(4) We now exhibit an assumption that succeeds in yielding independence in

Example 3. Suppose that n independent random variables x1, . . . , xn are given,
and suppose that new randomvariables y1, . . . , yn are formed by a linear function,
specifically that √ y1

...
yn

!

= A

√ x1
...
xn

!

for an invertible square matrix A. Suppose further that x1, . . . , xn have densities
given by a quadratic exponential independent of j : µxj = ce−ax2j dxj for all
j , where a is positive and c is chosen to make µxj have total mass 1. Using
the technique of Example 3, let us ask whether y1, . . . , yn are independent. In
Example 3 we have hj (tj ) = ce−at2j and

µx1,...,xn = cn
Q

j e
−at2j dtj = cne−at ·t dt1 · · · dtn, where t = (t1, . . . , tn).

9Theorem 3.17 of Basic.
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We write u = (u1, . . . , un) = A−1t and substitute into (∗∗) of Example 3. The
factor

Ø
Ø det

£
@ti
@uj

§ØØ is a positive constant p, and thus

µy1,...,yn = cn pe−a(A−1u)·(A−1u) du1 · · · dun = cn pe−a(A−1)tr(A−1u)·u du1 · · · dun.

Because of the transformationproperty of the exponential function, the coefficient
function on the right side is a product of functions of each variable if (A−1)tr(A−1)
is a diagonal matrix. As a result, the transformed random variables are indepen-
dent if (A−1)tr(A−1) is a diagonal matrix. An example of a nonsquare matrix
with this property is A =

≥
1 1

−1 1

¥
. We shall make use of this idea in Section 10.

3. Kolmogorov Extension Theorem

The problemaddressedby theKolmogorov theorem is the setting up of a “stochas-
tic process,” a notion that will be defined presently. Many stochastic processes
have a time variable in them, which can be discrete or continuous. The process
has a set S of “states,” which can be a finite set, a countably infinite set, or a
suitably nice uncountable set. It will be sufficient generality for our purposes that
the set of states be realizable as a subset of a Euclidean space, the measurable
subsets of states being the intersection of S with the Borel sets of the Euclidean
space. The defining measurable functions tell the state at each instant of time.
Accordingly, onemight want to enlarge the definition of random variable to allow
the range to contain S. But we shall not do so, instead referring to “measurable
functions” in the appropriate places rather than random variables.
Let us give one example of a stochastic process with discrete time and another

with continuous time, with particular attention to the passage to the limit that is
needed in order to have a probability model realizing the stochastic process.
In the example with discrete time, we shall assume also that the state space S is

countable. The probabilistic interpretation of the situation visualizes the process
as moving from state to state as time advances through the positive integers,
with probabilities depending on the complete past history but not the future; but
this interpretation will not be important for us. Let us consider the analysis.
In the nth finite approximation (ƒn,An, Pn) for n ∏ 1, the set ƒn is countable
and consists of all ordered n-tuples of members of S, while An is the set of
all subsets of ƒn . The measure Pn is determined by assigning a nonnegative
weight to each member of ƒn , the sum of all the weights being 1. As n varies,
a consistency condition is to be satisfied: the sum over S of all the weights in
ƒn+1 of the (n + 1)-tuples that start with a particular n-tuple is the weight in ƒn
attached to that n-tuple. The distinguished measurable functions10 that tell the

10The measurable functions are random variables in this case since S ⊆ R.
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result of an experiment are the n coordinate functions that associate to an n-tuple
ω its various entries. What is wanted is a single measure space (ƒ,A, P) that
incorporates all these approximations. It is fairly clear that ƒ should be the set
of all infinite sequences of members of S and that the distinguished measurable
functions are to be the infinite set of coordinate functions. Defining A and P is
a little harder. Each n-tuple ω(n) forms a singleton set in An , and we associate
to ω(n) the set Tn(ω(n)) of all members of ƒ whose initial segment of length n is
ω(n). The members of An are unions of these singleton sets, and we associate to
any member X ofAn the union Tn(X) of the sets Tn(ω(n)) forω(n) in X . Also, we
define P(Tn(X)) = Pn(X). In this way we identifyAn with a σ -algebra Tn(An)
of subsets of ƒ, and we attach a value of P to each member of Tn(An). Define

A0 =
∞[

n=1
Tn(An).

The σ -algebras Tn(An) increase with n, and it follows that the union of two
members of A0 is in A0 and that the complement of a member of A0 is in A0;
hence A0 is an algebra, and A can be taken as the smallest σ -algebra containing
A0. In the uniondefiningA0, a set can arise frommore thanone term. For example,
if a set X inAn is given and a set Y inAn+1 consists of all (n + 1)-tuples whose
initial n-tuple lies in X , then Tn(X) = Tn+1(Y ). The above consistency condition
implies that Pn(X) = Pn+1(Y ), and hence the two definitions of P on the set
Tn(X) = Tn+1(Y ) are consistent. The result is that P is well defined onA0. Since
the Tn(An) increase with n and since the restriction of P to each one is additive,
it follows that P is additive. However, it is not apparent whether P is completely
additive since themembers of a countable disjoint sequence of sets inA0might not
lie in a single Tn(An). This is the matter addressed by the Kolmogorov theorem.
For purposes of being able to have a general theorem, let us make an observa-

tion. Although the consistency condition used in the above example appears to
rely on the ordering of the time variable, that ordering really plays no role in the
above construction. We could aswell have defined an F th finite approximation for
each finite subset F of the positive integers; the above consistency condition used
inpassing from F = {1, . . . , n} to F 0 = {1, . . . , n, n+1} implies a consistency for
general finite sets of indiceswith F ⊆ F 0: the result of summing theweights of all
members ofƒF 0 whose restriction to the coordinates indexed by F is a particular
member ofƒF yields the weight of the member ofƒF . This observation makes it
possible to formulate theKolmogorov theorem in away that allows for continuous
time.
Let us then come to the examplewith continuous time. The example is amodel

of Brownian motion, which was discovered as a physical phenomenon in 1826.
Microscopic particles, when left alone in a liquid, can be seen to move along
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erratic paths; this movement results from collisions between such a particle and
molecules of the liquid. An experiment can consist of a record of the position
in R3 of a particle as a function of time. When the data are studied and suitably
extrapolated to the situation that the liquid is all of R3, one finds an explicit
formula usable to define the probability that the moving particle lies in given
subsets of R3 at a given finite set of times. Namely, for t > 0, define

pt(x, dy) =
1

(4π t)3/2
e−|x−y|2/(4t) dy.

If 0 = t0 < t1 < t2 · · · < tn , if A0, . . . , An are Borel sets inR3, and if the starting
probability distribution of the particle at time 0 is a measure µ on R3, then the
probability that the particle is in A0 at time 0, is in A1 at time t1, . . . , is in An−1
at time tn−1, and is in An at time tn is to be taken as
Z

x0∈A0

Z

x1∈A1
· · ·

Z

xn−1∈An−1

Z

xn∈An
p1tn (xn−1, dxn) p1tn−1(xn−2, dxn−1)

× · · · × p1t1(x0, dx1) dµ(x0),

where 1tj = tj − tj−1 for 1 ≤ j ≤ n. Let F be {0, t1, . . . , tn}. A model
describing Brownian motion at the times of F takesƒF to be the set of functions
from F into R3, i.e., a copy of (R3)n+1, and the measurable sets are the Borel
sets. The distinguished measurable functions are again coordinate functions;11
they pick off the values in R3 at each of the times in F . Finally the measure PF
takes the value given by the above formula on the product set A0× · · ·× An , and
it is evident that PF extends uniquely to a Borel measure on R3(n+1), the value
of PF(A) for A ⊆ Rn+1 being the integral over A of the integrand in the display
above. If F 0 is the union of F and one additional time, then PF 0 and PF satisfy a
consistency property saying that if xj is integrated over all ofR3, then the integral
can be computed and the result is the same as if index j were completely dropped
in the formula; this comes down to the identity

Z

y∈R3

1
(4πs)3/2

1
(4π t)3/2

e−|y−z|2/(4s)e−|x−y|2/(4t) dy =
e−|x−z|2/(4(s+t))

(4π(s + t))3/2
,

which follows from the formula
R ∞
−∞ e−πx2 dx = 1, Fubini’s Theorem, and

some elementary changes of variables. The passage to the limit that needs to
be addressed is how to get a model that incorporates all t ∏ 0 at once. The space
can be (R3)[0,+∞). An algebra A0 can be built from the σ -algebras of Borel sets

11Since their values are not in R, these measurable functions are not, strictly speaking, random
variables as we have defined them in Section 1.



3. Kolmogorov Extension Theorem 393

of the Euclidean spaces (R3)F , and an additive set function P can be consistently
defined on A0 so that one recovers PF on each space (R3)F . What needs to be
addressed is the complete additivity of P .
A stochastic process is nothing more than a family {xi | i ∈ I } of measurable

functions defined on a measure space (ƒ,A, P) with P(ƒ) = 1. The index
set I is assumed nonempty, but no other assumptions are made about it. The
measurable functions have values in a more general space S than R, but we
shall assume for simplicity that S is contained in a Euclidean space RN and
then we may take S equal to RN . Although stochastic processes generally are
interesting only when the measurable functions are related to each other in some
special way, the Kolmogorov theorem does not make use of any such special
relationship. It addresses the construction of a general stochastic process out of
the approximations to it that are formed from finite subsets of I .
The situation is then as follows. Let I be an arbitrary nonempty index set, let

the state space S be RN for some fixed integer N , and let ƒ = SI be the set of
functions from I to S. We let xi , for i ∈ I , be the coordinate function from ƒ
to S defined by xi (ω) = ω(i). For J ⊆ I , we let xJ = {xi | i ∈ J }; this is a
function carrying ƒ to SJ .
For each nonempty finite subset F of I , the image of xF is the Euclidean space

SF , in which the notion of a Borel set is well defined. A subset A of ƒ will be
said to bemeasurable of type F if A can be described by

A = x−1
F (X) = {ω ∈ ƒ | xF ∈ X} for some Borel set X ⊆ SF .

The collection of subsets of ƒ that are measurable of type F is a σ -algebra that
we denote byAF . If F and F 0 are finite subsets of I with F ⊆ F 0 and if the Borel
set X of SF exhibits A as measurable of type F , then the Borel subset X × SF 0−F

of SF 0 exhibits A as measurable of type F 0. ConsequentlyAF ⊆ AF 0 .
LetA0 be the union of theAF for all finite F . If F and G are finite subsets of

I , then we have AF ⊆ AF∪G and AG ⊆ AF∪G , and it follows that A0 is closed
under finite unions and complements. Hence A0 is an algebra of subsets of ƒ.
In effect theKolmogorov theoremwill assume thatwe have a consistent system

of stochastic processes for all finite subsets of I . In other words, for each finite
subset F of I , we assume that we have a measure space (SF ,BF , PF) with BF
as the Borel sets of the Euclidean space SF , with PF(SF) = 1, and with the
distinguished measurable functions taken as the xi for i in F . The measures PF
are to satisfy a consistency condition as follows. To each X in BF , we define
a subset AX of ƒ by AX = x−1

F (X); this subset of ƒ is measurable of type F ,
and we transfer the measure from BF to AF by defining PF(AX ) = PF(X).
The consistency condition is that there is a well-defined nonnegative additive set
function P onA0 whose restriction to eachAF is PF . The content of the theorem
is that we obtain a stochastic process for I itself.
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Theorem 9.5 (Kolmogorov Extension Theorem). Let I be a nonempty index
set, let S = RN , and let ƒ = SI be the set of functions from I to S. For each
nonempty finite subset F of I , let AF be the σ -algebra of subsets of ƒ that are
measurable of type F , and let A0 be the algebra of sets given by the union of
the AF for all finite F . If P is a nonnegative additive set function defined on A0

such that P(ƒ) = 1 and P
Ø
Ø
AF
is completely additive for every finite F , then P

is completely additive on A0 and therefore extends to a measure on the smallest
σ -algebra containingA0.

PROOF. Once we have proved that P is completely additive on A0, P extends
to a measure on the smallest σ -algebra containing A0 as a consequence of the
Extension Theorem.12 Let An be a decreasing sequence of sets in A0 with
P(An) ∏ ≤ > 0 for some positive ≤. It is enough to prove that

T∞
n=1 An is

not empty.
Each member ofA0 is measurable of type F for some finite F , and we suppose

that An is measurable of type Fn . There is no loss of generality in assuming that
F1 ⊆ F2 ⊆ · · · since a set that is measurable of type F is measurable of type F 0

for any F 0 containing F . Let xi , for i ∈ I , be the i th coordinate function on ƒ,
and let xF = {xi | i ∈ F} for each finite subset F of I . Just as in the definition
of joint probability distribution, we define a Borel measure µF on the Euclidean
space SF by µF(X) = P(x−1

F (X)). This is a measure since P
Ø
Ø
AF
is assumed to

be completely additive.
By definition of “measurable of type F ,” the set An is of the form

An =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Xn

™

for some Borel subset Xn of the Euclidean space SFn . Since P(An) ∏ ≤, the
definition of µFn makes µFn (Xn) ∏ ≤. Since SFn is a Euclidean space, the
measure µFn is regular. Therefore there exists a compact subset Kn of Xn with
µF(Xn − Kn) ≤ 3−n≤. Putting

Bn =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Kn

™
,

we see that P(An − Bn) ≤ 3−n≤. Let

Cn =
nT

j=1
Bn.

Each Cn is a subset of An , and the sets Cn are decreasing. We shall prove that

P(Cn) ∏ ≤/2. (∗)

12Theorem 5.5 of Basic.
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The proof of (∗) will involve an induction: we show inductively for each k

that Bk = Dk ∪ Ck with P(Dk) ≤
k−1P

j=1
3− j≤ and P(Ck) ∏

°
1−

kP

j=1
3− j¢≤. Since

1 −
kP

j=1
3− j ∏ 1 −

∞P

j=1
3− j = 1 − 1/3

1−1/3 = 1
2 , this induction will prove (∗).

The base case of the induction is k = 1. In this case we have C1 = B1. If we
take D1 = ∅, then we have B1 = D1 ∪ C1 and P(D1) ≤ 0 trivially, and we
have P(C1) ∏ (1− 1

3 )≤ by construction of B1. The inductive hypothesis is that

Bk = Dk ∪ Ck with P(Dk) ≤
k−1P

j=1
3− j≤ and P(Ck) ∏

°
1−

kP

j=1
3− j¢≤. We know

that Ak = (Ak − Bk) ∪ Bk . Since Bk+1 ⊆ Ak+1 ⊆ Ak , we can intersect Bk+1
with this equation and then use the inductive hypothesis to obtain

Bk+1 = (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Bk)
= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ (Dk ∪ Ck))
= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Dk) ∪ Ck+1.

If we put Dk+1 = (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Dk), then Bk+1 = Dk+1 ∪Ck+1
and

P(Dk+1) ≤ P(Ak − Bk) + P(Dk) ≤ 3−k≤ +
k−1P

j=1
3− j≤ =

kP

j=1
3− j≤.

The identity Ak+1 = (Ak+1 − Bk+1) ∪ Bk+1 and the inequalities P(Ak+1) ∏ ≤
and P(Ak+1 − Bk+1) ≤ 3−k−1≤ together imply that P(Bk+1) ∏ (1 − 3−k−1)≤.
From Bk+1 = Dk+1 ∪ Ck+1 and P(Dk+1) ≤

Pk
j=1 3− j≤, we therefore conclude

that P(Ck+1) ∏
°
1−

k+1P

j=1
3− j¢≤. This completes the induction, and (∗) is thereby

proved.
The set Cn is in AFn since F1 ⊆ F2 ⊆ · · · ⊆ Fn , and thus Cn is given by

Cn =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Ln

™

for some Borel subset Ln of Kn in SFn . For 1 ≤ j ≤ n, we have

Bj =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Kj × SFn−Fj

™
,

and the set Kj × SFn−Fj is closed in SFn for j < n and compact for j = n. Thus
Ln =

Tn
j=1(Kj × SFn−Fj ) is a compact subset of SFn .

If F ⊆ F 0, let us identify SF 0 with the subset SF 0
× {0} ofƒ = SI , so that it is

meaningful to apply xF to SF
0 . Then we have xF xF 0 = xF , and xFn (Lp) makes

sense for p ∏ n.
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If p ∏ q, thenwe have x−1
Fp (Lp) = Cp ⊆ Cq = x−1

Fq (Lq) = x−1
Fp (Lq×SFp−Fq ),

and hence Lp ⊆ Lq × SFp−Fq . Application of xFq gives xFq (Lp) ⊆ Lq . If
p ∏ q ∏ n, then the further application of xFn gives xFn (Lp) ⊆ xFn (Lq) ⊆ Ln .
Thus the sets xFn (Lp), as p varies for p ∏ n, form a decreasing sequence of
compact sets in SFn . Since P(Cp) ∏ ≤/2 by (∗), Cp is not empty; thus Lp is not
empty and xFn (Lp) is not empty. Since Ln is a compact metric space,

Mn =
∞T

p=n
xFn (Lp)

is not empty.
Let us prove that

xFn (Mn+1) = Mn. (∗∗)
For p ∏ n + 1, we have xFn (Mn+1) ⊆ xFn (xFn+1(Lp)) = xFn (Lp). Intersecting
the right side over p gives xFn (Mn+1) ⊆ Mn . For the reverse inclusion, let m be
in Mn . Thenm = xFn (`p) with `p ∈ Lp for p ∏ n+ 1. For the same `p’s, define
m0
p = xFn+1(`p). Then xFn (m0

p) = xFn (xFn+1(`p)) = xFn (`p)) = m. The element
m0
p is in xFn+1(Lp) and hence in

Tp
q=n+1 xFn+1(Lq). The elementsm0

p all lie in the
compact set Lp+1, and hence they have a convergent subsequence{m0

pk }. The limit
m0 of this subsequence is in

Tpk
q=n+1 xFn+1(Lq) for all k, and thus m0 is in Mn+1.

Since xFn (m0
p) = m, we have xFn (m0) = xFn (limk m0

pk ) = limk xFn (m0
pk ) = m.

In other words, m lies in xFn (Mn+1). This proves (∗∗).
Using (∗∗), we shall define disjoint coordinate blocks of an element ω in ƒ.

Pick some m1 in M1, use (∗) to find some m2 in M2 with m1 = xF1(m2), use
(∗) to find some m3 in M3 with m2 = xF2(m3), and so on. Define ω so that
xF1(ω) = m1 and xFn−Fn−1(ω) = mn − mn−1 for n ∏ 2. Define ω to be 0 in all
coordinates indexed by I −

S∞
n=1 Fn . Then we have

xFn (ω) = xF1(ω) +
nP

k=2
xFk−Fk−1(ω) = m1 +

nP

k=2
(mk − mk+1) = mn.

Thus xFn (ω) is exhibited as in Mn ⊆ Ln for all n. Hence ω is in
T∞

n=1 Cn , and
we have succeeded in proving that

T∞
n=1 Cn is not empty. §

Corollary 9.6. Let I be a nonempty index set, and for each i in I let µi be a
Borel measure on R with µi (R) = 1. Then there exists a probability space with
independent randomvariables xi for i in I such that xi has probability distribution
µi .
PROOF. In Theorem 9.5 let S = R, and for each finite subset F of I , define

P
Ø
Ø
AF
to be the productmeasure

Q
i∈F µi on theEuclidean spaceRF . The theorem

makes RI into a probability space by exhibiting the consistent extension P of
all the P

Ø
Ø
AF
’s as completely additive. Then the coordinate functions xi are the

required independent random variables. §
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4. Strong Law of Large Numbers

Traditional laws of large numbers concern a sequence {xn} of identically dis-
tributed independent random variables, and we shall assume that their common
mean µ exists. Define sn = x1 + · · · + xn for n ∏ 1. The conclusion is that the
quantities 1n sn converge in some sense toµ, i.e., that the xn are Cesàro summable
to the constant µ. The simplest versions of the law of large numbers assume also
that the common “variance” is finite. Let us back up a moment and define this
notion.
The variance of a random variable x with mean E(x) = µ is the quantity

Var(x) = E
°
(x − µ)2

¢
= E(x2) − µ2,

the right-hand equality holding since
E

°
(x − µ)2

¢
= E(x2) − 2µE(x) + µ2E(1) = E(x2) − µ2.

For any randomvariables themeans add sincemean is linear. For two independent
random variables x and y, the variances add since we can apply Proposition 9.3,
compute the quantities

E((x + y)2) = E(x2) + 2E(xy) + E(y2) = E(x2) + 2E(x)E(y) + E(y2)

(E(x) + E(y))2 = E(x)2 + 2E(x)E(y) + E(y)2,and
and subtract to obtain
Var(x + y)) =

°
E(x2) − E(x)2

¢
+

°
E(y2) − E(y)2

¢
= Var(x) + Var(y).

For a constant multiple c of a random variable x , we have
E(cx) = cE(x) and Var(cx) = c2Var(x).

Returning to our sequence {xn} of identically distributed independent random
variables, we therefore have E(sn) = E(x1) + · · · + E(xn) = nµ and Var(sn) =
Var(x1) + · · · + Var(xn) = nσ 2, where σ 2 denotes the common variance of the
given random variables xk . Consequently

E
° 1
n sn

¢
= µ and Var

° 1
n sn

¢
= 1

n σ 2.

If we take our probability space to be (ƒ, P) and apply Chebyshev’s inequality
to the variance13 of 1n sn , we obtain

1
n σ 2 =

Z

ƒ

° 1
n sn − µ

¢2 dP ∏ ξ 2P
°
{| 1n sn − µ| ∏ ξ}

¢
.

Holding ξ fixed and letting n tend to infinity, we obtain the first form historically
of the law of large numbers, as follows.

13Chebyshev’s inequality appears in Section VI.10 of Basic and is the elementary inequalityR
X | f |2 dµ ∏ ξ2µ

°
{x

ØØ | f (x)| ∏ ξ}
¢
valid on any measure space for any measurable f and any real

ξ > 0.
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Theorem 9.7 (Weak Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables with a commonmeanµ and
a common finite variance. Define sn = x1 + · · · + xn . Then for every real ξ > 0,

lim
n→∞

P
°
{| 1n sn − µ| ∏ ξ}

¢
= 0.

REMARKS. In terminology that will be defined in Section 5, the statement
in words is that 1n sn “converges to µ in probability.” With more effort one can
obtain the conclusion of theWeak Law of Large Numbers without the hypothesis
of finite variance. Instead of making that direct extra effort, however, we shall
deduce in Section 5 the Weak Law of Large Numbers from the Strong Law of
Large Numbers below, and there will be no need to assume finite variance.

As a practical matter, the fact that P
°
{| 1n sn − µ| ∏ ξ}

¢
tends to 0 is of

comparatively little interest. Of more interest is a probability estimate for the
event that lim 1

n sn = µ. This is contained in the following theorem, whose proof
will occupy the remainder of this section.

Theorem 9.8 (Strong Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables whose common mean µ
exists. Define sn = x1 + · · · + xn . Then

lim
n→∞

1
n sn = µ with probability 1.

Many members of the public have heard of this theorem in some form. Mis-
conceptions abound, however. The usual misconception is that if the average
1
n sn(ω) has gotten to be considerably larger than µ by some point n in time, then
the chances become overwhelming that the average will have corrected itself
fairly soon thereafter. Independence says otherwise: that the future values of
the xk’s are not influenced by what has happened through time n. In fact, if
a person is persuaded that it was unreasonable for the average 1

n sn(ω) to have
gotten considerably larger than µ by some time n, then the person might better
instead question whether the mean µ is known correctly or even whether the
individual xn’s are genuinely independent. If µ has been greatly underestimated,
for example, not only was it reasonable for the average 1

n sn(ω) to have gotten
considerably larger than µ, but it is reasonable for it to continue to do so.
The proof of Theorem 9.8 will be preceded by three lemmas.

Lemma 9.9 (Borel–Cantelli Lemma). Let {Ak} be a sequence of events in a

probability space (ƒ, P) such that
∞P

k=1
P(Ak) < ∞. Then P

° ∞T

n=1

S

k∏n
Ak

¢
= 0.

Hence the probability that infinitely many of the events Ak occur is 0.
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PROOF. Since
∞P

k=1
P(Ak) is convergent, we have lim supn

∞P

k=n
P(Ak) = 0. For

every n, we have P
°T∞

n=1
S

k∏n Ak
¢

≤ P
°S

k∏n Ak
¢

≤
∞P

k=n
P(Ak). The left

side of the inequality is independent of n, and therefore P
°T∞

n=1
S

k∏n Ak
¢

≤

lim supn
∞P

k=n
P(Ak) = 0. This proves the first conclusion. Since

T∞
n=1

S
k∏n Ak

is the set of ω that lie in infinitely many of the sets Ak , the second conclusion
follows. §

Lemma 9.10. Let x be a random variable on a probability space (ƒ, P). Then
∞P

k=1
P({|x | > k}) < ∞ if and only if the mean of |x | exists.

PROOF. Proposition 6.56b of Basic gives
R
ƒ |x | dP =

R ∞
0 P({|x(ω)| > ξ}) dξ.

The lemma therefore follows from the inequalities
∞P

k=1
P({|x | > k}) =

∞P

k=0
P({|x | > k + 1}) ≤

∞P

k=0

R k+1
k P({|x | > ξ}) dξ

=
R ∞
0 P({|x | > ξ}) dξ ≤

∞P

k=0
P({|x | > k}). §

Lemma 9.11 (Kolmogorov’s inequality). Let x1, . . . , xn be independent ran-
dom variables on a probability space (ƒ, P), and suppose that E(xk) = 0 and
E(x2k ) < ∞ for all k. Put sk = x1 + · · · + xk . Then

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
≤ c−2E(s2n)

for every real c > 0.
REMARKS. It is not necessary to assume that E(x1) = 0. For n = 1, the

lemma consequently reduces to Chebyshev’s inequality.
PROOF. Let Aj be the event that j is the smallest index for which |sj | > c.

The sets Aj are disjoint, and their union is the set whose probability occurs on
the left side of the displayed inequality. Combining this fact with Chebyshev’s
inequality gives

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
=

nP

j=1
P(Aj ) ≤ c−2

nP

j=1
E(s2j IAj ), (∗)

where IAj is the indicator function of Aj . Since sn = sj + (sn − sj ),

E(s2n IAj ) = E(s2j IAj ) + 2E((sn − sj )sj IAj ) + E((sn − sj )2 IAj )

∏ E(s2j IAj ) + 2E((sn − sj )sj IAj ).
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The random variables sn − sj and sj IAj are independent by Proposition 9.4, and

their product has mean 0 by Proposition 9.3 since E(sn − sj ) =
nP

i= j+1
E(xi ) = 0.

Therefore E(s2n IAj ) ∏ E(s2j IAj ), and (∗) gives

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
≤ c−2

nP

j=1
E(s2j IAj ) ≤ c−2

nP

j=1
E(s2n IAj )

= c−2E(s2n IS
j Aj ) ≤ c−2E(sn)2. §

PROOF OF THEOREM 9.8. Let the underlying probability space be denoted by
(ƒ, P). Subtraction of the constant µ from each of the random variables xk does
not affect the independence, according to Proposition 9.4, and it reduces the proof
to the case that µ = 0. Therefore we may proceed under the assumption that
µ = 0. For integers k ∏ 1, define

x 0
k =

Ω xk where |xk | ≤ k,
0 where |xk | > k,

x 00
k =

Ω 0 where |xk | ≤ k,
xk where |xk | > k,

and

so that xk = x 0
k + x 00

k . Define s 0n = x 0
1 + · · · + x 0

n and s 00n = x 00
1 + · · · + x 00

n . It is
enough to show that 1n s

0
n and

1
n s

00
n both tend to 0 with probability 1.

Firstwe show that 1n s
00
n tends to 0with probability 1. Let x be a randomvariable

with the same probability distribution as the xk’s. Referring to the definition
of x 00

k , we see that P({|x | > k}) = P({|xk | > k}) = P({x 00
k 6= 0}). Since

E(|x |) exists by assumption, Lemma 9.10 shows that
∞P

k=1
P({|x | > k}) < ∞.

Therefore
∞P

k=1
P({x 00

k 6= 0}) < ∞. By the Borel–Cantelli Lemma (Lemma 9.10),

the probability that ω lies in infinitely many of the sets {x 00
k 6= 0} is 0. Thus by

disregarding ω’s in a set of probability 0, we may assume x 00
k (ω) 6= 0 for only

finitely many k. Then s00n (ω) remains constant as a function of n for large n, and
we must have limn

1
n s

00
n (ω) = 0.

Now we consider 1n s
0
n . The random variables x 0

k are independent, but they are
no longer identically distributed and they no longer need have mean 0. However,
they satisfy inequalities of the form |x 0

k | ≤ k, and these in turn imply that each
E(x 0

k
2) is finite. Concerning the means, let x be a random variable with the

same probability distribution as any of the xk’s. The random variable x#k equal
to x where |x | ≤ k and equal to 0 otherwise has |x#k | ≤ |x | for all k, and hence
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dominated convergence yields limk E(x#k ) = E(x) = 0. Since x 0
k and x#k have the

same probability distribution, we have limk E(x 0
k) = 0. The expression E( 1n s

0
n)

is a Cesàro sum of the sequence {E(x 0
k)}. Since the Cesàro sums tend to 0 when

the sequence itself tends to 0, we conclude that

lim
n
E( 1n s

0
n) = 0. (∗)

Let µ be the common probability distribution of the |xk |’s. The next step is to
show that

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x 0

k
2) ≤ 2

R ∞
0 t dµ(t). (∗∗)

The quantity on the right is twice the common value of E(|xk |) and is finite since
we have assumed that the common mean of the xk’s exists. Once we have proved
(∗∗), we can therefore conclude that the quantity on the left side is finite. To
prove (∗∗), we write

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x 0

k
2) =

∞P

r=1
2−2r

2r−1P

k=2r−1

R k
0 t

2 dµ(t)

≤
∞P

r=1
2−r R 2r

0 t2 dµ(t)

≤
R 1
0 t

2 dµ(t) +
∞P

r=1
2−r R 2r

1 t2 dµ(t).

Let us write I and II for the two terms on the right side. The estimate for II is

II =
∞P

r=1
2−r

rP

j=1

R 2 j
2 j−1 t

2 dµ(t) ≤
∞P

r=1

rP

j=1
2−r2 j

R 2 j
2 j−1 t dµ(t)

=
∞P

j=1

∞P

r= j
2−r2 j

R 2 j
2 j−1 t dµ(t) = 2

∞P

j=1

R 2 j
2 j−1 t dµ(t) = 2

R ∞
1 t dµ(t).

Therefore

I+ II ≤
R 1
0 t

2 dµ(t) + 2
R ∞
1 t dµ(t)

≤ 2
R 1
0 t dµ(t) + 2

R ∞
1 t dµ(t) = 2

R ∞
0 t dµ(t),

and (∗∗) is proved.
Form the sequence of random variables x∗

k = x 0
k − E(x 0

k), and put s∗n =
x∗
1 +· · ·+ x∗

n . The x∗
k are independent but no longer identically distributed. They

have mean 0. Since

E(x∗
k
2) = E

°
(x 0
k − E(x 0

k))
2¢ = E(x 0

k
2) − E(x 0

k)
2 ≤ E(x 0

k
2),
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(∗∗) shows that the x∗
k have the property that

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x∗

k
2) < ∞. To

prove the theorem, it would be enough to prove that the Cesàro sums 1
n s

∗
n =

1
n s

0
n − E( 1n s

0
n) tend to 0, since we know from (∗) that limn E( 1n s

0
n) = 0.

Changing notation, we see that we have reduced matters to proving the fol-
lowing: if {xk} is a sequence of independent random variables with mean 0 and
with

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x2k ) < ∞, (†)

and if sn denotes x1 + · · · + xn , then limn
1
n sn = 0 with probability 1.

To prove this assertion, we apply Kolmogorov’s inequality (Lemma 9.11) for
each r ∏ 0 to the 2r−1 random variables x2r−1, x2r−1+1, . . . , x2r−1. These are
independent with mean 0, and E(x2k ) is finite for each by (†). Their partial sums
are

s2r−1 − s2r−1−1, . . . , s2r−1 − s2r−1−1,

and the last partial sum has E
°
(s2r−1 − s2r−1−1)2

¢
=

2r−1P

k=2r−1
E(x2k ) by Proposition

9.3. Kolmogorov’s inequality therefore gives, for any fixed ε > 0,

P
°
{max(|s2r−1 − s2r−1−1|, . . . , |s2r−1− s2r−1−1|) > 2rε}

¢
≤ ε−22−2r

2r−1P

k=2r−1
E(x2k ).

Summing on r and applying (†), we see that
∞P

r=1
P

°
{max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε}

¢
< ∞.

The Borel–Cantelli Lemma (Lemma 9.9) shows that with probability 1, there are
only finitely many r’s for which

max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε.

Fix any ω that is not in the exceptional set Aε of probability 0, and choose
r0 = r0(ω) such that

max(2−r |s2r−1(ω) − s2r−1−1(ω)|, . . . , 2−r |s2r−1(ω) − s2r−1−1(ω)|) ≤ ε

for all r ∏ r0. If n > 2r0 is given, find r such that 2r−1 ≤ n ≤ 2r − 1. Then we
have

2−r |sn(ω) − s2r−1−1(ω)| ≤ ε,

2−(r−1)|s2r−1−1(ω) − s2r−2−1(ω)| ≤ ε,

...

2−r0 |s2r0−1(ω) − s2r0−1−1(ω)| ≤ ε.
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Multiplying the kth inequality by 2−k+2, summing for k ∏ 1, and applying the
triangle inequality, we obtain

n−1|sn(ω) − s2r0−1−1(ω)| ≤ 2−r+1|sn(ω) − s2r0−1−1(ω)| ≤ 4ε.

Therefore n−1|sn(ω)| ≤ 4ε + n−1|s2r0−1−1(ω)|.

Hence lim sup
n

1
n |sn(ω)| ≤ 4ε.

Ifω is not in the union
S∞

m=1 A1/m of the exceptional sets, then lim supn
1
n |sn(ω)|

= 0. This countable union of exceptional sets of probability 0 has probability 0,
and the proof is therefore complete. §

5. Convergence in Distribution

The two laws of large numbers concern convergence of a sequence of random
variables in two different fashions, and in this section we shall be a little more
systematic about different kinds of convergence.
Let {xn} be a sequence of random variables on a probability space (ƒ, P), and

let x be another random variable on that space. One says that {xn} converges
almost surely to x if limn xn(ω) = x(ω) pointwise except possibly on a set of
P measure 0. This is the notion of convergence in the Strong Law of Large
Numbers (Theorem 9.8). It is same notion as almost everywhere convergence,
but probabilists use a term for it that conveys something in probabilistic terms.
Another expression that is used for the same notion is that {xn} converges to x
with probability 1. Notation that is often used for this notion, but which we shall
not use, is

{xn}
a.s.

−→ x .

A second notion is that {xn} converges in probability to x if for each real
number ξ > 0, limn P

°
{ω

Ø
Ø |xn(ω) − x(ω)| ∏ ξ}

¢
= 0. Some authors write

{xn}
P

−→ x .

This is the notion of convergence in the Weak Law of Large Numbers (Theorem
9.7). We mentioned in Section 4 that the strong law implies the weak law and
that the assumption of finite variance is unnecessary in the weak law. This fact is
a special case of the following result.
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Proposition 9.12. If a sequence {xn} of random variables on a probability
space (ƒ, P) converges to a random variable x almost surely, then it converges
to x in probability.

PROOF. Let Z be themeasure-zerosubset ofƒonwhichpointwiseconvergence
of {xn(ω)} to x(ω) fails. Redefining x and all xn to be 0 on Z , we affect neither
the hypothesis nor the conclusion, but we now have convergence at every point.
Let ξ > 0 be given, and define

EN = {ω ∈ ƒ
Ø
Ø |xn(ω) − x(ω)| < ξ for all n ∏ N }.

Then {EN } is an increasing sequence of sets, and the pointwise convergence
of {xn} to x implies that

S
N EN = ƒ. By the complete additivity of P ,

limN P(EN ) = P(ƒ) = 1. Consequently

lim
N
P{ω ∈ ƒ

Ø
Ø |xn(ω) − x(ω)| ∏ ξ for some n ∏ N } = 0,

and it follows that

lim
N
P{ω ∈ ƒ

Ø
Ø |xN (ω) − x(ω)| ∏ ξ} = 0. §

EXAMPLE. The expected converse statement is false. That is, it is possible for
a sequence {xn} of random variables to converge to 0 in probability without con-
verging to 0 almost surely. Take the probability space to be [0, 1] with Lebesgue
measure m, and let xn be the indicator function of a set En to be specified. Then
{xn} converges to 0 in probability if (and only if) limn m(En) = 0, but it does
not converge to 0 almost surely if there is a set of points ω of positive Lebesgue
measure such that ω is in infinitely many of the sets En . To define such sets En ,
take a divergent infinite series

P
an whose terms are positive and tend to 0, such

as with an = 1/n. Let En be the interval extending from
Pn−1

k=1 ak to
Pn

k=1 ak
but taken modulo 1. Then the sets En have the required properties.

There is a third kind of convergence that will interest us, and this is the kind that
will occur in the Central Limit Theorem in Section 9. Let {xn} be a sequence of
random variables, and let x be another random variable. Let Fn be the cumulative
distribution function of xn , and let F be the cumulative distribution function of x .
One says that {xn} converges to x in distribution if limn Fn(t) = F(t) at every
point of continuity of F . The term converges in law is also used, and some
authors write

{xn}
L

−→ x .

A little surprisingly this kind of convergence is even weaker than convergence
in probability. In fact, convergence in distribution depends only on the cumu-
lative distribution functions in question. If, for example, we have any sequence
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of random variables with a common distribution function, then that sequence
converges in distribution. Such random variables do not even need to be defined
on the same space.
To have convergence in probability, we need the the differences |xn(ω)−x(ω)|

that appear in the definition of convergence in probability to be defined; thus x
and the xn need to be defined on the same space. So convergence in distribution
does not imply convergence in probability.

Proposition 9.13. Convergence of a sequence {xn} of random variables in
probability to a randomvariable x implies convergence of {xn} to x in distribution.

PROOF. Fix a point t where F is continuous, and fix a number ≤ > 0. Since
x(ω) > t + ≤ and |xn(ω) − x(ω)| ≤ ≤ together imply that xn > t , we have

{ω | xn(ω) ≤ t} ⊆ {ω | x(ω) ≤ t + ≤} ∪ {ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}.

Hence

Fn(t) = P({ω | xn(ω) ≤ t})
≤ P({ω | x(ω) ≤ t + ≤}) + P({ω

Ø
Ø |xn(ω) − x(ω)| ∏ ≤})

= F(t + ≤) + P({ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}).

Forming the limsuponn of this inequality and taking into account the convergence
in probability of {xn} to x gives

lim sup
n

Fn(t) ≤ F(t + ≤). (∗)

Similarly we have

{ω | x(ω) ≤ t − ≤} ⊆ {ω | xn(ω) ≤ t} ∪ {ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}.

Hence
F(t − ≤) ≤ Fn(t) + P({ω

Ø
Ø |xn(ω) − x(ω)| ∏ ≤}).

Forming the lim inf on n of this inequality and taking into account the convergence
in probability of {xn} to x gives

F(t − ≤) ≤ lim inf
n

Fn(t).

Putting this inequality together with (∗), we conclude that

F(t − ≤) ≤ lim inf
n

Fn(t) ≤ lim sup
n

Fn(t) ≤ F(t + ≤).

Letting ≤ tend to 0 and taking into account the continuity of F at t , we see that
limn Fn(t) exists and equals F(t). §
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6. Portmanteau Lemma

It is sometimes inconvenient to use the definition of convergence in distribution
to work with the notion. Fortunately some equivalent formulations are available.
Some of these are identified in the following lemma. Fix a probability space
(ƒ, P).

Lemma 9.14 (Portmanteau14 Lemma). Let {xn} be a sequence of random
variables on (ƒ, P), and for each n, let Fxn and µxn be the corresponding
cumulative distribution function and probability distribution of xn on R. Let
x be another random variable on (ƒ, P), and let Fx and µx be the corresponding
cumulative distribution function and probability distribution on R. Then the
following statements are equivalent:

(a) {xn} converges in distribution to x , i.e., limn→∞ Fxn (u) = Fx(u) at every
point u of continuity of Fx ,

(b) limn→∞ E(g(xn)) = E(g(x)) for every g ∈ Ccom(R), i.e., {µxn } tends to
µx weak-star against Ccom(R),

(c) limn→∞ E(g(xn)) = E(g(x)) for every bounded complex-valued con-
tinuous function g on R.

REMARKS. In all three statements (a) through (c), the probability enters only as
an overlay of interpretation: the mathematical content concerns only monotone
functions and Stieltjes measures. Namely the means in (b) and (c) are nothing
more than the integrals with respect to Stieltjes measures given by E(g(xn)) =R

R g dµxn and E(g(x)) =
R

R g dµx . Integration on the probability space (ƒ, P)
can be completely avoided by repeated use of Proposition 9.1.

PROOF THAT (a) IMPLIES (b). Let g be any C1 function in Ccom(R), let h be the
derivative of g, and let [a, b] be any finite interval of R containing the support of
g in its interior. Integration by parts (Theorem 6.53 of Basic) gives
R b
a Fxn (t)h(t) dt = g(b)Fxn (b) − g(a)Fxn (a) −

R b
a g dµxn = −

R b
a g dµxn (∗)

and similarly
R b
a Fx(t)h(t) dt = −

R b
a g dµx . As n tends to infinity, (a) says that

Fxn (u) tends to Fx(u) at every point of continuity of Fx . This convergence takes
place everywhere except on a countable set, necessarily a Borel set of Lebesgue

14The etymology of the term “portmanteau” in this context is uncertain. The French word
“portemanteau” in the early sixteenth century referred to a person who carried a king’s cloak, and a
little later the term began to refer to a traveling case, generally with two halves to it, such as would
be used in riding horseback. Those definitions by themselves make the word apt for this lemma. In
English, Lewis Carroll in 1882 introduced the notion of a “portmanteau word” to refer to a single
word obtained by telescoping two words into one, and it can be argued that this lemma, having two
ideas that belong together, is akin to a portmanteau word.
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measure 0. Also the sequence is uniformly bounded by 1. Since h is bounded and
has compact support, limn→∞

R b
a Fxn (t)h(t) dt =

R b
a Fx(t)h(t) dt by dominated

convergence. Consequently

limn −
R b
a g dµxn = −

R b
a g dµx . (∗∗)

This proves the convergence asserted by (b) for all g ∈ C1com(R).
Let a general member g0 of Ccom(R) be given. Corollary 6.19 and Theorem

6.20 of Basic show how to convolve g0 with the members of an approximate
identity of functions inC∞

com(R) to obtain a sequence {gm} ofmembers ofC∞
com(R)

such that limm gm = g0 uniformly. Applying (∗∗) with g = gm and passing to
the limit, we obtain (∗∗) for the general member g0 of Ccom(R). §

PROOF THAT (b) IMPLIES (c). We make explicit use of the fact that µx and
all the µxn are probability measures. Given ≤ > 0, choose a finite open interval
I in R with µx(I ) ∏ 1 − ε, and fix h ∈ Ccom(R) with values in [0, 1] that is
1 on I . Then 1 − h has values in [0, 1] and is nonzero only on R − I . SoR

R (1− h) dµx ≤ µx(R− I ) = 1−µx(I ) ≤ ≤. From lim
R

R h dµxn =
R

R h dµx
and

R
R 1 dµxn = µxn (R) = 1 = µx(R) =

R
R dµx , we obtain

lim supn
R

R (1− h) dµxn =
R

R (1− h) dµx ≤ ≤.

For any continuous function g on R with 0 ≤ g ≤ 1, we can write g =
gh + g(1− h) and obtain
Ø
Ø R

R g dµxn −
R

R g dµx
Ø
Ø

≤
Ø
Ø R

R gh dµxn −
R

R gh dµx
Ø
Ø +

R
R (1−h)g dµxn +

R
R (1−h)g dµx

≤
Ø
Ø R

R gh dµxn −
R

R gh dµx
Ø
Ø +

R
R (1−h) dµxn +

R
R (1−h) dµx .

Since limn
R

R gh dµxn =
R

R gh dµx , it follows that

lim sup
n

Ø
Ø R

R g dµxn −
R

R g dµx
Ø
Ø ≤ 2≤.

Because ≤ is arbitrary, limn
R

R g dµxn =
R

R g dµx . Taking linear combinations
of such functions g allows us to conclude that limn

R
R g dµxn =

R
R g dµx for

every bounded continuous complex-valued function g on R. §

PROOF THAT (c) IMPLIES (a). Suppose that limn
R

R g dµxn =
R

R g dµx for all
bounded continuous g on R, and let u0 be a point of continuity of F . We shall
prove that limn Fxn (u0) = Fx(u0).
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For each subset S ofR, let IS denote the indicator function of S. Fix a positive
integer N . For all bounded continuous g on R with

I(−∞,u0] ≤ g ≤ I(−∞,u0+1/N ),

integration of the left inequality with respect to µxn and of the right inequality
with respect to µx yields

Fxn (u0) = µxn ((−∞, u0]) ≤
R

R g dµxn

and
R

R g dµx ≤ µx((−∞, u0 + 1/N ]) = Fx(u0 + 1/N ).

Thus

lim sup
n

Fxn (u0) ≤ lim sup
n

R
R g dµxn =

R
R g dµx ≤ Fx(u0 + 1/N ).

Since N is arbitrary and Fx is right continuous at u0,

lim sup
n

Fxn (u0) ≤ Fx(u0). (∗)

Fix a positive integer M . If g is a continuous function on R taking values in
[0, 1] and satisfying

I(−∞,u0−1/M] ≤ g ≤ I(−∞,u0]

then integration of the left inequality with respect toµx and of the right inequality
with respect to µxn yields

Fx(u0 − 1/M) ≤
R

R g dµx and
R

R g dµxn ≤ Fxn (u0).

Thus

Fx(u0 − 1/M) ≤
R

R g dµx = limn
R

R g dµxn ≤ lim infn Fxn (u0).

Since M is arbitrary and F is left continuous at u0,

Fx(u0) ≤ lim inf
n

Fxn (u0).

In combination with (∗), this inequality completes the proof. §
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7. Characteristic Functions

Throughout this section, (ƒ, P) denotes a probability space. Let x be a random
variable, and let µx be its probability distribution. The function on R given as
the Fourier transform of µx is called15 the characteristic function of x and is
denoted by ϕx :

ϕx(t) =
Z

R
e−2π i tu dµx(u).

The notion of the Fourier transform of a finite measure onRwas introduced in
Problem 6 of Chapter VIII of Basic. Among other things, that problem observed
that

(a) such functions are bounded and continuous,
(b) the only measure whose Fourier transform is 0 is the 0 measure.

Let us notice also that
(c) ϕx(0) = 1,
(d) ϕax(t) = ϕx(at).

Conclusion (d) follows from the chain of equalities

ϕx(at) =
R

R e
−2π i(at)u dµx(u) =

R
ƒ e

−2π i(at)x(ω) dP(ƒ)

=
R
ƒ e

−2π i t (ax)(ω) dP(ƒ) =
R

R e
−2π i tu dµax(u).

Conclusion (a) will be re-proved in the course of the proof of the Proposition 9.16
below.

Characteristic functions provide a viewpoint for studying probability distri-
butions that emphasizes aspects of the distributions that are not readily apparent
from their definitions. We shall see, for example, in the LevyContinuity Theorem
(Theorem 9.18 below) that convergence in distribution of random variables is
mirroredconveniently in convergenceof the characteristic functionsof the random
variables. This equivalence will be a key step in establishing the Central Limit
Theorem in Section 9.

Lemma 9.15. For all real x ,
Ø
Øx−1(eix − 1)

Ø
Ø ≤ 2.

15Some other authors use the term “characteristic function” to refer to a function that is 1 on
some set and 0 on the complement; we have referred to this kind of function systematically as an
indicator function. Still other authors use a definition of “characteristic function” involving different
constants from ours, in order to be consistent with their own particular definition of the Fourier
transform of a function.



410 IX. Foundations of Probability

PROOF. Since |eix − 1| = |e−i x − 1|, we may assume that x > 0. Also we
may assume that x ≤ 1 because x ∏ 1 certainly implies

Ø
Øx−1(eix − 1)

Ø
Ø ≤ 2. For

0 < x ≤ 1, we use Taylor’s Theorem (Theorem 1.36 of it Basic) in the form

f (x) = f (0) + f 0(0)x +
R x
0 f 00(s)(x − s) ds

with f (x) = eix . Since f 0(0) = i and | f 00(s)| = 1,

|eix − 1| ≤ |x | +
R x
0 |x − s| ds = |x | + 1

2 |x |
2 ≤ |x | + 1

2 |x | ≤ 2|x |. §

Proposition 9.16. Let x be a random variable on the probability space (ƒ, P),
and let ϕx be its characteristic function. Then ϕx is bounded and continuous. For
each integer n ∏ 1 such that E(xn) exists, the function ϕx has n continuous
derivatives and the nth derivative ϕ

(n)
x is given by n-fold differentiation under the

integral defining ϕx , namely as (−2π i)n
R

R e
−2π i tuun dµx(u). In this case the

absolute value of the nth derivative ϕ
(n)
x is bounded by (2π)n E(|xn|).

PROOF. Let us prepare for an inductionby carrying out a preliminary continuity
step and a preliminary differentiation step.. Suppose that G is an integrable
function on R with respect to µx , and let H(t) =

R
R e

−2π i tuG(u) dµx(u). Then

H(t) − H(t0) =
R

R
°
e−2π i(t−t0)u − e−2π i t0u

¢
e−2π i t0uG(u) dµx(u),

and
|H(t) − H(t0)| ≤

R
R

Ø
Øe−2π i(t−t0)u − e−2π i t0u

Ø
Ø|G(u)| dµx(u).

The difference of exponentials is bounded by 2, and the rest of the integrand is a
fixed integrable function. Thus as t tends to t0, we have dominated convergence,
and continuity of H at t0 follows. This completes the preliminary continuity step.
For the preliminarydifferentiation step. Thedifferencequotient leading toward

the derivative of H(t) =
R

R e
−2π i tuG(u) dµx(u) is

h−1[H(t + h)−H(t)] = 1
h
£ R

R(e−2π i(t+h)u − e2π i tu)G(u) dµx(u)
§

=
R

R h
−1(e−2π ihu − 1)e−2π i tuG(u) dµx(u).

=
R

R(2π ihu)−1(e−2π ihu−1)(2π iu)e−2π i tuG(u) dµx(u).

Since Lemma 9.15 shows that
Ø
Ø(2π ihu)−1(e−2π ihu − 1)

Ø
Ø ≤ 2, the integrand is

dominated in absolute value by the single function 4π |u||G(u)| as t tends to
0. Consequently under the additional assumption that uG(u) is integrable with
respect to µx , our difference quotient is the integral of functions parametrized by
h and dominated by a fixed integrable function. The integrand tends to a limit as
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h tends to 0. So again we have dominated convergence, and H is differentiable
with value given by differentiation under the integral sign.
With those preparations done, we can induct, starting with n = 0 and G(u) =

1. The first conclusion gives the continuity of ϕx (as a result of the integrability
of 1), and the second shows that if |u| is integrable, then ϕ0

x is differentiable
with derivative given by differentiation under the integral sign. If we assume
inductively the integrability of un−1, then we obtain the continuity of ϕ

(n−1)
x

immediately. With the additional assumption of integrability of un , we obtain the
existence of ϕ

(n)
x and the formula for computing it. The bound for the absolute

value of ϕ
(n)
x follows from the derivative formula, since (2π)n

R
R |un| dµx(u)

equals (2π)n E(|xn|). §

Proposition 9.17. If x1, . . . , xn are independent random variables, then their
characteristic functions satisfy

ϕx1+···+xn = ϕx1 . . . ϕxn .

Proof. Propositions 9.3 and 9.4 together give

ϕx1+···+xn (t) = E(e−2π i t (x1+···+xn)) = E(e−2π i t x1 · · · e−2π i t xn )

= E(e−2π i t x1) · · · E(e−2π i t xN ) = ϕx1(t) · · ·ϕxn (t). §

8. Lévy Continuity Theorem

Let (8,ω) be a probability space. We shall now reformulate convergence in
distribution in terms of characteristic functions.

Theorem 9.18 (Lévy Continuity Theorem). Let {xn} be a sequence of ran-
dom variables on (ƒ, P), and for each n, let Fxn and ϕxn be the corresponding
cumulative distribution function and characteristic function of xn on R. Let x be
another random variable on (ƒ, P), and let Fx and ϕx be the corresponding
cumulative distribution function and characteristic function on R. Then the
following statements are equivalent:

(a) {xn} converges in distribution to x , i.e., limn→∞ Fn(u) = F(u) at every
point u of continuity of F ,

(b) {ϕxn } converges pointwise to ϕx , i.e., limn→∞ ϕxn (t) = ϕx(t) for every
t ∈ R.

REMARKS. In both halves of the proof, we let µxn and µx be the probability
distributions corresponding to Fxn and Fx . We make use of the equivalence of (a)
and (c) in the Portmanteau Lemma (Lemma 9.14).
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PROOF THAT (a) IMPLIES (b). We apply the implication (a) implies (c) of
Lemma 9.14. Since {xn} converges in distribution to x , the lemma shows for the
function g(u) = e−2π i tu that limn E(g(xn)) = E(g(x)), i.e., that

lim
n→∞

R
R e

−2π i tu dµxn (u) =
R

R e
−2π i tu dµx(u).

This is (b) of the present theorem. §

PROOF THAT (b) IMPLIES (a). Suppose that limn ϕxn (t) = ϕx(t) pointwise for
all t ∈ R. According to Proposition 8.10 of Basic, the Fourier transform operator
F is one-one from the Schwartz spaceS ofR onto itself. For√ inC∞

com(R),F−1√
is therefore a well defined member of S. In particular it is integrable. Since the
functions ϕxn and ϕx are bounded in absolute value by 1, dominated convergence
gives

lim
n

R
R ϕxn (t)(F−1√)(t) dt =

R
R ϕx(t)(F−1√)(t) dt.

Substituting for the definitions in this formula, we obtain

limn
R

R
° R

R e
−2π i tu dµxn (u)

¢
(F−1√)(t) dt

=
R

R
° R

R e
−2π i tu dµx(u)

¢
(F−1√)(t) dt

On the left side of this equation, the integrand in absolute value is just |F−1(√)(t)|,
and this is integrable for dµxn × dt . Thus we can interchange the integrals and
rewrite the left side as

limn
R

R
° R

R e
−2π i tu(F−1√)(t)) dt

¢
dµxn (u) = limn

R
R √(u) dµxn (u).

Similarly we can rewrite the right side as
R

R √(u) dµx(u). Thus we have

limn
R

R √(u) dµxn (u) =
R

R √(u) dµx(u) (∗)

for every √ in C∞
com(R). To complete the proof, let a general member √0 of

Ccom(R) be given. We arguewith an approximate identity of functions inC∞
com(R)

as at the end of the proof that (a) implies (b) in Lemma 9.14 to see that (∗) extends
to be valid when √ is replaced by √0. Because (b) implies (a) in Lemma 9.14,
the validity of (∗) for all √0 in Ccom(R) completes the proof. §

9. Central Limit Theorem

We come to the main result of the chapter. Again (ƒ, P) denotes a probability
space.
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Theorem 9.19 (Central Limit Theorem). If {xn, n ∏ 1} is a sequence of
identically distributed independent random variables on the probability space
(ƒ, P) with common mean µ and common nonzero finite variance σ 2 and if sn
denotes their partial sums sn =

Pn
k=1 xk , then as n tends to infinity, the random

variables
p
n (n−1sn − µ) converge in distribution to a random variable whose

cumulative distribution function has derivative 1
σ
p
2π
e−u2/(2σ 2). In particular,

lim
n→∞

P
≥
ω

Ø
Ø a <

p
n

°
n−1sn(ω) − µ

¢
< b

¥
=

1
σ
p
2π

Z b

a
e−u2/(2σ 2) du

whenever a and b are real numbers with a < b.
REMARKS. The probability distribution with density 1

σ
p
2π
e−(t−µ)2/2σ 2 dt is

called the normal distribution with mean µ and variance σ 2. It is commonly
denoted by N (µ, σ 2). Theorem 9.19 identifies the limiting distribution under
the conditions of the theorem as N (0, σ 2). The graph of the density function of
N (µ, σ 2) is a familiar bell-shaped curve. Figure 9.1 shows this curve for the case
that µ = 0 and σ = 1.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

FIGURE 9.1. Graph of the density of the normal distribution N (0, 1),
namely the graph of (2π)−1/2e−u2/2.

The situation with σ 2 = 0 is a degenerate case of the theorem, and there is still a
result. In this case the random variables in question are almost surely constants,
the various expressions

p
n (n−1sn − µ) are almost surely 0, and the limiting

probability distribution is a point mass at 0.
Thenotation8 is oftenused for the cumulative distribution functionof N (0, 1):

8(t) =
1

p
2π

Z t

−∞
e−s2/2 ds,

and one can find extensive tables of the values of8. A small table of such values
appears in Figure 9.2.
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t 8(t) − 8(−t)
0.5 .382925
1.0 .682689
1.5 .866386
2.0 .954500
2.5 .987581
3.0 .997300
3.5 .999535
4.0 .999937

FIGURE 9.2. Approximate values of 8(x) − 8(−x) for the cumulative
distribution function8 of the normal distribution.

PROOF. Put yn = xn − µ. The means of yn and y2n are

E(yn) = E(xn)−µ = 0 and E(y2n) = E(x2n)−2µE(xn)+µ2 = E(x2n)−µ2.

Thus the variance of xn , namely Var(xn) = E(x2n) − µ2, is equal to the variance
of yn:

Var(yn) = E(y2n) − E(yn)2 = E(y2n) = E(x2n) − µ2 = Var(xn).

The statement of the theorem writes σ 2 for this quantity.
We shall detect the convergence in question by the Lévy Continuity Theorem,

Theorem 9.18. Let ϕy be the common characteristic function of the yn . Since
E(yn) and E(y2n) exist, Proposition 9.16 shows that ϕy is a C2 function. The
Taylor expansion about 0 of a C2 function ϕ is given for t > 0 by Theorem 1.36
of Basic as16

ϕ(t) = ϕ(0) + ϕ0(0)t +
R t
0 (t − s)ϕ00(s) ds

= ϕ(0) + ϕ0(0)t + 1
2ϕ

00(0)t2 +
R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds.

For ϕ = ϕy , Proposition 9.16 shows that ϕy(0) = 1, ϕ0
y(0) = 0, and

ϕ00
y (0) = −4π2

R
R u

2 dµy = −4π2E(y2) = −4π2σ 2.

Put α(t) =
R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds

±
t2. Since

Ø
Ø R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds

Ø
Ø ≤ sup0≤s≤t |ϕ00(s) − ϕ00(0)|

° 1
2 t
2¢,

16The case t < 0 is handled similarly and will be omitted.
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α(t) is continuous for t > 0 and has limt↓0 α(t) = 0. We conclude that the
expansion of ϕy is

ϕy(t) = 1− (2π2σ 2 − α(t))t2. (∗)

Now we consider the characteristic functions of the random variablesp
n (n−1sn − µ) of the theorem. We have

p
n (n−1sn − µ) = n−1/2° nP

k=1
xk − nµ

¢
= n−1/2°

nP

k=1
yk)

Hence

ϕp
n(n−1sn−µ)(t) = ϕy1+···+yn (t/

p
n) by property (d) of

characteristic functions
= ϕy1(t/

p
n) · · ·ϕyn (t/

p
n) by independence and

Proposition 9.17
= ϕy(t/

p
n)n by identical distributions

=
°
1−

°
2π2σ 2−α(t/

p
n)

¢
t2/n

¢n by (∗). (∗∗)

Let us see that this expression has a nonzero limit as n tends to infinity, t being
regarded as fixed. We shall take the logarithm of the expression, write h for 1/n,
and apply the estimate

| log(1− s) + s| ≤ 2s2. (†)

Estimate (†) is valid for |s| ≤ 1
2 by Taylor’s Theorem (Theorem 1.36 of Basic)

applied to the function log(1− s) about s = 0 and the bound of 4 on its second
derivative for |s| ≤ 1

2 .
The logarithm of our expression (∗∗) of interest is

log
°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= n log

°
1− (2π2σ 2 − α(t/

p
n )

¢
t2/n

¢

= h−1 log
°
1− h

°
2π2σ 2 − α(t

p
h )

¢
t2

¢

with h = 1/n, and (†) says that
Ø
Ø log

°
1− h

°
2π2σ 2 − α(t

p
h )

¢
t2

¢
+ h

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø

≤ 2
°
h
°
2π2σ 2 − α(t

p
h )

¢
t2

¢2

if the side condition Ø
Øh

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø ≤ 1

2 (††)
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is satisfied. Here t is fixed, and (††) is satisfied for positive h small enough
because limh↓0 α(t

p
h ) = 0. Thus the logarithm of (∗∗) satisfies

Ø
Ø log

°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
+

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø

≤ 2h
°°
2π2σ 2 − α(t

p
h )

¢
t2

¢2
,

where h = 1/n. The right side tends to 0 as n tends to infinity and h tends to 0,
and so does α(t

p
h )t2. Thus

lim
n→∞

log
°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= −2π2σ 2t2.

Since exp is a continuous function,wecanexponentiateboth sides and interchange
exponential and limit, obtaining

lim
n→∞

°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= e−2π2σ 2t2 .

In otherwords, the characteristic functionsof the randomvariables
p
n(n−1sn−µ)

satisfy
lim
n→∞

ϕp
n(n−1sn−µ)(t) = e−2π2σ 2t2

pointwise for all t .
To apply Theorem 9.18 and complete the proof, we need to identify a proba-

bility measure whose Fourier transform is e−2π2σ 2t2 . That is, we want the inverse
Fourier transform of e−2π2σ 2t2 . According to Proposition 8.2 of Basic and the
remarks afterward, the function e−πu2 has Fourier transform e−π t2 , and for a > 0,
the Fourier transform of the dilate u 7→ a−1e−πa−2u2 is t 7→ e−πa2t2 . Thus
the function 1

σ
p
2π
e−u2/(2σ 2) has Fourier transform e−2π2σ 2t2 . In other words,

the sequence {
p
n (n−1sn − µ)} of random variables on (ƒ, P) converges in

distribution to the random variable given by the coordinate function u on the
probability space

°
R, 1

σ
p
2π
e−u2/(2σ 2) du

¢
. §

EXAMPLES.
(1) Flipping a large number of coins results in a normal distribution for the

total number of heads. This special case of the Central Limit Theorem is the
Theorem of de Moivre and Laplace and is the subject of Problem 18 at the end
of the chapter.
(2) Brownian motion, as discussed near the beginning of Section 3. The

collisions of molecules with a microscopic particle impart small changes in the
path of a particle, and the overall motion of the particle can be analyzed in a
discrete model as a sum of independent random variables. Then it is natural to
expect that the motion is governed by the exponential of a quadratic expression,
and the formulas of the beginning of Section 3 are forced on the model. This
effect comes about from the Central Limit Theorem,
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(3) In the Central Limit Theorem, suppose that each of the random variables xj
has the normal distribution N (0, σ 2). In this case we can compute exactly what
is happening within the proof of the theorem. The characteristic function ϕy of
N (0, σ 2) is the Fourier transform of the function (2πσ 2)1/2e−u2/(2σ 2), which is
e−2πσ 2t2 , as was observed near the end of the proof. In other words the function
ϕy in the proof is exactly

ϕy(t) = e−2πσ 2t2 .

Since µ = 0, we obtain

ϕp
n(n−1sn−µ)(t) = ϕy(t/

p
n)n,

just as in (∗∗) of the proof. We have an exact expression for ϕy , and thus

ϕp
n(n−1sn−µ)(t) = (e−2πσ 2(t/

p
n)2)n = e−2πσ 2t2

exactly. Taking the inverse Fourier transform shows that the probability distribu-
tion of

p
n(n−1sn −µ) is exactly 1

σ
p
2π
e−u2/(2σ)2 du, which is N (0, σ 2). In other

words, all the terms of the sequence are the same, and the convergence is trivial.

So far in this chapter, we have seen that probability theory establishes models
that in principle can be used to generate data about future events. In real-world
applications, one wants to work in the opposite direction—taking some data from
past events, extracting parameters to be able to construct a probability model, and
comparing the given data with what happens in that model. This is the question
of statistical inference, a subject in the field of statistics. We look at one aspect
of that question in the next section.

10. Statistical Inference and Gosset’s t Distribution

The Central Limit Theorem is an important tool used in extracting information
in real-world applications. In many practical cases one works with a (very large)
populationbutmeasures someproperty in only someof the possible cases, those in
a sample. Let us concentrate on the mean value. Typically one wants to estimate
the mean value of this property for the whole population but as a practical matter
can compute it only for the sample. One then wants to extrapolate and use the
mean of the sample as the mean of the whole population. The difficulty is in
saying how reliable this extrapolated mean is likely to be, that the answer is
within such-and-such interval with a probability of at least a certain amount.17

17This interval is often called themargin of error. The usual convention unless an author states
otherwise is that the probability of being within the margin of error is at least .95.
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Examples of such cases are voter preferences for candidates for a particular
election and the efficacy of a new drug in medicine. In these examples the
population is made up of people, and each person in the sample is associated
with a random variable xn . The possible values of xn and their probabilities
give a probability distribution associated with that person. The Central Limit
Theorem then gives an idea what to expect of the general population, provided
the hypotheses of independence and identical distributions are satisfied.18
In practice certain known potential dependences need to be taken into account.

With voting preferences it is known that a voter’s age, gender, income, education,
and political affiliation may affect the voting preference. In testing a drug, it
is known that a person’s age, gender, and health history may affect how well a
drug works. The idea is to work with each category separately, assuming that its
members are more or less independent, and to apply the Central Limit Theorem
to each category. Then the results from the different categories are combined
with some weighting. We shall not pursue this question of handling potential
dependences but shall concentrate on situations in which the entire population is
assumed to be independent and identically distributed.
W. S.Gosset studied this situation in a famous 1908paper. Hewas an employee

of a brewery in Ireland, and one of his interests was in assessing the chemical
properties of barley on the basis of a rather small sample. The opening paragraphs
of his paper19 read as follows:

Any experiment may be regarded as forming an individual of a “pop-
ulation” of experiments which might be performed under the same
conditions. A series of experiments is a sample drawn from this
population.
Now any series of experiments is only of value in so far as it enables

us to form a judgment as to the statistical constants of the population
to which the experiments belong. In a greater number of cases the
question finally turns on the value of a mean, either directly, or as the
mean difference between the two quantities.
If the number of experiments be very large, we may have precise

information as to the value of the mean, but if our sample be small, we
have two sources of uncertainty: (1) owing to the “error of random
sampling” the mean of our series of experiments deviates more or
less widely from the mean of the population, and (2) the sample is
not sufficiently large to determine what is the law of distribution of
individuals. It is usual, however, to assume a normal distribution,
because, in a very large number of cases, this gives an approximation

18There are versions of the Central Limit Theorem that relax the assumptions of independence
and identical distributions somewhat, but these versions will not be of concern to us.

19W. S. Gosset (writing under the pseudonym “Student”), “The probable error of a mean,”
Biometrika 6 (1), 1–25.
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so close that a small sample will give no information as to the manner
in which the population deviates from normality: since some law of
distribution must be assumed it is better to work with a curve whose
area and ordinates are tabled, and whose properties are well known.
This assumption is accordingly made in the present paper, so that
its conclusions are not strictly applicable to populations known not
to be normally distributed, yet it appears probable that the deviation
from normality must be very extreme to lead to serious error. We are
concernedhere solelywith the first of these two sources of uncertainty.
The usual method of determining the probability that the mean of

the population lies within a given distance of the mean of the sample
is to assume a normal distribution about the mean of the sample with
a standard deviation equal to s/

p
n, where s is the standard deviation

of the sample, and to use tables of the probability integral.
But, as we decrease the number of experiments, the value of the

standard deviation found from the sample of experiments becomes
itself subject to an increasing error, until judgments reached in this
way become altogether misleading.
In routine work . . . .
There are other experiments, however, which cannot easily be re-

peated very often; in such cases it is sometimes necessary to judge
the certainty of the results from a very small sample, which itself
affords the only indication of the variability. Some chemical, many
biological, and most agricultural and large-scale experiments belong
to this class, which has hitherto been almost outside the range of
statistical inquiry.

. . . The aim of the present paper is to determine the point at which
we may use the tables of the probability integral [pertaining to the
Central Limit Theorem] in judging of the significance of the mean of
a series of experiments, and to furnish alternative tables for use when
the number of experiments is too few.

In the language we have been using, Gosset worked with a sample from a
large population. His random variables x1, . . . , xn picked out some numerical
property of eachmember of a sample of size n from the population. It is helpful to
regard each member ω of the the underlying probability spaceƒ as one possible
situation, as far as those n random variables are concerned. Gosset assumed that
x1, . . . , xn were independent and identically distributed, and he assumed further
that the common probability distribution of the xj ’s was a normal distribution
N (µ, σ 2) in which the mean µ and the variance σ 2 were unknown.20

20In real-life applications the common probability distribution is not likely to be exactly normal,
but it is often approximately normal. In this situation the usual practice is to proceed as if the
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He introduced the sample mean

x̄(ω) = n−1(x1(ω) + · · · + xn(ω))

and the sample variance defined by

s(ω)2 =
1

n − 1

nX

j=1

°
xj (ω) − x̄(ω)

¢2
,

which have
E(x̄) = µ and E(s2) = σ.

The latter equality is what accounts for the coefficient 1
n−1 in the definition of s

2.
Gosset worked with a random variable

t (ω) =
x̄(ω) − µ

s(ω)/
p
n

.

It has an interpretation as the difference between the locations of the samplemean
and the true mean, divided by the sample standard deviation, all multiplied by the
same normalizing factor

p
n as in the statement of the Central Limit Theorem.

In an allusion to Gosset’s pseudonym Student, the probability distribution of t is
often called Student’s t distribution, but we shall follow the simpler convention
of calling itGosset’s t distribution. It has the single parameter n, and for reasons
that will emerge below, one refers to it as the t distribution “with n − 1 degrees
of freedom.” The t distribution can therefore be used to estimate how likely the
true mean is to lie in a given interval about the sample mean.

Theorem 9.20. If n > 1 and if x1, . . . , xn are independent random variables
with the common probability distribution N (µ, σ 2), then the density fn(t) of the
t distribution with n − 1 degrees of freedom is given by21

fn(t) =
0

° n
2
¢

p
(n − 1)π 0

° n−1
2

¢
≥
1+

t2

n − 1

¥−
n
2
.

The proof will be given at the end of this section. Observe that fn(t) depends
neither on µ nor on σ . Because of this property, Gosset’s t distribution is indeed
usable for estimating how likely the true meanµ is to lie in a given interval about
the sample mean x̄(ω). We shall give an example in a moment.

distribution were exactly normal but to be aware that some errors may be introduced through the
approximation. We shall not pursue this matter.

21The formula makes use of the gamma function, defined by 0(x) =
R ∞
0 t x−1e−t dt for x > 0.

This function was studied in Proposition 6.34 of Basic, which showed that 0(x + 1) = x0(x) for
x > 0, 0(1) = 1, 0(n + 1) = n! for integers n ∏ 0, and 0( 12 ) =

p
π .
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The coefficient cn in the expression for fn(t) should be viewed as some harm-
less positive constant; the function (1+ (n− 1)−1t2)−n/2 is integrable on R, and
the coefficient makes

R
R fn(t) dt = 1. If we write cn separately for n even and n

odd, the value is22

cn =






(n − 2)(n − 4) · · · 5 · 3
2
p
n − 1 (n − 3)(n − 5) · · · 4 · 2

for n odd

(n − 2)(n − 4) · · · 4 · 2
π

p
n − 1 (n − 3)n − 5) · · · 5 · 3

for n even.

Problem 20 at the end of the chapter shows that the coefficient cn has a finite
nonzero limit as n tends to infinity and that

lim
n→∞

fn(t) =
1

p
2π

e−t2/2,

i.e., that fn(t) converges pointwise to the density of the normal distribution
N (0, 1). This convergence is illustrated in Figure 9.3. The density of the t
distribution is smaller in the center than that of the normal distribution, and it has
larger tails. As n increases, this effect becomes less pronounced.

FIGURE 9.3. Normal distribution as a limit of Gosset’s t distribution.

The opening of Gosset’s 1908 paper mentioned his forming some tables of his
distribution for various values of n. He stopped forming these tables with n = 30,

22Many authors refer to fn(t) and its coefficient cn by using the number of degrees of freedom
∫ = n − 1 as parameter and then using ∫ + 1 in place of n in all tables and formulas. The role of
the number of degrees of freedom will become a little clearer in the course of the proof of Theorem
9.20.
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apparently regarding the t distributionwith 29 degrees of freedomas close enough
to the normal distribution N (0, 1) to make further tables unnecessary. Nowadays
with high-speed computers, one does need to draw a distinction between small
values of n and large values; instead one can use the t distribution in all cases.
The table in Figure 9.4 shows the minimal choice of c needed so that

R c
−c fn(t) dt

is ∏ .95, ∏ .99, and ∏ .995.

n\Threshold .95 .99 .995
2 12.7065 63.6551 127.3447
3 4.3026 9.9247 14.0887
5 2.7764 4.6041 5.5976
7 2.4469 3.7074 4.3168
10 2.2621 3.2498 3.6896
12 2.2010 3.1058 3.4966
15 2.1448 2.9768 3.3257
20 2.0930 2.8609 3.1737
30 2.0452 2.7564 3.0380
50 2.0096 2.6800 2.9397

→ ∞ 1.9600 2.5759 2.8071

FIGURE 9.4. Table of approximate minimal values of c such thatR c
−c fn(t) dt exceeds a threshold.

23

EXAMPLE. A manufacturer of light bulbs claims in its advertising that one
type of its bulbs last for 1000 hours. A consumer advocate randomly selects 10
bulbs for testing. The sampled bulbs last a mean of 950 hours with a standard
deviation of 50 hours. If the advertising claim were true, what is the probability
that 10 randomly selected bulbs would have an average life of no more than 950
hours? To answer this question, we use the given data to compute a t score. The
computation gives

t =
x̄ − µ

s/
p
n

=
950− 1000
50/

p
10

= −
p
10 ≈ −3.16,

and Figure 9.4 shows that the probability is really small; more precisely the
probability is approximately

R −3.16
−∞ f14(t) dt ≈ .0058. The conclusion is that the

advertising probably exaggerates the lifetime of the light bulbs.

23For a larger table see http://www.easycalculation.com/statistics/
t-distribution/t-distribution-critical-value-table.php, from which this
small table was extracted in February 2016.
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We turn to the proof of Theorem 9.20, beginning with some preliminary work
with some specific probability distributions.
The first of these is the gammadistributionwith parametersα > 0 and ∏ > 0.

It is given by24
∏α

0(α)
xα−1e−∏x dx on (0,+∞).

It is taken to be 0 for x ≤ 0. To check that this is a probability distribution, we
need to check that the coefficient of dx has total integral 1. In fact, the change of
variables y = ∏x gives

∏α

0(α)

Z ∞

0
xα−1e−∏x dx =

∏α

0(α)

Z ∞

0
yα−1∏1−αe−y∏−1 dy = 1,

as required.

Lemma 9.21. Suppose that x1, . . . , xn are independent random variables
and that for 1 ≤ j ≤ n, the random variable xj has the gamma distribution
with parameters αj and ∏. Then x1 + · · · + xn has the gamma distribution with
parameters α1 + · · · + αn and ∏.

REMARK. The proofwill use facts about characteristic functions fromSection7
and also elementary complex analysis as in Appendix B of Basic.

PROOF. Fix α > 0. For Re z > 0, let f (z) =
R ∞
0 zαxα−1e−zx dx . If z

is real and positive, then the change of variables y = zx shows that f (z) =R ∞
0 yα−1e−y dy = 0(α). In other words, f (z) is the constant 0(α) for z real.
Let us show that f (z) is analytic, and then we can conclude that f (z) = 0(α)
for all z with Re z > 0.
The integrand for f (z) is continuous for (z, x) in the set {Re z > 0}× (0,∞),

and it is analytic in the first variable. Lemma B.12 and Corollary B.15 of Basic
show that fε,N (z) =

R N
ε zαxα−1e−zx dx is analytic for Re z > 0 whenever

0 < ε < N < ∞, and as ε tends to 0 and N tends to ∞, fε,N (z) converges
to f (z) uniformly on compact subsets of z with Re z > 0. Consequently f (z)
is analytic for Re z > 0. Since f (z) is constantly equal to 0(α) for z real and
positive, f (z) is constantly equal to 0(α) for Re z > 0. Taking z = ∏ + 2π i t
therefore gives

Z ∞

0
(∏ + 2π i t)αxα−1e−(∏+2π i t)x dx = 0(α) (∗)

for all real t .
24Warning: Some authors define the gamma distribution to have parameters α and β, where β

is the reciprocal of the parameter ∏ here.
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Now we can compute the characteristic function ϕx of a random variable x
having the gamma distribution with parameters α and ∏. This is just the Fourier
transform of the gamma distribution itself. Specifically

ϕx(t) =
Z ∞

0

∏α

0(α)
xα−1e−∏xe−2π i xt dx

=
1

0(α)

≥ ∏

∏ + 2π i t

¥α
Z ∞

0
(∏ + 2π i t)αxα−1e−(∏+2π i t)x dx

Applying (∗), we see that

ϕx(t) =
≥ ∏

∏ + 2π i t

¥α

. (∗∗)

Finally we can prove the lemma. Equation (∗∗) shows for each j that ϕxj (t) =°
∏

∏+2π i t
¢αj . The assumed independence and Proposition 9.17 therefore give

ϕx1+···+xn (t) =
nQ

j=1
ϕxj (t) =

nQ

j=1

°
∏

∏+2π i t
¢αj =

°
∏

∏+2π i t
¢α1+···+αn .

By (∗∗) the right side is the Fourier transform of the gamma distribution with
parameters α1 + · · · + αn and ∏. Since the Fourier transform operator is one-one
on L1(R), x1+· · ·+ xn has the gamma distribution with parameters α1+· · ·+αn
and ∏. §

The second specific probability distribution that we need is the distribution of
u21 + · · · + u2k if u1, . . . , uk are independent random variables with the common
normal distribution N (0, 1). This called the chi-square distribution with k
degrees of freedom. The notation χ2(k) is used for this distribution.

Lemma 9.22. The chi-square distribution with k degrees of freedom equals
the gamma distribution with parameters α = k

2 and ∏ = 1
2 and is given by

1
2k/20(k/2)

xk/2−1e−x/2 dx on (0,∞).

It is 0 for x ≤ 0.

PROOF. First consider k = 1. The statement that u1 has the distribution
N (0, 1) means that the probability distribution of u1 is

(2π)−1/2e−x2/2 dx .
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This implies for a ∏ 0 and b > 0 that

P(a < u1(ω)2 < b) = P(
p
a < |u1(ω)| <

p
b) = 2

R p
bp
a (2π)−1/2e−x2/2 dx .

We apply the change of variables y = x2 and see that the above expression is

= 21/2
R b
a π−1/2e−y/2 1

2 y
−1/2 dy = 2−1/2π−1/2 R b

a y
−1/2e−y/2 dy.

From this we can conclude that the probability distribution of u21 is

2−1/20( 12 )y
−1/2e−y/2 dy on (0,+∞),

which is the gamma distribution with parameters α = 1
2 and ∏ = 1

2 .
Now consider general k. The independence of u1, . . . , uk implies that

u21, . . . , u
2
k are independent, according to Proposition 9.4. Each of them has

the gamma distribution with parameters α = 1
2 and ∏ = 1

2 , and we conclude
from Lemma 9.21 that uk1+ · · ·+ u2k has the gamma distribution with parameters
α = k

2 and ∏ = 1
2 . §

Lemma 9.23. If w and v are independent random variables such that w has
the distribution N (0, 1) and v has the distribution χ2(k) with k > 0, then the
random variable t defined by

t =
w

p
v/k

has Gosset’s t distribution with k degrees of freedom, namely

0( k+12 )
p
kπ 0( k2 )

≥
1+

t2

k

¥− k+1
2

REMARKS. In our application of this lemma to the proof of Theorem 9.20,
the integer k will be n − 1, not n. In the notation of Theorem 9.20, the exact
distributions to which the lemma will be applied are

w =
x̄ − µ

σ/
p
n

=
p
n

≥ x̄ − µ

σ

¥

and v =
(n − 1)s2

σ 2
.

To apply the lemma, we shall need to prove that w has probability distribution
N (0, 1), v has probability distribution χ2(n − 1), and w and v are independent.
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PROOF. We use the technique of Example 3b in Section 2. By independence
the joint probability distribution of (w, v) is

1
p
2π

e−w2/2 1
2k/20(k/2)

vk/2−1e−v/2 dw dv on R × (0,+∞).

Define a new random variable t by t = w/
p

v/k, and change variables from
(w, v) to (t, u) using the transformation with t = w/

p
v/k and u = v. Here

(t, u) lies in R × (0,+∞), and (w, v) 7→ (t, u) is one-one onto. The inverse
transformation hasw = t

p
u/k and v = u, and the Jacobianmatrix of the inverse

transformation is ≥
@w/@t @w/@u

@v/@t @v/@u

¥
=

≥ p
u/k 1

2 t/
p
ku

0 1

¥
.

Thus dw dv =
p
u/k dt du, and the joint probability distribution in the new

variables is p
u/k

p
2π 2k/20(k/2)

e−t2u/(2k)uk/2−1e−u/2 dt du.

To obtain the probability distribution of w, we integrate out the variable u for
u ∈ R. We need to compute

1/
p
k

p
π 0(k/2)

Z ∞

−∞
e−u(1+t2/k)/2(u/2)(k+1)/2u−1 du. (∗)

We use the change of variables x = u(1+ t2/k)/2 to see that (∗) is

=
1

p
kπ 0(k/2)

Z ∞

−∞
e−x x (k+1)/2(1+ t2/k)−(k+1)/2x−1 dx

=
0((k + 1)/2)
p
kπ 0(k/2)

(1+ t2/k)−(k+1)/2,

as required. §

An n-by-n real matrix A is said to be orthogonal if it satisfies AAtr = 1. In
this case we have also AtrA = 1. The condition AAtr = AtrA = 1 is equivalent
to the condition that the columns of A are orthogonal under the dot product and
have length 1, and similarly for rows. The linear transformation corresponding
to an orthogonal matrix preserves volumes and therefore has determinant±1.

Lemma 9.24. Let p1, . . . , pn be independent random variables with N (0, 1)
as probability distribution, and let A be an n-by-n orthogonal matrix. Then the

random variables y1, . . . , yn defined by

√ y1
...
yn

!

= A

√ p1
...
pn

!

are independent and

have N (0, 1) as probability distribution.
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REMARK. This lemma is an illustration of the principle in Example 4 in
Section 2.
PROOF. Write p and y for the respective column vectors p = (p1, . . . , pn)

and (y1, . . . , yn). The probability distribution of each pj is (2π)−1/2e−p2j /2 dpj
by assumption. In terms of the dot product, the independence implies that the
joint probability distribution of p1, . . . , pn is

(2π)−n/2
nQ

j=1
e−(p21+···+p2n)/2 dp1 · · · dpn = (2π)−n/2e−(p·p)/2 dp1 · · · dpn. (∗)

Since A is an orthogonal matrix, y · y = Ap · Ap = p · AtrAp = p · p, and also
| det A| = 1. Thus under the change of variables y = Ap, the expression (∗) is

= (2π)−n/2e−(y·y)/2 dy1 · · · dyn = (2π)−n/2
nQ

j=1
e−(y21+···+y2n )/2 dy1 · · · dyn

=
nQ

j=1
(2π)−1e−y2j /2 dyj

The fact that the joint probability distribution splits as a product proves the
independence of y1, . . . , yn , and we can read off from this formula that the
probability distribution of yj is (2π)−1e−y2j /2 dyj , i.e., that yj has probability
distribution N (0, 1). §

PROOF OF THEOREM 9.20. We define random variables w = σ−1pn(x̄ − µ)
and v = σ−2(n − 1)s2 as in the remarks with Lemma 9.23. Then v/k =
v/(n−1) = σ−2s2, and

p
v/k = σ−1s. The quotient in the statement of Lemma

9.23, which is labeled as t , becomes
w

p
v/k

=
σ−1pn (x̄ − µ)

σ−1s
=
x̄ − µ

s/
p
n

and matches the random variable t in the statement of Theorem 9.20. Theorem
9.20 will therefore follow from Lemma 9.23 if we show that w has probability
distribution N (0, 1), v has probability distribution χ2(n − 1), and w and v are
independent.
Let A be any n-by-n orthogonal matrix whose first row has every entry equal

to 1/
p
n. For example, we can start from

B =














1p
n

1p
n

1p
n

1p
n · · · 1p

n

− 1
2

1
2 0 0 · · · 0

− 1
3 − 1

3
2
3 0 · · · 0

− 1
4 − 1

4 − 1
4

3
4 · · · 0

...
. . .

...

− 1
n − 1

n − 1
n − 1

n · · · n−1
n














.
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Observe that the rows of B are orthogonal under dot product. Define a matrix
A to be the same as B except that the j th row, for j ∏ 2, is to be multiplied byp
j/( j − 1). Then the rows of A are orthogonal and have length 1, so that A is

an orthogonal matrix.25
Define random variables pj for 1 ≤ j ≤ n by pj = σ−1(xj − µ). Proposition

9.4 shows that p1, . . . , pn are independent. A change of variables gives

1p
2π
e−p2j /2 dpj = 1

σ
p
2π
e−(xj−µ)2/(2σ 2) dxj ,

and it follows that pj has probability distribution N (0, 1). Next define random

variables y1, . . . , yn by




y1
...
yn



 = A




p1
...
pn



. Lemma 9.24 shows that y1, . . . , yn

are independent and that each has N (0, 1) as probability distribution. The first
of the new random variables is

y1 = 1p
n (p1 + · · · + pn) = 1

σ
p
n (x1 + · · · + xn − nµ) =

p
n

σ
(x̄ − µ) = w. (∗)

In particular, w has probability distribution N (0, 1). We calculate that

s2 = 1
n−1

nP

j=1
(xj − x̄)2 = 1

n−1
° nP

j=1
x2j − 2x̄

nP

j=1
xj + nx̄2

¢
= 1

n−1
° nP

j=1
x2j − nx̄2

¢
.

(∗∗)
Consequently

nP

j=2
y2j =

nP

j=1
y2j − σ−2n(x̄ − µ)2 by (∗)

=
nP

j=1

° xj−µ

σ

¢2
− σ−2n(x̄ − µ)2 since A is orthogonal

=
≥
σ−2

nP

j=1
x2j − 2σ−2µnx̄ + σ−2nµ2

¥

+
°
− σ−2nx̄2 + 2σ−2nx̄µ − σ−2nµ2

¢

= σ−2
nP

j=1
x2j − σ−2nx̄2

= σ−2(n − 1)s2 by (∗∗)
= v.

25This particular choice of A is called a Helmert matrix. Other choices can be obtained by
extending the first row of the above B to a basis of row vectors and then applying the Gram–Schmidt
orthogonalization process to the rows as in Basic, digital second edition, page 599. All such choices
will serve in the present proof.
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Since the yj are independent and each has probability distribution N (0, 1),
v = σ−2(n − 1)s2 is exhibited as a sum of squares of independent random
variables each distributed according to N (0, 1), and it has probability distribution
χ2(n − 1). Since w depends only on y1 and v depends only on y2, . . . , yn−1,
Proposition 9.4 shows that w and v are independent. Lemma 9.23 is therefore
applicable with n = k − 1, and Theorem 9.20 follows. §

BIBLIOGRAPHICAL REMARKS ABOUT CHAPTER IX. The proof of Theorem
9.5 is adapted from Doob’s Measure Theory, and the proof of Theorem 9.8 is
adapted from Feller’s Volume II of An Introduction to Probability Theory and Its
Applications. The material in Sections 5–9 is partly adapted from the Wikipedia
article “Central Limit Theorem,” as of January 2015, and from the chapter26
“Limit Theorems” of the online Analysis of Data project of Guy Lebanon dated
2012. The mathematics in Section 10 is adapted from the chapter27 “Distri-
butions Derived from the Normal Distribution” in the online lecture notes of
Barbara Bailey on multivariate statistics from Summer 2009. The organization
and overview of Section 10 and the end of Section 9 owe much to conversations
with two statisticians, Sarah Knapp Abramowitz and Jon Kettenring.

11. Problems

1. If x is a random variable with probability distribution µx , find a formula for the
probability distribution µ|x | of |x | in terms of µx .

2. Let x1, . . . , xN be random variables on a probability space (ƒ, P), let µx1,...,xN
be their joint probability distribution, and let 8 : RN → R be a nonnegative
Borel function. Prove that

R
R 8(t1, . . . , tN ) dµx1,...,xN (t1, . . . , tN ) =

R
R s dµ8◦(x1,...,xN )(s),

where µ8◦(x1,...,xN ) is the probability distribution of 8 ◦ (x1, . . . , xN ).

3. Suppose on a probability space (ƒ, P) that {yn}∞n=1 is a sequence of random
variables with a common mean µ and with variance σ 2n , and suppose that
8 : R → R is a bounded continuous function.
(a) Prove that P({|yn − µ| ∏ δ}) ≤ σ 2n δ−2 for all n.
(b) Suppose that |8| ≤ M and that δ and ≤ are positive numbers such that

|t − µ| < δ implies |8(t) − 8(µ)| < ≤. Prove that |E(8(yn)) − 8(µ)| ≤
≤ + 2Mσ 2n δ−2.

(c) Prove that if limn σ 2n = 0, then limn E(8(yn)) = 8(µ).

26This is Chapter 8 of Volume 1.
27This is Chapter 6, and the relevant lectures are Lectures 9 and 11.
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(d) Show that the argument in (c) continues to work if8 is the indicator function
of an interval whose closure does not contain µ. Why does the conclusion
in this case contain the conclusion of the Weak Law of Large Numbers as in
Theorem 9.7?

4. (Bernstein polynomials) This problem gives a constructive proof of the Weier-
strass Approximation Theorem by using probability theory.
(a) Fix p with 0 ≤ p ≤ 1. A certain unbalanced coin comes up “heads” with

probability p and “tails” with probability 1 − p; “heads” is scored as the
outcome 1, and “tails” is scored as the outcome 0. Set up a probabilitymodel
(ƒ, P) for a sequence of independent coin tosses of this unbalanced coin,
and let xn be the outcome of the nth toss.

(b) Show that the mean of the outcome of a single toss of the coin is p and the
variance is p(1− p).

(c) Let sn = x1 + · · · + xn . Show for each integer k with k ≤ n that
P({sn = k}) =

°n
k
¢
pk(1− p)n−k .

(d) For continuous 8 : [0, 1] → R, extend 8 to all of R so as to be constant
on (−∞, 0] and on [1,+∞). Apply the result of Problem 3c to show that
limn

Pn
k=08

° k
n
¢°n
k
¢
pk(1− p)n−k = 8(p).

(e) Prove that the convergence in (d) is uniform for 0 ≤ p ≤ 1, and conclude
that8 is the uniform limit of an explicit sequence of polynomials on [0, 1].

Problems 5–9 are closely related to the Kolmogorov Extension Theorem (Theorem
9.5) and in a sense explain the mystery behind its proof. Let X be a compact metric
space, and for each integer n ∏ 1, let Xn be a copy of X . Define ƒ(N ) = ×N

n=1Xn ,
and let ƒ = ×∞

n=1Xn . Each of ƒ(N ) and ƒ is given the product topology. If E
is a Borel subset of ƒ(N ), we can regard E as a subset of ƒ by identifying E with
E ×

°×∞
n=N+1Xn). In this way any Borel measure on ƒ(N ) can be regarded as a

measure on a certain σ -subalgebra FN of the σ -algebra B(ƒ) of Borel sets.

5. Prove that
S∞

n=1Fn = F is an algebra of sets.

6. Let ∫n be a (regular) Borel measure on ƒ(n) with ∫(ƒ(n)) = 1, and regard ∫n
as defined on Fn . Suppose for each n that ∫n agrees with ∫n+1 on Fn . Define
∫(E) for E in F to be the common value of ∫n(E) for n large. Prove that ∫ is
nonnegative additive, and prove that in a suitable sense ∫ is regular on F.

7. Using the kind of regularity established in the previous problem, prove that ∫ is
completely additive on F.

8. In view of Problems 6 and 7, ∫ extends to a measure on the smallest σ -algebra
for ƒ containing F. Prove that this σ -algebra is B(ƒ).
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9. Let X be a 2-point space, and let ∫n be 2−n on each one-point subset of ƒ(n), so
that the resulting ∫ onƒ is coin-tossing measure on the space of all sequences of
“heads” and “tails.” Exhibit a homeomorphism ofƒ onto the standard Cantor set
in [0, 1] that sends ∫ to the usual Cantor measure, which is the Stieltjes measure
corresponding to the Cantor function that is constructed in Section VI.8 of Basic.

Problems 10–14 concern the Kolmogorov Extension Theorem (Theorem 9.5) and its
application to Brownian motion. If J is a subset of the index set I , a subset A of ƒ

will be said to be of type J if A can be described by

A = x−1
J (E) = {ω ∈ ƒ | xJ ∈ E} for some subset E ⊆ SJ .

As in the statement of the Kolmogorov theorem, let A0 be the smallest algebra
containing all subsets of ƒ that are measurable of type F for some finite subset
F of I . Let A be the smallest σ -algebra containingA0.
10. From the fact that the collection of subsets ofƒ that are of type J is a σ -algebra,

prove that every set in A is of type J for some countable set J .
11. Form Brownian motion for time I = [0, T ] by means of the Kolmogorov Exten-

sion Theorem. Let C be the subset of continuous elements ω inƒ. Prove that C
is not in A.

12. With C as in Problem 11, prove that the only member ofA contained in C is the
empty set, and conclude that the inner measure of C relative to P is 0.

13. Still with C as in Problem 11, suppose that E is a subset ofƒ of type J for some
countable J and that C ⊆ E . Prove that the set CJ of elements ω in ƒ that are
uniformly continuous on J is contained in E .

14. Still with C as in Problem 11, suppose for every countable subset J of I that the
set CJ of elements ω in ƒ that are uniformly continuous on J is in A and has
P(CJ ) = 1. Prove that the outer measure of C relative to P is 1.

Problems 15–19 concern methods of convergence and examples of them. In each
problem, all random variables are assumed to be defined on a fixed probability space
(ƒ, P).
15. Prove that if a sequence of random variables {xn} converges to x in probability,

then a subsequence of {xn} converges to x almost surely.
16. Suppose that c is a constant and {xn} is a sequence of random variables such

that E(xn) = c for all n and limn Var(xn) = 0. Prove that {xn} converges to the
constant c in probability.

17. In connection with the implication (b) implies (c) in the Portmanteau Lemma,
give an example to show that there exist a sequence {µn} of finite Stieltjes mea-
sures and another Stieltjes measure µ such that limn

R
R g dµn =

R
R g dµ for all

g ∈ Ccom(R) but not for all bounded continuous g on R.
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18. (Theorem of de Moivre and Laplace ) The setting of this problem is the same
as for Problems 4a–c, the repeated tossing of an unbalanced coin, and the result is
the original historical conclusion of the Central Limit Theorem. Using Theorem
9.19, verify that

lim
n
P

≥
ω

Ø
Ø a<(

p
n)−1

°
sn(ω) − np

¢
< b

¥
=

R b
a exp

°
− u2
2p(1−p)

¢
du

p
2πp(1− p)

.

19. For integers k ∏ 0 and n ∏ 0 and real ∏, define pn,∏(k) =
°n
k
¢°

∏
n
¢k°1 − ∏

n
¢n−k

and p∏(k) = ∏k

k! e
−∏.

(a) Check that
nP

k=0
pn,∏(k) = 1 and that

∞P

k=0
p∏(k) = 1. The probability distri-

bution that assigns weight pn,∏(k) to the integer k is called the binomial
distribution with parameters n and ∏, and the probability distribution that
assigns weight p∏(k) to the integer k is called the Poisson distribution
with parameter ∏.

(b) Fix ∏, let xn,∏ be a random variable having probability distribution given by
pn,∏, and let x∏ be a random variable having probability distribution given
by p∏. Prove that {xn,∏} converges to x∏ in distribution.

(c) Calculate the mean and variance of x∏.

20. InTheorem9.20write fn(t) = cn
°
1+ t2

n−1
¢−n/2, i.e., write cn for the coefficient in

the statement of the theorem. This problem shows that fn(t) converges pointwise
to (2π)−1/2e−t2/2, as was asserted just before Figure 9.3.
(a) Prove for arbitrary c > 0 that s 7→ (1+ c/s)s is an increasing function of s

for s > 0.
(b) Deduce from (a) that n 7→

°
1+ t2

n−1
¢−(n−1)/2 decreases to e−t2/2 as n tends to

+∞, and explain why it follows that limn→∞ c−1n fn(t) = e−t2/2 pointwise.
(c) Using the Dominated Convergence Theorem, prove the pointwise limit

formula
lim
n→∞

R
R

°
1+ t2

n−1
¢−n/2 dt =

R
R e

−t2/2 dt,

and deduce as a consequence that limn→∞ c−1n =
p
2π .

21. In the setting in Section 10 of sample size n, let tn = (x̄ − µ)/(s/
p
n) be the

random variable defined before the statement of Theorem 9.20, and let t∞ be
a random variable with distribution N (0, 1). Suppose that the sample size n in
Theorem 9.20 is allowed to tend to infinity. Explain how it follows from Problem
20 that the random variables tn converge to t∞ in distribution.

Problems 22–26 give a direct computational proof, without characteristic functions,
of the Central Limit Theorem (Theorem 9.19) under the assumption that the common
distribution of the random variables xn is normal of type N (µ, σ 2).
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22. If c is a constant and if a random variable x has a probability distribution of the
form f (t) dt , what is the form of the probability distribution of x + c?

23. If c is a positive constant and if a random variable x has a probability distribution
of the form f (t) dt , what is the form of the probability distribution of cx?

24. If x and y are independent random variables whose respective probability dis-
tributions are of the form f (x) dx and g(x) dx , it was shown in Example 3b in
Section 2 that the probability distribution of x + y is ( f ∗ g)(x) dx . Under the
assumption that x and y are independent and have probability distributions both
normal, of the respective forms N (µ, σ 2) and N (µ0, σ 02), show that x + y is
normally distributed of the form N (µ + µ0, σ 2 + σ 02).

25. Suppose that {xn, n ∏ 1} is a sequence of independent random variables, each
with the probability distribution N (µ, σ 2). Find the distribution of the random
variable

wn =
p
n

≥ x1 + · · · + xn
n

− µ
¥
.

26. In what sense is the convergence in distribution of the random variables wn in
the previous problem to a random variable with probability distribution N (0, σ 2)
trivial?



CHAPTER X

Introduction to Wavelets

Abstract. This chapter introduces the relatively recent subject of wavelets, which is an outgrowth
of Fourier analysis in mathematics and signal processing in engineering. Except in one case,
construction of examples of wavelets tends to be difficult. Much of the chapter is devoted to
construction of some of the better known examples and lists of their most important properties.
Section 1 defines wavelets and discusses three features of traditional Fourier analysis: the

Uncertainty Principle, Gibbs phenomenon, and the Shannon Sampling Theorem. It ends with a
brief essay on the need for wavelets in various applications.
Section 2 establishes that the Haar system is an orthonormal basis of L2(R). The Haar wavelet

predates the general theory of wavelets by many decades but provides a prototype for some of the
development. The section ends with some discussion of convergence of one-sided Haar expansions
for function spaces besides L2(R).
Section 3 begins the general theory ofwavelets, introducing the notion ofmultiresolution analysis

to abstract the construction in Section 2 of the Haar wavelet. The ingredients of a multiresolution
analysis are a scaling function, traditionally called ϕ, and an increasing sequence of closed subspaces
Vj of L2(R) with certain properties. The wavelet that is constructed is traditionally called √ .
Section 4 introduces the Shannon wavelet, whose construction is immediate from the theory of

multiresolution analyses. The new ingredient here, beyond the ideas used for the Haar wavelet, is
the careful use of the generating function of the scaling function to obtain a formula for the wavelet.
Section 5 supplements the theory of Section 3 by showing how to build a multiresolution analysis

out of a candidate for the scaling function.
Section 6 introduces the Meyer wavelets, each of which is smooth and has Fourier transform of a

prescribed order of differentiability. The full theory of Sections 3 and 5 is used in their construction.
Section 7 introduces splines, examines one example, and sees the need for more theory. It

develops one further aspect of the general theory, showing how to replace a “Riesz system” with an
orthonormal set. It therefore allows one to relax the conditions needed in Section 5 for a function to
be a scaling function. In addition, it uses elementary complex analysis to prove a series expansion
for π2/ sin2 πz that is needed in Section 8.
Section 8 continues the discussion of the role of splines in the theory of wavelets, introducing

the Battle–Lemarié wavelets. As with the Meyer wavelets each is smooth and has Fourier transform
of a prescribed order of differentiability.
Section 9 develops the Daubechies wavelets. These have compact support, but except for the first

one, neither they nor their Fourier transforms have known formulas in closed form. The construction
begins by pinpointing necessary conditions on the generating function.
Section 10 deals with smoothness questions. It contains three results. The first gives an estimate

for the decay of the Fourier transform of the Daubechies scaling function of each order. The second
deduces a certain amount of differentiability of a scaling function from the estimate in the first
result. The third shows in the converse direction that a Daubechies wavelet can never be of class

434
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C∞. The section concludes with a table summarizing properties of the specific wavelets that have
been constructed in Sections 2–9.
Section 11 gives a quick introduction to applications. It discusses the discrete wavelet transform

and its use in storage and compression of data, it identifies some applications of wavelets in one and
two dimensions, and it makes brief remarks about some of the applications.

1. Introduction

For current purposes a wavelet is a function √ in L2(R) such that the functions

√j,k(x) = 2 j/2√(2 j x − k)

form an orthonormal basis of L2(R) as j and k range through Z. Such wavelets
are called “orthogonal” and “one-dimensional” by some authors. We postpone
consideration of modifications of this definition to Section 11 at the end of this
chapter.
Corresponding to a wavelet √ is the wavelet expansion

f (x) =
P

j,k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x),

the series being understood as convergent in L2(R), independently of the order
of the terms. Wavelet expansions allow one to isolate certain hidden features
of functions, much as Fourier expansions do, the particular features depending
on properties of √ . Examples of wavelets and their properties will be discussed
beginning in Section 2.
To have a practical guide for the theory, it may be helpful to regard a given

L2 function as a “signal,” a function of one real variable t that represents time.
The values of the function represent a voltage, positive or negative, or perhaps
a mechanical analog of such a voltage. Let us digress for the time being to
consider the role of traditional Fourier analysis in understanding such a signal.
If we consider the function on all of R, the Fourier transform has frequency as
its variable. Alternatively we can think of masking the function, looking at only
those values of t in an interval. If we take that interval to have length 2π , then
we can form the Fourier series of the restricted function, and the variable in the
result will be the subscript on the Fourier coefficients, telling what multiple of a
fundamental frequency is under consideration. Or if we allow ourselves intervals
of a more general length T , then we get the kind of Fourier series appropriate to
functions of period T .
A two-dimensional analog of a signal is a representation of a two-dimensional

picture. If the picture is in black and white, the value of the function at a point
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can be the intensity of light at that point. If the picture is in color, the value of
the function can be a three-dimensional vector representation of the red, green,
and blue values at that point, or by a change of variables, the luminance, the blue
chrominance, and the red chrominance values at that point.

Let us begin by mentioning three relevant features of traditional Fourier anal-
ysis in this setting. The Fourier transform on L2(R) is the continuous extension
F from L1(R) ∩ L2(R) to L2(R) of the linear function

f 7→ bf given by bf (ω) =
Z

R
f (t)e−2π i tω dt.

Then F is a continuous linear function from L2(R) onto L2(R), and it satisfies
kF f k2 = k f k2 for all f ∈ L2(R). Normally we use F to refer to all versions of
the Fourier transform, completely avoiding using the notationb.
The first feature of traditional Fourier analysis is the Uncertainty Principle,

which says in effect that the amount of detail detected in the time domain limits
the amount of detail detectable in the frequency domain. Since our interest is
only in illustrating the principle, it will not be necessary for us to seek maximum
generality. Accordingly we formulate this result as follows. Fix a member f
other than 0 in the Schwartz space S(R). Then t f (t) and ωF f (ω) are in S(R),
and we can define “mean values” t0 and ω0 of t and ω by1

t0 = k f k−2
2

Z

R
t | f (t)|2 dt and ω0 = k f k−2

2

Z

R
ω |F f (ω)|2 dω,

as well as variances in t and ω by

σ 2f,t = k f k−2
2

Z

R
(t − t0)2| f (t)|2 dt, σ 2f,ω = k f k−2

2

Z

R
(ω − ω0)

2|F f (ω)|2 dω.

Proposition 10.1 (Uncertainty Principle). If f is a nonzero member of S(R),
then

σ 2f,tσ
2
f,ω ∏

1
16π2

.

REMARKS. The quantity σ f,t is to be regarded as a measure of the time duration
of the signal f (t), and σ f,ω is to be regarded as a measure of the frequency
dispersion or bandwidth of the signal. The inequality in the proposition is not
the only limitation on the time duration of f (t) and the dispersion of F f (ω); for
example, if f has compact support, then F f extends to be analytic in the whole
complex plane, and the zeros ofF f therefore cannot have a limit point anywhere
on the real axis unless f = 0.

1These are themean values, in the sense of Chapter IX, of the random variables t andω relative to
the probability distributions k f k−2

2 | f (t)|2 dt and k f k−2
2 |F f (ω)|2 dw, respectively, and similarly

for the variances lower down.
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PROOF. We treat first the special case that t0 = ω0 = 0. Let f 0 be the derivative
of f . Since F f 0(ω) = 2π iωF f (ω), we have

k f k42 σ 2f,tσ
2
f,ω =

R
R |t f (t)|2 dt

R
R |ωF f (ω)|2 dω

= (2π)−2
R

R |t f (t)|2 dt
R

R |F f 0(ω)|2 dω

= (2π)−2
R

R |t f (t)|2 dt
R

R | f 0(t)|2 dt

∏ (2π)−2
Ø
Ø R

R
°
t f (t) f 0(t)

¢
dt

Ø
Ø2

= (2π)−2
Ø
Ø R

R
1
2 t

°
f (t) f 0(t) + f 0(t) f (t)

¢
dt

Ø
Ø2

= (2π)−2
Ø
Ø R

R
1
2 t

d
dt

°
f (t) f (t)

¢
dt

Ø
Ø2,

the inequality holding by the Schwarz inequality. In the integral on the right
side, we integrate by parts, differentiating 1

2 t and integrating
d
dt

°
f (t) f (t)

¢
. The

integrated term is 0 because f is a Schwartz function, and the right side simplifies
to

= 1
4 (2π)−2

Ø
Ø R

R −| f (t)|2 dt
Ø
Ø2 = 1

4 (2π)−2k f k42.
Thus

σ 2f,tσ
2
f,ω ∏ 1

16π2 ,

and the proof is complete under the assumption that t0 = ω0 = 0.
For the general case, we consider the function

g(t) = e−2π iω0t f (t + t0),

which has kgk2 = k f k2 and Fg(ω) = e2π i(ω+ω0)(t0)F f (ω + ω0). For g, the
mean value of t is

µg,t = k f k−2
2

R
R t |g(t)|

2 dt

= k f k−2
2

R
R t | f (t + t0)|2 dt

= k f k−2
2

R
R(t − t0)| f (t)|2 dt = t0 − t0 = 0,

and the mean value of ω is
µg,ω = k f k−2

2
R

R ω |Fg(ω)|2 dω

= k f k−2
2

R
R ω |F f (ω + ω0)|2 dω

= k f k−2
2

R
R(ω − ω0)|F f (ω)|2 dω = ω0 − ω0 = 0.

The special case therefore applies to g. The variance in t for g is

σ 2g,t = kgk−2
2

R
R(t − 0)2|g(t)|2 dt = k f k−2

2
R

R t
2| f (t + t0)|2 dt

= k f k−2
2

R
R(t − t0)2| f (t)|2 dt = σ 2f,t ,

and similarly the variance σ 2g,ω in ω for g equals σ 2f,ω. Hence the conclusion in
the special case of g gives the desired inequality for f . §
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The second feature of traditional Fourier analysis is Gibbs phenomenon.
Informally this is the statement that the partial sums of the Fourier series of a
nice real-valued function with a jump discontinuity overshoot the expected limit,
above and below, by about 9%. The more precise statement is in Proposition
10.2.
(a) (b)

(c) (d)

FIGURE 10.1. Gibbs phenomenon for the partial sums of the Fourier series
sN ( f ; x) when f is continued from 1

2 (π − x) with 0 < x < 2π
so as to have period 2π . (a) Graph of s30( f ; x). (b) Detail in graph
of s30( f ; x), C being ≈ 1.179. (c) Same detail in graph of s120( f ; x).

(d) Same detail in graph of s480( f ; x).

Proposition 10.2 (Gibbs phenomenon). Let f be a real-valued periodic
function of period 2π . Suppose that f is of bounded variation and has an
isolated jump discontinuity when t = t0; specifically suppose that the jump
J = limt↓t0 f (t) − limt↑t0 f (t) is > 0. If sN ( f ; t) is the partial sum of the
Fourier series of f at t , then

lim
N→∞

sN
°
f ; t0 + π

N
¢
− lim

N→∞
sN ( f ; t0 − π

N ) = C J, the limits existing,

where C = 2
π

R π

0 (sin t)/t dt ≈ 1.179.
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REMARKS. Thus the overshoot above and below is at least by half of .179 times
the size of the jump. The overshoot is illustrated in Figure 10.1, which shows a
graph of the 30th partial sum, together with enlargements of a certain portion of
the graphs of of the 30th, 120th, and 480th partial sums.

PROOF. Let g(t) be the periodic extension of the function that equals 12 (π − t)
for 0 < t < 2π . This is periodic of period 2π , is of bounded variation, and is
continuous except at the multiples of 2π , where it jumps by π . Thus the function
h with h(t) = f (t) − π−1 Jg(t − t0) is of bounded variation and is continuous
is an interval about t = t0. By Theorem 6.55 of Basic, the Fourier series of h
converges uniformly to h in an interval about t0. Consequently it is enough to
consider the function g and the point t0; in this case the jump is J = π .

From Section I.10 of Basic, the Fourier series of g is
∞P

n=1

sin nt
n

. If sN (g; t)

denotes the N th partial sum of this series, then

sN (g;π/N ) =
NX

n=1

sin(nπ/N )

n
,

which is a Riemann sum for the Riemann integral of the continuous function
(sin t)/t from 0 to π . The partition is equally spaced with mesh π/N , and the
function is evaluated at the right-hand endpoint of each interval of the partition.
By Theorem 1.35 of Basic,

lim
N→∞

sN (g;π/N ) =
R π

0
sin t
t dt = π

2C,

with C as in the statement of the proposition. Since the periodic function g(x) is
odd, we similarly obtain

lim
N→∞

sN (g;−π/N ) = −π
2C.

Therefore
lim
N→∞

sN (g;π/N ) − lim
N→∞

sN (g;−π/N ) = πC,

as asserted. §

The third feature of traditional Fourier analysis concerns “sampling.” As a
practical matter, signals in engineering cannot be expected to be known exactly.
Realistic information about the signal can be obtained only at certain instants of
time, possibly instants that are very close to one another.2 To what extent does

2Actually what seems to be the value at an instant of time may really be a kind of average over
a very short interval, but we shall ignore this distinction.
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the sampled version of the signal determine the signal exactly? The Shannon
SamplingTheorem gives an answer. It assumes that the signal is “band-limited,”
i.e., its Fourier transform vanishes outside some interval. This is a reasonable
assumption in practice, since each piece of equipment for studying signals has its
own limitations in coping with high frequencies.

Proposition 10.3 (Shannon Sampling Theorem). Suppose that f is a member
of L2(R) whose Fourier transformF f vanishes outside the interval [− 1

2ƒ, 12ƒ].
Then f can be taken to be smooth and satisfies

f (t) =
∞X

k=−∞

f
≥ k
ƒ

¥ sin(π(ƒt − k))
π(ƒt − k)

,

the series being convergent in L2(R) and also uniformly convergent in t .
PROOF. Until the very end we assume that ƒ = 1. Since F f is in L2(R)

and has compact support, it is in L1(R), and we can recover f from it almost
everywhere by means of the formula

f (t) =
R

R e
2π iωt(F f )(ω) dω =

R 1/2
−1/2 e

2π iωt(F f )(ω) dω. (∗)
From this formula it follows that f in the variable t is the restriction to R of an
entire function; in particular, f is smooth, and (∗) holds for every t . Since F f
is supported on [− 1

2 ,
1
2 ], we can treat it as an L

2 periodic function on [− 1
2 ,

1
2 ] of

period 1, and we can expand it in Fourier series as F f (ω) =
P∞

k=−∞ cke2π ikω,
the series convergent in L2([− 1

2 ,
1
2 ]). Here ck =

R 1/2
−1/2(F f )(ω)e−2π ikω dw =

f (−k), the second equality holding by (∗). Thus the Fourier series expansion of
(F f )(ω) is

F f (ω) =
∞P

k=−∞
cke2π ikω =

∞P

k=−∞
f (−k)e2π ikω =

∞P

k=−∞
f (k)e−2π ikω. (∗∗)

Substituting (∗∗) into (∗) gives

f (t) =
R 1/2
−1/2 e

2π iωt(F f )(ω) dω =
R 1/2
−1/2

∞P

k=−∞
f (k)e2π i(t−k)ω dω. (†)

If we allow ourselves to interchange sum and integral on the right side and if we
assume that t is not an integer, we see that (†) is

=
∞P

k=−∞
f (k)

R 1/2
−1/2 e

2π i(t−k)ω dω

=
∞P

k=−∞
f (k)

heπ i(t−k) − e−π i(t−k)

2π i(t − k)

i

=
∞P

k=−∞
f (k)

sinπ(t − k)
π(t − k)

,
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as required.
Under the assumption that ƒ = 1, we are left with justifying the interchange

of integral and sum on the right side of (†) and with addressing the restriction
t /∈ Z. Let IE(ω) be the indicator function of [− 1

2 ,
1
2 ], and define ck as above.

Put

fN (t) = F−1°IE(ω)
NP

k=−N
cke2π ikω

¢
(t) = F−1°IE(ω)

NP

k=−N
f (−k)e2π ikω

¢
(t).

Since IE(ω)
NP

k=−N
cke2π ikω tends to IE(ω)(F f )(ω) in L2 and is supported in the

fixed bounded set E , it converges also in L1, and it follows that its inverse Fourier
transform fN (t) converges uniformly to f (t), as well as in L2(R). The above
interchange of limits works for fN because the sum is a finite sum, and thus we
obtain

fN (t) =
NX

k=−N
f (k)

sinπ(t − k)
π(t − k)

for every N . Use of continuity shows that we do not need to assume t /∈ Z.
Letting N tend to infinity, we obtain the desired identity forƒ = 1 with uniform
convergence and convergence in L2(R).
For general ƒ, suppose that f has F f (ω) = 0 for |ω| > 1

2ƒ. Put g(t) =
ƒ−1 f (ƒ−1t), so that (Fg)(ω) = (F f )(ƒω). Then (Fg)(ω) = 0 for |ω| > 1

2 ,
and the case proved above applies to g. Then we obtain

g(t) =
X

k
g(k)

sinπ(t − k)
π(t − k)

.

Substitution gives

ƒ−1 f (ƒ−1t) = ƒ−1
X

k
f (ƒ−1k)

sinπ(t − k)
π(t − k)

.

Multiplying both sides by ƒ and replacing t by ƒt completes the proof. §

We turn now towavelets. The subject of wavelets has grown out ofmany areas,
theoretical and applied, and some of the background is quite deep. For example,
the dilations by powers of 2 that enter the definition are motivated to an extent
by Littlewood–Paley theory, a part of Euclidean Fourier analysis beyond what is
discussed in Chapter III of this book. Our approach will be to take the resulting
theory as a subject on its own, often without presenting the deep motivation for
particular definitions.
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Many of the applications of wavelets are to problems of analysis and/or
compression of data, possibly with noise reduction. A traditional example of
compression, from the days when telephone calls were transmitted over copper
wires, is how the voice signals of telephone calls were handled. The telephone
company was not content with sending just one signal over a wire. It wanted
to send many signals simultaneously. To do so, it filtered each conversation to
eliminate frequencies other than those between 300 and 2700 cycles per second
and then multiplied the signal by a high-frequency carrier wave to obtain a signal
in a high-frequency band of width 2400 cycles per second. Allowing different
bands for different conversations allowed it to transmitmany conversations at once
over the same wires. Some information was lost during this step of compression,
including all frequencies outside the band 300 to 2700 cycles per second.
In the setting we are studying, the data can be in analog form, as was the case

in the example just given, but let us think of the given data as digital. In the
one-dimensional case we then have a digitized signal, perhaps of speech or music
or some other kind of sound. In the two-dimensional case, we have an image,
perhaps the photographic image produced by a digital camera or an image of a
fingerprint. We want to know what is happening in the signal and to process the
signal accordingly, perhaps enhancing some parts of it and damping other parts.
If traditional Fourier analysis is to be used, then any compressionwill likely be

achieved by discarding high-frequency information. For example, the JPEG file
of a digital photograph3 is obtained by treating the image as built from squares
of size 8 pixels by 8 pixels, doing a discrete Fourier analysis on each piece, and
discarding some information. For most photographs this method of compression
is perfectly adequate, but interactions occur at the boundary between adjacent
8-by-8 squares. At high compression ratios these interactions can produce a
visible effect known as “blocking,” and the result can sometimes be disconcerting.
On an image like that of a fingerprint, JPEG is distinctly inadequate.
In any of these situations the theory of wavelets is available to handle the

analysis and/or processing in a different way. Different wavelets have different
advantages, and one may want one kind of wavelet for one situation and another
kind for another situation. One study of speech4 for designing hearing aids
classified short intervals of speech into four possible kinds—“voiced, plosive,
fricative, and silent segments”—and it proceeded from there. One of its tools
was the Daubechies wavelet of order N = 3.
Over the next nine sections we shall construct directly certain wavelets and

3“JPEG” stands for Joint Photographic Experts Group. The committee has a website, namely
https://jpeg.org.

4B. T. Tan, R. Lang, Heiko Schroder, A. Spray, and P. Dermody, “Applying wavelet analysis to
speech segmentation and classification,” Proc. SPIE (International Society for Optical Engineering)
2242 (1994), Orlando, FL, 750–761.
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families of wavelets, extracting properties of each. We construct the first histor-
ical example of a wavelet in Section 2 and develop a fairly general method of
constructing wavelets in Section 3. Subsequently we shall make refinements to
the construction. Applying the method and its refinements, we obtain several im-
portant explicit families of wavelets in Sections 4–9. All along, we shall observe
certain properties of these families; these properties influence the usefulness of
the various families for certain kinds of applications. Section 10 completes the
derivation of the properties, and a table listing the names of the families and
summarizing the properties appears as Figure 10.18.
In Section 11 we shall take a look at the wavelet transform. Analyzing the

nature of the transform and of its calculation gives an inkling of how to take
advantage of wavelets in analyzing signals. At the end of the section, we
make some remarks about one-dimensional applications and also about two-
dimensional wavelets and their use in improving the JPEG algorithm and the
compression of fingerprint records. The applications to images involve a new
wrinkle in that the sight of asymmetries appears to be more noticeable that one
might at first expect. As a result it is desirable for wavelets involved in image
processing to be symmetric in a certain sense. This symmetry is impossible for
compactly supported orthogonal wavelets, and some relaxation of the definition
is warranted.
In the end, analysis using wavelets is one tool in signal processing; Fourier

analysis is another. There are also others. One should not think of wavelet
analysis as a substitute for these other methods, however. As Y. Meyer put it in
his groundbreakingbook5 listed in the SelectedReferences, “Butwavelet analysis
cannot entirely replace Fourier analysis, indeed, the latter is used in constructing
the orthonormal bases of wavelets needed for analysis with wavelet series.”

2. Haar Wavelet

The Haar system is the system of functions in L2(R) defined by

√j,k(x) = 2 j/2√(2 j x − k) for j and k in Z,

where √ is the function in L2(R) defined by

√(x) =






1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.
In this section we shall prove the following result and consider some of its
ramifications.

5Y. Meyer,Wavelets and Operators, p. 1.”
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Theorem 10.4. The Haar system is an orthonormal basis of L2(R).

Therefore the above function√ is awavelet forwhat is called theHaar system,
and one refers to √ as theHaar wavelet. Any integer translate √0,k of √ = √0,0
would serve equallywell for this purpose. The proofwill make use of an auxiliary
function ϕ in L2(R) called the scaling function for the system. The Haar scaling
function ϕ is the indicator function of the interval [0, 1), namely

ϕ(x) =

Ω 1 if 0 ≤ x < 1,
0 otherwise.

In notation analogous to that for √ , we introduce the system of functions

ϕj,k(x) = 2 j/2ϕ(2 j x − k) for j and k in Z.

Graphs of ϕ and √ appear in Figures 10.2a and 10.2b.
The details of the proof of Theorem 10.4 are of some importance for other

systems as well as the Haar system, and we shall therefore give the proof in steps
and extract some further information from it after it is complete.

(a) (b)

(c) (d)

FIGURE 10.2. Graphs of Haar scaling function and wavelet.
(a) ϕ(x). (b) √(x). (c) ϕ(x) = ϕ(2x) + ϕ(2x − 1).

(d) √(x) = ϕ(2x) − ϕ(2x − 1).
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PROOF OF THEOREM 10.4.
Step 1. We prove that {√j,k} is an orthonormal system.
The functions being real, we can drop all references to complex conjugation.

Using the change of variables 2 j x − k = y, which has x = 2− j (y + k) and
dx = 2− j dy, we examine the integral

R
R √j,k(x)√m,n(x) =

R
R 2

( j+m)/2√(2 j x − k)√(2mx − n) dx,

=
R

R 2
(− j+m)/2√(y)√(2m− j (y + k) − n) dy.

If j = m, this reduces to

=
R

R √(y)√(y + k − n) dy;

for k = n, the integrand is √(y)2 = ϕ(y), and the integral is 1, while for k 6= n,
the two factors of the integrand are nonzero on disjoint sets and the integral is 0.
If j 6= m, we may assume by symmetry that r = m− j is> 0. Then it is enough
to show that R

R √(y)√(2r y + t) dy

is 0 for r > 0 when t is any integer. Under the change of variables 2r y + t = u,
dy = 2−r du, this integral becomes

=
R 1/2
0 √(2r y + t) dy −

R 1
1/2 √(2r y + t) dy

= 2−r R 2r−1+t
t √(u) du − 2−r R 2r+t

2r−1+t √(u) du.

Each of the integrals on the right side is an integral of√ over an interval of integer
length, and any such integral is 0. This completes the proof of orthonormality.
Step 2. If V0 is the closed subspace of members of L2(R) that are constant

almost everywhere on each interval [k, k + 1) with k in Z, then the functions
x 7→ ϕ(x − k) form an orthonormal basis of V0.
In fact, the function x 7→ ϕ(x − k) is 1 on [k, k + 1) and is 0 otherwise.

Its square integral is therefore 1, and the inner product of any two distinct such
functions is 0. Thus the set of functions x 7→ ϕ(x − k) is orthonormal. Since
the vector space of finite linear combinations of the functions x 7→ ϕ(x + k) is
dense in V0, it follows that the set of functions x 7→ ϕ(x − k) is an orthonormal
basis of V0.
Step 3. We construct some closed subspacesVj of L2(R) for j ∏ 1, we observe

for each j that the functions ϕj,k , as k varies, form an orthonormal basis of Vj ,
and we note some properties of Vj .
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We let Vj be the set of functions in L2(R) that are constant almost everywhere
on each interval [2− j k, 2− j (k + 1)). Then it is plain that for all j ∏ 0,

Vj ⊆ Vj+1 (∗)

and
f (x) is in Vj if and only if f (2x) is in Vj+1. (∗∗)

Arguing as in Step 2, we see for each j ∏ 0 that the set of functions

x 7→ ϕj,k(x) is an orthonormal basis of Vj . (†)

Step 4. We prove that
S∞

j=0 Vj is dense in L2(R).
In fact, suppose f ∈ L2(R) is to be approximated, and let ≤ > 0 be given.

Corollary 6.4 of Basic shows that Ccom(R) is dense in L2(R). Thus we can
choose g ∈ Ccom(R) with k f − gk2 < ≤. Let E be the support of g. Since
g is uniformly continuous on the compact set E and hence on all of R, we can
find a negative power of 2, say 2−l , small enough so that |x − y| < 2−l implies
|g(x)− g(y)| < ≤/|E |1/2, where |E | is the measure of E . Define a function h(x)
to equal g(n2−l) for n2−l ≤ x < (n + 1)2−l . Then h is in Vl , and h satisfies an
estimate

|g(x) − h(x)| = |g(x) − g(n2−l)| < ≤/|E |1/2 for x ∈ [n2−l, (n + 1)2−l)

and hence for all x . Then

kg − hk22 ≤ |E |(≤/|E |1/2)2 ≤ ≤2,

and hence kg − hk2 ≤ ≤. Therefore k f − hk2 < 2≤, and
S∞

j=0 Vj is dense in
L2(R).
Step 5. We construct some closed subspaces Wj of L2(R) for j ∏ 0, and we

examine the properties of Wj .
Let us define Wj for j ∏ 0 to be the orthogonal complement of Vj in Vj+1.

For j ∏ 0, let us check that

f (x) is in Wj if and only if f (2x) is in Wj+1. (††)

In fact, if f (x) is inWj , then it is in Vj+1. So f (2x) is in Vj+2. If g(x) is in Vj+1,
then g( 12 x) is in Vj by (∗∗), and it has

R
R f (2x)g(x) dx = 2

R
R f (x)g( 12 x) dx =

0. Hence f (2x) is in the orthogonal complement of Vj+1 in Vj+2, which isWj+1.
In the reverse direction if f (2x) is in Wj+1, then f (2x) is in Vj+2, and (∗∗)

shows that f (x) is in Vj+1. Every g(x) in Vj+1 has 0 =
R

R f (2x)g(x) dx =
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1
2
R

R f (x)g( 12 x) dx . The function g(
1
2 x) is the most general element of Vj by

(∗∗), and thus f (x) is in Wj . This proves (††).
Let us write ⊥ for orthogonal direct sum. For n ∏ 0, we then have

Vn = Vn−1 ⊥ Wn−1 = Vn−2 ⊥ (Wn−2 ⊥ Wn−1)

= Vn−3 ⊥ (Wn−3 ⊥ Wn−2 ⊥ Wn−1)

= · · · = V0 ⊥ (W0 ⊥ W1 ⊥ · · · ⊥ Wn−1). (‡)

Step 6. We observe that ϕ is in V0, that √ is in V1, that the functions ϕ and √
satisfy the equations

ϕ(x) = ϕ(2x) + ϕ(2x − 1)
√(x) = ϕ(2x) − ϕ(2x − 1),and

and that √ is in W0. These equations are reflected in the graphs appearing in
Figures 10.2c and 10.2d.
The facts that ϕ is in V0 and √ is in V1 are clear from the definitions. Now

ϕ(2x) =

Ω 1 if 0 ≤ x < 1
2 ,

0 otherwise,

and

ϕ(2x − 1) =

Ω 1 if 1
2 ≤ x < 1,

0 otherwise.

Their sum is 1 for 0 ≤ x < 1 and thus equals ϕ(x), while their difference is 1 for
0 ≤ x < 1

2 and is −1 for 12 ≤ x < 1 and thus equals √(x). For inner products
we have

(ϕ0,k, √) =
R

R ϕ(x − k)√(x) dx =
R k+1
k √(x) dx,

and this is 0 for all k; for k = 0, it is 0 because √ has integral 0, and for k 6= 0,
it is 0 because the set where √ is not 0 does not meet [k, k + 1). Thus √ is
orthogonal to every member of the orthonormal basis of V0 given in Step 2. Since
√ is known to be in V1, √ is in W0.

Step 7. We show that the functions x 7→ √(x − k) form an orthonormal basis
of W0.
Being nonzero on disjoint sets, they are orthonormal. Let f be any member of

W0. SinceW0 is contained in V1 and since the functions ϕ1,k form an orthonormal
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basis of V1, f is of the form

f (x) =
P

k
ckϕ1,k(x) =

P

k even
ckϕ1,k(x) +

P

k odd
ckϕ1,k(x)

=
p
2

P

l
c2lϕ(2x − 2l) +

p
2

P

l
c2l+1ϕ(2x − 2l − 1)

=
p
2
2

P

l
(c2l + c2l+1)

°
ϕ(2x − 2l) + ϕ(2x − 2l − 1)

¢

+
p
2
2

P

l
(c2l − c2l+1)

°
ϕ(2x − 2l) − ϕ(2x − 2l − 1)

¢

=
p
2
2

P

l
(c2l + c2l+1)ϕ(x − l) +

p
2
2

P

l
(c2l − c2l+1)√(x − l),

the last equality holding by Step 6. Since f is orthogonal to V0, taking the inner
product of both sides with any particular ϕ(x − l) shows that the coefficient of
ϕ(x − l) is 0. That being true for all l, f is exhibited as in the closed linear span
of the functions √(x − l).
Step 8. We show that for each j ∏ 0, the functions √j,k , as k varies, form an

orthonormal basis of Wj .
In fact, this is immediate from (††) and Step 7.
Step 9. The functionsϕ0,k for k ∈ Z and the functions√j,k for j ∏ 0 and k ∈ Z

together form an orthonormal basis of L2(R). Here the ϕ0,k form an orthonormal
basis of V0, and the other functions form an orthonormal basis of the orthogonal
complement of V0 in L2(R).
The functions ϕ0,k for k ∈ Z and the functions √j,k for 0 ≤ j ≤ n − 1 and

k ∈ Z together form an orthonormal basis of Vj , by (‡), Step 2, and Step 8.
Taking the union on j of the nested spaces Vj and applying Step 4, we find that
the functions ϕ0,k for k ∈ Z and the functions √j,k for j ∏ 0 and k ∈ Z together
form an orthonormal basis of L2(R).
Step 10. We extend the definitions of the spaces Vj and Wj to j < 0, and we

observe that (∗), (∗∗), (†), (††) extend to be valid for all j , and (‡) has a natural
extension to handle the extended definitions.
The space Vj is the set of functions in L2(R) that are constant almost every-

where on each interval [2− j k, 2− j (k + 1)), and the space Wj is the orthogonal
complement of Vj in Vj+1. Then it is immediate that (∗), (∗∗), (†), (††) extend
to be valid for all j . The extended form of (‡) is

Vn = Vm ⊥ (Wm ⊥ Wm+1 ⊥ · · · ⊥ Wn−1) for m ≤ n, (‡‡)

and this too is immediate.



2. Haar Wavelet 449

Step 11. The functions ϕm,k for k ∈ Z and the functions √j,k for j ∏ m and
k ∈ Z together form an orthonormal basis of L2(R).
This is immediate from Step 9, the extended Step 8, and (‡‡).
Step 12. We prove that

Tn
j=−∞ Vj = 0 for every integer n.

In fact, let f be a member of
Tn

j=−∞ Vj . Being in each Vj , f is constant
almost everywhere on each interval [2− j k, 2− j (k + 1)) for j ≤ n and k ∈ Z,
say equal to cj,k . If Ek, j denotes the exceptional subset of [2− j k, 2− j (k + 1)) of
measure 0 where f (x) 6= cj,k and if E =

S
j,k Ek, j , then E is a set of measure

0 and has the following property. For any x /∈ E , f is constantly equal to cj,k
on all intervals [2− j k, 2− j (k + 1)) containing x . Fix x0 /∈ E . We can choose
an increasing sequence of intervals [2− j k, 2− j (k + 1)) containing x0 and having
union R. The constants cj,k for the members of this sequence must match the
value f (x0), and it follows that f is constantly equal to f (x0) almost everywhere.
Since the only constant function in L2(R) is 0, we conclude that

Tn
j=−∞ Vj = 0.

Step 13. The functions√j,k for j ∈ Z and k ∈ Z together form an orthonormal
basis of L2(R).
From (‡‡) and Step 12 it follows that V0 is the orthogonal direct sum of

the spaces W−1,W−2,W−3, . . . . From Step 9 it then follows that L2(R) is the
orthogonal direct sum of the spaces Wj for j ∈ Z. By Step 8 the functions √j,k
for j ∈ Z and k ∈ Z together form an orthonormal basis of L2(R). §

As was mentioned in Section 1, corresponding to any wavelet√ is the wavelet
expansion

f (x) =
P

j,k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x),

the series being understood as convergent in L2(R). This remark applies in
particular to the Haar wavelet √(x), and the resulting series is called the two-
sided Haar series expansion of the function f . In a Haar series the complex
conjugate sign can be dropped because √ is real-valued, but we shall include it
anyway.
When writing down an expansion in Haar series, however, there is some

advantage in taking into account aspects of the proof of Theorem 10.4. The
proof was organized around a certain increasing sequence of closed subspaces Vj
whose union is dense in L2(R). Let us see how these spaces include finer and
finer detail about f . The way in which the functions ϕj,k and √j,k are defined
involves evaluating ϕ or √ at 2 j x − k. It is helpful of this operation as one of
magnification, affecting the resolution of what we can see. Namely it is helpful
to think of the operation of passing from x to 2 j x as one of magnifying a graph
by 2 j or of introducing better resolution so that details at the level of 2− j become
visible.
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Let us be more specific. Step 9 observed that the functions ϕ0,k for k ∈ Z and
the functions √j,k for j ∏ 0 and k ∈ Z together form an orthonormal basis of
L2(R). The corresponding expansion is

f (x) =
P

k∈Z

° R
R f (y)ϕ0,k(y) dy

¢
ϕ0,k(x) +

∞P

j=0

P

k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x)

and is called a one-sidedHaar series expansion of the function f . The first term
represents the orthogonal projection of f on V0, and the second term represents
the orthogonal projection on the orthogonal complement of V0.
This one-sidedexpansion is better than the two-sided expansion at emphasizing

that the large positive values of j correspond to what is happening as one passes
to the limit.
Step 11 of the proof gives another way of thinking about this process. It says

that for any m (think of m as∏ 0), the functions ϕm,k and the functions √j,k with
j ∏ m together form an orthonormal basis of L2(R). Comparing the resulting ex-
pansion of f with the display above, we see that

P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x)

represents a partial sum of the one-sided Haar series expansion. It is in fact
the orthogonal projection of f on the subspace Vm . Thus we can think of the
orthogonal projection on V0 as giving a zeroth approximation to f . Then we
add the terms

P

k∈Z

° R
R f (y)√0,k(y) dy

¢
√0,k(x) and obtain the first approxima-

tion to f , namely the orthogonal projection on V1. We continue by adding the
terms

P

k∈Z

° R
R f (y)√1,k(y) dy

¢
√1,k(x) and obtain the second approximation to

f , namely the orthogonal projection on V2. With each step we improve the res-
olution, obtaining a better approximation to f . The limit of the approximations,
taken in the L2 sense, is f .
The process thus consists in looking at f with an infinite system of finer and

finer resolutions. It is for this reason that the term “multiresolution analysis” will
be used for this construction starting in the next section.
Notice that what is happening here is quite different from the situation with

Fourier series. With Fourier series a new term in a series represents taking into
account a new frequency, an enlargement of the frequency domain. Withwavelets
a new term represents taking into account a higher resolution, thus giving better
knowledge of what is happening in the time domain.

Some readers may be helped by a piece of intuition used by people in signal
analysis. They think of the scaling functionϕ as being akin to a low-pass filter and
the mother wavelet √ as being akin to a high-pass filter. It is helpful to think of
these filters asworking onfineness of detail, however, rather than frequencies. For
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example, in the construction in Theorem 10.4, ϕ and its integer translates together
yielded the orthogonal projection on the fundamental space V0, while √ and its
integer translates yielded the orthogonal projection on the detail space consisting
of the orthogonal complement of V0 in V1. As Barbara Hubbard explains in
her book,6 it was this piece of intuition that finally brought mathematicians and
engineers together on the subject of wavelets in 1986.

We conclude this section with a brief discussion of spaces of functions other
than L2 on the real line. We shall return to L2 from the beginning of the next
section. This discussion will enable us to make some comparisons of Haar series
and Fourier series. The results with Haar series that we mention are just the
beginning. Considerable research has gone into the study of Haar series and
other wavelet expansions in connection with spaces other than L2, but we shall
not be delving into it beyond the few remarks that we include here.
To begin with, for any complex-valued function f on R satisfying suitable

conditions, we define

(Pm f )(x) =
P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x).

If we are working with L2 functions, the operator Pm is the orthogonal projection
of L2(R) on Vm . But our interest now will be in other spaces of functions.
The function ϕm,k(x) is nonzero if and only if k ≤ 2mx < k+1. Consequently

for fixed m and x , there is exactly one value of k for which ϕm,k(x) is nonzero.
Thus the sum defining (Pm f )(x) has only one term. Also the function ϕm,k(y)
has compact support, and thus the integral

R
R f (y)ϕm,k(y) dy is well defined as

soon as f is a measurable function on R that is locally integrable, i.e., integrable
on each compact set. Consequently the expression defining (Pm f )(x) is well
defined whenever the function f on R is locally integrable. Its value is just
2m

R
k≤2m y<k+1 f (y) dy, where k is the unique integer such that k ≤ 2mx < k+1.

It is a simple matter to use Step 5 and its dilates in Theorem 10.4 to see that

(Pm+1 f )(x) − (Pm f )(x) =
P

k∈Z

° R
R f (y)√m,k(y) dy

¢
√m,k(x).

Therefore convergence results about Pm f asm tends to+∞ are in effect conver-
gence results about the one-sided Haar series expansion of f . We summarize as
follows.

6The World According to Wavelets, listed in the Selected References.
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Proposition 10.5. If f is a locally integrable complex-valued function on R
and if k is the unique integer such that k ≤ 2mx < k + 1, then the partial sum
(Pm f )(x) of the one-sided Haar series expansion is well defined and is given by

|Im,k |−1
R
Im,k

f (y) dy,

where Im,k = {y ∈ R | k ≤ 2m y < k + 1} and |Im,k | is its measure, namely 2−m .

The expression for (Pm f )(x) in Lemma 10.5 is the one that arises in the
theory of differentiation of integrals, which is discussed in Section VI.6 of Basic.
Application of the results of that section immediately yields the following
corollary.

Corollary 10.6. If f is a locally integrable complex-valued function on R,
then the one-sided Haar series of f converges to f almost everywhere.

If f is continuous, the situation is much simpler, since we no longer need the
results of Section VI.6 of Basic.

Corollary 10.7. If f is a continuous complex-valued function on R, then the
one-sidedHaar series of f converges to f pointwise. The convergence is uniform
on any set on which f is uniformly continuous.
REMARK. Observe that this behavior is much better than what happens for

Fourier series: the Fourier series of a continuous function can diverge at a point.
PROOF. For x ∈ Im,k , we have

Ø
Ø|Im,k |−1

R
Im,k

f (y) dy − f (x)
Ø
Ø = |Im,k |−1

Ø
Ø R

Im,k

°
f (y) − f (x)

¢
dy

Ø
Ø

≤ |Im,k |−1
R
Im,k

Ø
Ø f (y) − f (x)

Ø
Ø dy. (∗)

Let ≤ > 0 be given, and choose the corresponding δ of uniform continuity on E .
Ifm is large enough so that 2−m < δ, then |y− x | ≤ δ whenever x and y are both
in Im,k , and hence | f (y) − f (x)| ≤ ≤. Consequently (∗) is ≤ ≤. §

Next we show that one-sided Haar series do not exhibit Gibbs phenomenon in
the way that Proposition 9.2 says that Fourier series do.

Lemma 10.8. If f is a bounded locally integrable function of R and if x in R,
then |(Pm f )(x)| ≤ k f ksup.
PROOF. Choose k so that k ≤ 2mx < k + 1. Then

|(Pm f )(x)| = 2m
Ø
Ø R

k≤2m y≤k+1 f (y) dy
Ø
Ø ≤ 2mk f ksup

R
k≤2m y≤k+1 dy = k f ksup.

§
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Proposition10.9. Suppose that f is a real-valued functiononR that is continu-
ous everywhere except at the one point x0, where f has a jumpdiscontinuity. Then
the one-side Haar series of f does not exhibit Gibbs phenomenon. Specifically
if lim

x↑x0
f (x) < lim

x↓x0
f (x), then along every sequence {xn} decreasing to x0 and

sequence mn tending to +∞, the inequality

lim sup
n→∞

(Pmn f )(xn) ≤ lim
x↓x0

f (x)

holds.

PROOF. Let J = lim
x↓x0

f (x) − lim
x↑x0

f (x) be the size of the jump discontinuity
of f at x0. The value of f at x0 itself does not affect the Haar series of f , and
we may therefore redefine f (x0) to equal lim

x↑x0
f (x).

Let g(x) be the function that equals 0 for x ≤ x0, equals x0 + 1 − x for
x0 < x ≤ x0 + 1, and equals 0 for x ∏ x0 + 1. This is continuous except at x0,
where it has a jump discontinuity of 1. By Lemma 10.8,

|(Pmg)(xn)| ≤ kgksup = 1 for every m and n. (∗)

Write f = ( f − Jg) + Jg. The function f − Jg is continuous everywhere,
and (Pm( f − Jg))(x) tends to ( f − Jg)(x) uniformly for x in a neighborhood
of x0, by Corollary 10.7. Proposition 1.16 of Basic therefore shows that

lim
n→∞

(Pmn ( f − Jg))(xn) = ( f − Jg)(x0) = lim
x↓x0

( f − Jg)(x). (∗∗)

The proposition follows by adding the equality (∗∗) and J times the inequality
(∗). §

Thus there are senses in which one-sided Haar series are much better behaved
than Fourier series. But there are other senses in which Fourier series are the
better behaved. One of these is that the existence of derivatives of a function
in the subject of Fourier series forces the Fourier coefficients to have at least a
certain rate of decrease. The relevant estimate comes from using integration by
parts in the formula for the nth Fourier coefficient. Any attempt to imitate this
argument for Haar series is doomed because the functions ϕ and √ are not even
continuous. Consequently a Haar series cannot be expected to have a very small
remainder term if terms are discarded from the series. This feature is a drawback
of Haar series and is a reason to search for other wavelets for which the series
expansions of smooth functions are rapidly convergent.
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3. Multiresolution Analysis

In this section we isolate the essential features of the construction of the Haar
system in Section 2 and arrive at a construction of wavelets that applies in many
situations. Amultiresolutionanalysisconsistsof an increasingsystem {Vj }∞n=−∞

of closed vector subspaces of L2(R) and a function ϕ in L2(R) such that
(i)

S
j Vj is dense in L2(R),

(ii)
T

j Vj = 0,
(iii) for each j ∈ Z, x 7→ f (x) is in Vj if and only if x 7→ f (2x) is in Vj+1,

and
(iv) the system of functions {x 7→ ϕ(x − k)}k∈Z is an orthonormal basis

of V0.
The reason for the cumbersome term “multiresolution analysis” was explained in
Section 2 after the definition of one-sided Haar series expansion. The function ϕ
is called the scaling function of the multiresolution analysis.
For each integer j , we define functions ϕj,k in L2(R) for k ∈ Z by

ϕj,k(x) = 2 j/2ϕ(2 j x − k).

That is all that is needed. The function √ has not been mentioned!
The main result of the section will be that the existence √ is built into the

definition of multiresolution analysis, and there is little choice for √ . Before
stating such a result as a theorem, let us go through the steps of the proof of
Theorem 10.4 to see how much has been captured by this definition in the case
of the Haar system.
Indeed, for the Haar system we defined the scaling function ϕ at the outset,

and we defined closed subspaces Vj of L2(R) in Steps 2, 3, and 10 of the proof of
Theorem 10.4. Step 4 established (i) above, Step 12 established (ii), (∗∗) within
Steps 3 and 10 established (iii), and Step 2 established (iv). Therefore the Haar
system is a multiresolution analysis.
The proof of Theorem 10.4 established some additional properties of the Haar

multiresolution analysis. Line (†) of Step 3 observed the functions ϕj,k form an
orthonormal basis of Vj for j ∏ 0, and (†) in Step 10 said that the same thing is
true for j < 0. Finally Step 6 established the all-important equation

ϕ(x) = ϕ(2x) + ϕ(2x − 1)

in the Haar case. All the other intermediate conclusions in the proof of Theorem
10.4 related to √ .
To construct√ , we make use of the analog of the above equation for a general

multiresolution analysis. For the general case ϕ is in V0, which is contained in V1,
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and the functions ϕ1,k form an orthonormal basis of V1. Expansion of ϕ in this
orthonormal basis leads us to a series ϕ =

P∞
k=−∞ akϕ1,k convergent in L2(R).

In this expansion the coefficients are inner products ak = (ϕ, ϕ1,k) satisfyingP
|ak |2 = kϕk22 = 1. Substituting the definition of ϕ1,k allows us to rewrite this

expansion as

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k).

We call this result the scaling equation7 of the multiresolution analysis. We
study the scaling equation through its Fourier transform.
Associated to the scaling equation is a useful L2 periodic function m0 of

period 1 that behaves like a generating function. Namely the Riesz–Fischer
Theorem (Theorem 6.51 of Basic) shows that there exists a periodic L2 function
m0 of period 1 such that m0 is given on [0, 1] by a Fourier series8 as

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

This function has
km0k2L2([0,1]) = 1

2

∞P

k=−∞
|ak |2 = 1

2 .

The Fourier transform of the scaling equation is

(Fϕ)(y) =
∞P

k=−∞

1p
2
ake−π iky(Fϕ)( 12 y).

By inspection the generating functionm0 allows us to write the Fourier transform
of the scaling equation in the tidy form

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2)

If there is a wavelet√ corresponding to the multiresolution analysis consisting
of {Vj }∞j=−∞ and ϕ, then it lies in the orthogonal complementW0 of V0 in V1, and
the functions x 7→ √(x − k) form an orthonormal basis of W0. The main result
of this section is that all members ofW0 have a certain elegant form, and it shows
which functions of that form can be taken as the desired wavelet √ . Often we
shall use a particular choice of this function as the desired wavelet, as we remark
after the statement of the theorem.

7Some authors treat the factors of
p
2 in a different way, incorporating them into the coefficients.

Some authors call this the dilation equation; other authors do not give it a name.
8Strictly speaking, this is the Fourier series of m0(−y) rather than m0(y), but we follow the

convention used in the book by Daubechies and echoed in the book by Pinsky. Regardless of how
authors handle the factors of

p
2, the factors have disappeared by the time that one computes the

values of m0(y).
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Theorem 10.10. Let {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
and let m0 be the generating function of the scaling equation. Then

(a) the most general member f of the orthogonal complement W0 of V0 in
V1 has Fourier transform of the form

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y),

where ∫ is a periodic function of period 1 and with k∫k2L2([0,1]) = k f k22,
and

(b) a member f ofW0 as in (a) will serve as a wavelet for the multiresolution
analysis if and only if |∫(y)| = 1 almost everywhere.

The proof will be preceded by some discussion and three lemmas. Once we
have settled on a particular choice of wavelet √ from Theorem 10.10, we can
write down a wavelet equation analogous to the scaling equation. The reason is
that√ is in V1 and the functions ϕ1,k form an orthonormal basis of V1. Expansion
of√ in this orthonormal basis leads us to a series√ =

P∞
k=−∞ bkϕ1,k convergent

in L2(R). In this expansion the coefficients are inner products bk = (√, ϕ1,k)
satisfying

P
|bk |2 = k√k22 = 1. Substituting the definition of ϕ1,k allows us to

rewrite this wavelet equation as

√(x) =
∞P

k=−∞
bk

p
2ϕ(2x − k).

Wearguewith this equation just aswedidwith the scalingequation. Associated
to thewavelet equation is a useful L2 periodic functionm1 of period 1 that behaves
like a generating function. Namely there exists a periodic L2 functionm1 of period
1 such that m1 is given on [0, 1] by a Fourier series as

m1(y) = 1p
2

∞P

k=−∞
bke−2π iky .

This function has
km1k2L2([0,1]) = 1

2

∞P

k=−∞
|bk |2 = 1

2 .

The Fourier transform of the wavelet equation is

(F√)(y) =
∞P

k=−∞

1p
2
bke−π iky(Fϕ)( 12 y),

and the generating function m1 allows us to write the Fourier transform of the
wavelet equation in the tidy form

(F√)(y) = m1(y/2)(Fϕ)(y/2).
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EXAMPLE. In the case of the Haar system, Step 6 of the proof of Theorem 10.4
shows that the scaling equation and the wavelet equation are

ϕ(x) = ϕ(2x) + ϕ(2x − 1)
√(x) = ϕ(2x) − ϕ(2x − 1).

In other words, a0 = 1/
p
2 and a1 = 1/

p
2, while b0 = 1/

p
2 and b1 = −1/

p
2.

The functions m0 and m1 are given by

m0(y) = 1
2 (1+ e−2π iy)

m1(y) = 1
2 (1− e−2π iy),

and we have
m1(y) = e2π iy(−e−4π iy)m0(y + 1

2 ).

Let us return to the specificchoiceof awavelet in thegeneral case. According to
Theorem 10.10, we are to specify an L2 function ∫(y) of period 1 with |∫(y)| = 1
almost everywhere, and then the formula form1 in terms ofm0 (after replacement
of y/2 by y) will be

m1(y) = e2π iy∫(y)m0(y + 1
2 ).

The seemingly natural choice is to take ∫(y) = 1, and we shall make that choice
for a while in the proof of Theorem 10.10b, obtaining

m1(y) = e2π iym0(y + 1
2 ).

That choice leads in the general case to the formula

bk = (−1)k+1 a−k−1

for the coefficients of the wavelet equation.
The example of the Haar system shows that other choices for ∫ will sometimes

be appropriate; for it the choice ∫(y) = −e−4π iy was what produced the Haar
wavelet from the Haar scaling function. The choice ∫(y) = −e−4π iy leads to the
formulas

m1(y) = −e−2π iym0(y + 1
2 )

and
bk = (−1)k a−k+1.
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As a general matter, taking ∫(y) to be the product of a power of e2π iy and a
constant of absolute value one has the effect of moving the wavelet left or right
so that it looks better. This will be especially convenient later for the Daubechies
wavelets, which are of compact support. Problem 3 at the end of the chapter
shows that the only valid choices of ∫(y) in the case of compact support are the
products of a power of e2π iy and a constant of absolute value one.
Now we come to the three lemmas. The first and the third will be used in

the course of proving Theorem 10.10. The second lemma will not be used until
Section 7, but the techniques for its proof take some of the mystery out of the
proof of Theorem 10.10.

Lemma 10.11. If h(x) is a function in L2(R), then the set of functions
{h(x − k)}∞k=−∞ is orthonormal if and only if

∞P

l=−∞
|(Fh)(y + l)|2 = 1

almost everywhere.

PROOF. By the Plancherel Theorem (Section VIII.3 of Basic) we have

δ0k
?
=

R
R h(x)h(x − k) dx

=
R

R(Fh)(y)e−2π iky(Fh)(y) dy

=
R

R e
2π iky|(Fh)(y)|2 dy

=
∞P

l=−∞

R l+1
l e2π iky|(Fh)(y)|2 dy

=
∞P

l=−∞

R 1
0 e

2π ik(y0+l)|(Fh)(y0 + l)|2 dy0

=
∞P

l=−∞

R 1
0 e

2π iky0
|(Fh)(y0 + l)|2 dy0. (∗)

If we were to insert absolute value signs in the integrand of (∗), we would
obtain the result

R
R |(Fh)(y0)|2 dy0 =

R
R |h(x)|2 dx by the Plancherel formula

(Theorem 8.6 of Basic), and this is finite. Therefore Fubini’s Theorem allows us
to interchange sum and integral in (∗). Doing the interchange and changing y0

back to y, results in the equation

δ0k
?
=

R 1
0 e

2π iky°
∞P

l=−∞
|(Fh)(y + l)|2

¢
dy. (∗∗)
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This says that the system is orthonormal if and only if the function in L1([0, 1])

given by the almost everywhere convergent series
∞P

l=−∞
|(Fh)(y + l)|2 has the

same Fourier coefficients as the constant function 1. By the uniqueness theorem
for Fourier series (Corollary 6.50 of Basic), we obtain the result that the system
is orthonormal if and only if

∞P

l=−∞
|(Fh)(y + l)|2 = 1 almost everywhere. §

Lemma 10.12. Suppose ϕ(x) is a function in L2(R) such that the set of
functions {ϕ0,k}

∞
k=−∞ = {x 7→ ϕ(x − k)}∞k=−∞ is orthonormal, and let V be the

closure of the linear span of this set of functions. Let `2 be the set of square
integrable doubly infinite sequences {ck}∞k=−∞, and write δ· k for the member
of `2 that is 1 at k and is 0 otherwise. Parseval’s Theorem produces unitary9
mappings α : `2 → V and β : L2([0, 1]) → `2 such that α(δ· k) = ϕ0,k and
β(e−2π iky) = δ· k . Regard members of L2([0, 1]) as extended periodically to all
of R with period 1. Then for every f ∈ V ,

(a) the product of (β−1α−1)( f ) and Fϕ equals F f , and
(b) k(β−1α−1)( f )kL2([0,1]) = k(β−1α−1)( f ) · (Fϕ)kL2(R)

.

PROOF. In the statement of the lemma, the unitary property of α follows from
the assumption that {ϕ0,k} is an orthonormal basis of V and from the abstract
Parseval Theorem for Hilbert spaces. The unitary property of β follows from the
Parseval Theorem for Fourier series and the Riesz–Fischer Theorem.
In (a) themappingβ−1α−1 acts on V byβ−1α−1°P

k ckϕ0,k
¢

=
P

k cke−2π iky ,
the convergence of the sum on the left being in V ⊆ L2(R) and the convergence
of the sum on the right being in L2([0, 1]). Since Fϕ0,k = e−2π iky(Fϕ)(y) =
β−1α−1(ϕ0,k)(Fϕ)(y), we immediately obtain F f = (β−1α−1)( f ) · Fϕ for all
members f of the vector-space linear span of {ϕ0,k}. Also if fn → f in L2(R),
we know that (β−1α−1)( fn) → (β−1α−1)( f ) in L2([0, 1]). This proves (a).
For the norm equality of (b), let us abbreviate (β−1α−1 f )(y) as µ(y). Then

R
R |µ(y)(Fϕ)(y)|2 dy =

∞P

k=−∞

R k+1
k |µ(y)|2|(Fϕ)(y)|2 dy

=
∞P

k=−∞

R 1
0 |µ(y − k)|2|(Fϕ)(y − k)|2 dy

=
∞P

k=−∞

R 1
0 |µ(y)|2|(Fϕ)(y − k)|2 dy by periodicity

9“Unitary” means linear, norm-preserving, and onto.
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=
R 1
0 |µ(y)|2

∞P

k=−∞
|(Fϕ)(y − k)|2 dy

=
R 1
0 |µ(y)|2 dy by Lemma 10.11.

§

Lemma 10.13. If a multiresolution analysis is given with scaling function ϕ,
then the generating function m0 of the scaling equation satisfies the identity

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1 almost everywhere.

REMARKS. This lemma gives a sense in which the generating functionsm0(y)
and m1(y) are complementary. The method of proof will be used several times
in what follows.

PROOF. We apply Lemma 10.11 with h = ϕ. Substituting for (Fϕ)(y + l) its
value from the Fourier transform of the scaling equation rewrites this equality as

∞P

l=−∞
|m0( 12 y + 1

2 l)|
2|(Fϕ)( 12 y + 1

2 l)|
2 = 1 a.e.

Replacing y/2 by y in this relation shows that almost everywhere

∞P

l=−∞
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2 = 1.

We separate the even-numbered terms on the left from the odd-numbered terms
and use that m0 is periodic of period 1 to see that

1 =
P

l even
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2 +

P

l odd
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2

= |m0(y)|2
P

l even
|(Fϕ)(y + 1

2 l)|
2 + |m0(y + 1

2 )|
2 P

l odd
|(Fϕ)(y + 1

2 l)|
2

= |m0(y)|2
∞P

l=−∞
|(Fϕ)(y + l)|2 + |m0(y + 1

2 )|
2

∞P

l=−∞
|(Fϕ)(y + l + 1

2 )|
2

= |m0(y)|2 + |m0(y + 1
2 )|

2 almost everywhere,

the last step holding by two applications of Lemma 10.11. §
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PROOF OF THEOREM 10.10a. Let f be an arbitrary member of the orthogonal
complement W0 of V0 in V1. Since the functions ϕ1,k form an orthonormal
basis of V1, we can expand f in this orthonormal basis and obtain a series f =P∞

k=−∞ fkϕ1,k convergent in L2(R). In this expansion the coefficients are inner
products fk = ( f, ϕ1,k) satisfying

P
k | fk |2 = k f k22. Substituting the definition

of ϕ1,k allows us to rewrite this expansion as

f (x) =
∞P

k=−∞
fk

p
2ϕ(2x − k).

Arguing as with ϕ and the scaling equation, we obtain

(F f )(y) =
∞P

k=−∞

1p
2
fke−π iky(Fϕ)( 12 y) = mf (y/2)(Fϕ)(y/2), (∗)

where mf is the function of period 1 given on [0, 1] by its Fourier series as

mf (y) = 1p
2

∞P

k=−∞
fke−2π iky .

This function satisfies

kmf k2L2([0,1]) = 1
2

∞P

k=−∞
| fk |2 = 1

2k f k
2
2. (∗∗)

The condition that f is orthogonal to V0 means that f is orthogonal to all ϕ0,k .
By the Plancherel Theorem (Theorem 8.6 of Basic) this is the condition that

0 =
Z

R
(F f )(y)e−2π iky(Fϕ)(y) dy for k ∈ Z.

Arguing as with (∗) and (∗∗) in the proof of Lemma 10.11, we can rewrite this
condition as

0 =
R 1
0 e

2π iky°
∞P

l=−∞
(F f )(y + l)(Fϕ)(y + l)

¢
dy.

In other words, the function in L1([0, 1]) given almost everywhere by the abso-

lutely convergent series
∞P

l=−∞
(F f )(y+ l)(Fϕ)(y + l) has all Fourier coefficients

0. From the uniqueness theorem for Fourier series (Corollary 6.50 of Basic), we
obtain the almost-everywhere equality

∞X

l=−∞

(F f )(y + l)(Fϕ)(y + l) = 0.
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Substituting for (F f )(y+ l) and (Fϕ)(y+ l) the values from (∗) and the Fourier
transform of the scaling equation allows us to rewrite this equality as

∞P

l=−∞
mf (

1
2 y + 1

2 l)m0(
1
2 y + 1

2 l) (Fϕ)( 12 y + 1
2 l)(Fϕ)( 12 y + 1

2 l) = 0.

Replacement of y/2 by y in this relation shows that almost everywhere
∞P

l=−∞
mf (y + 1

2 l)m0(y + 1
2 l) |(Fϕ)(y + 1

2 l)|
2 = 0.

Just as in the proof of Lemma 10.13, we separate the even-numbered terms in the
sum from the odd-numbered terms and use thatm0 andmf are periodic of period
1 to see that

mf (y)m0(y) + mf (y + 1
2 )m0(y + 1

2 ) = 0 (†)
almost everywhere.
For almost every y, at least one ofm0(y) andm0(y+ 1

2 ) is nonzero, according
to Lemma 10.13. If y has the property that bothm0(y) andm0(y+ 1

2 ) are nonzero,
then we can set

∏(y) =
mf (y)

m0(y + 1
2 )

and ∏(y + 1
2 ) =

mf (y + 1
2 )

m0(y)
, (††)

and we see from (†) that

∏(y) + ∏(y + 1
2 ) = 0. (‡)

If m0(y) = 0 and m0(y + 1
2 ) 6= 0, then we define ∏(y) by the first equation in

(††) and ∏(y+ 1
2 ) by (‡), while ifm0(y) 6= 0 andm0(y+ 1

2 ) = 0, then we define
∏(y + 1

2 ) by the second equation in (††) and ∏(y) by (‡). The result is that we
have a definition almost everywhere of a periodic function ∏ of period 1 such that
(‡) holds almost everywhere and such that

mf (y) = ∏(y)m0(y + 1
2 ) (‡‡)

almost everywhere. This equation shows that

kmf k2L2[0,1] =
R 1
0 |∏(y)|2|m0(y + 1

2 )|
2 dy

=
R 1/2
0 |∏(y)|2|m0(y + 1

2 )|
2 dy +

R 1
1/2 |∏(y)|2|m0(y + 1

2 )|
2 dy

=
R 1/2
0 |∏(y)|2|m0(y + 1

2 )|
2 dy +

R 1/2
0 |∏(y)|2|m0(y)|2 dy by (‡)

=
R 1/2
0 |∏(y)|2 dy by Lemma 10.13.

(§)
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From (‡) it follows that ∫(2y) = e−2π iy∏(y) with ∫(y) periodic of period 1.
We substitute from (‡‡) into (∗) and obtain

(F f )(y) = mf (
1
2 y)(Fϕ)( 12 y) = ∏( 12 y)m0(

1
2 y + 1

2 )(Fϕ)( 12 y).

Thus
(F f )(y) = eπ iy∫(y)m0( 12 y + 1

2 )(Fϕ)( 12 y),

as required.
Finally we have

R 1
0 |∫(y)|2 dy = 2

R 1/2
0 |∫(2y)|2 dy = 2

R 1/2
0 |∏(y)|2 dy = 2kmf k2L2[0,1] = k f k22

(§§)
by definition of ∫ and use of (§) and (∗∗). §

PROOF OF THEOREM 10.10b. Taking ∫ = 1, we define √ in L2(R) by

(F√)(y) = eπ iym0( 12 y + 1
2 )(Fϕ)( 12 y).

We prove that {√(y − k)}∞k=−∞ is an orthonormal basis of W0. To see that it is
orthonormal, we use Lemma 10.11, breaking the sum for √ into even-numbered
and odd-numbered terms and applying Lemma 10.11 for ϕ in each of the terms.
We have
P

l
|F√(y + l)|2 =

P

l
|m0( 12 y + 1

2 l + 1
2 )|

2|Fϕ( 12 y + 1
2 l)|

2

= |m0( 12 y + 1
2 )|

2P

l
|Fϕ( 12 y + l)|2

+ |m0( 12 y)|
2P

l
|Fϕ( 12 y + 1

2 + l)|2

= |m0( 12 y + 1
2 )|

2 + |m0( 12 y)|
2 a.e. by Lemma 10.11 for ϕ

= 1 a.e. by Lemma 10.13,

and thus Lemma 10.11 indeed allows us to conclude that {√(y − k)}∞k=−∞ is an
orthonormal set.
To show completeness when ∫ = 1, we are to show that any f in W0 has an

expansion in L2(R) as f =
P

k fk√0,k . This is the question whether equality
holds in Bessel’s inequality k f k22 ∏

P
k | fk |2, the coefficient fk being given by

fk =
R

R f (x)√(x − k) dx .
We know from (a) that any f inW0 is of the form (F f )(y) = ∫(y)(F√)(y) for

a periodic function ∫ of period 1 with k∫k2L2[0,1] = k f k22. By Parseval’s equality
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for L2[0, 1], we can write ∫(x) =
P

k
cke−2π ikx with

P

k
|ck |2 = k∫k2L2[0,1], and

(§§) has shown that k∫k2L2[0,1] = k f k22. Thus completeness will follow if we
show that fk = ck for all k.
The verification that fk = ck is rather similar to the argument in Lemma 10.11.

On the one hand, direct computation gives

fk =
R

R f (x)√(x − k) dx

=
R

R(F f )(y)(F√0,k)(y)

=
R

R(F f )(y)e−2π iky(F√)(y)

=
R

R ∫(y)e2π iky|(F√)(y)|2 dy

=
∞P

l=−∞

R l+1
l ∫(y)e2π iky|(F√)(y)|2 dy

=
∞P

l=−∞

R 1
0 ∫(y)e2π iky|(F√)(y + l)|2 dy,

and on the other hand, Lemma 10.11 gives

ck =
R 1
0 ∫(y)e2π iky dy

=
R 1
0

∞P

l=−∞
∫(y)e2π iky|(F√)(y + l)|2 dy.

Thus the equality fk
?
= ck comes down to an interchange of the limit and the sum.

If we were instead to consider the expression

R 1
0

∞P

l=−∞
|∫(y)||(F√)(y + l)|2 dy,

the result would be
R 1
0 |∫(y)| dy ≤ k∫k2L2([0,1]) = k f k22, which is finite. Therefore

Fubini’s Theorem shows the interchange to be justified, and we indeed have
fk = ck for all k. This proves completeness in W0 of the orthonormal system
{√0,k}∞k=−∞.
Now suppose that ∫(y) is any function in L2([0, 1]) periodic of period 1 such

that |∫(y)| = 1 almost everywhere. Let f be the function inW0 that corresponds
to ∫, i.e., has (F f )(y) = ∫(y)(F√)(y). Applying both directions of Lemma
10.11 to the identity

∞P

l=−∞
|F f (y + l)|2 = |∫(y)|2

∞P

l=−∞
|F√(y + l)|2 =

∞P

l=−∞
|F√(y + l)|2
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we see that {x 7→ f (x − k)}∞k=−∞ is an orthonormal set in W0. Suppose that g
is given in W0 and that g arises from a periodic function µ(y) of period 1 by the
formula (Fg)(y) = µ(y)(F√)(y). Then

(Fg)(y) = (µ(y)∫(y)−1)∫(y)(F√)(y) = (µ(y)∫(y)−1)(F f )(y),

and the function µ(y)∫(y)−1 is in L2([0, 1]). The same argument that shows the
equality fk = ck above shows that g is in the closed linear span of the functions
{x 7→ f (x − k)}∞k=−∞, and therefore F−1(∫(F√)) is a wavelet, as was asserted.
Finally if ∫(y) is any periodic function of period 1 such that the function h

with (Fh)(y) = ∫(y)(F√)(y) is a wavelet, then application of both halves of
Lemma 10.11 shows that

1 =
∞P

l=−∞
|Fh(y + l)|2 = |∫(y)|2

∞P

l=−∞
|F√(y + l)|2 = |∫(y)|2

almost everywhere, and |∫(y)| = 1 almost everywhere. §

4. Shannon Wavelet

We saw in Section 2 how the Haar wavelet could be defined and analyzed im-
mediately from its definition. The advantage of the Haar system, not seen with
Fourier series, is that classes of functions defined by their size are handled well
by the Haar system. On the other hand, the functions √j,k of the Haar system
are discontinuous, and wavelet expansions therefore cannot take advantage of
smoothness of the function being expanded.
Thus otherwavelets are neededwith properties better suited for other purposes.

The trouble is that the definitions of other wavelets are not so transparent. In
this section we introduce the first of several useful examples of wavelets that
are constructed directly from a multiresolution analysis with the aid of Theorem
10.10. Withmost suchexamples somesupplementaryargument is neededbecause
the hypotheses of Theorem 10.10 do not directly fit with the example.
The example in this section, called the Shannon system, is exceptional in that

verification of the hypotheses is fairly straightforward. It has

ϕ(x) =
sin(πx)

πx
for x ∈ R

as scaling function and Vj = { f ∈ L2(R)
Ø
Ø (F f )(y) = 0 for |y| > 2 j−1} as

the j th closed subspace. As usual, ϕ is to lie in V0. The function ϕ arose in
the Shannon Sampling Theorem (Proposition 10.3) when ƒ = 1. The proof of
that result showed that (Fϕ)(y) equals the indicator function I[− 1

2 ,
1
2 ]
(y) almost

everywhere on R. Thus indeed ϕ lies in V0.
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Theorem10.14. TheShannonsystem, consistingof the set of closed subspaces
{Vj }∞j=−∞ and the function ϕ, is a multiresolution analysis. The corresponding
wavelet may be taken to be

√(x) = −
2
°
sin(2πx) − cos(πx)

¢

π(2x − 1)
for x ∈ R.

Its Fourier transform almost everywhere equals

(F√)(y) = e−π iy(I[−1,− 1
2 ]
(y) + I[ 12 ,1](y)) for y ∈ R.

REMARK. Graphs of ϕ and√ appear in Figure 10.3. A new ingredientwith this
example, not seen with the Haar system, is that the scaling equation has infinitely
many nonzero coefficients. We get at these coefficients through the associated
generating function m0 defined by (Fϕ)(2y) = m0(y)(Fϕ)(y), working with
m0 as a whole rather than with the individual coefficients. The function m0 is
periodic of period 1.

(a)

(b)

FIGURE 10.3. Graphs of Shannon scaling function and wavelet.
(a) Scaling function. (b) Wavelet.
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PROOF. The closed subspaces Vj are nested, and their union is the set of
functions in L2(R) whose Fourier transforms have compact support. This space
is dense in L2(R) by the Plancherel Theorem. The intersection of the spaces Vj
is the subspace of functions in L2(R) whose Fourier transforms are supported at
0, and that subspace is 0. Finally we have (Fϕ0,k)(y) = e−2π iky I[− 1

2 ,
1
2 ]
(y). Since

the functions e−2π iky form an orthonormal basis of L2([0, 1]), the functionsFϕ0,k
form an orthonormal basis of F(V0), and the functions ϕ0,k , by the Plancherel
Theorem, form an orthonormal basis of V0. Thus the Shannon system is a
multiresolution analysis.
To get at √ , we start from the formula (Fϕ)(2y) = m0(y)(Fϕ)(y), and we

find for |y| ≤ 1
2 that

m0(y) =
(Fϕ)(2y)
Fϕ(y)

=
I[− 1

2 ,
1
2 ]
(2y)

I[− 1
2 ,
1
2 ]
(y)

= I[− 1
4 ,
1
4 ]
(y).

For |y| > 1
2 , the function is to be extended periodically with period 1. Then we

have
(F√)(2y) = m1(y)(Fϕ)(y).

The formula for m1(y) involves m0(y + 1
2 ), which is given by

m0(y + 1
2 ) =






1 for − 3
4 ≤ y ≤ − 1

4 ,

0 for − 1
4 ≤ y ≤ 1

4 ,

1 for 1
4 ≤ y ≤ 3

4 ,

0 for 3
4 ≤ y ≤ 5

4 .

For |y| ≤ 3
4 , this equals I[− 3

4 ,−
1
4 ]
(y) + I[ 14 , 34 ](y), and thus

m0(y + 1
2 ) = I[− 1

2 ,−
1
4 ]
(y) + I[ 14 , 12 ](y) for |y| ≤ 1

2 .

Theorem 10.10a says that we can take √ to be f in the formula

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y)

if we use ∫(y) = e−2π iy . (We could as well use any other integer power of e2π iy
as ∫(y), and the effect will be to translate√ by an integer. Our choice is arranged
to make the graph in Figure 10.3b look pleasing.) In this case

(F√)(2y) = e−2π iym0(y + 1
2 )(Fϕ)(y).

Since (Fϕ)(y) = I[− 1
2 ,
1
2 ]
(y) for all y ∈ R, we obtain
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(F√)(2y) = e−2π iy°I[− 1
2 ,−

1
4 ]
(y) + I[ 14 , 12 ](y)

¢

and thus (F√)(y) = e−π iy°I[−1,− 1
2 ]
(y) + I[ 12 ,1](y)

¢
,

as required. Forming the inverse Fourier transform of this function by direct
computation yields

√(x) =
2
°
sin(2π(x − 1

2 )) − sin(π(x − 1
2 ))

¢

π(2x − 1)
= −

2
°
sin(2πx) − cos(πx)

¢

π(2x − 1)
. §

The wavelet √ produced by Theorem 10.14 is called the Shannon wavelet.
Since the Shannon wavelet is smooth, we have gotten around one defect of the
Haar wavelet. But we have introduced other defects: the functions ϕ and √
in the Shannon system fail to be in L1(R), and their Fourier transforms are
discontinuous.
The examples in later sectionswill havemore favorable smoothness properties,

but each will have other drawbacks.

5. Construction of a Wavelet from a Scaling Function

We now aim for the Meyer wavelets, whose Fourier transforms have compact
support and a specified degree of smoothness. Correspondingly the wavelets
themselves are all of class C∞ and have a specified degree of decrease at infinity.
As is true with many examples, the spaces Vj in the relevant multiresolution
analysis are hard to pin down without referring to the candidate for the scaling
function ϕ. By contrast, in the Haar system the members of the spaces Vj were
L2 functions that were constant on certain kinds of intervals, and in the Shannon
system themembers of the spaces Vj were L2 functionswhose Fourier transforms
vanished on certain sets.
However, when we are allowed to refer to ϕ, property (iv) of a multiresolution

analysis shows that V0 is always the closed subspace forwhich {x 7→ ϕ(x−k)}k∈Z
is an orthonormal basis, and the other spaces Vj can be defined in terms of V0 by
the dilation property (iii). Thus the question arises how to tell whether a function
ϕ in L2(R) for which {x 7→ ϕ(x − k)}k∈Z is an orthonormal set is the scaling
function of a multiresolution analysis. The sequence {Vj } will be increasing as
soon as V0 ⊆ V1, i.e., as soon as ϕ satisfies a scaling equation. Evidently what is
needed is to have reasonable sufficient conditions for the first two properties of a
multiresolution analysis to be satisfied, namely

(i)
S

j Vj is dense in L2(R),
(ii)

T
j Vj = 0.

We give such conditions in this section.
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Proposition 10.15. Suppose that ϕ is a member of L2(R) such that
{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}.
Then

T∞
j=−∞ Vj = 0.

REMARK. In other words, property (ii) is automatic; no additional hypothesis
on ϕ is needed. By contrast in Proposition 10.17 we shall impose an additional
hypothesis on ϕ to ensure that property (i) holds.
PROOF. Defineϕj,k(x) = 2 j/2ϕ(2 j x−k). The set {ϕj,k}∞k=−∞ is anorthonormal

basis of Vj , and thus any f in Vj satisfies Parseval’s equality,

k f k22 =
∞P

j=−∞
|( f, ϕj,k)|2.

Let f be in
T∞

j=−∞ Vj . We are to prove that f = 0. Let ≤ > 0 be given, and
choose g ∈ Ccom(R) with k f − gk2 ≤ ε. Let M be large enough so that the
interval [−M,M] contains the support of g, and suppose that j < 0 is large
enough so that 2−| j |M < 1

2 . If Pj denotes the orthogonal projection of L
2(R) on

Vj , then
k f − Pj gk2 = kPj ( f − g)k2 ≤ k f − gk2 ≤ ε,

and hence
k f k2 ≤ ε + kPj gk2. (∗)

Also we have

kPj gk22 =
∞P

k=−∞
|(g, ϕj,k)|2

≤ 2−| j |
∞P

k=−∞

≥ R
x∈R |g(x)||ϕ(2−| j |x − k)| dx

¥2

= 2−| j |
∞P

k=−∞

≥ R
|x |≤M |g(x)||ϕ(2−| j |x − k)| dx

¥2

≤ 2−| j |kgk2sup
∞P

k=−∞

≥ R
|x |≤M |ϕ(2−| j |x − k)| dx

¥2

≤ 2−| j |kgk2sup 2M
∞P

k=−∞

R
|x |≤M |ϕ(2−| j |x − k)|2 dx

by the Schwarz inequality

= kgk2sup 2M
∞P

k=−∞

R
|x 0|≤2−| j |M |ϕ(x 0 − k)|2 dx 0

= kgk2sup 2M
∞P

k=−∞

R
|x+k|≤2−| j |M |ϕ(x)|2 dx .
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Since 2−| j |M < 1
2 , the sets of integration on the right side are disjoint, and we

can write the right side as

= kgk2sup 2M
R
Ej |ϕ(x)|2 dx,

where Ej is the set of reals at a distance of ≤ 2−| j |M from Z. As | j | tends to
infinity, these sets decrease to Z, which has measure 0. In view of Corollary
5.3 of Basic, the complete additivity of the finite measure |ϕ(x)|2 dx implies that
this expression tends to 0. By (∗), k f k2 ≤ ε. Since ε is arbitrary, f is the zero
element of L2(R). §

Lemma 10.16. Suppose that ϕ is a member of L2(R) such that

{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}. For
j > 0, let Pj be the orthogonal projection of L2(R) on Vj . If f is a member of
L2(R) whose Fourier transform F f is bounded and is supported in the interval
[−M,M], then

kPj f k22 =
Z M

−M
|(F f )(y)|2 |(Fϕ)(2− j y)|2 dy

when j is large enough so that 2 j−1 > M .

PROOF. With ϕj,k(x) = 2 j/2ϕ(2 j x − k), we have

kPj f k22 =
P

k∈Z
|( f, ϕj,k)|2

=
P

k∈Z

Ø
Ø R M

−M(F f )(y)(Fϕj,k)(y) dy
Ø
Ø2 by the Plancherel Theorem

=
P

k∈Z

Ø
Ø R M

−M(F f )(y)e−2π ik2− j y2− j/2(Fϕ)(2− j y) dy
Ø
Ø2

=
P

k∈Z
2− j

Ø
Ø R 2 j−1

−2 j−1(F f )(y)e−2π ik2− j y(Fϕ)(2− j y) dy
Ø
Ø2, (∗)

the last equality holding since 2 j−1 > M . The integral in the kth term on the right
is the kth Fourier coefficient of an L2 function on [−2 j−1, 2 j−1], specifically of

(F f )(y) (Fϕ)(2− j y),
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and Parseval’s Theorem shows that the sum over k ∈ Z of the absolute values
squared of these coefficients equals the norm squared of the function in the space
L2([−2 j−1, 2 j−1], dx). Thus (∗) equals

R 2 j−1
−2 j−1 |(F f )(y) (Fϕ)(2− j y)|2 dy. §

Proposition 10.17. Suppose that ϕ is a member of L2(R) such that

{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}.
Under the additional hypothesis that Fϕ is a bounded function that is continuous
and nonzero at y = 0, the vector subspace

P∞
j=−∞ Vj generated by all the Vj is

dense in L2(R).

REMARK. We shall use this result only when V0 ⊆ V1, in which case {Vj } is
an increasing sequence and

P∞
j=−∞ Vj =

S∞
j=−∞ Vj .

PROOF. Let Pj be the orthogonal projection on Vj . Arguing by contradiction,
suppose that f is a nonzero element in the orthogonal complement of

S∞
j=−∞ Vj .

Certainly Pj f = 0 for all j . Let ≤ > 0 be given, and assume that ≤ is small
enough so that

≤(1+ |(Fϕ)(0)|) < |(Fϕ)(0)|k f k2. (∗)

This is possible since (Fϕ)(0) and k f k2 are nonzero. Choose a function g in
L2(R) such that Fg has compact support and k f − gk2 ≤ ≤. Then kPj gk2 =
kPj (g − f )k2 ≤ kg − f k2 ≤ ≤.
Say that the support of Fg is contained in the interval [−M,M]. Referring to

Lemma 10.16, we then have

≤2 ∏ kPj gk22 =
R M
−M |(Fg)(y)|2 |Fϕ(2− j y)|2 dy. (∗∗)

Since Fϕ is bounded and Fg is square integrable and Fϕ is continuous at 0, the
Dominated Convergence Theorem applies and shows that the right side of (∗∗)
tends to R M

−M |(Fg)(y)||(Fϕ)(0)|2 dy

as j tends to +∞. Thus we obtain

≤2 ∏ |(Fϕ)(0)|2kFgk22 = |(Fϕ)(0)|2kgk22 ∏ |(Fϕ)(0)|2(k f k2 − ≤)2,

an inequality that contradicts (∗). §
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6. Meyer Wavelets

Nowwe can proceed with the construction of the Meyer wavelets. The definition
of theMeyermultiresolution analysis involves the choice of a continuous function
∫ on R that is of class Cm or perhaps C∞ and that is 0 for y ≤ 0 and is 1 for
y ∏ 1. It is assumed that ∫ satisfies

∫(y) + ∫(1− y) = 1 for y ∈ R.

This function will be incorporated into the definition of the Fourier transform of
the scaling function ϕ.
There are no further assumptions. However, the interest in theMeyer wavelets

is normally in the effect of the order of continuous differentiability on what
happens, and at least when the order of continuous differentiability is finite, the
convention is to choose the function ∫ of class Cm as computationally simple as
possible so that it meets the above conditions.10 With this understanding for each
finitem ∏ 0, there is a unique such ∫ whose polynomial part has lowest degree.11
That degree turns out to be 2m + 1, and the polynomial is

xm+1
mX

k=0

µ
m + k
k

∂
(1− x)k .

The convention is to take ∫ to be that polynomial on [0, 1], extended by 0 for
x ≤ 0 and extended by 1 for x ∏ 1. We shall call the resulting multiresolution
analysis the “Meyer multiresolution analysis” of indexm. Figure 10.4 shows that
graph of ∫(x) for m = 3. The table in Figure 10.5 lists the polynomial explicitly
for a few cases.

FIGURE 10.4. Graph of Meyer polynomial function when m = 3.

10Specifically the conditions are that ∫ is 0 for y ≤ 0, is 1 for y ∏ 1, is a polynomial function
between 0 and 1, satisfies ∫(y) + ∫(1− y) = 1, and is in the class Cm on R.

11See Problems 13–17 at the end of the chapter.
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m Polynomial ∫(x) for 0 ≤ x ≤ 1
0 x
1 x2(3− 2x)
2 x3(10− 15x + 6x2)
3 x4(35− 84x + 70x2 − 20x3)
4 x5(126− 420x + 540x2 − 315x3 + 70x4)
5 x6(462− 1980x + 3465x2 − 3080x3 + 1386x4 − 252x5)
6 x7(1716− 9009x + 20020x2 − 24024x3 + 16380x4 − 6006x5 + 924x6)

FIGURE 10.5. Table of values of the polynomial part of ∫(x)
used in defining the Meyer wavelet of index m.

With ∫ in hand, we define the Meyer scaling function ϕ through its Fourier
transform Fϕ by

(Fϕ)(y) =






1 for |y| ≤ 1
3 ,

cos
°

π
2 ∫(3|y| − 1)

¢
for 13 ≤ |y| ≤ 2

3 ,

0 for 23 ≤ |y|.

A plot of Fϕ for the case with m = 3 in the above table appears in Figure 10.6.

FIGURE 10.6. Graph of Fϕ for the Meyer wavelet when m = 3.
It will be seen in Theorem 10.18 below that {x 7→ ϕ(x − k)}∞k=−∞ is an

orthonormal set, hence that ϕ is a candidate for a scaling function. Then we let
V0 be the closed linear span of this orthonormal set and define dilated spaces Vj
as usual by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}. The spaces Vj will be
seen to be nested. TheMeyer system corresponding to ∫ consists of ϕ and the
nested sequence of spaces {Vj }∞j=−∞.

Theorem 10.18. Let ∫ : R → [0, 1] be a continuous function such that
(i) ∫(t) = 0 for t ≤ 0,
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(ii) ∫(t) = 1 for t ∏ 1,
(iii) ∫(t) + ∫(1− t) = 1 for all t ∈ R.

Then the Meyer system corresponding to ∫ is a multiresolution analysis. The
corresponding wavelet √ may be taken to have Fourier transform given by

(F√)(y) = eπ iy°(Fϕ)(y + 1) + (Fϕ)(y − 1)
¢
(Fϕ)( 12 y).

REMARKS. It is instructive to see how e−π iy(F√) relates to Fϕ. For this
purpose, compare the graph of Fϕ in Figure 10.6 with that of e−π iy(F√) in
Figure 10.7 below. Figure 10.8 after the proof shows graphs of ϕ and √ .

FIGURE 10.7. Graph of e−π iyF√ for the Meyer wavelet when m = 3.

PROOF. To see that ϕ and the spaces Vj form a multiresolution analysis, let us
first compute P

l |(Fϕ)(y + l)|2. (∗)
Expression (∗) is manifestly periodic of period 1, and we may assume that
0 ≤ y ≤ 1. For 0 ≤ y ≤ 1

3 , the only nonzero term is for l = 0, and it is
1. For 23 ≤ y ≤ 1, the only nonzero term is for l = −1, and it is 1. For
1
3 ≤ y ≤ 2

3 , the only terms that contribute are for l = 0 and l = −1, and the sum
of the contributions is

cos2(π
2 ∫(3y − 1)) + cos2(π

2 ∫(2− 3y)). (∗∗)

The arguments of ∫ in (∗∗) have sum 1, and therefore the sum of their values is 1,
since we are assuming that ∫(t) + ∫(1− t) = 1 for all real t . Thus (∗∗) is of the
form cos2 π

2 u+ cos2 π
2 (1− u) = cos2 u+ sin2 u = 1. In other words, (∗) equals

1 for all y. By Lemma 10.11, {x 7→ ϕ(x − k)}∞k=−∞ is an orthonormal set.
As at the beginning of Section 5, we define V0 to be the closed linear span of

{x 7→ ϕ(x − k)}k∈Z, and we put Vj = { f | x 7→ f (2− j x) is in V0}. We need to
show that V0 ⊆ V1, i.e., that ϕ satisfies a scaling equation. We define a periodic
function µ0 of period 1 by

µ0(y) =
∞P

l=−∞
(Fϕ)(2y + 2l). (†)
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In a neighborhood of any fixed y, this is a finite sum because Fϕ has compact
support. Thus µ0(y) is meaningful, and on [0, 1], the function µ0 is square
integrable. Let check that µ0(y) satisfies

µ0(y/2)(Fϕ)(y/2) = (Fϕ)(y) for all y ∈ R. (††)

To prove (††), we observe for each l 6= 0 that the contribution to (††) given by
(Fϕ)(y+2l)(Fϕ)(y/2) is 0. In fact, for it to be nonzero requires that |y+2l| < 2

3
(and hence |y| > 4

3 ), as well as |y/2| < 2
3 , and there are no values of y where

these conditions are met. Thus proving (††) comes down to proving the equality

(Fϕ)(y) = (Fϕ)(y)(Fϕ)(y/2) for all y ∈ R. (‡)

There are two cases. One case is that |y| ∏ 2
3 , and then (Fϕ)(y) = 0 and both

sides are equal. The other case is that |y| ≤ 2
3 , and then |y/2| ≤ 1

3 , so that
(Fϕ)(y/2) = 1; in this case each side of (‡) equals (Fϕ)(y), and the two sides
are equal. Thus (‡) holds in both cases, and in particular, (††) is proved.
Sinceµ is periodic of period 1, we can writeµ0(y) = 1p

2

P
k cke−2π iky . If we

substitute this expression into (††) and apply F−1 to (††), we see that ϕ satisfies
the scaling equation ϕ(x) =

P
k ck

p
2ϕ(2x − k). That is, we can conclude from

(†) and (††) together that V0 ⊆ V1 and that the generating function for ϕ is given
by12

m0(y) =
∞P

l=−∞
(Fϕ)(2y + 2l).

Thus we are in a position to apply Propositions 10.15 and 10.17 to see that
we have a multiresolution analysis. Proposition 10.15 says that condition (ii)
is always satisfied when the Vj ’s are defined as above from the candidate for a
scaling function. Proposition 10.17 says that condition (i) is satisfied if Fϕ is
bounded, is continuous at 0, and has (Fϕ)(0) 6= 0; all of these hypotheses can
be seen by inspection of the definition of (Fϕ)(y) before the statement of the
theorem, and thus indeed we have a multiresolution analysis.
Theorem 10.10 applies, and we are left with computing √ . The theorem tells

us what functions we can take as √ . One of them is given by

(F√)(y) = eπ iym0( 12 y + 1
2 )(Fϕ)( 12 y).

Since Fϕ is real-valued, we can drop the complex conjugation and obtain

(F√)(y) = eπ iy
∞P

l=−∞
(Fϕ)(y + 2l + 1)(Fϕ)( 12 y).

12Evenwith an interpretation of L2 convergence in the formula definingµ0, wemake no assertion
that this kind of formula yields m0 beyond the context of Meyer wavelets.
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For the l th term to be nonzero, we must have |y/2| < 2
3 and |y + 2l + 1| < 2

3 ,
and thus l = 0 or l = −1. Thus

(F√)(y) = eπ iy°(Fϕ)(y + 1) + (Fϕ)(y − 1)
¢
(Fϕ)( 12 y). §

(a)

(b)

FIGURE 10.8. Graphs of Meyer scaling function and wavelet when m = 3.
(a) Scaling function. (b) Wavelet.

7. Splines

A “spline” for our purposes is a piecewise-polynomial function on an interval
[a, b] with certain smoothness conditions at the edges of the pieces. Specifically
let

a = x0 < x1 < · · · < xm = b

be a partition of [a, b]. If n < m, a spline of degree n relative to this partition13
is a function σ(x) such that

(i) for each i , the restriction of σ(x) to the interval [xi−1, xi ] is a real-valued
polynomial pi of degree at most n,

(ii) σ(x) is of class Cn−1 on [a, b].
13The situation in which some points of the partition are repeated will not be of interest to us and

will not be addressed.
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The points xi of the partition are called the knots of the spline.14
We shall be interested only in splines with equally spaced knots, for example

at the integer points in the interval [a, b], and we shall be especially interested in
splines that can be extended to members of Cn−1(R) that are zero on (−∞, a]
and [b,+∞). These we call the splines of compact support (with knots in Z).
The case of degree 0 is something we have seen before. In the case of degree

0, the splines of compact support with knots in Z are the functions on R that are
constant on every interval between consecutive integers and that vanish outside a
compact subset ofR. These are the finite linear combinations of integer translates
of the Haar scaling function,15 which we shall call 0∞ in this section and the next.
The closure of this vector subspace of L2(R) is the subspace V0 from which the
Haar multiresolution analysis is built.
We wish to generalize the Haar construction to splines of higher degree. For

n > 0, the spline function σ(x) has to be continuous at the knots, and so do its
derivatives up through order n− 1. Being a polynomial on each interior interval,
σ(x) has right and left limits at each knot, and the same thing is true of each
derivative. The difference between these limits can be nonzero only for the nth
derivative, all derivatives higher than n giving 0, and

lim
x↓xi

p(n)
i+1(x) − lim

x↑xi
p(n)
i (x) = ci

is the jump of the nth derivative. Then it follows that

pi+1(x) − pi (x) −
ci
n!

(x − xi )n

has all derivatives 0 in a neighborhood of xi and must be the zero polynomial:

pi+1(x) = pi (x) +
ci
n!

(x − xi )n.

This formula gives us a handle on the dimension of the vector space of splines of
degree n on [a, b]. Again the knots are understood to be at the integer points.
For now, let us restrict attention to the case of degree 1. We introduce a spline

1∞ of degree 1 by the definition

1∞ (x) =






x for 0 ≤ x ≤ 1,
2− x for 1 ≤ x ≤ 2,
0 otherwise.

14Under our assumption that their are no repetitions among the points of the spline, the knots are
all “simple.”

15The values of the function at integer points are not relevant as long as we are studying L2(R).
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See Figure 10.9. The integer translates of 1∞ , given by 1∞0,k(x) = 1∞ (x − k),
will also be of interest. Each of them is a spline of compact support. Comparison
of their supports shows that they are linearly independent.

FIGURE 10.9. Graph of the B-spline 1∞.

The functions 1∞0,k are called B-splines of degree 1, the “B” being short for
basis. The following result justifies this terminology.

Proposition 10.19. The B-splines of degree 1 form a vector-space basis of the
vector space of all splines of degree 1 of compact support with knots in Z.
PROOF. We need to prove spanning. Suppose that the spline is supported in

[M, N ] with M < N . We shall subtract a multiple of a B-spline to reduce the
support. Thus suppose the support of a spline s(x) is contained in [M, N ]. Let us
say that the derivative s0(x) has a jump by c at x = M , c possibly being 0. In this
case the boxed jump formula shows that s(x) = c(x − M) for M ≤ x ≤ M + 1.
Consequently s(x) − c 1∞0,M(x) is a spline of degree 1 supported in [M + 1, N ].
The support has been reduced, and in finitely many steps we end up with the
difference of s(x) and a linear combination of B-splines exhibited as supported
in the interval [N − 1, N ]. A spline of degree 1 that vanishes at each end has
to be the 0 spline, and thus the difference of s(x) and a linear combination of
B-splines is 0. In other words, s(x) equals a linear combination of B-splines. §

Let V0 be the closure in L2(R) of the vector spaces of all splines of degree 1
of compact support with knots in Z. It begins to look as if V0 and 1∞ might yield
a multiresolution analysis generalizing the Haar multiresolution analysis—until
we stop to realize that the B-splines 1∞0,k are not orthogonal to one another. In
fact, two of them are orthogonal if and only if their supports have no nontrivial
interval in common. Nevertheless we plunge ahead by writing down a scaling
equation and by computing the Fourier transform of 1∞ .
The scaling equation for 1∞ is

1∞ (x) = 1
2
1∞ (2x) + 1∞ (2x − 1) + 1

2
1∞ (2x − 2);
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we can check this equality directly when x is an integer multiple of 12 , and then
the equality follows everywhere.
The computation of the Fourier transform of 1∞ can be carried out directly, us-

ing integration by parts suitably, but we prefer the following alternative argument,
which deduces it as Corollary 10.22 from the Fourier transform of the indicator
function I[0,1] and an identity concerning convolutions.

Proposition 10.20. The Fourier transform of 0∞ = I[0,1] is given by

(F 0∞ )(y) =
e−2π iy − 1

−2π iy
= e−π iy

≥sinπy
πy

¥
.

PROOF. The quantity in question equals
R 1
0 e

−2π i xy dx . §

Proposition10.21. The B-spline 1∞ is the convolutionof the indicator function
0∞ = I[0,1] with itself:

1∞ (x) =
Z

R
I[0,1](x − t)I[0,1](t) dt =

Z 1

0
I[0,1](x − t) dt.

PROOF. The integral in question is 0 if x ≤ 0 or x ∏ 2. For 0 ≤ x ≤ 2, the
change of variables u = x − t shows that it equals

R x
x−1 I[0,1](u) du =

R min{1,x}
max{0,x−1} 1 du = min{1, x} −max{0, x − 1};

this equals x if 0 ≤ x ≤ 1 or else equals 1− (x − 1) = 2− x if 1 ≤ x ≤ 2. §

Corollary 10.22. The Fourier transform of the B-spline 1∞ is given by

(F 1∞ )(y) = e−2π iy
≥sinπy

πy

¥2
.

PROOF. The Fourier transform of a convolution is the product of the Fourier
transforms, by Proposition 8.1c of Basic. Thus the result follows by combining
Propositions 10.20 and 10.21. §

The Fourier transform of the scaling equation of 1∞ is

(F 1∞ )(y)= 1
2 (
1
2 (F

1∞ )(y/2)+1( 12e
−π iy(F 1∞ )(y/2))+ 1

2 (
1
2e

−2π iy(F 1∞ )(y/2)).

We can check this equation explicitly by using Corollary 10.22 and thereby verify
the original scaling equation itself. The question is whether

e−2π iy
≥sinπy

πy

¥2 ?
= 1

2 (F
1∞ )(y/2)( 12 + e−π iy + 1

2e
−2π iy)

= 1
2 (F

1∞ )(y/2)e−π iy(1+ cosπy)
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= (F 1∞ )(y/2)e−π iy cos2 πy/2

= e−π iye−π iy
≥sin2 πy/2

π2y2/4

¥
cos2 πy/2,

and this comes down to the identity sin 2θ = 2 sin θ cos θ .
Motivated by Lemma 10.11, we now calculate

1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2

We know that the sum cannot be almost everywhere equal to 1, since {1∞0,k}
is not an orthonormal set. However, the value of the sum will contain useful
information for us. To make the calculation, we need to use some elementary
complex analysis. We shall take as our starting point the results of Appendix B
of Basic.

Proposition 10.23. For complex z,

π2

sin2 πz
=

∞X

n=−∞

1
(z − n)2

,

the series being uniformly convergent on compact sets that contain no integers.

PROOF. The series is convergent for z /∈ Z by comparison with the series
∞P

n=1
(1/n2). If the terms corresponding to integers in a fixed closed disk about 0

are excluded, then the same comparison shows that the convergence is uniform
on the disk. By Problem 55 in Appendix B of Basic, the sum of the series is
meromorphic inCwith poles of order 2 at each integer. The functionπ2/ sin2(πz)
has the same property, and therefore the difference

g(z) = π2

sin2 πz −
∞P

n=−∞

1
(z−n)2 (∗)

is analytic in all of C. We show that g(z) is the zero function.
Each term on the right side of (∗) is periodic of period 1, and thus the same

thing is true of g(z). By Liouville’s Theorem it is enough to prove that |g(x+ iy)|
tends to 0 uniformly for |x | ≤ 1 as y → ∞. Consider the first term on the right
side of (∗). Direct calculation gives

| sin z|2 = 1
4 (e

i(x+iy) − e−i(x+iy))(ei(x+iy) − e−i(x+iy))

= 1
4 (e

−2y − e−2i x − e2i x + e2y) = cosh2 y − cos2 x,
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and the reciprocal of this tends to 0 uniformly for all x as y → ∞. This takes
care of the first term of the right side of (∗). For the second term we have

Ø
Ø 1
(z−n)2 | = 1

(x−n)2+y2 .

This has the required behavior for the terms with |n| ≤ 2. For the terms with
|n| ∏ 3, we have 1

(x−n)2+y2 ≤ 1
(|n|−1)2+y2 . Given ≤ > 0 with ≤ equal to the

reciprocal of an integer, suppose that |y| ∏ ≤−1. Then
1/≤P

|n|=2

1
(|n|−1)2+y2 ≤

1/≤P

|n|=2

1
y2 ≤ 2(1/≤)y−2 ≤ 2≤

and
∞P

|n|=1/≤

1
(|n|−1)2+y2 ≤

∞P

|n|=1/≤

1
(|n|−1)2 ≤

∞P

|n|=1/≤

° 1
|n|−2 − 1

|n|−1
¢

= 2
≤−1−2 ,

which is ≤ 6≤ as long as ≤ < 1
3 . This takes care of the second term on the right

side of (∗). §

Corollary 10.24. For every integer m ∏ 0,
≥ d
dz

¥m≥ π2

sin2 πz

¥
= (m + 1)!

∞X

n=−∞

1
(z − n)m+2

PROOF. This formula results from successive term-by-term differentiation of
the result of Proposition 10.23. To justify the interchange of derivative and sum,
we make repeated use the standard technique of Appendix B of Basic, writing
the complex derivative as a suitable line integral and using Fubini’s Theorem to
interchange the integral and the infinite sum. §

Returning to the calculation of
∞P

l=−∞
|(F 1∞ )(y + l)|2, we combine Corollary

10.22 with the formula of Corollary 10.24 when m = 2. Then

1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2 =

∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
4

=
sin4(πy)

π4

∞P

l=−∞

1
(y + l)4

=
sin4(πy)
6π4

d2

dy2
≥ π2

sin2 πy

¥

= 1
3 (sin

2 πy + 3 cos2 πy)

= 1
3 (1+ 2 cos2 πy).
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In other words, the periodic function 1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2 of period 1

is bounded above and below by the positive constants 1 and 1
3 . In terminology

used bymany authors, this means that the integer translates ofF 1∞ form a “Riesz
system.” In practical terms it means that we can use a general method to construct
an orthonormal system out of F 1∞ . We proceed as follows.
We define a member ϕ of L2(R) by

(Fϕ)(y) = 1(y)−1/2(F 1∞ )(y).

By Lemma 10.11, the set of functions {x 7→ ϕ(x − k)}∞k=−∞ is orthonormal.
What is not apparent is that they form an orthonormal basis of the same space V0
and that we thereby obtain a multiresolution analysis and an associated wavelet.
The relevant tool is Lemma 10.12, which we have not used explicitly so far.

Theorem 10.25. Let Vj be the closure in L2(R) of the space of all splines
of degree 1 of compact support with knots in 2− jZ, let 1∞ be the B-spline of
degree 1 defined above and having Fourier transform as in Corollary 10.22, and
let ϕ be the member of L2(R) defined by

(Fϕ)(y) = 1(y)−1/2(F 1∞ )(y).

Then
(a) the integer translates of ϕ are in V0 and form an orthonormal basis of it,
(b) {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
(c) the corresponding wavelet √ may be taken to have Fourier transform

(F√)(y) equal to

(sin2 12πy)
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2(F 1∞ )( 12 y),

(d) the Fourier series 1(y)−1/2 =
P

k dke−2π iky has the property that ϕ(x)
is given by ϕ(x) =

P
k dk1∞ (x − k), the series being locally a finite sum,

(e) the Fourier series
P

k uke−π iky of period 2 of the function

U(y) = (sin2 12πy)
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2

has the property that √(x) is given by √(x) = 2
P

k uk1∞ (2x − k), the
series being locally a finite sum,

(f) ϕ(x) and √(x) are splines of degree 1 with infinite support, the knots of
ϕ being in Z and the knots of √ being in 1

2Z,
(g) ϕ(x) and √(x) decay exponentially fast as |x | tends to infinity.
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REMARKS. The wavelet obtained from Theorem 10.25 is called the Battle–
Lemarié wavelet of degree16 1. Another name for it is the Franklin wavelet.
Following Daubechies, we shall refer to the device of using1(y) the way we are
using it here as the orthonormalization trick. The formulas for ϕ in (d) and for
√ in (e) allow one to understand ϕ and √ without applying F−1 to Fϕ and F√ .
Graphs of ϕ and √ appear in Figure 10.10. To make the graphs, one computes
enough Fourier coefficients dk and uk numerically to be able to use partial sums
of the series in (d) and (e) as good approximations to ϕ and √ .

PROOF. For (a), put ϕ0,k(x) = ϕ(x−k). We saw above that the set of functions
{ϕ0,k}

∞
k=−∞ is orthonormal. Let V be the closure of its linear span. We shall use

Lemma 10.12 with this V and this ϕ. Let α and β be as in the statement of that
lemma. Let c = {ck}∞k=−∞ be the sequence of coefficients of the expansion of the

function 1(y)1/2 =
° 1
3 (1 + 2 cos2 πy)

¢1/2 in series as
∞P

k=−∞
cke−2π iky . If f is

the member of V given by f = α(c) =
P

k ckϕ0,k , then β−1α−1( f ) = 11/2, and
Lemma 10.12a shows that F f = 11/2 · (Fϕ), with the dot indicating pointwise
product. The right side equals F 1∞ , and therefore f = 1∞ , i.e.,

(F 1∞ )(y) = 1(y)1/2(Fϕ)(y). (∗)

Consequently 1∞ is in V , and the closure V0 of the space of splines of degree 1
of compact support with knots in Z is contained in V .
We shall show that equality holds: V = V0. Since 11/2 is smooth and is

bounded above and below by positive constants, 1−1/2 is a smooth periodic

function on [0, 1]. Expand 1(y)−1/2 in series as
∞P

k=−∞
dke−2π iky , and let pn be

its nth partial sum. By Proposition 1.56 of Basic, {pn} converges uniformly on
[0, 1]. The limit is 1−1/2 by Fejér’s Theorem (Theorem 1.59 of Basic).
We know that the function F−1°e−2π iky(F 1∞ )(y)

¢
=

°
x 7→ 1∞ (x − k)

¢
is in

V0 for each k, and hence so is the linear combination F−1°pn(y)(F 1∞ )(y)
¢

=
F−1°pn(y)1(y)1/2(Fϕ)(y)

¢
for each n. The product pn11/2 converges uni-

formly to 1−1/211/2 = 1, and uniform convergence implies convergence in
L2[0, 1]. Lemma 10.12 then allows us to conclude that pn(y)1(y)1/2(Fϕ)(y)
converges to (Fϕ)(y) in L2(R). Applying F−1, we see that there is a sequence
in V0 converging to ϕ. Since V0 is closed, ϕ is in V0, and it follows that V = V0.

16Terminology varies. Some authors use the word “order” in place of “degree.” Some authors
shift the indices by 1, saying that the case here is of order 2; for such authors the Haar wavelet
becomes the Battle-Lemarié wavelet of order 1.
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For (b), we have just seen that the closed subspace of L2(R) generated by the
integer translates of ϕ is V0, and we know for this explicit V0 that the dilates
Vj form an increasing sequence. Propositions 10.15 and 10.17 show that ϕ is a
scaling function, sinceFϕ is continuous, is bounded, and has (Fϕ)(0) 6= 0. Thus
{Vj }∞j=−∞ and ϕ constitute a multiresolution analysis.
For (c), we are to compute √ . The Fourier transform of the scaling equation

for ϕ gives us (Fϕ)(y) = m0(y/2)(Fϕ)(y/2), from which we have

m0(y/2) =
(Fϕ)(y)

(Fϕ)(y/2)

=

° 1
3 (1+ 2 cos2 πy)

¢−1/2
(F 1∞ )(y)

° 1
3 (1+ 2 cos2 πy/2)

¢−1/2
(F 1∞ )(y/2)

=

° 1
3 (1+ 2 cos2 πy/2)

¢1/2e−2π iy(πy)−2 sin2 πy)
° 1
3 (1+ 2 cos2 πy)

¢1/2e−π iy(πy/2)−2 sin2 πy/2)

= e−π iy
≥1+ 2 cos2 πy/2
1+ 2 cos2 πy

¥1/2
cos2 πy/2.

From Theorem 10.10 we may take √ to have

(F√)(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y)

= −e2π iy∫(y) sin2 12πy
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
(Fϕ)( 12 y)

= −e2π iy∫(y) sin2 12πy
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2(F 1∞ )( 12 y)

with ∫ periodic of period 1. If we take ∫(y) = −e−2π iy , then the asserted formula
follows.
For (d), we observe that F−1(e−2π iky(F 1∞ )(y)) = ∞ (y − k) and hence that

F−1°
nP

k=−n
dke−2π iky(F 1∞ )(y)

¢
=

nP

k=−n
dk1∞ (x − k). That is,

F−1(pn11/2Fϕ) =
nP

k=−n
dk1∞ (x − k). (∗∗)

We saw in theproof of (a) that pn11/2Fϕ converges in L2(R) toFϕ. By continuity
of F−1 on L2(R), the left side of (∗∗) converges to ϕ in L2(R). Therefore

ϕ(x) = lim
n

nP

k=−n
dk1∞ (x − k), (†)
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the limit taken in L2(R). This proves the equality in (d). Since 1∞ has compact
support, the series in (†) is locally the finite sum of continuous functions. There-
fore the equality (†) is meaningful pointwise, as well as in L2(R), if we redefine
ϕ on a set of measure 0 so that it coincides with the pointwise sum.
For (e), let 1∞1,k(x) =

p
2 1∞ (2x − k). Changes of variables show that

(F 1∞1,k)(y) = 1p
2
e−π iky(F 1∞ )( 12 y). (††)

Without any justification of interchanges of limits, the argument for (e) is that

(F√)(y) = U(y)(F 1∞ )( 12 y)

=
∞P

k=−∞
uke−π iky(F 1∞ )( 12 y)

=
p
2

∞P

k=−∞
uk(F 1∞1,k)(y)

= F (
p
2

∞P

k=−∞
uk1∞1,k)(y).

(‡)

Application of F−1 then gives

√(x) =
p
2

∞P

k=−∞
uk1∞1,k(x) = 2

∞P

k=−∞
uk1∞ (2x − k). (‡‡)

We shall interpret (‡‡) as an equality in L2(R), with convergence in the L2
sense. With this interpretation the right side is locally a finite sum of continuous
functions and hence is continuous. Then the L2 function √ can be adjusted on a
set of measure 0 so as to agree with this continuous function, and the result is that
(‡‡) is also a pointwise equality, the sum being uniformly convergent on each
compact subset of R.
Thus we are to prove (‡‡) in the L2 sense. Since F is a unitary operator from

L2(R) onto itself, (‡‡) is immediate from (‡), and we are to justify the steps
of (‡). The first equality of (‡) is merely a restatement of conclusion (c) of the
theorem, and the third equality follows from (††). For the second equality of (‡),
we have substituted the series expansion of U(y), but we have left ambiguous
how to interpret this expression in terms of convergence. Is the convergence to be
that of periodic functions in L2([0, 2]), or is it to be convergence in L2(R) of the
whole expression? If we were working with ϕ instead of 1∞ , the two would come
to the same thing, by Lemma 10.12b, but in our situation we have no comparable



486 X. Introduction to Wavelets

result. Finally the fourth equality of (‡) requires the justification of a clear-cut
interchange of limits.
We can handle both difficulties at once if we show that

lim
n→∞

h
(F√)(y) −

P

|k|≤n
uke−π iky(F 1∞ )( 12 y)

i
= 0,

the convergence being in L2(R). The computation is

∞
∞
∞

P

|k|>n
uke−iπky(F 1∞ )( 12 y)

∞
∞
∞
L2(R)

=
∞
∞
∞

X

|k|>n
uke−iπky1( 12 y)

1/2(Fϕ)( 12 y)
∞
∞
∞
L2(R)

=
∞
∞
∞
° P

|k|>n
uke−iπky¢1( 12 y)

1/2
∞
∞
∞
L2([0,2])

by Lemma 10.12b applied to the space V1 and the function ϕ1,0, with the under-
standing that the measure on L2([0, 2]) is normalized so as to have total mass 1.
The right side is

≤
°
sup
0≤y≤2

1( 12 y)
1/2¢

∞
∞
∞

P

|k|>n
uke−iπky

∞
∞
∞
L2([0,2])

,

and this tends to 0 as n tends to infinity, since1( 12 y)
1/2 is bounded and

P
k |uk |2

is finite. This completes the proof of (e).
For (f), the fact that each series is locally finite implies that we can differentiate

term by term away from the knots. The second derivatives are zero, while the
functions themselves are continuous. Thus ϕ(x) and√(x) are splines of degree 1.
Their support is infinite since 1∞ has compact support and since arbitrarily large
translates of it are involved.
For (g), the idea is that the coefficients dk and uk decrease geometrically fast,

while 1∞ has compact support. The reason for the geometric decrease of the
two sequences of Fourier coefficients is that the functions in question are the
restrictions to the unit circle of analytic functions in a neighborhood within C
of the unit circle. By Theorem B.47 of Appendix B of Basic, these analytic
functions each have Laurent series expansions valid within an open annulus that
contains the unit circle, and the usual estimates on Taylor coefficients imply that
the Fourier coefficients decrease geometrically fast. §
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(a)

(b)

FIGURE 10.10. Graphs of Battle–Lemarié scaling function and wavelet
of degree 1. (a) Scaling function. (b) Wavelet.

8. Battle–Lemarié Wavelets

In Section 7 we saw how splines of degree 1 of compact support with knots in
Z lead to a multiresolution analysis and a wavelet. The wavelet is known as the
Battle–Lemarié wavelet of degree 1. In more detail the B-splines of degree 1
with knots in Z are exactly the integer translates of one of them, which we called
1∞ , and they form a vector space basis of the space of all splines of degree 1 of
compact support with knots in Z. The closure of this vector space is the space V0
of the analysis. Unfortunately the B-splines are not orthogonal to one another,
and an additional step was necessary to fit everything into our standard set-up.
In this section we shall consider the case of higher degree. The principles will

all be the same, but the technical details are more complicated. Before we begin,
let us pause to realize that this theory also works in degree 0. In this case the
splines in question are functions that are constant between consecutive integers
and have compact support, and the B-splines are the integer translates of the Haar
scaling function. When we follow through the construction, we arrive at the Haar
wavelet. The complication from nonorthogonal B-splines does not arise.
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Now we pass to degree m with m ∏ 1. The first step is to exhibit a nonzero
spline of degree m with compact support and with knots in Z. Specifically we
seek an analog of the B-spline 1∞ . When m = 2, an analog is

2∞ (x) =






1
2 x
2 for 0 ≤ x ≤ 1,

3
4 − (x − 3

2 )
2 for 1 ≤ x ≤ 2,

1
2 (x − 3)2 for 2 ≤ x ≤ 3,
0 otherwise.

One readily checks that 2∞ and its first derivative are continuous at x = 0, 1, 2, 3
and that 2∞ is supported in [0, 2]. Thus ∞ (2) is a nonzero spline of degree 2 of
compact support with knots in Z.

FIGURE 10.11. Graph of the B-spline 2∞.

It is a little hard to see how to generalize the above formula, and a different
notation will make matters a little more transparent. Let us introduce the name
( · )+ for the function with t+ = max{0, t}. This is a spline of degree 1, and its
only knot is in Z; but it does not have compact support. The function ( · )m+ with
tm+ = (max{0, t})m is a spline of degreem. It similarly has its only knot in Z, and
it too fails to have compact support. The integer translates of this function are of
the form ( · − k)m+ with (t − k)m+ = (max{0, t − k})m . We define

m∞ (t) =
1
m!

m+1X

k=0
(−1)k

µ
m + 1
k

∂
(t − k)m+.

This formula agrees with the concrete formula for 2∞ (t) given above. Also it
agrees with the formula 0∞ = I[0,1] except at integer points.
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FIGURE 10.12. Graph of the B-spline 3∞.

The function m∞ is a spline of degreem with knots in Z. It is nonzero because
if 0 < t < 1, then m∞ (t) = (m!)−1tm 6= 0. It is certainly 0 when t ≤ 0. We shall
prove that it is 0 when t ∏ m + 1. To do so, we make use of the first half of the
following combinatorial lemma.

Lemma 10.26.
(a) For any function g : R → R, write (δg)(x) = g(x) − g(x − 1). Then

for any m ∏ 1, (δmg)(x) =
mP

k=0
(−1)k

°m
k
¢
g(x − k).

(b) For any function h : R → R, write (εh)(x) = h(x + 1) − h(x). Then

for any m ∏ 1, (εmh)(x) =
mP

k=0
(−1)m−k°m

k
¢
h(x + k).

PROOF. In (a) the argument is for all g by induction on m. The case m = 1 is
the definition of δg. Assume inductively that equality holds form−1 ∏ 1. Then

δmg(x) = (δm−1(δg))(x)

=
m−1P

k=0
(−1)k

°m−1
k

¢
(δg)(x − k)

=
m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k) −

m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k − 1)

=
m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k) +

mP

l=1
(−1)l

°m−1
l−1

¢
g(x − l)

=
mP

k=0
(−1)k

°m
k
¢
g(x − k).

and the induction is complete. Part (b) follows by applying (a) to the function
g(x) = h(−x). §
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Returning to m∞ , we use Lemma 10.26 to show that m∞ (t) = 0 for t ∏ m+ 1.
If t ∏ m + 1, then

m∞ (t) =
m+1P

k=0
(−1)k

°m+1
k

¢
(t − k)m

Because of Lemma 10.26, we recognize the polynomial on the right side as
δm+1(tm). The operation of δ reduces the degree of a polynomial by 1, and hence
δm+1(tm) = 0. Thus we see that m∞ (t) = 0 for t ∏ m + 1.
This proves that m∞ is supported in the interval [0,m + 1]. Translating by an

integer, we conclude that the vector space of splines of degree m with knots in Z
and with support in [N , N + m] is not 0 for each integer N .
Let us put that result aside for a moment and verify an integral formula for

m∞ (x). In turn the integral formula will allow us to see that the integer translates
of m∞ (x) form a vector-space basis of the space of all splines of degree m of
compact support with knots in Z. Let us write

J0 = I[0,1],

where I[0,1] is the indicator function of the interval [0, 1], and let us further define
inductively

Jm = Jm−1 ∗ I[0,1] for m ∏ 1.

We have defined J0 to equal 0∞ = I[0,1], and we saw in Proposition 10.21 that J1
equals 1∞ . We are going to extend this result to higher degrees.

Lemma 10.27.
(a) J 0

l (x) = δJl−1(x) = Jl−1(x) − Jl−1(x − 1) for l ∏ 1 as long as x /∈ Z if
l = 1,

(b)
R

R f 0(x)Jl(x) dx =
R

R(ε f )(x)Jl−1(x) dx for l ∏ 1 if f is of class C1.

PROOF. For (a), we have Jl(x) = (Jl−1 ∗ I[0,1])(x) =
R 1
0 Jl−1(x − t) dt .

Differentiation under the integral sign gives

J 0
l (x) =

R 1
0 J

0
l−1(x − t) dt = −[Jl−1(x − t)]t=1t=0 = Jl−1(x) − Jl−1(x − 1).

For (b), we first suppose that l ∏ 1. Then the function f Jl is of class C1 and
has compact support. Therefore 0 =

R
R

d
dx ( f Jl) dx =

R
R f J 0

l dx +
R

R f 0 Jl dx .
Substituting from (a), we obtain

R
R f 0(x)Jl(x) dx = −

R
R f (x)J 0

l (x) dx
= −

R
R f (x)Jl−1(x) dx +

R
R f (x)Jl−1(x − 1) dx

= −
R

R f (x)Jl−1(x) dx +
R

R f (x + 1)Jl−1(x) dx
=

R
R(ε f )(x)Jl−1(x) dx .
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Now suppose that l = 1. In this case the function J1(x) fails to beC1 at the points
x = 0, 1, 2. We compute

R
R

d
dx ( f J1) dx as

R 0
−1 +

R 1
0 +

R 2
1 +

R 3
2 and see that it

equals [ f J1]0x=−1+ [ f J1]1x=0+ [ f J1]2x=1+ [ f J1]3x=2. Because of the continuity
of J1 at x = 0, 1, 2, we still get cancellation andwe still have

R
R

d
dx ( f J1) dx = 0.

Thus the above argument extends to be valid for l = 1. §

Proposition 10.28. For m ∏ 1,
(a) m∞ (x) = Jm(x) for m ∏ 0 as long as x /∈ Z if m = 0, and
(b)

R
R
m∞ (x) dx = 1 for m ∏ 0.

PROOF. For (a), we shall prove equality for each point x0. To handle x0, we

work with the function g(t) =
(−1)m

(m − 1)!
(x0 − t)m−1

+ . For k ≤ m − 2, its kth

derivative is the continuous function

g(k)(t) =
(−1)m−k

(m − k − 1)!
(x0 − t)m−1−k

+ .

For k = m − 1, the k th derivative for t 6= x0 is

g(m−1)(t) =

Ω
1 for t > x0
0 for t < x0,

and it does not exist at t = x0.
We have

Jm(x0) =
R

R Jm−1(x0 − t)I[0,1](t)

=
R 1
0 Jm−1(x0 − t) dt

=
R x0
x0−1 Jm−1(s) ds under s = x0 − t

=
R
t>x0−1 Jm−1(t) dt −

R
t>x0 Jm−1(t) dt

=
R

R
°
g(m−1)(t + 1) − g(m−1)(t)

¢
Jm−1 dt

=
R

R(εg(m−1))(t)Jm−1(t) dt.

From here we can apply Lemma 10.27b recursively. The above expression is

=
R

R(ε2g(m−2))(t)Jm−2(t) dt

= · · · =
R

R(εm−1g(1))(t)J1(t)

=
R

R(εmg)(t)J0(t) dt

=
R 1
0 (εmg)(t) dt
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=
mP

k=0

(−1)m−k

(m − 1)!

µ
m
k

∂
R 1
0 (x0 − t − k)m−1

+ dt

=
mP

k=0

(−1)m−k

(m − 1)!

µ
m
k

∂
R x0−k
x0−k−1 s

m−1
+ ds

=
mP

k=0

(−1)m−k

m!

µ
m
k

∂
°
(x0 − k)m+ − (x0 − k − 1)m+

¢

=
mP

k=0

(−1)m−k

m!

µ
m
k

∂
(x0 − k)m+ +

m+1P

l=1

(−1)m−l

m!

µ
m

l − 1

∂
(x0 − l)m+

=
mP

k=0

(−1)m−k

m!

µ
m + 1
k

∂
(x0 − k)m+

= m∞ (x0).

This completes the proof of (a).
For (b), we have

R
R
m∞ (x) dx =

R
R Jm(x) dx . The integral over R of the

convolution of two functions is the product of their integrals. Thus
R

R Jm(x) dx
is the product of m + 1 factors of 1. §

Corollary 10.29. The vector space of splines of degree m with compact
support contained in [0,m] and with knots in Z is 0.

PROOF. We proceed by induction on m. For m = 1, a spline of degree 1 with
support in [0, 1] and knots in Z is given for 0 ≤ x ≤ 1 by a linear function s(x),
and the support condition implies that s(0) = s(1) = 0. Then we must have
s = 0.
Assume the result for degree m − 1 ∏ 1. If s(x) is a spline of degree m with

knots inZ andwith support in [0,m], then the derivative s0(x) is a spline of degree
m − 1 with knots in Z and with support in [0,m]. Arguing by contradiction, we
may assume that s(x) is not the 0 spline, so that s0(x) is not the 0 spline. Since
m−1∞ is a spline of degree m − 1 with knots in Z and with support in [0,m],
the boxed jump formula in Section 7 shows that s 0(x) − c m−1∞ for a suitable
constant c 6= 0 is a spline of degree m − 1 with knots in Z and with support
in [1,m]. By inductive hypothesis the difference must be 0. Thus s0(x) is the
nonzero constant multiple c of m−1∞ . However, any spline of compact support
that is a derivative has integral over R equal to 0, and Proposition 10.28b shows
that m−1∞ has nonzero integral. We conclude that s 0 = 0, and we have arrived at
a contradiction. §

We write m∞0,k(x) = m∞ (x − k) for the integer translates of the spline m∞ .
Each of them is a spline of degree m of compact support with knots in Z.
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Comparison of their supports shows that they are linearly independent. The
functions m∞0,k are called B-splines of degree m, the “B” short for basis. The
following result justifies this terminology.

Corollary 10.30. The B-splines of degree m, i.e., the integer translates of
m∞ , form a vector-space basis of the space of splines of degree m with compact
support and with knots in Z.

PROOF. We need to prove spanning. Suppose that a given spline s(x) of degree
m with knots in Z is supported in [M, N ] with M ≤ N . Corollary 10.29 shows
that M + m + 1 ≤ N unless s is the 0 spline. We shall subtract a multiple of a
B-spline to reduce the support. Since s(x) vanishes for x < M and since s(x)
is of class Cm−1, s(k)(M) = 0 for k 6= m. Let us say that s(k)(x) has a jump by
c at x = M , c possibly being 0. In this case the boxed jump formula shows that
s(x) = (m!)−1c(x−M)m for M ≤ x ≤ M+1. Consequently s(x)−c m∞0,M(x)
is a spline of degreem, and its support is contained in [M+1,max{M+m+1, N ]},
which is contained in [M + 1, N ] since M +m + 1 ≤ N . The support has been
reduced, and in finitely many steps we end up with the difference of s(x) and a
linear combination of B-splines exhibited as supported in the interval [N−m, N ].
By Corollary 10.29 this difference is 0. In other words, s(x) equals a linear
combination of B-splines. §

Corollary 10.31. The Fourier transform of the B-spline m∞ is given by

(F m∞ )(y) = e−(m+1)π iy
≥sinπy

πy

¥m+1
.

PROOF. The Fourier transform of a convolution is the product of the Fourier
transforms, by Proposition 8.1c of Basic. Thus the result follows by combining
Propositions 10.20 and 10.28a. §

In our effort to generalize Theorem 10.25 to higher order splines, we are up
to the stage of testing the B-splines for the extent to which they are orthonormal.
Two B-splines with overlapping support are certainly not orthogonal, but we
calculate the sum

12m(y) =
∞P

l=−∞
|(F m∞ )(y + l)|2

anyway. As before, this is a periodic function of period 1. Once againwe combine
Corollary 10.22 with the appropriate case of Corollary 10.24. Then
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12m(y) =
∞P

l=−∞
|(F m∞ )(y + l)|2 =

∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
2m+2

=
sin2m+2(πy)

π2m+2

∞P

l=−∞

1
(y + l)2m+2

=
sin2m+2(πy)

(2m + 1)!π2m+2
d2m

dy2m
≥ π2

sin2 πy

¥
.

The values of12m(y) for 1 ≤ m ≤ 4 appear as a table in Figure 10.13. We shall
be ready to state a generalization of Theorem 10.25 once we prove the following
lemma.

Lemma 10.32. For each m ∏ 1, the function

12m(y) =
sin2m+2(πy)

(2m + 1)!π2m+2
d2m

dy2m
≥ π2

sin2 πy

¥

is a polynomial in sinπy and cosπy with P2m(y) > 0 for all real y.
PROOF. Let q(y) be any polynomial in sinπy and cosπy. The formula

d
dy

≥ q(y)
sink πy

¥
=

q 0(y)
sink πy

−
kq(y) cosπy
sink+1 πy

=
q 0(y) sinπy − kq(y) cosπy

sink+1 πy
shows that the derivative of a quotient of a polynomial in sinπy and cosπy by
a power of sinπy is the quotient of a polynomial in sinπy and cosπy by one
higher power of sinπy. Consequently the expression12m(y) in the statement of
the lemma is indeed a polynomial in sinπy and cosπy.
The computation before the lemma shows that

(2m + 1)!π2m12m(y) = (2m + 1)!π2m
∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
2m+2

.

The expression on the right side can vanish only if sinπ(y + l) = 0 for all l,
hence only if y is an integer. By periodicity we have only to examine y = 0.
There the quotient sin(πy)

±
(πy) is not 0. So 12m(y) is positive for all y. §

m 12m(y)
1 1

3 (2+ 2 cos 2πy)
2 1

60 (33+ 26 cos 2πy + cos 4πy)
3 1

2520 (1208+ 1191 cos 2πy + 120 cos 4πy + cos 6πy)
4 1

2835 (62+ 1072 cos2 πy + 1452 cos4 πy + 247 cos6 πy + 2 cos8 πy)

FIGURE 10.13. Values of 12m(y) for small m.
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Theorem 10.33. For m ∏ 1, define

12m(y) =
∞X

l=−∞

|(F m∞ )(y + l)|2.

Let Vj be the closure in L2(R) of the space of all splines of degree m of compact
support with knots in 2− jZ, let m∞ be the B-spline of degree m defined above
and having Fourier transform as in Corollary 10.22, and let ϕ be the member of
L2(R) defined by

(Fϕ)(y) = 12m(y)−1/2(F m∞ )(y).

Then
(a) the integer translates of ϕ are in V0 and form an orthonormal basis of it,
(b) {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
(c) the corresponding wavelet √ may be taken to have Fourier transform

(F√)(y) equal to

s(y)(sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2(F 1∞ )( 12 y),

where s(y) is 1 if m is odd and is eπ iy if m is even,
(d) the Fourier series12m(y)−1/2 =

P
k dke−2π iky has the property that ϕ(x)

is given by ϕ(x) =
P

k dkm∞ (x−k), the series being locally a finite sum,
(e) the Fourier series

P
k uke−π iky of period 2 of the function

U(y) = s(y)(sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2

has the property that √(x) is given by √(x) = 2
P

k ukm∞ (2x − k), the
series being locally a finite sum,

(f) ϕ(x) and √(x) are splines of degree m with infinite support, the knots of
ϕ being in Z and the knots of √ being in 1

2Z,
(g) ϕ(x) and √(x) decay exponentially fast as |x | tends to infinity.

REMARK. The wavelet obtained from Theorem 10.33 is called the Battle–
Lemarié wavelet of degree17 m. See Figures 10.14 and 10.15 for graphs of ϕ
and √ in the cases m = 2 and m = 3.

17As was mentioned in connection with Theorem 10.25, terminology varies. Some authors use
the word “order” in place of “degree.” Some authors shift the indices by 1, saying that the case here
is of order m + 1.
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(a)

(b)

FIGURE 10.14. Graphs of Battle–Lemarié scaling function and wavelet
of degree 2. (a) Scaling function. (b) Wavelet.

(a)

(b)

FIGURE 10.15. Graphs of Battle–Lemarié scaling function and wavelet
of degree 3. (a) Scaling function. (b) Wavelet.
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PROOF. Lemma 10.32 shows that P2m(y) is a polynomial in sinπy and cosπy
that is everywhere positive. Being a continuous periodic function that is every-
where positive, 12m(y) is bounded above and below by positive constants. We
can therefore use the orthonormalization trick introduced in the proof of Theorem
10.25 to show that the integer translates of ϕ form an orthonormal set.
For (a), we define ϕ0,k(x) = ϕ(x − k), and let V be the closure of its linear

span. We use Lemma 10.12 to argue as in Theorem 10.25a that V = V0.
For (b) we use Propositions 10.15 and 10.17 just as in the proof of Theorem

10.25b to complete the argument that {Vj }∞j=−∞ and ϕ constitute amultiresolution
analysis.
For (c) we have to compute √ . The Fourier transform of the scaling equation

gives us (Fϕ)(y) = m0(y/2)(Fϕ)(y/2), from which we have

m0(y/2) =
(Fϕ)(y)

(Fϕ)(y/2)

=
12m(y)−1/2(F 1∞ )(y)

12m(y/2)−1/2(F 1∞ )(y/2)

=
12m(y)−1/2e−(m+1)π iy(πy)−(m+1) sinm+1 πy

12m(y/2)−1/2e− 1
2 (m+1)π iy(πy/2)−(m+1) sinm+1 πy/2

= e− 1
2 (m+1)π iy

≥12m( 12 y)
12m(y)

¥1/2
cosm+1 1

2πy.

From Theorem 10.10 we may take

(F√)(y)= eπ iy∫( 12 y)m0(
1
2 y + 1

2 )(Fϕ)( 12 y)

= eπ iy∫( 12 y)e
1
2 (m+1)π iye

1
4π i(m+1)

× (sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
(Fϕ)( 12 y)

= ∫( 12 y)e
1
2 (m+3)π iye

1
4 (m+1)π i

× (sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2(F m∞ )( 12 y).

with ∫ periodic of period 1. If we take

∫(y) =

Ω
e− 1

4 (m+1)π i e−(m+3)π iy if m is odd
e− 1

4 (m+1)π i e−(m+2)π iy if m is even,
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then
∫( 12 y)e

1
2 (m+3)π iye

1
4 (m+1)π i =

Ω
1 if m is odd
eπ iy if m is even,

and (c) follows.
The proofs of (d) through (g) are straightforward adaptations of the corre-

sponding arguments within the proof of Theorem 10.25. §

9. Daubechies Wavelets

Recall that the Haar wavelet has the desirable property of having compact support
and the undesirable property of being discontinuous. Studying the Haar wavelet
in the context of the general theory of wavelets leads one naturally to the question
whether there are continuous wavelets of compact support. The existence of the
Daubechies wavelets, as established in this section, gives an affirmative answer
to this question.
Indeed, the compactness of their supports is such a helpful property that the

Daubechieswavelets are theonesused inmanyapplications. Although thegeneral
method used in their construction allows for many alternative formulations, their
usual definitions include just one wavelet for each positive integer N , which is
called the order. The order of a Daubechies wavelet is one more than the degree
of a certain polynomial used in the definition of the scaling function, and it is half
the number of nonzero coefficients of the generating function18 m0. It is related
to the order of differentiability of the wavelet in a complicated way that will be
discussed in part in the next section. The Daubechies wavelet of order 1 is the
Haar wavelet. All Daubechies wavelets of higher order are continuous. Unlike
with the Meyer wavelets, there is no Daubechies wavelet of infinite order; we
shall see in the next section that no compactly supported wavelet of class C∞

exists.
No closed form is known for the definition of the Daubechies wavelets of

order greater than 1. They are constructed within the context of a multiresolution
analysis by a limiting process.
The starting point for the construction is the scaling equation, specifically the

generating functionm0 that appears in the scaling equation. Recall that the scaling
equation is of the form

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k)

18The functionm0 is sometimes called the scaling filter or low-pass filter, but its role as a filter
will not be part of our discussion until Section 11.
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for constants ak =
R

R
p
2ϕ(x)ϕ(2x − k) dx with

P
|ak |2 = 1 and that the

associated generating function is given by

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

If ϕ has compact support, then ak can be nonzero for only finitely many k,
and hence m0(y) is a trigonometric polynomial.19 Following the Daubechies
approach, we wish to arrange that the scaling function ϕ is real-valued and has
compact support. The inner product formula for the coefficients ak then shows
that ak is real for all k.
The wavelet is given by a similar equation, the wavelet equation, with coef-

ficients bk related to the ak’s. As a consequence only finitely many bk’s will be
nonzero, and thus we see that having ϕ of compact support forces the wavelet √
to have compact support.
Before beginning the construction, let us peek ahead and see that the com-

pactly supported scaling function ϕ must have |(Fϕ)(0)| = 1. (In particular,
ϕ must have nonzero integral over R.) Since ϕ is to be a scaling function for a
multiresolution analysis, the integer translates of ϕ are to form an orthonormal
set. The closed linear span of the integer translates will be the space V0, and we
form spaces Vj as usual. The intersection of the Vj ’s is 0 automatically, according
to Proposition 10.15. But when the Vj are increasing, it is not automatic that their
union is dense in L2(R). Proposition 10.17 gives a sufficient condition, namely
that Fϕ is a bounded function that is continuous and nonzero at y = 0.
Since ϕ is in L2(R) and has compact support, it has to be in L1(R) and its

Fourier transform Fϕ has to be bounded and continuous. But what about the
condition (Fϕ)(0) 6= 0? Let us see that the union of the Vj ’s will actually fail to
be dense in L2(R) unless |(Fϕ)(0)| = 1. In fact, let f be any nonzero member
of L2(R) whose Fourier transform is bounded and is compactly supported, say
in the interval [−M,M]. If Pj is the orthogonal projection on Vj , then Lemma
10.16 gives

kPj f k22 =
R M
−M |(F f )(y)|2 |(Fϕ)(2− j y)|2 dy

when j is large enough so that 2 j−1 > M . The integrand is bounded by amultiple
of |(F f )(y)|2, and dominated convergence gives us

lim
j→∞

kPj f k22 =
R M
−M |(F f )|2|(Fϕ)(0)|2 dy

= |(Fϕ)(0)|2kF f k22 = |(Fϕ)(0)|2k f k22.

19A trigonometric polynomial is defined for current purposes to be a polynomial in e2π iy and
e−2π iy .
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If
S

j Vj is dense in L2(R), then the left side equals k f k22, whichwe are assuming
is nonzero. Then it follows that |(Fϕ)(0)| = 1. Hence a ϕ with compact support
cannot yield a multiresolution analysis unless |(Fϕ)(0)| = 1.
We are ready to construct the multiresolution analysis. For each step we

shall derive necessary conditions and then either show that those conditions are
sufficient or add some additional conditions to make them sufficient. These are
the two steps:

(1) find the possible trigonometric polynomials that might serve as m0,
(2) find how to determine ϕ from m0, and find conditions on ϕ so that ϕ is

the scaling function for a multiresolution analysis.

Step 1. In this step we look for m0 in the form of a trigonometric polynomial.
Let us write down conditions thatm0 must satisfy. A first condition is the identity

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1

given by Lemma 10.13. We do not need to add the words “almost everywhere”
because m0 as a trigonometric polynomial is automatically continuous. We have
just seen that we must have (Fϕ)(0) 6= 0. From the Fourier transform of the
scaling equation, namely

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2),

we see that m0(0) = 1. Since |m0(0)|2 + |m0( 12 )|
2 = 1, we see that m0( 12 ) = 0.

Then we can write
m0(y) =

≥1+ e−2π iy

2

¥N
L(y)

for some trigonometric polynomial L(y), where N ∏ 1 is the order of the zero
of m0(y) at y = 1

2 . It will be observed in the proof below that since m0(y) has
real coefficients, so does L(y). In Propositions 10.34 and 10.36 below, we shall
determine all the functions m0 that satisfy all conditions so far.

Proposition 10.34. Let a trigonometric polynomial m0(y) with real coeffi-
cients be given in the form

m0(y) =
≥1+ e−2π iy

2

¥N
L(y)

with N ∏ 1. If m0 satisfies the equation |m0(y)|2 + |m0(y + 1
2 )|

2 = 1, then the
trigonometric polynomial L(y) = |L(y)|2 can be written as

L(y) = P(sin2 πy)



9. Daubechies Wavelets 501

for some ordinary polynomial P of the form

P(w) = PN (w) + wN R( 12 − w)

with

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk

and with R an odd ordinary polynomial such that P(w) ∏ 0 for 0 ≤ w ≤ 1.
Conversely if the trigonometric polynomial L(y) = |L(y)|2 with real coefficients
can be written as

L(y) = P(sin2 πy)

for some ordinary polynomial P of the form

P(w) = PN (w) + wN R( 12 − w)

with

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk

and with R an odd ordinary polynomial such that P(w) ∏ 0 for 0 ≤ w ≤ 1, then

m0(y) =
≥1+ e−2π iy

2

¥N
L(y) satisfies the equation |m0(y)|2+|m0(y+ 1

2 )|
2 = 1.

REMARKS. What Proposition 10.34 says briefly is that a trigonometric poly-
nomial m0(y) =

° 1
2 (1+ e−2π iy)

¢NL(y) satisfying the functional equation leads
us to a certain kind of polynomial P and that that kind of P leads us back to the
integer N and the modulus squared |L(y)|2 of the function that appears in the
formula for m0(y). To get all the way back to m0(y), rather than merely back to
|m0(y)|2, we need a way of passing from |L(y)|2 to L(y). That step is postponed
to Proposition 10.36.

To prove Proposition 10.34, we need a lemma.

Lemma 10.35. Let PN (w) be the polynomial
N−1P

k=0

°2N−1
k

¢
wk(1 − w)N−k−1.

Then PN has the properties
(a) PN (w)(1− w)N + wN PN (1− w) = 1,

(b) PN (w) =
N−1P

k=0

°N−1+k
k

¢
wk ,

(c) 0 ≤ PN (y) ≤ PN (1) =
°2N−1

N
¢
for 0 ≤ y ≤ 1.
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N Polynomial PN (w)

1 1
2 1+ 2w
3 1+ 3w + 6w2

4 1+ 4w + 10w2 + 20w3

5 1+ 5w + 15w2 + 35w3 + 70w4

6 1+ 6w + 21w2 + 56w3 + 126w4 + 252w5

7 1+ 7w + 28w2 + 84w3 + 210w4 + 462w5 + 924w6

FIGURE 10.16. Table of values of the polynomial PN (w)
used in defining the Daubechies wavelet of order N .

PROOF. The Binomial Theorem gives

1 = (w + (1− w))2N−1

=
2N−1X

k=0

µ
2N − 1

k

∂
wk(1− w)2N−1−k

= (1− w)N
N−1X

k=0

µ
2N − 1

k

∂
wk(1− w)N−1−k

+ wN
2N−1X

k=N

µ
2N − 1

k

∂
wk−N (1− w)2N−1−k

= (1− w)N PN (w) + wN PN (1− w).

This proves (a). For (b) we observe that QN (w) =
N−1P

k=0

°N−1+k
k

¢
wk equals the

sum of the terms of the Taylor series of (1 − w)−N about w = 0 through order
N − 1. From the result of (a),

(1− w)−N = PN (w) + wN (1− w)−N PN (1− w).

On the other hand, PN (w) on the right side is a polynomial of degree N − 1, and
the other term on the right side is the product of wN and an analytic function for
|w| < 1. Thus PN (y) = QN (y). This proves (b). For (c), we use the result

of (b) to see that 0 ≤ PN (y) =
N−1P

k=0

°N−1+k
k

¢
yk ≤

N−1P

k=0

°N−1+k
k

¢
= PN (1), and

PN (1) =
°2N−1

N
¢
from the definition of PN (w). This proves (c). §
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PROOF OF NECESSITY IN PROPOSITION 10.34. If a trigonometric polynomial
m(y) =

P
cke−2π iky with real coefficients is divisible by 1 + e−2π iy , say as

m(y) = q(y)(1 + e−2π iy) with q(y) =
P
dke−2π iky equal to a trigonometric

polynomial, then we see that ck = dk +dk−1 for all k. Since dk−1 = 0 for some k,
it follows that we can recursively determine the coefficients dk and see that they
are real. Iterating this result, we see that the trigonometric polynomial L(y) in
the statement of the proposition has real coefficients.
The function L(y) = |L(y)|2 is a trigonometric polynomial with real coef-

ficients, say L(y) =
P

Ake−2π iky , and it is real valued. Taking its complex
conjugate, we see that Ak = A−k for each k, hence that L(y) is a finite linear
combination of the functions cos 2πky with real coefficients. Each cos 2πky is a
polynomial function of cos 2πy, and thus L(y) is a polynomial in cos 2πy with
real coefficients, say L(y) = Q(cos 2πy).
Consider |m0(y)|2. This has

|m0(y)|2 =
≥1+ e−2π iy

2

¥N≥1+ e2π iy

2

¥N
L(y)

=
°
cos2 πy

¢N Q(cos 2πy). (∗)

Since sin2 πy = 1
2 (1 − cos 2πy), we can rewrite Q(cos 2πy) as P(sin2 πy)

for a polynomial P with real coefficients. Define a function w = w(y) by
w(y) = sin2 πy. Then 1− w(y) = cos2 πy, and (∗) becomes

|m0(y)|2 = (1− w(y))N P(w(y)). (∗∗)

To work with the corresponding formula for |m0(y + 1
2 )|

2, we need to compute
w(y+ 1

2 ). Observe that sinπ(y+ 1
2 ) = sinπy cosπ/2+cosπy sinπ/2 = cosπy.

Thus w(y + 1
2 ) = sin2 π(y + 1

2 ) = cos2 πy = 1− sin2 πy = 1− w(y), and

|m0(y + 1
2 )|

2 = (1− w(y + 1
2 ))

N P(w(y + 1
2 )) = (w(y))N P(1− w(y)). (†)

Adding (∗∗) and (†) gives

1 = |m0(y)|2 + |m0(y + 1
2 )|

2 = (1− w)N P(w) + wN P(1− w). (††)

In view of Lemma 10.35a, we have 1 = (1 − w)N PN (w) + wN PN (1 − w).
Subtracting (††) and this equation gives

(1− w)N
°
P(w) − PN (w)

¢
+ wN °

P(1− w) − PN (1− w)
¢

= 0, (‡)

from which it follows that wN divides P(w) − PN (w).
Let write P(w) − PN (w) = wN R( 12 − w) for a polynomial R. Equation (‡)

shows that

wN (1− w)N R( 12 − w) + wN (1− w)N R( 12 − (1− w)) = 0.

Hence R(−w) = −R(w), and R is odd. §
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PROOF OF SUFFICIENCY IN PROPOSITION 10.34. If L(y) = |L(y)|2 can be
written as L(y) = P(sin2 πy) with P of the form

P(w) = PN (w) + wN R( 12 − w)

and R odd, then we use Lemma 10.35a to write

PN (w)(1− w)N + wN PN (1− w) = 1. (‡‡)

The oddness of R ensures that

wN R( 12 − w)(1− w)N + wN (1− w)N R( 12 − (1− w)) = 0. (§)

Adding (‡‡) and (§) gives

P(w)(1− w)N + wN P(1− w) = 1.

Substituting w = sin2 πy shows that

P(sin2 πy)(cos2 y)N + (sin2 y)N P(cos2 πy) = 1. (§§)

We saw in (∗∗) that |m0(y)|2 = (1− w)N P(w) and in (†) that |m0(y + 1
2 )|

2 =
wN P(1− w). Substituting these two relations into (§§) gives

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1,

as required. §

Proposition 10.36 (Fejér and F. Riesz).20 If t (y) =
MP

k=−M
cke−2π iky is a

trigonometric polynomial that is everywhere∏ 0, then there exists a trigonometric

polynomial L(y) =
MP

k=−M
dke−2π iky such that t (y) = |L(y)|2. If all the ck are

real, then all the dk can be taken to be real.
REMARKS.
(1) Proposition 10.36 adds to Proposition 10.34 a final step in the inverse

direction. Instead of merely passing from a certain kind of polynomial P to
the integer N and |L(y)|2, we can now pass back from P to N and L(y) itself,
therefore to m0.
(2) No uniqueness result is asserted in Proposition 10.36. In the construction

of L(y) in the proof below, we do not need to take all the roots αj inside the unit
disk and none of the roots αj

−1 outside the unit disk. We merely have to select
one root from each pair αj , αj

−1. If there are r pairs of roots, the total number
of possibilities for L(y) is 2r .

20The original version appears on page 117 of the book by Riesz and Sz.-Nagy.
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PROOF. Wemay assume that t (y) is not identically 0. Since t (y) is real valued,
we have an equality

MX

k=−M
c−ke2π iky =

MX

k=−M
cke−2π iky = t (y) = t (y) =

MX

k=−M
cke2π iky,

and we must have equality term by term. Therefore c−k = ck for all k. We may
assume that M is as small as possible, and then c−M 6= 0. Define an ordinary
polynomial by

Q(z) = c−M + · · · + cMz2M = cM + · · · + c−Mz2M .

Then
t (y) = e2π iMyQ(e−2π iy) (∗)

and
z2MQ(z−1) = Q(z̄). (∗∗)

From (∗∗) it follows that if Q(z0) = 0 with z0 outside the closed unit disk, then
Q(1/ z0 ) = 0 with 1/ z0 inside the unit disk, and vice versa. Furthermore, the
multiplicitiesmatch. Observe that Q(z) cannot vanish at z = 0 because c−M 6= 0.
Suppose that Q(z) has a zero at e−2miθ0 of order m. Then θ 7→ Q(e−2π iθ ) has

a zero at θ = θ0, and this zero is of the same order m because the exponential
function has a locally defined inverse about every point of its image. Similarly
θ 7→ e2π iMθQ(e−2π iθ ) has a zero of order m at θ = θ0. This function is real-
valued, matching t (θ) for θ ∈ R, and it equals the sum of a multiple of (θ − θ0)

m

and a small error term for |θ − θ0| small. Since t takes on no negative values, m
has to be even.
All that being so, let {αj } be the zeros of Q(z) inside the open unit disk,

repeated according to their multiplicities, and let {βk} be the distinct zeros of
Q(z) on the unit circle, with βk having multiplicity 2mk . Since a polynomial is
determined up to a multiplicative constant by its roots and their multiplicities, we
have

Q(z) = c
≥Y

j
(z − αj )(z − ( αj )

−1
¥≥Y

k
(z − βk)

2mk
¥

and

t (y) = ce2π iMy
≥Y

j
(e−2π iy − αj )(e−2π iy − ( αj )

−1)
¥≥Y

k
(e−2π iy − βk)

2mk
¥
.

Put
r(y) =

≥Y

j
(e−2π iy − αj )

¥≥Y

k
(e−2π iy − βk)

mk
¥
.
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Then
|r(y)|2 =

≥Y

j
|e−2π iy − αj |

2
¥≥Y

k
|e−2π iy − βk |

2mk
¥

Now

|e−2π iy − αj |
2 = (e−2π iy − αj )(e2π iy − αj )

= −e2π iyαj (e−2π iy − αj )(e−2π iy − ( αj )
−1)

and

|e−2π iy − βk |
2 = (e−2π iy − βk)(e2π iy − βk ) = −βke2π iy(e−2π iy − βk)

2.

Comparing, we see that there is some integer p with

|r(y)|2 = c0e2π i pyt (y) and with c0 in C.

Since |r(y)|2 and t (y) are nonnegative and not identically 0, we see that c0 is
positive and that p = 0. Putting L(y) = r(y)

p
c0 −1, we obtain a trigonometric

polynomial whose absolute value squared equals t (y).
If all the ck are real, then Q(z) has real coefficients and its roots come in

complex conjugate pairs. If αj used in the definition of r(y), then we use αj also,
with the same multiplicity. Then the result is that r(y) has real coefficients, and
so does L(y). §

Step 2. In this step we determine ϕ from m0. We start from the Fourier
transform of the scaling equation,

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2).

We know from earlier that m0(0) = 1, that m0( 12 ) = 0, and that m0 is a
trigonometric polynomial periodic of period 1. If we iterate the formula, we
obtain

(Fϕ)(y) =
° nQ

j=1
m0(2− j y)

¢
(Fϕ)(2−n y).

Proposition 10.37. If ϕ is a compactly supported scaling function, then the
infinite product

nQ

j=1
m0(2− j y)

converges (to a limit that is nonzero at points where all the factors are nonzero),
the convergence being uniform on compact sets in R, and

(Fϕ)(y) =
° ∞Q

j=1
m0(2− j y)

¢
(Fϕ)(0)

with |(Fϕ)(0)| = 1.
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PROOF. Fix M > 0. We prove uniform convergence for |y| ≤ M . By Taylor’s
Theorem, |m0(y) − 1| ≤ C|y| for |y| ≤ M , say. Then also |m0(2− j y) − 1| ≤

C2− j M . Since
∞P

j=1
C2− j M converges, the given infinite product converges as

asserted.21 Therefore

(Fϕ)(y) =
° ∞Q

j=1
m0(2− j y)

¢°
lim
n→∞

(Fϕ)(2−n y)
¢
.

The second factor on the right equals (Fϕ)(0) since the Fourier transform of the
L1 function ϕ is continuous, and we have seen that |(Fϕ)(0)| = 1. §

Now let us consider the converse direction, to pass from m0 to ϕ. We need to
remember that we are seeking a real-valued ϕ. Then (Fϕ)(0), being the integral
of ϕ, must be real, and so we must have (Fϕ)(0) = ±1. This minus sign is
harmless, and we might as well aim for (Fϕ)(0) = 1 and define Fϕ by the
product formula in the proposition:

(Fϕ)(y) =
∞Q

j=1
m0(2− j y).

Sadly if we start from m0 produced from Step 1 and we define ϕ this way, the
result is not necessarily a scaling function: the set of its integer translates can
fail to be orthonormal. We need an extra assumption. A necessary and sufficient
condition is known, but we shall not give it. Instead we give a sufficient condition
that we can easily verify in the examples of interest.

Proposition 10.38. Suppose that m0(y) is a trigonometric polynomial such
that

(i) m0(0) = 1,
(ii) |m0(y)|2 + |m0(y + 1

2 )|
2 = 1, and

(iii) m0(y) is nonzero for |y| ≤ 1
4 .

Define
h(y) =

∞Q

j=1
m0(2− j y).

Then the infinite product converges uniformly on compact sets of R, and the
limit function h is a smooth function in L2(R) with h(0) = 1. Moreover the
inverse Fourier transform ϕ = F−1h has compact support, has the property that
its integer translates are orthonormal, and satisfies the scaling equation (Fϕ)(y) =
m0(y/2)(Fϕ)(y/2). Consequently ϕ is the scaling function for a multiresolution
analysis. If m0(y) has real coefficients, then ϕ is real-valued.

21For a proof of the standard facts relating convergence of infinite series with convergence of
infinite products, see the author’s Elliptic Curves, page 195. For the uniformity of the convergence,
we are incorporating the Weierstrass M test into the relevant theorem.
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PROOF. For the moment let us regard the variable y as complex. Observe that
m0(y) is a trigonometric polynomial and is therefore entire. We check that the
product defining h(y) converges uniformly on compact subsets of C, and hence
h(y) is an entire function.22 Fix K > 0. From assumption (i), m0(0) = 1,
and therefore |m0(y) − 1| ≤ A|y| for all complex y with |y| ≤ K . Then also

|m0(2− j y)−1| ≤ A2− j K . Since
∞P

j=1
A2− j K converges, the given infinite product

h(y) =
Q∞

j=1m0(2− j y) converges uniformly23 on the compact subset ofCwhere
|y| ≤ K . The number K being arbitrary, h(y) is an entire function of the complex
variable y.
We are going to estimate the size ofh(y) as a functionof the complex variable y.

We begin by estimating the size of the entire function m0(y). Write m0 out in

the form of a trigonometric polynomial as m0(y) = 1p
2

MP

k=−M
ake−2π iky . Since

m0(0) = 1, we have

MP

k=−M

1p
2
ake−2π iky − 1 =

MP

k=−M

1p
2
ak(e−2πky − 1)

and thus
|m0(y) − 1| ≤

MP

k=−M

1p
2
|ak ||e2π iky − 1|.

Put C =
MP

k=−M

1p
2
|ak |. Let us record that

MP

k=−M

1p
2
ak = 1 implies

C =
MP

k=−M

1p
2
|ak | ∏ 1. (∗)

By comparing power series term by term, we have

|e2π iky − 1| ≤ e2πk|y| − 1 ≤ e2πM|y| − 1,

Consequently

|m0(y) − 1| ≤
° MP

k=−M

1p
2
|ak |

¢
(e2πM|y| − 1) = C(e2πM|y| − 1).

22A sequence of analytic functions converges to an analytic function if the convergence is uniform
on compact sets, according to Problem 55 in Appendix B of Basic.

23This is the same argument as in the proof of Proposition 10.37 except that we are now allowing
the variable to be complex.
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Since C ∏ 1 by (∗), we have

C(e2πM|y| − 1) =
∞P

n=1

C(2πM|y|)n

n!
≤

∞P

n=1

(2πCM|y|)n

n!
= e2πCM|y| − 1.

Thus
|m0(y)| ≤ 1+ |m0(y) − 1| ≤ e2πCM|y|. (∗∗)

The product of the first J factors defining h(y) is
JQ

j=1
m0(2− j y), and its absolute

value, according to (∗∗), is

JQ

j=1
|m0(2− j y)| ≤

JQ

j=1
e2πCM|2− j y| = exp

°
2πCM|y|

JP

j=1
2− j¢ ≤ e2πCM|y|.

Letting J tend to infinity, we obtain

|h(y)| ≤ e2πCM|y|. (†)

This estimate, which we shall return to a little later, is summarized by saying that
the entire function h(y) is of exponential type.
For the reminder of the proof, y can be regarded as a real variable. Let us write

the inner product of f and g in L2(R) as ( f, g), and let us define a translation
operator Tk : L2(R) → L2(R) for k ∈ Z by Tk f (x) = f (x − k). Each operator
Tk is unitary. Put

C = { f ∈ L2(R)
Ø
Ø k f k2 = 1 and ( f, Tk f ) = 0 for all k 6= 0 in Z}.

We shall prove that C is a closed set. In fact, suppose that { fn} is a sequence in C
convergent to f in L2(R). Since the norm is continuous, k f k2 = 1. For nonzero
k in Z, the equality

( f, Tk f ) − ( fn, Tk fn) = ( f − fn, Tk f ) + ( fn, Tk f − Tk fn)

together with the triangle inequality, the Schwarz inequality, and the fact that Tk
is unitary give

|( f, Tk f ) − ( fn, Tk fn)| ≤ k f − fnk2kTk f k2 + k fnk2kTk( f − fn)k2
= k f k2k f − fnk2 + k fnk2k f − fnk2
= 2k f − fnk2.

The right side has limit 0. Since k 6= 0 and fn is in C, the left side reduces to
|( f, Tk f )|, and consequently ( f, Tk f ) = 0. Thus C is a closed set.
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Let ϕ0 be the L2 function with Fϕ0 = I[− 1
2 ,
1
2 ]
, i.e., the scaling function of

the Shannon wavelet in Section 4. It was shown in the proof of Theorem 10.14
that the integer translates of ϕ0 are orthonormal. Hence ϕ0 is in C. Since m0
has to be bounded as a function of a real variable, we can define L2 functions ϕn
inductively for n ∏ 1 by

(Fϕn)(y) = (Fϕ0)(2−n y)m0(2−1y) · · ·m0(2−n y). (††)

We shall prove inductively that each ϕn is in C. The base case n = 0 of the
induction having been settled, assume inductively that ϕn−1 is in C. Since
(Fϕn)(y) = m0(y/2)(Fϕn−1)(y/2), we have

P

l∈Z
|(Fϕn)(y + l)|2 =

P

l even
|m0( 12 (y + l))|2|(Fϕn−1)(

1
2 (y + l))|2

+
P

l odd
|m0( 12 (y + l))|2|(Fϕn−1)(

1
2 (y + l))|2

= |m0( 12 y)|
2 P

l∈Z
|(Fϕn−1)(

1
2 y + l)|2

+ |m0( 12 y + 1
2 )|

2 P

l∈Z
|(Fϕn−1)(

1
2 (y + 1) + l)|2

= |m0( 12 y)|
2 + |m0( 12 y + 1

2 )|
2,

the last equality holding by Lemma 10.11 and the inductive hypothesis. The
last line of the above expression equals 1 by assumption (ii), and it follows from
another application of Lemma 10.11 that ϕn is in C. This completes the proof by
induction that ϕn is in C.
We know that the partial products

QJ
j=1m0(2− j y) converge uniformly on

compact sets to what we have defined to be h(y). Since (Fϕ0) is continuous at 0
and has (Fϕ0)(0) = 1, a glance at (††) shows that

lim
n

(Fϕn)(y) = h(y)

uniformly on compact sets. Applying Fatou’s Lemma24 to the absolute values
squared, we obtain

R
R |h(y)|2 dy ≤ lim inf

R
R |(Fϕn)(y)|2 dy.

The right side equals 1 since ϕn is in C, and therefore the restriction of the entire
function h to R is in L2(R) with khk2 ≤ 1. We let ϕ = F−1h, so that ϕ is in
L2(R) with kϕk2 ≤ 1.

24Theorem 5.29 of Basic.
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We know that lim(Fϕn) = Fϕ uniformly on compact sets, and we are going
to prove that the convergence takes place in L2(R). Once we have done so, the
Plancherel Theoremwill yield limϕn = ϕ in L2(R). SinceC is closed and eachϕn
is in C, we will then have proved that the integer translates of ϕ are orthonormal,
and we will be on our way toward obtaining a multiresolution analysis.
To prove that Fϕn converges to Fϕ in L2(R), we are going to use dominated

convergence, showing that for all n, |(Fϕn)(y)| is ≤ C1|(Fϕ)(y)| for some
constantC1 and all real y. By assumption (iii), |m0(y)| is nonzero for real y with
|y| ≤ 1

4 . The function m0(y) is continuous (being a trigonometric polynomial),
and thus there is a positive number c such that |m0(y)| ∏ c > 0 for real y with
|y| ≤ 1

4 . By the uniform convergence of the partial products of h(y) on compact
sets, we can choose an integer J large enough so that

Q
j>J |m0(y2− j )| ∏ 1

2
whenever |y| ≤ 1

2 and y is real. Then we have

|(Fϕ)(y)| =
° JQ

j=1
|m0(y2− j )|

¢° Q

j>J
|m0(y2− j )|

¢
∏ 1

2

JQ

j=1
|m0(y2− j )| ∏ 1

2c
J

for |y| ≤ 1
2 . In other words, inf|y|≤1/2 |(Fϕ)(y)| ∏ c1 > 0 for some positive

constant c1. The definition of Fϕn shows that (Fϕn)(y) = 0 for |y| > 2n−1 and
hence that |(Fϕn)(y)| ≤ c−1

1 |(Fϕ)(y)| there. Meanwhile for |y| ≤ 2n−1, we
have (Fϕ)(y) = (Fϕn)(y)(Fϕ)(2−n y) and hence also

|(Fϕn)(y)| =
Ø
Ø
Ø

(Fϕ)(y)
(Fϕ)(2−n y)

Ø
Ø
Ø ≤ c−1

1 |(Fϕ)(y)|.

Thus
|(Fϕn)(y)| ≤ c−1

1 |(Fϕ)(y)| for all y.

Consequently |(Fϕn)(y) − (Fϕ)(y)|2 is dominated for all y by the multiple
(c−1
1 + 1)2 of |(Fϕ)(y)|2, which in turn has been shown to be integrable. By

dominated convergence we therefore have

lim
R

R |(Fϕn)(y) − (Fϕ)(y)|2 dy =
R

R lim |(Fϕn)(y) − (Fϕ)(y)|2 dy = 0.

Thus Fϕn converges to Fϕ in L2(R), as asserted.
Let us recapitulate. We formed h(y) as an infinite product of dilates of the

trigonometric polynomial m0(y), exhibited it as a limit of functions Fϕn uni-
formly on compact sets, and deduced from Fatou’s Lemma that h is in L2(R). We
definedϕ = F−1h as amember of L2(R), andwe saw thatϕ is in C, i.e., its integer
translates formanorthonormal set. Thedefinitionsmadeh(y) = m0(y/2)h(y/2),
i.e.,

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2),
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and thus ϕ satisfies a scaling equation. We now define ϕj,k(x) = 2 j/2ϕ(2 j x − k)
and let Vj be the closure of the linear span of {ϕj,k}∞k=−∞. The sequence {Vj }
is increasing, since ϕ satisfies a scaling equation. The claim is that {Vj } and ϕ
together form a multiresolution analysis in the sense of Section 3. Condition
(iv) in the definition is satisfied, and condition (iii) is built into the definition.
Proposition 10.15 shows that condition (ii) is automatic, and Proposition 10.17
says that condition (i) holds if Fϕ is a bounded function that is continuous and
nonzero at y = 0. But Fϕ is just h, and we saw that h is the restriction to R of
an entire function with h(0) = 1. Thus indeed (i) holds. Consequently {Vj } and
ϕ together form a multiresolution analysis.
Next we are to show that ϕ has compact support. We saw that the L2 function h

extends to an entire function of exponential type. By the classical Paley–Wiener
Theorem,25 the L2 function ϕ = F−1h has compact support.
Finally we are to show that ifm0(y) has real coefficients, then ϕ is real-valued.

Since m0(y) has real coefficients, m0 satisfies m0(y) = m0(−y). Referring to
the formulas, we then see that h(y) = h(−y) and ϕ(x) = ϕ(x). §

Now we are in a position to collect all our results and produce the wavelets of
compact support.
Theorem 10.39. Fix an integer N ∏ 1, and define

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk .

LetL(y) be any of the trigonometric polynomials produced by Proposition 10.36
such that |L(y)|2 = PN (sin2 πy), and define

m0(y) =
≥1+ e−2π iy

2

¥N
L(y).

Let h(y) be the L2 function
h(y) =

∞Q

j=1
m0(2− j y),

and define ϕ = F−1h. Then ϕ has compact support and is the scaling function of
a multiresolution analysis whose wavelet can be taken to have Fourier transform
given by

(F√)(y) = e−iπym0( 12 y + 1
2 )h(y/2).

25The classical Paley–Wiener Theorem says that a function h in L2(R) is of the form h = Fϕ

for a function ϕ in L2(R) of compact support if and only if h (after adjustment on a set of measure 0)
can be extended to all of C as an entire function of exponential type. This theorem is not included in
Chapter VIII of Basic, but instead the sufficiency appears as Theorem 10.41 at the end of the present
section. The necessity is much easier but is not needed.
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REMARKS.
(1) Proposition 10.36 produces a number of trigonometric polynomials L(y)

with |L(y)|2 = PN (sin2 πy), corresponding to the subsets of roots αj of a certain
polynomial inside the unit disk. The Daubechies wavelet of order N arises by
choosing the subset to consist of all the roots within the unit disk. All other
choices of subsets of roots, however, lead to wavelets. The subsets that are closed
under complex conjugation lead to ϕ and √ real-valued.
(2) Theorem 10.39 contains no assertion of smoothness or even continuity for

the Daubechies wavelets. This issue is postponed until the next section, in which
we shall see that theDaubechieswavelets of order∏ 2 are continuousand that they
becomeprogressivelymoredifferentiableas N increases. However, they arenever
infinitely differentiable. Graphs of the scaling functions and wavelets appear
in Figures 10.17a and 10.17b, except that the wavelets have been translated by
integers tomake them better centered.26 The cases of small N look as if theywere
drawn with a shaky hand, and this fact reflects the low order of differentiability
in these cases.
(3) The Daubechies wavelet of order 1 is just the Haar wavelet. In fact,

we have P1(w) = 1. The polynomial L(y) is to have |L(y)|2 = 1 and thus
can be taken to be 1. Then m0(y) = 1

2 (1 + e−2π iy), in agreement with the

formula in the example in Section 3. To compute h(y) =
∞Q

j=1
m0(2− j y), we write

m0(y) = e−π iy cosπy. The product of the exponentials e−π i2− j y comes out to

be e−π iy , and thus h(y) = e−π iy
∞Q

j=1
cos(2− jπy). By making repeated use of

the identity sin 2θ = 2 sin θ cos θ , we obtain 2J sin(2−Jπy)
JQ

j=1
cos(2− jπy) =

= 2J−1sin(2−J+1πy)
J−1Q

j=1
cos(2− jπy) = · · · = sinπy. Therefore

JQ

j=1
cos(2− jπy) =

sinπy
2J sin(2−Jπy)

.

Using lim
θ→0

θ−1 sin θ = 1 and passing to the limit, we obtain
∞Q

j=1
cos(2− jπy) =

(sinπy)
±
(πy). Hence

h(y) = e−iπy sinπy
πy

.

The right side is the Fourier transform of the indicator function I[0,1], and thus
ϕ = I[0,1], as asserted.

26As the proof notes, the definition ofF√ involves an arbitrary periodic function ∫ of absolute
value 1, and the figures use a power of ∫(y) = e2π iy to achieve this translation.
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(N = 1)

(N = 2)

(N = 3)

(N = 4)

(N = 5)

FIGURE 10.17a. Daubechies scaling function (left) and wavelet (right)
of order N for N = 1, 2, 3, 4, 5.
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(N = 6)

(N = 7)

(N = 8)

(N = 9)

(N = 10)

FIGURE 10.17b. Daubechies scaling function (left) and wavelet (right)
of order N for N = 6, 7, 8, 9, 10.
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(4) The Daubechies wavelet of order 2 is sufficiently complicated that no
closed form is known for it. However, it is sufficiently simple that we can
compute m0(y) exactly. For it, we have P2(w) = 1+ 2w. Thus P2(sin2 πy) =
1 + 2 sin2 πy = |L(y)|2. Proposition 10.36 tells us how to find the possibil-
ities for L(y). In the proposition the function t has t (y) = 1 + 2 sin2 πy =
2 − cos 2πy = − 1

2e
−2π iy + 2 − 1

2e
2π iy . In the notation of the proof of that

proposition, we have M = 1, Q(y) = − 1
2 + 2y − 1

2 y
2, and z2Q(z−1) = Q(z̄).

The zeros of Q(z) occur at 2 ±
p
3, and we are to use the one inside the unit

disk, namely 2 −
p
3, in defining L(y). The proof of the proposition says

to use r(y) = e−2π iy − (2 −
p
3) as a first approximation to L(y). Then

|r(y)|2 = (8− 4
p
3 ) − 2(2−

p
3 ) cos 2πy = c0(2− cos 2πy) = c0t (y), where

c0 = 4 − 2
p
3. Since (c0)−1/2 = 1

2 (1 +
p
3), the proof of the proposition says

that L(y) = 1
2 (1 +

p
3)r(y) has |L(y)|2 = t (y). In other words, L(y) =

1
2 (1+

p
3)(e−2π iy − (2−

p
3)). Then m0(y) is given by= 1

4 (1+ e−2π iy)2L(y),
i.e.,

m0(y) = 1
2 (1+

p
3)(e−2π iy − (2−

p
3)) 14 (1+ e−2π iy)2.

Observe that the expansion of m0(y) in terms of exponentials has exactly four
nonzero coefficients—those for 1, e−2π iy , e−4π iy , and e−6π iy .
(5) The Daubechies wavelet of order N , when expanded in terms of exponen-

tials, has exactly 2N nonzero coefficients—those for 1, e−2π i x , . . . , e−2π i(2N−1)x .
Decimal approximations of these coefficients for 2 ≤ N ≤ 10 appear in a table27
on page 195 of the award-winning book byDaubechies,Ten Lectures onWavelets.

PROOF OF THEOREM 10.39. Proposition 10.34 shows that when defined as in
the statement of the theorem, m0(y) satisfies |m0(y)|2 + |m0(y + 1

2 )|
2 = 1, as

well as m0(0) = 1. Also

|m0(y)|2 = 2−2N |1+ e−2π iy|2N PN (sin2 πy)

= (cos2 πy)N
N−1P

k=0

°2N−1
k

¢
(sin2 πy)k(cos2 πy)N−k

∏ (cos2 πy)2N ,

and this is > 0 for |y| ≤ 1
4 . Therefore the hypotheses of Proposition 10.38 are

satisfied, and we can conclude that

h(y) =
∞Q

j=1
m0(2− j y)

27The coefficients in the table differ from those in the present book by a factor of
p
2. One can

verify this fact for N = 2 by using the coefficients obtained for N = 2 in the previous remark.
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defines an entire function for y ∈ C with h(0) = 1 whose restriction to R is in
L2(R). Moreover, the proposition says that ϕ = F−1h is compactly supported
and is the scaling function for a multiresolution analysis. According to Theorem
10.10, the corresponding wavelet is any function of the form

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)(y/2)

with ∫ periodic of period 1 and with |∫(y)| = 1 everywhere. If we take into
account that Fϕ = h and if we put ∫(y) = e−2π iy , then the resulting formula is

(F√)(y) = e−iπym0( 12 y + 1
2 )h(y/2). §

Before turning to smoothness questions, we insert as Theorem 10.41 the hard
direction of the Paley–Wiener Theorem. This result was used at a critical point
in the proof of Proposition 10.38. In the course of proving Theorem 10.41, we
shall make use of the Phragmén–Lindelöf Theorem, which is a variant of the
Three Lines Theorem (Basic, Lemma 9.19B, p. 471).

Lemma 10.40 (Phragmén–Lindelöf Theorem). Let f be a function that is
analytic in an open neighborhood of the closure D of an open sector D of C with
angular opening < π . Suppose that | f (z)| ≤ C on the boundary of D and that
f satisfies a growth estimate | f (z)| ≤ C 0eM|z| throughout D. Then | f (z)| ≤ C
throughout D.

PROOF. Without loss of generality, we may assume that D is positioned
symmetrically about the positive x axis with vertex at the origin and with angle
√ on each side of the axis. Since √ < π

2 by assumption, we can choose and fix
α > 1 with α√ < π

2 . For each positive number ε, define gε(z) = f (z)e−εzα ,
where zα refers to the principal value. For z = reiθ in D with |θ | ≤ √ , we have

|gε(z)| ≤ C 0eM|z||e−ε(reiθ )α | = C 0eMre−εrα cos(αθ) ≤ C 0eMre−εrα cos(α√).

Since α > 1, this tends to 0 as r tends to infinity, and we can regard gε as
continuous on the compact subset D ∪ {∞} of the extended plane. Then |gε(z)|
has an absolute maximum at some point zε of D ∪ {∞}. The point zε cannot
be ∞, and the maximum principle for analytic functions then forces zε to be
on the boundary of D. Hence |gε(zε)| ≤ C . Consequently |gε(z)| ≤ C and
| f (z)| ≤ C|e−εzα | everywhere on D. Passing to the limit as ε decreases to 0, we
see that | f (z)| ≤ C everywhere on D. §
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Theorem 10.41 (Paley–Wiener Theorem). If h is an L2 function on R that
extends to an entire function onC of exponential type, then the Fourier transform
of h has compact support.
REMARK. In our application within the proof of Proposition 10.38, we needed

ϕ = F−1h to be of compact support, and the assertion here is aboutFh. However,
the question of compact support comes to the same thing forFh andF−1h, since
(F−1h)(ξ) = (Fh)(−ξ).
PROOF. We regard h as an entire function on C with |h(z)| ≤ Ae2πM|z| for

all z. Allusions to the Fourier transform are to the restriction of h to R. For
most of the proof, we shall assume that h is bounded on R, say with |h(x)| ≤ B.
Toward the end of the proof, we shall show how to drop this assumption.
We shall prove that (Fh)(ξ) = 0 a.e. for |ξ | > M . We handle ξ > M and

ξ < −M separately. First suppose that ξ > M . For ε > 0, we introduce
hε(z) = h(z)/(1 + iεz)2. This is analytic in a neighborhood of the lower half
plane Im z ≤ 0, and its restriction to R is in L1(R), being the product of two
functions in L2(R). We shall show that its Fourier transform bhε(ξ) vanishes
for ξ > M . We are going to move the contour of integration in the integral
bhε(ξ) =

R ∞
−∞ hε(x)e−2π iξ x dx .

Let b > 0 be arbitrary. Form the rectangle in C whose top side extends
from −R to R on the real axis and whose bottom side extends from −R − ib to
−R + ib. Orient the rectangle clockwise. The total integral over the rectangle
of hε(z)e−2π iξ z is 0 by the Cauchy Integral Theorem, and we are going to show
that in the limit R → ∞ and then b → ∞, the other three sides each contribute
0. Then the conclusion will be that the contribution from the top side is 0, i.e.,
that bhε(ξ) = 0.
To estimate the contributions from the vertical sides and bottom of the rec-

tangle, we shall apply Lemma 10.40 (the Phragmén–Lindelöf Theorem) twice to
the analytic function h(z)e−2π iMz in the lower half plane. Consider the quadrant
with Re z ∏ 0 and Im z ≤ 0. On the positive real axis we have

|h(x)e−2π iMx | = |h(x)| ≤ B,

while on the negative imaginary axis {−iy with y ∏ 0} we have

|h(−iy)e−2π iM(−iy)| ≤ Ae2πM|−iy|e−2πMy = A.

On the whole quadrant where Re z ∏ 0 and Im z ≤ 0, we have

|h(z)||e−2π iMz| = |h(z)|e2πM| Im z| ≤ Ae2πM|z|e2πM| Im z| ≤ Ae4πM|z|.

Thus the lemma applies with C = max{A, B} and gives the bound

|h(z)e−2π iMz| ≤ C (∗)
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everywhere on the quadrant. We can argue similarly with the quadrant for which
Re z ≤ 0 and Im z ≤ 0. The estimates are the same, and Lemma 10.40 yields the
bound (∗) whenever Re z ≤ 0 and Im z ≤ 0. Consequently

|h(x + iy)| ≤ C|e2π iM(x+iy)| = Ce2πM|y| (∗∗)

whenever y ≤ 0.
To estimate the contributions from the vertical sides, where |x | = R, we apply

(∗∗) and make use of the bound

|hε(z)| ≤ |h(z)|(1+ ε2|z|2)−1 ≤ Ce2πM|y|(1+ ε2R2)−1 ≤ Cε−2R−2e2πMb.

The integral over the right vertical side is

≤
R −b
0 |hε(R + i t)||e−2π iξ(R+i t)| dt ≤ Cε−2R−2e2πMb

R −b
0 e2πξ t dt.

Since we are holding b fixed as we let R tend to infinity, this term tends to 0.
Similarly the integral over the left vertical side tends to 0.
After the passage to the limit in R and the application of the Cauchy Integral

Theorem, we see that bhε(ξ) equals the integral over the bottom side of the
rectangle, i.e., that

bhε(ξ) =
R ∞
−∞ hε(x − ib)e−2π iξ(x−ib) dx .

On the right side we use the bound (∗∗) and the estimate

|hε(z)| = |h(z)|(1+ ε2|z|2)−1 ≤ |h(z)|(1+ ε2x2)−1

to see that

|bhε(ξ)| ≤
R ∞
−∞(1+ ε2x2)−1Ce2πMbe−2πξb dx = ce−2πb(ξ−M).

As b tends to infinity, the right side tends to 0 because ξ > M . Thus bhε(ξ) = 0.
Still with ξ > M , we shall let ε tend to 0. Let g be any function in C∞

com(R)
with support in the interval (M,+∞). Then the multiplication formula gives
0 =

R
R

bhεg dx =
R

R hεbg dx , i.e.,

0 =
Z

R

h(x)bg(x)
(1+ iεx)2

dx

for every ε > 0. Here h andbg are in L2(R) and also |(1+ iεx)−2| ≤ 1. Thus we
have dominated convergence as ε tends to 0, and we obtain

0 =
R

R h(x)bg(x) dx =
R

R(Fh)(ξ)g(ξ) dξ.
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Since g is any smooth function supported in (M,+∞), we see that (Fh)(ξ) = 0
a.e. for ξ > M .
In similar fashion we argue for ξ < −M by using approximating functions

hε(z) = h(z)/(1 − iεz)2 and working in the upper half plane. Lemma 10.40 is
to be applied to the function h(z)e2π iMz in the two quadrants of the upper half
plane. The new version of estimate (∗∗) is that |h(x+ iy)| ≤ Ce2πM|y| whenever
y ∏ 0. The result is that (Fh)(ξ) = 0 a.e. for ξ < −M .
This completes the proof under the assumption that h is bounded. To see that

we can drop this assumption, let u ∏ 0 be in Ccom(R), and form the convolution
hu(z) =

R
R h(z − t)u(t) dt . The function hu is entire, and it has

|hu(z)| =
Ø
Ø R

R h(z − t)u(t) dt
Ø
Ø ≤

R
R |h(z − t)|u(t) dt

≤ A
R

R e
2πM|z−t |u(t) dt ≤ Ae2πM|z| R

R e
2πM|t |u(t) dt = A0e2πM|z|.

The argument in the special case applies to hu and shows that Fhu vanishes a.e.
for |ξ | > M . If we replace u(x) by uε(x) = ε−1u(ε−1x) and let ε decrease to 0,
then lim huε

= h in L2(R), and so limFhuε
= Fh in L2(R). SinceFhuε

vanishes
a.e. for |ξ | > M , so does Fh. §

10. Smoothness Questions

The Daubechies wavelet of order N that was constructed in Theorem 10.39 has
compact support, but we have not yet proved that it and its scaling function are
continuous if N ∏ 2. (For N = 1, the resulting wavelet is the Haar wavelet,
which is certainly not continuous.)
We shall get at this continuity in this section. As a general principle, the more

rapidly the Fourier transform of a function f decays at infinity, the smoother that
f is. An explanation in simple terms is that under certain technical assumptions
given in Proposition 8.1 of Basic, the Fourier transform of d

dx f (x) is 2π iy f (y).
Thus the starting point for our study is an investigation of the rapidity of decay at
infinity ofFϕ, ϕ being the scaling function of theDaubechieswavelet of order N .

Lemma 10.42. The binomial coefficient
µ
2n
n

∂
satisfies

µ
2n
n

∂
≤

4n
p

πn
for all

n ∏ 1.

REMARK. In fact, the ratio of the two sides of the inequality tends to 1, as is
easily seen by examining the proof of the lemma closely.
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PROOF. Because of the orthogonality of the exponentials on [−π, π], the 0th
Fourier coefficient of cos2n x is

1
2π

Z π

−π

cos2n x dx =
2−2n

2π

Z π

−π

(eix + e−i x)2n dx

=
2−2n

2π

Z π

−π

2nX

k=0

µ
2n
k

∂
eikxei(2n−k)x dx = 2−2n

µ
2n
n

∂
.

Since cos x is even, µ
2n
n

∂
=
4n

π

Z π/2

−π/2
cos2n x dx . (∗)

Consider the function f (x) = log cos x + 1
2 x
2 on [−π/2, π/2]. It has f (0) =

f 0(0) = 0 and f 00(x) = − sec2 x + 1. Therefore it has an absolute maximum at
x = 0, and we obtain the inequality

log cos x ≤ − 1
2 x
2 for − π

2 ≤ x ≤ π
2 .

Exponentiating and raising both sides to the (2n)th power gives

cos2n x ≤ e−nx2 for − π
2 ≤ x ≤ π

2 .

Thus (∗) is

≤
4n

π

Z π/2

−π/2
e−nx2 dx ≤

4n

π

Z ∞

−∞
e−nx2 dx =

4n

π

r
π

n

Z ∞

−∞
e−πy2 dy =

4n
p

πn
. §

Proposition 10.43. For every N ∏ 1 and every integer j ∏ 1, the scaling
function ϕ of the Daubechies wavelet of order N satisfies an estimate

|(Fϕ)(y)|2 ≤
≥ 2N−1
p

πN

¥
(
p
4πN )− j for 2 j−1 ≤ |y| ≤ 2 j .

Consequently
Z

2 j−1≤|y|≤2 j
|(Fϕ)(y)| dy ≤

≥ 2N−1
p

πN

¥1/2
(πN/4)− j/4.

PROOF. For the moment we allow y to be an arbitrary real number. Theorem
10.39 says that

(Fϕ)(y) =
∞Q

j=1
m0(2− j y),
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where m0(y) = e−π i Ny(cosπy)NL(y) and |L(y)|2 = PN (sin2 πy). Moreover,
Lemma 10.35c gives 0 ≤ PN (sin2 πy) ≤

°2N−1
N

¢
. Thus

|(Fϕ)(y)|2 =
∞Q

k=1
|m0(2−k y)|2

≤
j+1Q

k=1
|m0(2−k y)|2 since |m0(y)| ≤ 1

=
j+1Q

k=1
(cos 2−kπy)2N PN (sin2 2−kπy)

≤
j+1Q

k=1

≥
(cos 2−kπy)2N

°2N−1
N

¢¥
by Lemma 10.35c

=
≥ j+1Q

k=1
cos 2−kπy

¥2N °2N−1
N

¢ j+1

=
≥ j+1Q

k=1
cos 2−kπy

¥2N≥
N
2N

°2N
N

¢¥ j+1

≤
≥ j+1Q

k=1
cos 2−kπy

¥2N≥
1
2
4Np
πN

¥ j+1
by Lemma 10.42. (∗)

To handle the product of powers of cosine, we use the same trick as in Re-
mark 3 with Theorem 10.39, namely repeated application of the identity sin 2θ =
2 sin θ cos θ :

2 j+1 sin(2−( j+1)πy)
j+1Q

k=1
cos(2−kπy) = 2 jsin(2− jπy)

jQ

k=1
cos(2−kπy)

= · · · = sinπy.

Thus
j+1Q

k=1
cos 2−kπy =

sinπy
2 j+1 sin 2−( j+1)πy

,

and (∗) is
≤

≥ sinπy
2 j+1 sin 2−( j+1)πy

¥2N≥
1
2
4Np
πN

¥ j+1
. (∗∗)

We nowbring in the constraint 2 j−1 ≤ |y| ≤ 2 j in order to give an upper bound
for the first factor. In the numerator we use | sinπy| ≤ 1. For the denominator,
the absolute value of the argument of the sine lies between π/4 and π/2. Thus
| sin 2−( j+1)πy| ∏ sinπ/4 = 2−1/2, and (∗∗) is

≤ 4− j N2−(1/2)(2N )
≥
1
2
4Np
πN

¥ j+1
=2−N

≥
1
2
4Np
πN

¥
(2

p
πN )− j=

≥
2N−1
p

πN

¥
(2

p
πN )− j .
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This proves the upper bound for |(Fϕ)(y)|2.
An upper bound for the integral is the product of the square root of this bound

by the measure 2 j of the set of integration. The result follows. §

As soon as Nπ > 4, namely as soon as N ∏ 2, the sum over j ∏ 1 of
the integrals in Proposition 10.43 is finite, and it follows that Fϕ is integrable.
Consequently the function ϕ = F−1Fϕ, after adjustment on a set of measure 0,
is a bounded continuous function vanishing at infinity. We already knew that it
had compact support (and hence vanishes at infinity), and the new fact is that it
is continuous. Since in the case of compact support the wavelet is a finite linear
combination of translates of dilates of the scaling function, the wavelet itself is
continuous. Let us state that result as a corollary.

Corollary 10.44. For every N ∏ 2, the scaling function ϕ of the Daubechies
wavelet of order N is continuous, and so is the wavelet √ itself.

The pointwise estimate in Proposition 10.43 gives more, however. One way
of proceeding is to observe as a further corollary of Proposition 10.41 that
|(Fϕ)(y)|2(1+|y|2)s is integrable for specific values of s. In the terminology of
Problems8–12 forChapter III, f is in certain spaces Hs(R) of “Bessel potentials.”
We elaborate on this approach in Problems 18–19 at the end of the present chapter.
But for nowwe shall proceed somewhat differently, so as to avoid invoking results
from Chapter III.
If 0 < α < 1, we say that a continuous function f on R satisfies a Hölder

conditionwith exponent α if there is a constantC such that | f (x+h)− f (x)| ≤
C|h|α whenever x and h are in R with |h| ≤ 1.

Proposition 10.45. Fix α > 0. Suppose that
(i) f is a compactly supported member of L2(R),
(ii) F f is integrable and f has been adjusted on a set of measure 0 so as to

be continuous, and
(iii) there is a constant C with

Z

2 j−1≤|y|≤2 j
|(F f )(y)| dy ≤ C2−α j for every integer j ∏ 0.

If 0 < α < 1, then f satisfies a Hölder condition with exponent α. If the
inequality n < α < n + 1 holds for some positive integer n, then f is of class
Cn , and its nth derivative f (n) is in L2(R) and satisfies a Hölder condition with
exponent α − n.
REMARK. In our case we define α so that 2−α = (πN/4)−1/4, and Proposition

10.43 establishes the estimate in the hypothesis of Proposition 10.45. In other
words, α is any number ≤ 1

4 log2(πN/4).
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PROOF. First suppose that 0 < α < 1. Under the hypotheses on f , we can
write f pointwise as the inverse Fourier transform of F f , and then

f (x + h) − f (x) =
Z

R
e2π i xy(e2π ihy − 1)(F f )(y) dy,

the integrand being integrable. We are to estimate

| f (x + h) − f (x)| ≤
Z

R
|e2π ihy − 1||(F f )(y)| dy (∗)

With |h| ≤ 1, we define the index j = j (h) ∏ 0 so that 2−( j+1) ≤ |h| < 2− j ,
and then we break the region of integration in (∗) into three sets S1, S2, and S3 as
follows: S1 = S1(h) where 0 ≤ |y| < 1

2 , S2 = S2(h) where 12 ≤ |y| < 2 j (h), and
S3 = S3(h) where 2 j (h) ≤ |y|.
For the integral over S1, we use the inequality |eiθ − 1| ≤ |θ |, which is valid

for all real θ , to write
Z

S1
|e2π ihy − 1| |(F f )(y)| dy ≤ 2π |h|

Z

S1
|y| |(F f )(y)| dy ≤ π |h|αkF f k1.

For the integral over S2, we have similarly
Z

S2
|e2π ihy − 1| |(F f )(y)| dy ≤ 2π |h|

Z

S2
|y| |(F f )(y)| dy

= 2π |h|
j (h)X

k=0

Z

2k−1≤|y|<2k
|y| |(F f )(y)| dy

≤ 2π |h|
j (h)X

k=0
2k

Z

2k−1≤|y|<2k
|(F f )(y)| dy

≤ 2π |h|
j (h)X

k=0
2kC2−αk

= 2πC|h|
j (h)X

k=0
2(1−α)k

≤ 2πC|h|(21−α − 1)−12(1−α)( j (h)+1).

Since 2−( j (h)+1) ≤ |h| ≤ 2− j (h), we have |h| = |h|α|h|1−α ≤ |h|α2−(1−α) j (h),
and thus

Z

S2
|e2π ihy − 1| |(F f )(y)| dy ≤ 2πC21−α(21−α − 1)−1|h|α.
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For the integral over S3, we have
Z

S3
|e2π ihy − 1| |(F f )(y)| dy ≤ 2

Z

S3
|(F f )(y)| dy

= 2
∞X

k= j (h)+1

Z

2k−1≤|y|≤2k
|(F f )(y)| dy

≤ 2
∞X

k= j (h)+1
C2−αk

= 2C(1− 2−α)−12−α( j (h)+1)

≤ 2C(1− 2−α)−1|h|α.

Combining the estimates for S1, S2, and S3, we obtain

| f (x + h) − f (x)| ≤ C 0|h|α,

as required. This completes the proof for 0 < α < 1.
Now suppose that α > 1. Proceeding inductively, we shall show that f is

of class C1 and that f 0 satisfies the hypotheses of the proposition for the index
α − 1. Then the result will follow by induction.
First of all, we have
R
2 j−1≤|y|≤2 j |y| |(F f )(y)| dy ≤

R
2 j−1≤|y|≤2 j 2

j |(F f )(y)| dy ≤ C2−(α−1) j ,

and it follows that |y| |(F f )(y)| is integrable.
To prove28 that f is of class C1, we make use of the inequality

|h−1(e2π iyh − 1)| ≤ 2π |y| (∗∗)

valid for |h| ≤ 1; this inequality follows from the inequality |eiθ − 1| ≤ |θ | that
was used for estimating S1. We have

f (x + h) − f (x)
h

=
Z

R
(F f )(y)e2π iyx

he2π iyh − 1
h

i
dy.

The expression in brackets is ≤ 2π |y| in absolute value by (∗∗), and we have
seen that y(F f )(y) is integrable. Therefore we have dominated convergence,
and we conclude that

f 0(x) =
Z

R
(F f )(y)(2π iy)e2π iyx dy,

28This argument is a version of the proof of Proposition 8.1g of Basic, but it is easier to write
out the details of the argument than to show that the C1 property follows from Proposition 8.1g.
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the derivative existing. Except for an extra minus sign in the exponential, this for-
mula exhibits f 0 as the Fourier transformof the integrable function 2π iy(F f )(y),
and f 0 is therefore continuous. Since f has compact support, so does f 0. The
Fourier inversion formula is applicable, and we obtain

(F f 0)(y) = (2π iy)(F f )(y).

We conclude that f 0 satisfies the hypotheses of the proposition for the index α−1,
and the proof is complete. §

Corollary 10.46. Let n be a positive integer. If N is large enough so that
1
4 log2(πN/4) > n, then the scaling function of the Daubechies wavelet of order
N is of class Cn , and the same thing is true of the wavelet itself.
PROOF. This follows immediately by combining Proposition 10.43 and

Proposition 10.45. §

Qualitatively Corollary 10.46 says that if n is given, then the scaling function
is of class Cn if N is sufficiently large. The growth of n as a function of N
is logarithmic. For example, the corollary asks that N be at least 21 before it
guarantees that the scaling function is of class C1. Quantitatively this result does
not appear to be very sharp if one takes into account the appearance of the curves
in Figures 10.17a and 10.17b. In fact, Daubechies with much more work shows
in Chapter 7 of her book Ten Lectures on Wavelets that asymptotically for large
N , the scaling function for the Daubechies wavelet of order N is of class Cµn

with µ = 3
4
log 3
log 2 − 1 ≈ .1887.

Anyway, Daubechies wavelets can have as many derivatives as we like. But
it turns out that no such wavelet can have infinitely many. This fact will be a
corollary of the following proposition.

Proposition 10.47. Suppose that √ is a compactly supported continuous
function onR such that the set of functions {2 j/2√(2 j x−k)}j,k∈Z is an orthogonal
set. If √ is of class Cm , then

R
R x

l√(x) dx = 0 for 0 ≤ l ≤ m.

PROOF. We write√(0) = √ ,√(1), . . . , √(m) for the successive derivatives, and
we introduce successive integrals inductively by the formula

√(−l)(x) =
R x
−∞ √(−l+1)(t) dt for 1 ≤ l ≤ m.

We prove by induction on l for 0 ≤ l ≤ m that
R

R x
l√(x) dx = 0.

The case l = 0 makes use of the assumed orthogonality. Let a = k/2 j be an
arbitrary diadic rational number. We do not necessarily assume that k is an odd
integer. Then

0 =
R

R √(x)√(2 j x − k) dx =
R

R √(x)√(2 j (x − a)) dx,
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and the change of variables x = a + x 02− j yields

0 =
R

R √(a + x 02− j )√(x 0) dx 0. (∗)

In this expression we can let j tend to +∞, since we have not assumed that k
is odd. Then dominated convergence yields the equality 0 = √(a)

R
R √(x 0) dx 0.

Either
R

R √(x) dx = 0 or √(a) = 0 for all a, in which case
R

R √(x) dx = 0
by the assumed continuity of √ . This completes the argument for l = 0. It also
shows that √(−1)(x) has compact support.
Assume inductively that 0 ≤ l < m and that

R
R x

l√(x) dx = 0 and that
√(0), . . . , √(−l−1) have compact support. Integrating (∗) by parts l times is
allowable since with each integration, both functions in the integrand have com-
pact support, and we obtain

0 =
R

R √(l+1)(a + x2− j )√(−l−1)(x) dx .

Letting j tend to+∞ as above, we obtain√(l+1)(a)
R

R √(−l−1)(x) dx = 0 for all
a. We cannot have √(l+1)(a) = 0 for all a, since the continuity of √(l+1) would
force √ to be a polynomial and that is not the case. Thus we obtain

R
R √(−l−1)(x) dx = 0. (∗∗)

This shows that √(−l−2) has compact support and completes one part of the
inductive step.
We now integrate (∗∗) by parts, differentiating the integrated √ factor and

integrating a complementary power of x . After one such integration we obtainR
R x√

(−l)(x) dx = 0. After a total of l such integrations by parts, we haveR
R x

l√(−1)(x) dx = 0. Finally we integrate by parts once more, obtainingR
R x

l+1√(x) dx = 0. This completes the induction and the proof. §

Corollary 10.48. If √ is a compactly supported continuous function on R
such that the set of functions {2 j/2√(2 j x − k)}j,k∈Z is an orthogonal set, then √
cannot be of class C∞ unless √ = 0.

PROOF. If √ is a compactly supported C∞ function on R such that the set of
functions {2 j/2√(2 j x− k)}j,k∈Z is an orthogonal set, then

R
R x

m√(x) dx = 0 for
all m ∏ 0, according to Proposition 10.47, and therefore

R
R p(x)√(x) dx = 0

for every polynomial p. By the Weierstrass Approximation Theorem (Theorem
1.52 of Basic), choose a sequence {pn} of polynomials converging uniformly to
√ on the support of √ . Then {pn√} tends uniformly to |√ |2 on the support of √ ,
and it follows that

R
R |√(x)|2 dx = 0. Therefore √ = 0. §
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It is time to take stock of where we are. We have constructed a number of
families ofwavelets, often by applying some general theory, andwe have seen that
eachof these families has certainproperties, somedesirable and someundesirable.
We summarize this information in the table in Figure 10.18. In the table, √ has
the same decay and smoothness qualitatively as ϕ does. The expression “jump”
points to the presence of a jump discontinuity, while “compact supp.” means
that the indicated function has compact support and “Schwartz” means that the
function is in the Schwartz class S. A function on R is real analytic if it is the
restriction to R of an analytic function on an open subset of C that contains R.

Family ϕ decay Fϕ decay ϕ smoothness Fϕ smoothness
Haar compact supp. ≤ c/|y| jump real analytic

Shannon ≤ C/|x | compact supp. real analytic jump
Meyer, index m ≤ C|x |m+2 compact supp. real analytic Cm

Meyer, index∞ Schwartz compact supp. real analytic C∞

Battle–LeMarié, deg. 1 exponential ≤ c/|y|2 C0 real analytic
Battle–LeMarié, deg. m exponential ≤ c|y|m+1 Cm−1 real analytic
Daubechies, order 1 compact supp. ≤ c/|y| jump real analytic
Daubechies, order N compact supp. ≤ c/|y|n(N ) Cn0(N ) real analytic

FIGURE 10.18. Summary of properties of constructed wavelets.

11. A Quick Introduction to Applications

If it were not for the usefulness of wavelets in applications, the subject of
wavelets might have remained something known only to experts in one corner
of mathematics. But there are by now applications in many areas of science and
engineering, even in areas of social science, and the subject cannot be ignored
by a well educated mathematician. Not only are there applications, but also the
applications have in many cases driven the theory. In this section we shall list
some areas where wavelets have been useful, and we shall give a few details for
some of them.
As we often saw throughout the theoretical development, the hypotheses on

wavelets that we were accustomed to were not exactly the hypotheses that were
needed for new steps. This phenomenon persists with applications, as we shall
see. Let us distinguish two situations, corresponding to one and two dimensions.
In one dimension the objective is to analyze some function f in L2(R). It will

be convenient to think of the domain variable as representing time and f as being
some kind of signal. The orthogonal wavelets that we have studied are in many
practical cases a suitable tool for the analysis of f . We fix a wavelet√ that comes
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from a scaling function ϕ, and just as we did with the Haar wavelet, we introduce
the corresponding discrete wavelet transform, which carries f to the system
{( f, √j,k)}j,k∈Z of inner products of f with the members of the orthonormal basis
{√j,k}. We can think of these inner products as the wavelet coefficients. As with
the Haar wavelet, we are really interested in a one-sided wavelet expansion of
the form

f (x) =
P

k∈Z

° R
R f (y)ϕ0,k(y) dy

¢
ϕ0,k(x) +

∞P

j=0

P

k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x).

In effect this expansion groups all the contributions from the√j,k with j < 0 into
the first term. This expansion represents a process of looking at f with an infinite
system of finer and finer resolutions. The first term gives the result of using an
initial resolution corresponding to j = 0. New terms in the approximating expan-
sion represent taking into account higher and higher resolutions, thus providing
better and better knowledge of what is happening in the time domain. In short,
the new terms represent the detail in the signal. Changing k represents changing
the center of the interval of time on which we are concentrating; increasing
j represents increasing the resolution. Experts in signal processing think of
the process as one of passing the signal through a sequence of filters. Barbara
Hubbard explains matters in the following way in her book:29

Mathematicians classify functions in all kinds of ways. The view-
point of signal processors is simpler: to them, a function is either a
signal to be analyzed or a filter with which to analyze a function. A
classical filter is an electric circuit with one wire that carries a signal
in and another wire that carries a signal out. But a filter can also be
a function (or, if it is digital, a sequence of numbers). The effect of a
filter, whether physical or abstract, is easier to understand in Fourier
space: the Fourier transform of the signal is multiplied by the Fourier
transform of the filter, letting certain frequencies pass through while
blocking others.
If, for example, the Fourier transform of the filter is almost 1 near

zero, and almost 0 everywhere else . . . , the signal’s low frequencies
will survive this multiplication by 1, but the high frequencies will
be essentially eliminated. This is a low-pass filter. The result in
“physical” space is to smooth the signal: the small variations given
by the high frequencies disappear, leaving the general tendency. . . .

Mallat [the person who formally introduced multiresolution anal-
yses] realized that one can incorporate wavelets into a system that
uses a cascade of filters to decompose a signal. Each resolution has
its own pair of filters: a low-pass filter associated with the scaling

29The World According to Wavelets, second edition, pp. 166–167.
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function, giving an overall picture of the signal, and a high-pass filter
associated with the wavelet, letting through only the high frequencies
associated with the details. The two filters complement each other;
that which one blocks, the other lets through. (Of course “high”
or “low” frequencies are relative. The low frequencies encoded by
the low-pass filter at a fine resolution may be higher than the high
frequencies encoded by the high-pass filter at a coarse resolution.)

In quantitative terms the process described by Hubbard is as follows: For
each index j , let Pj be the orthogonal projection of L2(R) on Vj , and let Qj be
the orthogonal projection on Wj . Then we have PJ f = PJ−1 f + QJ−1 f and
PJ−1 f = PJ−2 f + QJ−2 f and so on, with the result that

PJ f = P0 f + QJ−1 f + QJ−2 f + · · · + Q1 f + Q0 f.

We shall come back to this decomposition shortly when we discuss the discrete
wavelet transform in more detail.
For many purposes one wants to chop off the expansion at some point by

dropping small terms. This is already what we did above in passing from f to
PJ f . The same kind of chopping would be the simplest thing to do if one were
trying to compress the signal or counteract the effect of noise. Meyer30 says the
following about this process:

The most astonishing result we obtain will be the remarkable fact
that “full”wavelet series (those havingplenty of non-zero coefficients)
represent really pathological functions, whereas “normal” functions
have “sparse” or “lacunary”wavelet series. On the other hand, Fourier
series of the usual functions are “full,” whereas lacunary Fourier series
represent pathological functions.
This phenomenon has a simple explanation. Analysis by wavelets

is a local Fourier analysis which takes place at every scale. It has
the advantage of being concentrated near the singular support of the
function analyzed. In other words, away from the singular support,
the function analyzed is infinitely differentiable and the corresponding
wavelet coefficients are negligible.

The book by Burris, Gopinath, and Guo31 has some interesting graphs giving
an example of how this works in practice. The authors have created a one-
dimensional signal out of the Houston skyline, and they show how the signal is

30Wavelets and Operators, p. 113. Meyer makes this statement in a specific context, which is a
little different from ours, but that distinction will not deter us.

31See the Selected References.
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decomposedwhen the discrete wavelet transform is applied using the Daubechies
wavelet32 of order 4.
Other applications use this and other wavelets. As a rule, authors tend not

to explain how they came to use one particular wavelet rather than another. The
wavelets in use tend to be theMeyer wavelets with index≤ 3, the Battle–Lamarié
wavelets of degree≤ 3, and the Daubechies wavelets of order≤ 6. Occasionally
an author will use some other kind of wavelet for some particular purpose. Some
of the applications that have been discussed in print are the following:

(a) Automatic analysis of an electrocardiogram. This is discussed in the book
by Louis, Maass, and Rieder, pp. 232ff. The objective is to automate the
obvious diagnoses of irregular heartbeats, leaving a more careful analysis
to a human being. The questions are whether the rhythm of the cardiac
valve is in synchronization with that of the heart muscle and whether the
heart muscle relaxes between beats. The Daubechies wavelet of order 2
is used for this purpose.

(b) Speech storage. Speech takes a great deal of computer memory to store.
Imagine that one wanted to store the content of all telephone calls world-
wide that might be of national security interest. One wants a way of
compressing the speech without making it unintelligible.

(c) Music storage. Music takes a great deal of space to store but for different
reasons from speech. One has to handle a greater range of frequencies
without losing subtle techniques of the performers.

(d) Speech recognition. The idea is to use wavelet analysis to identify
phonemes from a signal representing speech.

(e) Hearing aids for understanding speech. Modern hearing aids are capa-
ble of doing a complicated nonlinear analysis and synthesis of speech,
amplifying part of a signal and suppressing another part, in order to
make speech more recognizable to a patient using a hearing aid. Simple
amplification is not enough. The usual difficulty that a patient has in
hearing is an inability to distinguish among certain consonants, and the
processing of the signal is supposed to emphasize those features that
the patient needs in order to recognize what is being said, all the while
eliminating background noise. Smoothing of the signal is definitely not
what is called for; smoothed speech sounds largely like vowels, and the
difficulty in recognizingconsonants is aggravated if speech is smoothed.33

(f) Applications in economics. Wavelet analysis can reveal relationships
between economic variables and indicate how those relationships evolve
with time.

32This is in Section 2.7 of the book. There are two standard ways of naming the Daubechies
wavelets—by the order N and by the number of nonzero coefficients 2N in the scaling equation.

33There is a problem with being too specific about how particular hearing aids work in that a
certain amount of the information is proprietary and therefore unpublished and unavailable.
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(g) Applications in finance. Economic variables affect markets according to
various time scales, short term and medium term, for example. Some are
leading indicators, and some are lag indicators. In principle wavelets de-
compose time series data into different scales and can reveal relationships
that are not obvious in the aggregate data.

Let us come back to the discrete wavelet transform. Calculating a one-sided
wavelet expansion as at the beginning of this section looks as if it involves a
great many integrals. However, these integrals are related to one another by the
scaling equation and the wavelet equation, and matters are not so complicated.
As indicated with the Hubbard quotation, we are to think of the goal as forming
PJ f with J chosen large enough so that k f − PJ f k2 is small.34 Write ϕj,k(x) =
2 j/2ϕ(2 j x − k) for each integer j and k. For fixed j , these functions form an
orthonormal basis of Vj , and we write cj,k for the coefficient in the expansion of
f in this basis:

cj,k = ( f, ϕj,k) =
R

R f ϕj,k dx .

We write cj for the square-summable sequence {cj,k}k∈Z.
To be systematic, we shall introduce an algorithm of “decomposition” of cj

and an algorithm of “reconstruction” of cj . Each of these makes use of the two
functionsm0(y) andm1(y) that we have carried along ever since Theorem 10.10.
The function m0(y) was introduced just before the statement of that theorem in
terms of the scaling equation

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k), where ak = (ϕ, ϕ1,k),

the definition being

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

The function m1(y) = e2π iy∫(y)m0(y + 1
2 ) was introduced just after the state-

ment of the theorem and involved the wavelet equation

√(x) =
∞P

k=−∞
bk

p
2ϕ(2x − k), where bk = (√, ϕ1,k).

Its formula was
m1(y) = 1p

2

∞P

k=−∞
bke−2π iky .

In this formula the coefficients bk are related to the coefficients ak . The exact
relationship depends on the choice of the function ∫(y), but we saw, for example,
that if ∫(y) = 1, then bk = (−1)k+1 a−k−1.

34From a theoretical standpoint this norm can be estimated with the aid of Lemma 10.16.
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The above formulas relate matters in V1 to those in V0. Let us see the relation-
ship between Vj and Vj−1. We have

ϕj−1,k(x) = 2( j−1)/2ϕ(2 j−1x − k) = 2( j−1)/2ϕ( 12 (2
j x − 2k))

= 2( j−1)/2
∞P

l=−∞
al

p
2ϕ(2 j x − 2k − l)

=
∞P

l=−∞
al2 j/2ϕ(2 j x − 2k − l)

=
∞P

l=−∞
alϕj,2k+l(x)

Similarly

√j−1,k(x) =
∞P

l=−∞
blϕj,2k+l(x).

For the decomposition algorithm, we substitute the relationship between
ϕj−1,k and the ϕj,2k+l into the definition of the coefficient cj−1,k . Then we obtain

cj−1,k = ( f, ϕj−1,k) =
°
f,

∞P

l=−∞
alϕj,2k+l

¢
=

∞P

l=−∞
al cj,2k+l =

∞P

l=−∞
al−2k cj,l

If we define coefficients dj,k by dj,k = ( f, √j,k), then we similarly have

dj−1,k = ( f, √j−1,k) =
°
f,

∞P

l=−∞
blϕj,2k+l

¢
=

∞P

l=−∞
bl cj,2k+l =

∞P

l=−∞
bl−2k cj,l .

Then one step of the decomposition algorithm is the passage from the system
of coefficients {cj,k}k∈Z to the systems {cj−1,k}k∈Z and {dj−1,k}k∈Z by the same
operation. To make this step more transparent, let us extend our definition of cj
above by giving names to all of our various square-summable sequences:

a = {al}l∈Z and b = {bl}l∈Z,

atr = {a−l}l∈Z and btr = {b−l}l∈Z,

and with j fixed,

cj = {cj,k}k∈Z and dj = {dj,k}k∈Z.

Then cj−1 is obtained from cj by convolving with the sequence atr and retaining
only the even-numbered entries. Similarlydj−1 is obtained from cj by convolving
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with the sequence btr and retaining only the even-numbered entries. Iterating this
step, starting at cJ , allows us to pass from the sequence cJ to the system of
sequences dJ−1, dJ−2, . . . , d0, c0.
The reconstruction algorithm will pass from the system of sequences dJ−1,

dJ−2, . . . , d0, c0 to the sequence cJ . To understand matters, it is enough to carry
out one step of the algorithm, namely to pass from cj−1 and dj−1 to cj . The
relevant formula in terms of projections is

Pj f = Pj−1 f + Qj−1 f,

which we write out as

P

k∈Z
( f, ϕj,k)ϕj,k =

P

k∈Z
( f, ϕj−1,k)ϕj−1,k +

P

k∈Z
( f, √j−1,k)√j−1,k,

hence as

P

k∈Z
cj,kϕj,k =

P

k∈Z
cj−1,kϕj−1,k +

P

k∈Z
dj−1,k√j−1,k

=
P

k∈Z
cj−1,k

° P

l∈Z
alϕj,2k+l

¢
+

P

k∈Z
dj−1,k

° P

l∈Z
blϕj,2k+l

¢

=
P

l∈Z

P

k∈Z
(cj−1,kal−2k + dj−1,kbl−2k )ϕj,l .

Since the functions ϕj,l are an orthonormal basis of Vj , we obtain

cj,l =
P

k∈Z
(cj−1,kal−2k + dj−1,kbl−2k ),

which is a formula for recovering cj from cj−1 and dj−1.
Both sums in the expression for cj,k can be viewed as convolutions, but they

are more subtle than the ones in the decomposition algorithm. To see them as
convolutions, define

c̃j−1,n =

Ω cj−1,n/2 if n is even
0 if n is odd,

and let c̃j−1 = {c̃j−1,n}n∈Z. Define d̃j−1,n and d̃j−1 similarly. Then cj is the sum
of two terms; the first is the convolution of c̃j−1 and a, and the second is the
convolution of d̃j−1 and b.
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We conclude this discussion of the one-dimensional case with some general
remarks.
In the language of signal processing, the decomposition algorithm and the

reconstruction algorithm are the analysis and synthesis steps of a scheme of “sub-
band filtering with exact reconstruction.” The point is to do some compression
or other processing between the decomposition and reconstruction steps. The
decomposition step draws attention to terms that are candidates for dropping
without the loss of too much information, and then one drops those terms. The
reconstruction step is applied to the terms that remain. Here the theory has
built this idea from signal processing into a mathematical transform that isolates
features of a signal that are important.
In practice a given signal will often be given by discrete pulses obtained by

sampling. To make the discrete pulses into a function onR, one defines the signal
to be constant or perhaps linear over each interval between sampling points. In
this situation the Shannon Sampling Theorem (Proposition 10.3) indicates that
there is an upper limit to how much resolution will contain useful information.
We omit the details.

Let us turn our attention to two dimensions. In two dimensions the objective
is to analyze some square integrable function f on R2. Let us think of this
function as representing a visual image. If the image is in black-and-white, then
the function is scalar valued. If it is in color, then it is vector-valued. The usual
thing is to make the vectors be three-dimensional. Initially the three dimensions
for color can be regarded as representing the intensity of three colors; red, green,
and blue are one choice. We return to this matter in a moment.
We shall concentrate on two situations:
(i) compression and storage of fingerprints, and
(ii) traditional JPEG compression of images from digital cameras and the

wavelet version, JPEG 2000.
In terms of multiresolution analysis, proceeding in the setting of R2 is not

fundamentally more complicated than proceeding in the setting of R1. The idea
is that one can use a kind of completed tensor product to convert one-variable data
into two-variable data. Thus for example, if ϕ and {Vj } define a multiresolution
analysis is one dimension, then the set of functions {x 7→ ϕ(x − k)}k∈Z is an
orthonormal basis of V0. For the two-dimensional setting the corresponding
orthonormal basis is {(x, y) 7→ ϕ(x − k)ϕ(y − l)}k,l∈Z, and one calls the space
V0e⊗V0. The spaces Vje⊗Vj are obtained as usual by dilation. The details will not
be of concern to us.
What is of more significance is that for some reason, the human brain seems

especially sensitive to visual asymmetries. When one goes through the process
of decomposition, compression, and reconstruction for a visual image by the
process that was just described, the use of a real-valued wavelet √ that lacks
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symmetry about an axis turns out to be noticeable. As it happens, all Daubechies
wavelets other than the Haar wavelet fail to be symmetric or antisymmetric about
any vertical axis, and in fact the same thing is true in all real-valued compactly
supported cases except in the Haar case.35 The effect is that one has to enlarge
the theory that we have presented to allow wavelets that are not orthogonal. It is
enough to use “biorthogonal wavelets,” which use two scaling functions that are
related in a certain way. This expansion of the theory will take us too far afield,
and thus we omit it.
However, we can mention the name of the best known family of biorthogonal

wavelets, namely the Cohen–Daubechies–Feauveau family. The twomembers of
the family that are most used have indices 5/3 and 9/7, and for current purposes
we need not know what these indices refer to; the one with indices 5/3 is for
compression with no loss of information, and the one with indices 9/7 is for
compression that allows loss of information.
Now let us come to the two situations mentioned above. First let us consider

fingerprints.36 As of 1995 the database of fingerprints maintained by the Federal
Bureau of Investigation contained more than 200 million records, and there was
a need for computerizing these records, which were all in the form of inked
impressions on cards, one card per person. Taking a full uncompressed 8-bit
gray-scale digital image at a resolution of 500 dots per inch would have required
too much computer storage, and a system for compressing digital images was
sought that would be accurate enough to make the distinctions that one could
traditionally make by hand if given enough time. A group set up to investigate
the situation found that the JPEGmethodused in digital cameras unavoidably adds
faint horizontal and vertical lines to the images in certain places if the compression
ratio is at least 10 to 1, and that feature was unacceptable. After trying a number
of other possibilities, the group settled on some guidelines in 1997. In principle
these guidelines could be met by a number of wavelets, and initially the one put
in use was the Cohen–Daubechies–Feauveau 9/7 wavelet. That choice seemed to
produce reliable images even after a process that involved 15 to 1 compression.
Finally we consider JPEG and JPEG 2000 for the compression and storage of

photographic and other images.37 For each we treat black-and-white images first
and then color images.
Of the two systems, JPEG is the conceptually simpler one. It uses classical

Fourier analysis rather than wavelets, but it still has steps of decomposition,
compression, and reconstruction. It works independently on 8-by-8 blocks of
pixels, doing an analysis on each one. The transform at the decomposition stage
is a version of Fourier series that avoids complex numbers. Within the classical
treatment of Fourier series, a Fourier cosine expansion is obtained for functions on

35The result in question is Theorem 8.1.4 of the book by Daubechies in the Selected References.
36The article by Brislawn listed in the Selected References is a readable expository account.
37The two items by Austin listed in the Selected References are readable expository accounts.

See the article by Rabbabi and Joshi for more detail about JPEG 2000.
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[0, π] by extending the functions to be even functions on [−π, π] that are periodic
of period 2π ; if the Fourier series is written out with cosines and sines in place of
complex exponentials, the sine terms drop out, and the desired series results. In
our situation our function is defined at 8 points, and we think of extending it to be
defined on 16 points so as to be even. In defining the Fourier cosine expansion,
there is a choice how the 16 points are to be distributed in the given interval,
and the particular choice that is made in the case of JPEG is what is sometimes
called the discrete cosine transform of type II. If the given interval were [0, π],
doubled to [−π, π], this particular choice of transform would visualize [0, π] as
divided into 8 equal pieces, and then the midpoint of each piece would be used.
Thus the points for evaluation of a function h would be the points π(2x + 1)/16
with 0 ≤ x ≤ 7, and functions on these points would be be expanded as linear
combinations of the functions cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7. For our
application we abbreviate the cumbersome h(π(2x + 1)/16) as f (x), and we
expand f (x) in terms of the functions cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7.
Using the formula cos A cos B = 1

2 (cos(A + B) + cos(A − B)), we readily
check that the eight functions of x given by cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7
are orthogonal in the sense that

7P

x=0
cos[π(2x + 1)u/16] cos[π(2x + 1)u0/16] = 0 for u 6= u0.

Hence they are linearly independent and form a basis of an 8-dimensional vector

space. As to their normalization,
7P

x=0
cos2[π(2x + 1)u/16] equals 8 if u = 0 and

equals 4 if 1 ≤ u ≤ 7. Thus the system of functions

© 1
2C(u) cos[π(2x + 1)u/16]

™7
u=0

is an orthonormal basis of our space of functions of x if C(u) is defined to be 1
for 1 ≤ u ≤ 7 and to be 1/

p
2 for u = 0. The discrete cosine transform is the

passage from f to the system of coefficients F of f is this basis. Specifically in
terms of f we let

F(u) = 1
2C(u)

7P

x=0
f (x) cos[π(2x + 1)u/16],

and we recover f from F by the formula

f (x) = 1
2

7P

u=0
C(u)F(u) cos[π(2x + 1)u/16].
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For the application to JPEG, the 8-by-8 block of pixels in a photographic
image is a function f (x, y) of two variables x and y, and we do a discrete cosine
transform in each variable. The result is the function F(u, v) given by

F(u, v) = 1
4C(u)C(v)

7P

x=0

7P

y=0
f (x, y) cos[π(2x+1)u/16] cos[π(2y+1)v/16],

and we recover f (x, y) by the inversion formula

f (x, y) = 1
4

7P

u=0

7P

v=0
C(u)C(v)F(u, v) cos[π(2x +1)u/16] cos[π(2y+1)v/16].

The above formula for F(u, v) takes care of the decomposition algorithm
except for the question of its fast implementation, which will not concern us. The
next step is the compression algorithm. A naive approach would be to chop off
higher frequencies, but there are two problems. One is that there are not many
frequencies in this analysis, and the other is that such a chopping process would
introduce Gibbs phenomenon. Instead, one goes through a process that involves
linear combinations of frequencies.
This consists of a step of “quantization” or rounding off, followed by an

invertible packaging step that will not concern us. Part of the input to the JPEG
process is a quality parameter q with 1 ≤ q ≤ 100. This parameter is converted
to another number α by the formula

α =

( 50
q if 1 ≤ q ≤ 50,

2− 50
q if 50 ≤ q ≤ 100.

Data on human perception leads to the definition of a matrix Q with rows and
columns numbered from 0 to 7 and given by38

Q =













16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99













.

In the quantizing step, we replace the 64 real numbers F(u, v) by the 64 integers
round

°
F(u, v)/(αQ(u, v))

¢
, where “round” refers to the nearest integer. The

38The exact matrix appears in the JPEG standard as a matter of information, not as a requirement.
The article by Wallace in the Selected References includes an example of what happens to some
given data when this matrix is used and α equals 1.
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effect of this step is to replace all of the numbers F(u, v) by integers, most of
which are 0. Instead of recording each zero, the algorithm records the number of
zeros. It is here that space is saved. After the invertible packaging step, the data
can be saved.
For the reconstruction algorithm one reverses the steps—unpackaging, un-

quantizing (i.e., multiplication of entries by αQ(u, v)), and inversion of the
discrete cosine transform.
For color images the main difference with the black-and-white case is that

the functions in question have values that are 3-component vectors rather than
real numbers. The three components could correspond to the red, green, and blue
components, but it is customary to use certain linear combinationsof these instead.
These are called luminance Y , blue chrominance Cb, and red chrominance Cr .
The relationship is given by39

√ Y
Cb
Cr

!

=

√ 0.29900 0.58700 0.11400
−0.16874 −0.33126 0.50000
0.50000 −0.41869 −0.08131

!√ R
G
B

!

.

Then one goes through the same steps as above, using suitable matrices Q for
each component. The matrix Q for the luminance is the one given above, but the
matrices Q for the chrominance components are different.
The ingredients for JPEG 2000 are based on those for JPEG but are more

complicated. The distinction between black-and-white as involving scalar-valued
functions and color as involving vector-valued functions persists, and in the
latter case one still uses luminance, blue chrominance, and red chrominance.
The processing involves decomposition, compression, and reconstruction just
as before, but there is also a step of preprocessing. As before, we ignore the
packaging step, which is more complicated than before.
The preprocessing step consists first of a decision about how to partition the

input image into rectangular and nonoverlapping tiles (except possibly for the
tiles at the image borders). These can be as large as the original image itself or
as small as a single pixel. The various tiles are processed independently. There
are other aspects to the preprocessing, but we ignore them.
For the decomposition a discretewavelet transform is used, the same transform

in each variable. As was mentioned earlier, orthogonal wavelets are not suitable
in the wavelet transform for a visual image. Instead, biorthogonal wavelets are
used. These have different scaling functions and wavelets for the decomposition
and reconstruction stages. Thinking in terms of the wavelet transform as given by
filters, one speaks of using a pair of filter banks (one for decomposition and one
for reconstruction) rather than just one. The two that are mentioned in the article
by Rabbani and Joshi are the Cohen–Daubechies–Feauveau 5/3 biorthogonal

39An adjustment is made to force the chrominance components to be ∏ 0, but we omit this part.
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wavelet40 and the Cohen–Daubechies–Feauveau 9/7 biorthogonal wavelet. To
describe either of these, one has only to give the coefficients of the two generating
functions. They are integers in the first case and are merely real numbers in the
second case. The coefficients are written down explicitly in the Rabbani–Joshi
article.
For the compression stage the idea is to drop low-pass terms beyond a certain

threshold. This is done with the aid of a “budget” for how many bits are to
be allowed and an algorithm for comparing the distortion that results from the
various choices.

BIBLIOGRAPHICAL REMARKS ABOUT CHAPTER X. In Section 1, Proposition
10.1 is taken from Chapter 3 of Debnath’s Wavelet Transforms, and Proposition
10.3 is taken from from Chapter 2 of Daubechies’s Ten Lectures on Wavelets.
Sections 2 through 10 are adapted from material in the following chapters of
books listed in the Selected References:

Section 2: Pinsky, Chapter 6.
Section 3: Daubechies, Chapter 5.
Section 4: Daubechies, Chapter 5; Hernandez–Weiss, Chapter 2.
Section 5: Daubechies, Chapter 5; Pinsky, Chapter 6.
Section 6: Daubechies, Chapters 4 and 5.
Section 7: Ahlfors, Chapter 5; Chui, Chapters 1 and 4; Daubechies,
Chapter 5; Meyer, Chapter 2.

Section 8: Chui, Chapter 4.
Section9: Daubechies, Chapter 6; Debnath, Chapter 7; Pinsky, Chapter 6.
Section 10: Daubechies, Chapter 7; Pinsky, Chapter 6.

The proof of Lemma 10.42 in Section 10 is from the note by N. D. Elkies listed in
the Selected References. The proofs of the Paley–Wiener Theorem and its lemma
in Section 10 are based on the Junior Paper of L. B. Pierce. Section 11 draws on
the above books in the Selected References, as well as the expository articles by
Austin and Brislawn and the books by Burris et al. and by Louis et al.

12. Problems

1. Find all Schwartz functions f on R for which equality holds in the inequality
of the Uncertainty Principle (Proposition 10.1). Assume that the mean values t0
and ω0 are 0.

2. Referring to the proof of the ShannonSamplingTheorem (Proposition 10.3), give
an example of a nonzero continuous function f in L2(R) such that f (k) = 0 for
every integer k and such that F f has compact support.

40Rabbani and Joshi refer to the the Cohen–Daubechies–Feauveau 5/3 biorthogonal wavelet as
the “LeGall (5,3) spline.”
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3. Theorem 10.10b limits the wavelets √ that can correspond to a given scaling
function ϕ. The form of the most general such √ allows for a periodic function
∫(y) of period 1 with |∫(y)| = 1 almost everywhere.
(a) Prove that if ϕ has compact support, then ∫(y) is a trigonometric polynomial.
(b) Prove that if ∫(y) is a trigonometric polynomial such that |∫(y)| = 1 almost

everywhere, then ∫(y) = ce2π iny for some integer n and some constant c
with |c| = 1.

4. (a) Show that if {Vj } andϕ formamultiresolutionanalysis, thenϕ# withϕ#(x) =
ϕ(−x) is a scaling function for a suitable sequence of spaces {V #j }, and
identify the corresponding spaces {V #j }. Why does it follow that V #j = Vj
if ϕ# is an integer translate of ϕ?

(b) Show that the scaling function ϕ# is an integer translate of ϕ in the cases
of the Haar wavelet, the Shannon wavelet, the Meyer wavelets, and the
Battle–Lemarié wavelets.

(c) In the case of the Daubechies wavelets of order ∏ 2, the function ϕ# is not
an integer translate of ϕ. Nevertheless, show that ϕ# arises in some way
from the same kind of construction.

5. Let K be the interval
£
− 2

3 ,
1
3
¢
, and let ϕ be the indicator function of K . Prove

that ϕ is the scaling function of a multiresolution analysis.

6. In connection with Proposition 10.38, define m0(y) = 1
2 (1+ e−4π iy).

(a) Define h(y) =
∞Q

j=1
m0(2− j y), and check that h(y) = (1−e−4π iy)/(4π iy) =

(F I[0,2])(y).
(b) Verify that the integer translates of ϕ = I[0,2] do not form an orthonormal

sequence. Conclude that hypothesis (iii) of Proposition 10.38 cannot be
weakened to the point of allowing this particular trigonometric polynomial
but still deducing that F−1h is a scaling function.

Problems 7–12 concern the Haar system of Section 2. Let ϕ be the indicator function
of [0, 1), and define ϕj,k(x) = 2 j/2ϕ(2 j x − k) as usual. The orthogonal projection
of L2(R) on the closed linear span Vm of the subset {ϕm,k}k∈Z of L

2(R) is

(Pm f )(x) =
P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x).

7. Why is Pm f meaningful for all f in L1(R)? For f in L1(R), why is Pm f
convergent to f in L1(R) as m tends to +∞?

8. Give an example of an L1 function for which Pm f does not tend to 0 in L1(R)

as m tends to −∞.
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9. Suppose that f (t) = 1 for 0 ≤ t < 1/3 and that f (t) = 0 elsewhere. Show that
lim inf
m→+∞

Pm f (1/3) < lim sup
m→+∞

Pm f (1/3), so that the Haar series of f diverges

at the point t = 1/3. (By contrast the Fourier series of a function of bounded
variation converges at every point.)

10. The Haar system of wavelets consists of the functions√j,k(x) = 2 j/2√(2 j x−k)
on R with j and k in Z. Here √(x) equals 1 for 0 ≤ x < 1

2 , equals −1 for
1
2 ≤ x < 1, and equals 0 otherwise. Prove that the nonzero restrictions to [0, 1)
of ϕ and the functions √j,k with j ∏ 0 together form an orthonormal basis of
L2([0, 1]).

11. The Haar scaling function ϕ satisfies ϕ(x) = ϕ(2x) + ϕ(2x − 1) almost
everywhere. By working with Fourier transforms, show that any function f
in L1(R) ∩ L2(R) with f (x) = f (2x) + f (2x − 1) almost everywhere equals
a multiple of I[0,1](x) almost everywhere.

12. Let8(x) = I[− 1
2 ,
1
2 )

(x). Using the orthogonality of the functions x 7→ 8(2x−k)
for k in Z, show that 8 cannot satisfy an equation

8(x) =
P

k∈Z
ak8(2x − k) a.e.

for complex constants ak such that
P

|ak |2 < ∞.
Problems 13–17 concern the polynomial used in the construction of the Meyer
wavelets in Section 6. Fix an integer m ∏ 1. Construction of the Meyer wavelet of
index m makes use of a Cm function ∫ on R such that ∫(x) = 0 for x ≤ 0, ∫(x) = 1
for x ∏ 1, ∫(y) + ∫(1− y) = 1 everywhere, and ∫(x) equals a polynomial P(x) for
0 ≤ x ≤ 1. Define a polynomial P(x) for current purposes to be “admissible” if it is
divisible by xm+1, has P(1) = 1, and has P(k)(1) = 0 for 1 ≤ k ≤ m.
13. Show that if P is usable as the polynomial in the definition of the Meyer wavelet

of index m, then P(x) is admissible.
14. Show that an admissible polynomial exists if and only if there exists an admissible

polynomial of degree ≤ 2m + 1, and in this case the admissible polynomial of
degree ≤ 2m + 1 is unique.

15. Show that an admissible polynomial P of the least possible degree necessarily
satisfies P(x)+ P(1− x) = 1 for all x . Deduce that such a polynomial is usable
as the polynomial in the definition of the Meyer wavelet of index m.

16. This problem establishes a certain formula for the alternating sum of products
of two binomial coefficients. To do so, it combines a technique in the proof of
Lemma10.35with the techniqueused in proving the “Vandermondeconvolution”

formula
nP

j=0

°n
j
¢° m
k− j

¢
=

°n+m
k

¢
for binomial coefficients, namely of recognizing

the two sides of the formula as the coefficient of xk on the two sides of the
equation (1+ x)n(1+ x)m = (1+ x)n+m .
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(a) With m as above and with p ≤ m, prove the formula

(1− z)m+1 =
pP

q=0
(−1)p−q

µ
m + 1
p − q

∂
z p−q + [z p+1],

where [z p+1] is an analytic function in a disk about z = 0 that is divisible
by z p+1.

(b) With m and p as above, prove the formula

(1− z)−(m+1) =
pP

k=0

µ
m + k
k

∂
zk + [z p+1],

where [z p+1] is another analytic function in a disk about z = 0 that is
divisible by z p+1.

(c) Taking the product of the results of (a) and (b), prove that

pP

q=0
(−1)p−q

µ
m + 1
p − q

∂µ
m + q
q

∂

equals 1 if p = 0 and equals 0 if 0 < p ≤ m.
17. Let D be the differentiation operator on polynomials in one variable. If f and g

are polynomials in x , the Leibniz rule says that

Dn( f g) =
nP

k=0

µ
n
k

∂
(Dn−k f )(Dkg).

(a) With m as above and p ≤ m, apply the Leibniz rule to compute Dp of the
polynomial

P(x) = xm+1
mP

k=0

µ
m + k
k

∂
(1− x)k .

Then evaluate at x = 1, and obtain the identity

(DpP)(1) = p!
pP

q=0
(−1)q

µ
m + 1
p − q

∂µ
m + q
q

∂
.

(b) Combine the above results to prove that the polynomial P is admissible for
index m, and conclude that P(x) is a polynomial of degree 2m + 1 that is
usable as the polynomial in the definition of the Meyer wavelet of index m.

Problems 18–19 refer to the spaces Hs(R) of Bessel potentials studied in Problems
8–12 for Chapter III. The idea is to show that theDaubechieswavelet of order N lies in
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a suitable space Hs(R) with s equal to a real number depending on N . Then one can
conclude that the Daubechies scaling function and wavelet of order N automatically
have whatever smoothness is forced on all functions in the space Hs(R).
18. Using the estimate

|(Fϕ)(y)|2 ≤
≥ 2N−1
p

πN

¥
(
p
4πN )− j for 2 j−1 ≤ |y| ≤ 2 j

fromProposition 10.43, show that the Daubechies scaling functionϕ andwavelet
√ of order N lie in Hs(R) if s < 1

4 log2(πN ).
19. DeduceCorollary 10.46 from the previous problem in combinationwith Problem

12c for Chapter III, showing that ifm is an integer∏ 0 withm < 1
4 log2(πN/4),

then the Daubechies scaling function ϕ and wavelet √ of order N are of class
Cm .



HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. We start from
R l
0 sin pnx sin pmx dx = − 1

2
R l
0 cos(pn + pm)x dx + 1

2
R l
0 cos(pn − pm)x dx .

The first term on the right is equal to

− 1
2

1
pn+pm sin(pn+pm)l = − 1

2
1

pn+pm (sin pnl cos pml + cos pnl sin pml)

= − 1
2

1
pn+pm

°
− pn

h cos pnl cos pml − pm
h cos pnl cos pml

¢

= 1
2h

1
pn+pm (pn+ pm) cos pnl cos pml = 1

2h cos pnl cos pml.

Similarly the second term on the right is− 1
2h cos pnl cos pml. The two terms cancel,

and the desired orthogonality follows.
2. In (a), the adjusted operator is L(u) = ((1− t2)u0)0, and Green’s formula gives

(∏n − ∏m)

Z 1

−1
Pn(t)Pm(t) dt = (L(Pn), Pm) − (Pn, L(Pm))

=
£
(1− t2)(P 0

n(t)Pm(t) − Pn(t)P 0
m(t))

§1
−1,

where ∏n and ∏m are the values ∏n = −n(n + 1) and ∏m = −m(m + 1) such that
L(Pn) = ∏n Pn and L(Pm) = ∏m Pm . The right side is 0 because 1 − t2 vanishes at
−1 and 1.
In (b), the adjusted operator is L(u) = (tu0)0 + tu, and L(J0(k · )) equals −k2t if

J0(k) = 0. Green’s formula gives

(−k2n + k2m)
R 1
0 J0(knt)J0(kmt)t dt

=
°
L(J0(kn · )), J0(km · )

¢
−

°
J0(kn · ), L(J0(km · ))

¢

=
£
t
° d
dt (J0(kn · ))(t)J0(kmt) − J0(knt) ddt (J0(kn · ))(t)

¢§1
0.

Theexpression in brackets on the right side is 0 at t = 1because J0(kn) = J0(km) = 0,
and it is 0 at t = 0 because of the factor t .

545
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3. With L(u) = (p(t)u0)0 − q(t)u, the formula for u∗(t) =
R t
a G0(t, s) f (s) ds in

the proof of Lemma 4.4 is

u∗(t) = p(c)−1
°
− ϕ1(t)

R t
a ϕ2(s) f (s) ds + ϕ2(t)

R t
a ϕ1(s) f (s) ds

¢
.

As is observed in the proof of Lemma 4.4, the derivative of this involves terms in
which the integrals are differentiated at their upper limits, and these terms drop out.
Thus

u∗0(t) = p(c)−1
°
− ϕ0

1(t)
R t
a ϕ2(s) f (s) ds + ϕ0

2(t)
R t
a ϕ1(s) f (s) ds

¢
.

For the second derivative, the terms do not drop out, and we obtain

u∗00(t) = p(c)−1
°
− ϕ00

1 (t)
R t
a ϕ2(s) f (s) ds + ϕ00

2 (t)
R t
a ϕ1(s) f (s) ds

¢

+ p(c)−1
°
− ϕ0

1(t)ϕ2(t) f (t) + ϕ0
2(t)ϕ1(t) f (t)

¢
.

When we combine these expressions to form p(t)u∗00(t) + p0(t)u∗0(t) − q(t)u∗(t),
the coefficient of

R t
a ϕ2(s) f (s) ds is−p(c)−1L(ϕ1) = 0, and similarly the coefficient

of
R t
a ϕ1(s) f (s) ds is p(c)−1L(ϕ2) = 0. Thus

L(u∗) = p(c)−1 p(t) f (t)
°
− ϕ0

1(t)ϕ2(t) + ϕ0
2(t)ϕ1(t)

¢

= p(c)−1 p(t) f (t) detW (ϕ1, ϕ2)(t) = f (t),

the value of detW (ϕ1, ϕ2) having been computed in the proof. This completes (a).
For (b), we can take ϕ1(t) = cos t and ϕ2(t) = sin t . Since p(t) = 1, we obtain

G0(t, s) =

Ω sin t cos s − cos t sin s if s ≤ t,
0 if s > t.

The conditions u(0) = 0 and u(π/2) = 0 mean that a = 0, b = π/2, c1 = d1 = 1,
and c2 = d2 = 0 in (SL2). Thus the system of equations (∗) in the proof of Lemma
4.4 reads µ

cos 0 sin 0
cos π

2 sin π
2

∂µ
k1
k2

∂
=

µ
−u∗(0)

−u∗(π/2)

∂
,

and we obtain k1 = −u∗(0) = 0 and k2 = −u∗(π/2) = −
R π/2
0 f (s) cos s ds. The

proof of Lemma 4.4 says to take K1(s) = 0 and K2(s) = − cos s. The formula for
G1(t, s) is G1(t, s) = G0(t, s) + K1(s)ϕ1(t) + K2(s)ϕ2(t), and therefore

G1(t, s) =

Ω
sin t cos s − cos t sin s

0

æ
− sin t cos s =

Ω
− cos t sin s
− sin t cos s

æ
.

In particular, G1(t, s) is symmetric, as it is supposed to be!
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4. We have
R t2
t1

°
(py0

1)
0y2 − (py0

2)
0y1

¢
dt =

R t2
t1 (g2 − g1)y1y2 dt > 0 as a result of

the outlined steps. Since
°
(py0

1)
0y2 − (py0

2)
0y1

¢
= d

dt
°
p(y0

1y2 − y1y0
2)

¢
, we conclude

that
£
p(y0

1y2 − y1y0
2))

§t2
t1

> 0. This proves (a).
Since y1(t1) = y1(t2) = 0, the expression p(t)y0

1(t)y2(t) − p(t)y1(t)y0
2(t) is

p(t2)y0
1(t2)y2(t2) at t = t2. Here p(t2) > 0 and y2(t2) ∏ 0. Since y1(t2) = 0

and since y1(t) > 0 for all t slightly less than t2, we obtain y0
1(t2) ≤ 0. Thus

p(t2)y0
1(t2)y2(t2) ≤ 0. Similarly the same expression is p(t1)y0

1(t1)y2(t1) at t = t1.
We have p(t1) > 0 and y2(t1) ∏ 0. Since y1(t1) = 0 and y1(t) > 0 for t slightly
greater than t1, we obtain y0

1(t1) ∏ 0. Thus p(t1)y0
1(t1)y2(t1) ∏ 0. This gives the

desired contradiction and completes (b).
Part (c) is just the special case in which g1(t) = −q(t) + ∏1r(t) and g2(t) =

−q(t) + ∏2r(t). The hypothesis on g2 − g1 is satisfied because g2(t) − g1(t) =
(∏2 − ∏1)r(t) > 0.
5. For (a), substitute for 9(x, t) and get −√ 00(x)ϕ(t) + V (x)√(x)ϕ(t) =

i√(x)ϕ0(t). Divide by √(x)ϕ(t) to obtain −√ 00(x)
√(x) + V (x) = i ϕ0(t)

ϕ(t) . The left side
depends only on x , and the right side depends only on t . So the two sides must be
some constant E . Then −√ 00(x)

√(x) + V (x) = E yields √ 00 + (E − V (x))√ = 0.
For (b), the equation for ϕ is i ϕ0(t)

ϕ(t) = E . Then ϕ0 = −i Eϕ, and ϕ(t) = ce−i Et .

6. We substitute √(x) = e−x2/2H(x), √ 0(x) = −xe−x2/2H(x) + e−x2/2H 0(x),
and √ 00(x) = x2e−x2/2H(x) − 2xe−x2/2H 0(x) + e−x2/2H 00(x) − e−x2/2H(x), and
we are led to Hermite’s equation.
7. Write H(x) =

P∞
k=0 ckxk . We find that c0 and c1 are arbitrary and that

(k + 2)(k + 1)ck+2 − (2n − 2k)ck = 0 for k ∏ 0. To get a polynomial of degree d,
we must have cd 6= 0 and cd+2 = 0. Since cd+2 = cd(2n − 2d)/((d + 2)(d + 1)),
this happens if and only if d = n.
8. We have L(Hn(x)e−x

2/2) = −(2n + 1)Hn(x)e−x
2/2. Define an inner product

by integrating over [−N , N ]. Then

−2(n−m)
R N
−N Hn(x)Hm(x)e−x2 dx

= (L(Hn(x)e−x
2/2), Hm(x)e−x

2/2) − (Hn(x)e−x
2/2, L(Hm(x)e−x

2/2))

=
£
(Hn(x)e−x

2/2)0(Hm(x)e−x
2/2) − (Hn(x)e−x

2/2)(Hm(x)e−x
2/2)0

§N
−N .

As N tends to infinity, the right side tends to 0. Since n 6= m, we obtain the desired
orthogonality.

Chapter II
1. A condition in (a) is that f take on some value on a set of positive measure.

A condition in (b) is that f take on only countably many values, these tending to 0,
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and that the set E where f is nonzero be the countable union of sets En of positive
measure such that no En decomposes as the disjoint union of two sets of positive
measure.
2. Let vn be in image(∏I −L)with vn → v, and choose un with (∏I −L)un = vn .

We are to show that v is in the image. We may assume that v 6= 0, so that kvnk is
bounded below by a positive constant for large n. Since kvnk ≤ k∏I − Lkkunk, kunk
is bounded below for large n. Passing to a subsequence, we may assume either that
kunk tends to infinity or that kunk is bounded.
If kunk is bounded, then we may assume by passing to a subsequence that {Lun}

is convergent, say with limit w. From ∏un = Lun + vn , we see that ∏un → w + v.
Put u = ∏−1(w + v). Then (∏I − L)u = (w + v) − lim Lun = w + v − w = v, and
v is in the image.
If kunk tends to infinity, choose a subsequence such that {L(kunk−1un)} is con-

vergent, say to w. Then we have kunk−1∏un − L(kunk−1un) = kunk−1vn . Passing
to the limit and using that vn → v, we see that kunk−1∏un → w. Applying L , we
obtain ∏w = L(w). Thus (∏I − L)w = 0. Since ∏I − L is one-one, w = 0. Then
kunk−1∏un → 0, and we obtain a contradiction since kunk−1∏un has norm |∏| for
all n.
3. It was shown in Section 4 that the set of Hilbert–Schmidt operators is a normed

linear space with norm k · kHS. Since kLk ≤ kLkHS, any Cauchy sequence {Ln} in
this space is Cauchy in the operator norm. The completeness of the space of bounded
linear operators in the operator norm shows that {Ln} converges to some L in the
operator norm. In particular, limn(Lnu, v) = (Lu, v) for all u and v. By Fatou’s
Lemma,

kLkHS =
P

j kLujk2 =
P

j lim infn kLnujk2

≤ lim infn
P

j kLnujk2 = lim infn kLnkHS.

The right side is finite since Cauchy sequences are bounded, and hence L is a Hilbert–
Schmidt operator. A second application of Fatou’s Lemma gives

kLm − LkHS =
P

j k(Lm − L)ujk2 =
P

j lim infn k(Lm − Ln)ujk2

≤ lim infn
P

j k(Lm − Ln)ujk2 = lim infn kLm − LnkHS.

Since the given sequence is Cauchy, the lim sup onm of the right side is 0, and hence
{Lm} converges to L in the Hilbert–Schmidt norm.
4. If L and M are of trace class, then

P
i |((L + M)ui , vi )| ≤

P
i (|(Lui , vi )| +

|(Mui , vi )|) ≤ kLkTC + kMkTC. Taking the supremum over all orthonormal bases
{ui } and {vi }, we obtain the triangle inequality.
5. Once we know that Tr(AL) = Tr(LA), then Tr(BLB−1) = Tr(B−1(BL)) =

Tr(L). To prove that Tr(AL) = Tr(LA), fix an orthonormal basis {ui }. The formal
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computation is

Tr(AL) =
P

j (ALuj , uj ) =
P

j (Luj , A∗uj ) =
P

j
P

i (Luj , ui )(A∗uj , ui )

=
P

j
P

i (Aui , uj )(L∗ui , uj ) =
P

i
P

j (Aui , uj )(L∗ui , uj )
=

P
i (Aui , L∗ui ) =

P
i (LAui , ui ) = Tr(LA),

and justification is needed for the interchangeof order of summationwithin the second
line. It is enough to have absolute convergence in some orthonormal basis, and this
will be derived from the estimate

P
i, j |(Aui , uj )(L∗ui , uj )| ≤

P
i
°P

j |(Aui , uj )|2
¢1/2°P

j |(L∗ui , uj )|2
¢1/2

=
P

i kAuikkL∗uik ≤ kAk
P

i kL∗uik.

The proof of Proposition 2.8, applied to L∗ instead of L , produces operatorsU and T ,
orthonormal bases {wi } and { fi }, and scalars ∏i ∏ 0 such that L∗ = UT , kUk ≤ 1,
Twi =

p
∏iwi , and

P
|(L∗wi , fi )| =

P
(Twi , wi ). Taking ui = wi , we have

kL∗wik = kUTwik ≤ kTwik =
p

∏i = (Twi , wi ). Hence for this orthonormal
basis,

P
kL∗wik ≤

P
(Twi , wi ) =

P
|(L∗wi , fi )|. The right side is finite since

L∗ is of trace class.
6. If v is a nonzero vector in the ∏ eigenspace of Lα and if LβLα = LαLβ ,

then LαLβ(v) = LβLα(v) = ∏Lβv. Thus the ∏ eigenspace of Lα is invariant
under Lβ . We apply Theorem 2.3 to the compact operator Lβ on each eigenspace of
Lα , obtaining an orthonormal basis of simultaneous eigenvectors under Lα and Lβ .
Iterating this procedure by taking into account one new operator at a time, we obtain
the desired basis.
7. In (a), the operators L+ L∗ and−i(L− L∗) are self adjoint, and they commute

since L commutes with L∗. Compactness is preserved under passage to adjoints and
under taking linear combinations, and (b) follows.
8. If U is unitary, then U∗ = U−1. Then UU−1 = I = U−1U shows that U

is normal. Since U preserves norms, every eigenvalue ∏ has |∏| = 1. If U is also
compact, then the eigenvalues tend to 0. HenceU is compact if and only if the Hilbert
space is finite-dimensional.
9. The solutions of the homogeneous equation are spanned by cosωt and sinωt .

Then the result follows by applying variation of parameters.
10. Take g(s) = ρ(s)u(s) in Problem 9.
11. In (a), let t < t 0. Then

(T f )(t 0) − (T f )(t) =
R t 0
s K (t 0, s) f (s) ds −

R t
a K (t, s) f (s) ds

=
R t 0
t K (t 0, s) f (s)ds +

R t
a [K (t 0, s) − K (t, s)] f (s) ds.
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The first term on the right tends to 0 as t 0 − t tends to 0 because the integrand is
bounded, and the second term tends to 0 by the boundedness of f and the uniform
continuity of K (t 0, s) − K (t, s) on the set of (s, t, t 0) where a ≤ s ≤ t ≤ t 0.
In (b), for n = 1, we have |(T f )(t)| =

Ø
Ø R t

a K (t, s) f (s) ds
Ø
Ø ≤ M

R t
a | f (s)| ds ≤

CM as required. Assume the result for n − 1 ∏ 1, namely that |(T n−1 f )(t)| ≤
1

(n−2)!CM
n−1(t − a)n−2. Then |(T n f )(t)| =

Ø
Ø R t

a K (t, s)(T n−1 f )(s) ds
Ø
Ø ≤

M
R t
a |(T n−1 f )(s)| ds ≤ M 1

(n−2)! CM
n−1 R t

a (s−a)n−2 ds = 1
(n−1)! CM

n(t−a)n−1.
Thus the nth term of the series is ≤ 1

(n−1)! CM
n(b − a)n−1.

In (c), the uniformconvergence follows from the estimate in (b) and theWeierstrass
M test.

12. The operator T is bounded as a linear operator from C([a, b]) into itself.
Because of the uniform convergence, we can apply the operator term by term to the
series defining u. The result is Tu = T f + T 2 f + T 3 f + · · · = u − f . Therefore
u − Tu = f .

13. Subtracting, we are to investigate solutions of u − T u = 0. Problem 11
showed for each continuous u that the series u + Tu + T 2u + · · · is uniformly
convergent. If u = Tu, then all the terms in this series equal u, and the only way that
the series can converge uniformly is if u = 0.

Chapter III

1. Let Dj = @/@yj . Let eS be the vector space of all linear combinations of
functions (1+ 4π2|y|2)−nh with n a positive integer and h in the Schwartz space S.
ThenDj

°
(1+4π2|y|2)−nh

¢
= −8nπ2yj (1+4π2|y|2)−(n+1)h+(1+4π2|y|2)−nDjh.

The first term on the right side is in eS because yj h is in S, and the second term on the
right side is in eS because Djh is in S. ThuseS is closed under all partial derivatives.
Since the product of a polynomial and a Schwartz function is a Schwartz function, eS
is closed under multiplication by polynomials. Since the members of eS are bounded,
we must have eS ⊆ S. In particular, (1+ 4π2|y|2)−1g is in S if g is in S.
2. Since the Fourier transform and its inverse are continuous, it is enough to handle

pointwise product. Pointwise product is handled directly.

3. In (a), the ordinary partial derivatives are Dx
°
log((x2 + y2)−1)

¢
= −2x

x2+y2 and
Dy

°
log((x2 + y2)−1)

¢
= −2y

x2+y2 . These are also weak derivatives. In fact, use of
polar coordinates shows that they are integrable near (0, 0), hence locally integrable
onR2. Ifϕ is inC∞

com(ƒ), we are to show that
R
ƒ log((x

2+y2)−1)Dxϕ(x, y) dx dy =
R
ƒ
2xϕ(x,y)
x2+y2 dx dy and similarly for y. For each y 6= 0, the integrals over x are equal,

and the set where y = 0 is of measure 0 in ƒ. The argument with the variables
interchanged is similar. Thus log((x2 + y2)−1) has weak derivatives of order 1. In



Chapter III 551

polar coordinates the pth power of
Ø
Ø xϕ(x,y)
x2+y2

Ø
Ø is r p | cos θ |p

r2p = r−p| cos θ |p, which is
integrable near r = 0 relative to r dr for p < 2 but not p = 2.
In (b), the argument for the existence of theweak derivative of log log((x2+y2)−1)

is similar to the argument for (a), the ordinary x derivative being

−2x
(x2 + y2) log((x2 + y2)−1)

.

In polar coordinates the square of this is
4 cos2 θ

r2 log2(r−2)
, which is integrable relative to

r dr .
4. The idea is to use the Implicit Function Theorem to obtain, for each point of the

boundary, a neighborhoodof the point forwhich some coordinate has the property that
the cone of a particular size and orientation based at any point in that neighborhood
lies in the region. These neighborhoods cover the boundary, and we extract a finite
subcover. Then we obtain a single size of cone such that every point of the boundary
has some coordinate where the cone lies in ƒ. The cones based at the boundary
points cover all points within some distance ≤ > 0 of the boundary, and cones of half
the height based at interior points within those cones and within distance ≤/2 of the
boundary lie within the cones for the boundary points. The remaining points of the
region can then be covered by a cone with any orientation such that its vertex is at
distance < ≤/2 from all its other points.
5. For 0 < α < N , |x |−(N−α) is the sum of an L1 function and an L∞ function and

hence is a tempered distribution. It is the sum of an L1 function and an L2 function
for 0 < α < N/2.
6. The second expression is converted into the first by changing t into 1/t . The

first expression is evaluated as the third by replacing t |x |2 by s.
7. The formula obtained from the first displayed identity is

R
RN (π |x |2)−

1
2 (N−α)0( 12 (N − α))bϕ(x) dx =

R
RN (π |x |2)−

1
2α0( 12α)ϕ(x) dx,

which sorts out as

π− 1
2 (N−α)0( 12 (N − α))

R
RN |x |−(N−α)bϕ(x) dx = π− 1

2α0( 12α)
R

RN |x |−αϕ(x) dx .

8. In (a), we check directly that F(DαT ) = (2π i)|α|ξαF(T ). Since T is in Hs ,R
RN |F(T )(ξ)|2(1 + |ξ |2)s dξ is finite. Now |ξj | ≤ |ξ | ≤ (1 + |ξ |2)1/2 for every j ,
and hence |ξα| ≤ (1+ |ξ |2)s/2 for |α| = s. Since (1+ |ξ |2)1/2 ∏ 1, (1+ |ξ |2)t/2 is
an increasing function of t , and thus |ξα| ≤ (1+ |ξ |2)s/2 for |α| ≤ s. Consequently
(2π i)|α|ξαF(T ) is square integrable for |α| ≤ s. Thus the Fourier transform of DαT
is a square integrable function for |α| ≤ s. By the Plancherel formula, DαT is a
square integrable function for |α| ≤ s.
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Let T be the L2 function f , and let DαT be the L2 function gα for |α| ≤ s.
The statement that f has gα as weak derivative of order α is the statement thatR

RN f Dαϕ dx = (−1)|α|
R

RN gαϕ dx for ϕ ∈ C∞
com(RN ); this is proved for √ = ϕ

by the following computation, which uses the polarized version of the Plancherel
formula twice:

(−1)|α|
R

RN gα√ dx = (−1)|α|
R

RN (2π i)|α|ξαF( f )F(√) dξ

=
R

RN F( f )(2π i)|α|ξαF(√) dξ =
R

RN F( f )F(Dα√) dξ =
R

RN f Dα√ dx .

Since f and its weak derivatives gα through |α| ≤ s are all in L2, f is in L2s (RN ).
In (b), if T is given by an L2 function, then F(T ) = F( f ) is an L2 function.

Hence F(T ) is locally square integrable. We are assuming that DαT is given by
an L2 function gα for |α| ≤ s. The formula F(gα) = F(DαT ) = (2π i)|α|ξαF(T )

shows that ξαF( f ) is in L2 for |α| ≤ s. Now |ξ |2|F( f )|2 =
P

j |ξjF( f )|2 and
similarly |ξ |2k |F( f )|2 =

P
j1,..., jk |ξj1 · · · ξjkF( f )|2 =

P
|α|=k

° |α|
α1,...,αN

¢
|ξαF( f )|2.

Hence

(1+ |ξ |2)s |F( f )|2 =
Ps

k=0
°s
k
¢P

|α|=k
° |α|
α1,...,αN

¢
|ξαF( f )|2 ≤ s!

P
|α|≤s |ξαF( f )|2,

and f is in Hs .
For (c), in one direction the argument for (a) gives

k f k2L2s =
P

|α|≤s kDα f k2L2 =
P

|α|≤s k(2π i)|α|ξαF( f )k2L2

≤
°P

|α|≤s (2π)2|α|
¢
k(1+ |ξ |2)s/2F( f )k2L2 ≤

°P
|α|≤s (2π)2|α|

¢
k f k2Hs .

In the other direction the displayed formula for (b), when integrated, gives

k f k2Hs ≤ s!
P

|α|≤s |2π i |−|α|kDα f k2L2 ≤ s!k f k2L2s .

9. In (a), let T be in Hs . Then the computation

kTk2Hs = k(1+ |ξ |2)s/2F(T )k2L2 = kF−1°(1+ |ξ |2)s/2F(T )
¢
k2L2 = kAs(T )k2L2

shows that As preserves norms. To see that As is onto L2, let f be in L2. Then
F( f ) is in L2 and hence acts as a tempered distribution. Then (1 + |ξ |2)−s/2F( f )
is a tempered distribution also. Since F carries S 0(RN ) onto itself, T =
F−1°(1 + |ξ |2)−s/2F( f )

¢
is a tempered distribution. This tempered distribution

has the property that As(T ) = f .
In (b), the relevant formula is that (As)−1(ϕ) = F−1°(1 + |ξ |2)−s/2F(ϕ)

¢
. If ϕ

is in S(RN ), then so is F(ϕ). An easy induction shows that any iterated derivative of
(1+|ξ |2)−s/2 is a sumofproductsof polynomials in ξ timespowers (possiblynegative)
of 1+|ξ |2. Application of the Leibniz rule therefore shows that any iterated derivative
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of (1+ |ξ |2)−s/2F(ϕ) is a sum of products of polynomials in ξ times derivatives of
F(ϕ), all divided by powers of 1 + |ξ |2. Consequently (1 + |ξ |2)−s/2F(ϕ) is a
Schwartz function, and so is its inverse Fourier transform.
For (c), we know that C∞

com(RN ) is dense in L2(RN ), and hence S(RN ) is dense
in L2(RN ) also. Applying the operator (As)−1, which must carry S(RN ) onto itself,
we see that S(RN ) is dense in Hs .
10. If T is in H−s and ϕ is in S(RN ), then the definition of Fourier transform on

S(RN ), together with the Schwarz inequality, implies that

|hT, ϕi| = |hF(T ),F−1(ϕ)i| = |
R

RN F(T )(ξ)F−1(ϕ)(ξ) dξ |

= |
R

RN [(1+ |ξ |2)−s/2F(T )(ξ)] [(1+ |ξ |2)s/2F−1(ϕ)(ξ)] dξ |

≤ k(1+ |ξ |2)−s/2F(T )kL2k(1+ |ξ |2)s/2F−1(ϕ)kL2 = kTkH−skϕkHs .

11. For √ in S(RN ), we have |hF(T ), √i| = |hT,F(√)i| ≤ CkF(√)kHs =

C
° R

RN |F(F(√))(ξ)|2(1 + |ξ |2)s dξ
¢1/2

= C
° R

RN |√(−ξ)|2(1 + |ξ |2)s dξ
¢1/2

=
Ck√kL2(RN ,(1+|ξ |2)s dξ)

. Thus F(T ) acts as a bounded linear functional on the dense
vector subspace S(RN ) of L2(RN , (1+ |ξ |2)s dξ). Extending this linear functional
continuously to the whole space and applying the Riesz Representation Theorem for
Hilbert spaces, we obtain a function f in L2(RN , (1+ |ξ |2)s dξ) such that

hF(T ), √i =
R

RN √(ξ) f (ξ)(1+ |ξ |2)s dξ

for all√ inS(RN ). Put√0(ξ) = f (ξ)(1+|ξ |2)s . Then
R

RN |√0(ξ)|2(1+|ξ |2)−s dξ =R
RN | f (ξ)|2(1 + |ξ |2)s dξ < ∞, and the above displayed formula shows that F(T )

agrees with the function √0 on S(RN ). Thus T is in H−s . To estimate kTkH−s ,
we twice use the fact that S(RN ) is dense: kTkH−s = k√0kL2(RN ,(1+|ξ |2)−s dξ)

=

k f kL2(RN ,(1+|ξ |2)s dξ)
= supk√k

L2(RN ,(1+|ξ |2)s dξ)
≤1 |hF(T ), √i| = supkϕkHs≤1

|hT, ϕi|.

Thus kTkH−s ≤ C .
12. In (a), we apply the Schwarz inequality: kϕksup ≤ kF−1(ϕ)k1 = kF(ϕ)k1 =

R
RN |[F(ϕ)(ξ)(1+ |ξ |2)s/2] [(1+ |ξ |2)−s/2]| dξ ≤ kTϕkHs

° R
RN

Ø
Ø1+ |ξ |2

Ø
Ø−s dξ

¢1/2.
For (b), the last integral in (a) is finite for s > N/2. Thus we have kϕksup ≤

CkTϕkHs for all ϕ in S(RN ). If T is in Hs , we know from Problem 9c that we
can find a sequence ϕk in S(RN ) such that Tϕk tends to T in Hs . For p ≤ q, we
then have kϕp − ϕqksup ≤ CkTϕp − TϕqkHs . Letting q tend to infinity, we see that
ϕp converges uniformly to some function f , necessarily continuous and bounded.
Let Tf be the tempered distribution given by f . We show that T = Tf . If √

is in S(RN ), then F(√) is integrable, being a Schwartz function, and the uniform
convergence of ϕp to f implies that hTf ,F(√)i = limphTϕp ,F(√)i. On the other
hand, |hTϕp − T,F(√)i| ≤ kTϕp − TkHskF(√)kH−s , and thus hTϕp ,F(√)i tends to
hT,F(√)i. Therefore hTf ,F(√)i = hT,F(√)i, and T = Tf .
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For (c), it follows from Problem 8 that for any fixed s and any multi-index α with
|α| ≤ s, kDαϕkHs−|α| ≤ CαkϕkHs for all ϕ in S(RN ). Fix m with s > N/2 + m,
and let T be in Hs . By Problem 9c we can choose a sequence ϕk in S(RN ) such
that Tϕk tends to T in Hs . For p ≤ q and for each α with |α| ≤ m, (a) shows
that kDαϕp − Dαϕqksup ≤ C 0

αkTDαϕp − TDαϕqkHs−|α| ≤ C 0
αkTDαϕp − TDαϕqkHs−m .

Letting q tend to infinity, we see that Dαϕp converges uniformly to some function
fα , necessarily continuous and bounded. By the theorem on interchange of limit and
derivative, f0 = limp D0ϕp is of class Cm with fα = Dα f0 for all α with |α| ≤ m.
Then we can argue as in (b) to see that T = Tf , and (c) is proved.
13. In (a), Py ∗ (u0 + i Hu0)(x) = Py ∗ u0(x) + i Qy ∗ u0(x) = i z̄

π |z|2 ∗ u0(x) =

((−iπz)−1) ∗ u0(x). The left side is inHp since H is bounded on L p, and the form
of the right side shows that the result is analytic in the upper half plane. Hence the
expression is in H p.
In (b), we know that f (x + iy) = Py ∗ u0(x) + i Qy ∗ u0(x) = Py ∗ u0(x) +

i PyHu0(x). Taking the L p limit as y ↓ 0, we obtain f0 = u0 + i Hu0. Hence i Hu0
is the imaginary part of f0.
14. According to the previous problem, the functions in H2 are those of the form

Py ∗ (u0+ i Hu0)with u0 in L2. That is, they are the functions of the form u0+ i Hu0
with u0 in L2. The operator H acts on the Fourier transform side by multiplication by
−isgn x . Hence the Fourier transforms of the functions of interest are all expressions
bu0(x) + i(−isgn x)bu0(x) a.e. This function is 2bu0(x) for x > 0 and is 0 for x < 0.
Conversely any function in L2 is the Fourier transform of an L2 function, and thus
if g is given that vanishes a.e. for x < 0, we can find u0 with bu0 = 1

2g. Then
bu0 + i(−isgn x)bu0 = g.
15. The first inequality is by the Schwarz inequality, and the second inequality is

evident. For the equality we make the calculation

1(|F |q) = 4 @
@ z̄

@
@z (|F |2)q/2 = 2q @

@ z̄ [(|F |2)
q
2−1 @

@z (F, F)]

= 2q @
@ z̄ [(|F |2)

q
2−1(F 0, F)]

= q(q − 2)(|F |2)
q
2−2(F, F 0)(F 0, F) + 2q(|F |2)

q
2−1(F 0, F 0)

= q2|F |q−4|(F, F 0)|2 − 2q|F |q−4|(F, F 0)|2 + 2q|F |q−2|F 0|2

= q2|F |q−4|(F, F 0)|2 + 2q|F |q−4° − |(F, F 0)|2 + |F |2|F 0|2
¢
.

16. Arguing by contradiction, suppose that u(x1) > 0 with |x1 − x0| < r . For
any c > 0, the function vc(x) = u(x) + c(|x − x0|2 − r2) has 1vc > 0 on B(r; x0)
and v = u ≤ 0 on @B(r; x0). We can choose the positive number c sufficiently small
so that vc(x1) > 0. Fix that c, and choose x2 in B(r; x0)cl where vc is a maximum.
Then x2 is in B(r; x0), and all the first partial derivatives of vc must be 0 there. Since
1vc(x2) > 0, we must have D2j vc(x2) > 0 for some j , and then the presence of a
maximum for v − x at x2 contradicts the second derivative test.
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17. For (a), we calculate kgεk22 =
R

R |gε(x)|2 dx =
R

R |Fε(x)| dx ≤R
R | f (x + iε)| dx + ε

R
R |x + i |−2 ≤ k f kH1 + εk(x + i)−2k1.

In (b), the functions x 7→ gε(x + iy) and x 7→ Fε(x + iy) are Poisson integrals
of the functions with y replaced by y/2, and then are iterated Poisson integrals in
passing from y/2 to 3y/4 and to y. In the first case the starting function is in
L2, and in the second case the starting function is in L1. The function at 3y/4 is
then in L2 since L1 ∗ L2 ⊆ L2, and the function at y is continuous vanishing at
infinity since L2 ∗ L2 ⊆ C0(R). This handles the dependence for large x . For
large y, we refer to the proof of Theorem 3.25, where we obtained the estimate
|u(x, t)|p ≤ [( 12 t0)

N+1ƒ1]−1(N + 1)t0kukpHp if u is inHp and t ∏ t0.
In (c), the functions |Fε(z)|1/2 and gε(z) are equal for z = x . Hence the continuous

function u(z) = |Fε(z)|1/2−gε(z) onR2+ vanishes at y = 0 and tends to 0 as |x |+|y|
tends to infinity. Given δ > 0, choose an open ball B large enough in R2+ so that
u(z) ≤ δ off this ball. Since the second component of Fε(z) is nowhere vanishing,
|Fε(z)|1/2 is everywhere smooth for y > 0. Problem15 shows that1(|Fε(z)|1/2) ∏ 0,
and we know that 1gε(z) = 0 since gε is a Poisson integral. Hence 1u(z) ∏ 0.
Applying Problem 16 on the ball B, we see that u(z) ≤ δ on B. Hence u(z) ≤ δ on
R2+. Since δ is arbitrary, u(z) ≤ 0 on R2+. Therefore |Fε(z)|1/2 ≤ gε(z) on R2+.
18. In (a), the fact that Py is in L2 implies that limn

R
R Py(x − t)gεn (t) dt =R

R Py(x − t)g(t) dt . Thus gεn (z) → g(z) pointwise for Im z > 0. Then we have
| f (z)|1/2 ≤ lim supn | f (z + iεn)|1/2 ≤ lim supn gε(z) = g(z). Since g(z) is the
Poisson integral of g(x), the inequality g(x + iy) ≤ Cg∗(x) is known from the given
facts at the beginning of this group of problems.
In (b), we have | f (x+iy)| ≤ C2g∗(x)2, andweknow that kg∗k2 ≤ A2kgk2. From

Problem17awehavekgk22 ≤ lim supn kgεnk
2
2 ≤ lim supn

°
k f kH1+εk(x+i)−2k1

¢
=

k f kH1 .

19. Every f in Ccom(X) has
Ø
Ø R

X f (x) d∫(x)
Ø
Ø = limn

Ø
Ø R

X f (x)gn(x) dµ(x)
Ø
Ø ≤

lim supn
R
X | f (x)||gn(x)| dµ(x) ≤

R
X | f (x)| dµ(x). If K is compact in X , we can

find a sequence { fk} of functions∏ 0 inCcom(X) decreasingpointwise to the indicator
function of K , and dominated convergence implies that

Ø
Ø R

K d∫(x)
Ø
Ø ≤

R
K dµ(x).

In other words, |∫(K )| ≤ µ(K ). Separating the real and imaginary parts of ∫ and
then working with subsets of a maximal positive set for ∫ and a maximal negative set
for ∫, we reduce to the case that ∫ ∏ 0. Since ∫ is automatically regular, we obtain
∫(E) ≤ µ(E) for all Borel sets E , and the absolute continuity follows.
20. Since f is in H1, it is in H1 and hence is the Poisson integral of a finite

complex Borel measure ∫, and the complex measures f (x + i/n) dx converge weak-
star against Ccom(R) to ∫. Meanwhile, we have | f (x + i/n)| ≤ C2g∗(x)2 for
all n. In Problem 19 take dµ(x) = C2g∗(x)2 dx . Then the complex measures
f (x+ i/n)[C2g∗(x)2]−1 dµ(x) converge weak-star to ∫. Problem 19 shows that ∫ is
absolutely continuouswith respect toC2g∗(x)2 dx . Hence ∫ is absolutely continuous
with respect to Lebesgue measure.
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21. For (a),F(Tϕ) is the product of an L∞ function and a Schwartz function. The
rapid decrease of the Fourier transform translates into the existence of derivatives of
all orders for the function itself. Hence 8 is locally bounded.
For (b), any x with |x | ∏ 1 has

8(x) = limy↓0
R
|y|∏ε

° K (x−y)
|x−y|N − K (x)

|x |N
¢
ϕ(y) dy.

Hence |8(x)| is

≤ lim supy↓0
R
|y|∏ε ϕ(y)|K (x − y)|

Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø dy +

R
RN ϕ(y) |K (x−y)−K (x)|

|x |N dy.

If |x | ∏ 2|y| for all y in the support of ϕ, two estimates in the text are applicable;
these appear in the proof that the hypotheses of Lemma 3.29 are satisfied:

Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø ≤ N3N |y|

|x |N+1 and |K (x − y) − K (x)| ≤ √
° 2|y|

|x |
¢
.

The smoothness of K makes√(t) ≤ Ct for small positive t . Since the y’s in question
are all in the compact support of ϕ, both terms are bounded bymultiples of |x |−(N+1).
Conclusion (c) is immediate from (a) and (b).
22. Part (a) is just a matter of tracking down the effects of dilations. Part (c)

follows by dilating8 = Tϕ − k to obtain8ε = (Tϕ)ε − kε, by applying (a) to write
8ε = Tϕε − kε, by convolving with f , and by applying (b). Thus we have to prove
(b).
For (b), we have ϕε ∗ T f = ϕε ∗ (limδ Tδ f ). The limit is in L p, and convolution

by the L p0 function ϕε is bounded from L p to L∞. Therefore ϕε ∗ (limδ Tδ f ) equals
limδ(ϕε ∗ (Tδ f )) = limδ(ϕε ∗ (kδ ∗ f )). This is equal to limδ((ϕε ∗ kδ) ∗ f ) =
limδ((Tδϕε) ∗ f ) since ϕε is in L1. Finally we can move the limit inside since
limδ Tδϕε can be considered as an L p

0 limit and f is in L p.
23. From (c), we have supε>0 |Tε f (x)| = supε>0 |kε∗ f (x)| ≤ supε>0 |8ε∗ f (x)|

+ supε>0 |ϕε ∗ (T f )(x)| ≤ C8 f ∗(x) +Cϕ(T f )∗(x), where C8 and Cϕ are as in the
given facts at the beginning of this group of problems.
24. Taking L p norms in the previous problem and using Theorem 3.26 and the

known behavior of Hardy–Littlewood maximal functions, we obtain
∞
∞ sup

ε>0
|Tε f (x)|

∞
∞
p ≤ C8k f ∗kp + Cϕk(T f )∗kp ≤ C8Apk f kp + Cϕ ApkT f kp

≤ C8Apk f kp + Cϕ ApCpk f kp = Ck f kp,

where Ap and Cp are constants such that k f ∗kp ≤ Apk f kp and kT f kp ≤ Cpk f kp.
We know that limε>0 Tε f (x) exists pointwise for f in the dense set C∞

com(RN ), and
a familiar argument uses the above information to give the existence of the pointwise
limit almost everywhere for all f in L p.
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25. This follows from the same argument as for Proposition 3.7.
26. Fix √ ∏ 0 in C∞

com(RN ) with integral 1, and define √ε(x) = ε−N√(ε−1x). If
f is in L2k(T

N ), then √ε ∗ f is smooth and periodic, hence is in C∞(T N ). Suppose
it is proved that

Dα(√ε ∗ f ) = √ε ∗ Dα f for |α| ≤ k. (∗)

If we let η be the indicator function of [−2π, 2π]N , then Proposition 3.5a shows
that limε↓0 kη(√ε ∗ Dα f − Dα f ))k2 = 0 for |α| ≤ k, and then (∗) shows that
limε↓0 kη(Dα(√ε ∗ f ) − Dα f )k2 = 0. Hence limε↓0 k√ε ∗ f − f kL2k(T N )

= 0.
For (∗), the critical fact is that the smooth function √ ∗ f is periodic. If ϕ is

periodic and √ε is supported inside [−π, π]N , then
R
[−π,π]N

°
√ε ∗ Dα f (x)

¢
ϕ(x) dx =

R
[−π,π]N

R
[−π,π]N √ε(y)Dα f (x − y)ϕ(x) dy dx

=
R
[−π,π]N

R
[−π,π]N √ε(y)Dα f (x − y)ϕ(x) dx dy

= (−1)|α|
R
[−π,π]N

R
[−π,π]N √ε(y) f (x − y)Dαϕ(x) dx dy

= (−1)|α|
R
[−π,π]N (√ε ∗ f )(x)Dαϕ(x) dx

=
R
[−π,π]N (Dα(√ε ∗ f ))ϕ dx,

and (∗) follows.
27. We have

kDα f k2L2k(T N )
=

P
|β|≤k (2π)−N

R
[−π,π]N |DβDα f |2 dx

=
P

|β|≤k (2π)−N
R
[−π,π]N |Dα+β f |2 dx

≤
P

|∞ |≤k+|α| (2π)−N
R
[−π,π]N |D∞ f |2 dx

= k f k2L2k+|α|(T N )
.

Thus we can take Cα,k = 1.
28. For eachα, we have (2π)−N

R
[−π,π]N |Dα f |2 dx ≤ (supx∈[−π,π]N |Dα f (x)|)2.

Summing for |α| ≤ k gives

k f k2L2k(T N )
≤

P
|α|≤k (supx∈[−π,π]N |Dα f (x)|)2,

and the right side is ≤ (
P

|α|≤k supx∈[−π,π]N |Dα f (x)|)2. Thus we can take Ak = 1.

29. Since l2j ≤ |l|2, we have l2α ≤ (|l|2)|α| ≤ (1 + |l|2)k , and the left inequality
of the problem follows with Bk equal to the reciprocal of the number of α’s with
|α| ≤ k. For the right inequality, we have 1+ |l|2 =

P
|α|≤1 l2α . Raising both sides

to the kth power gives the desired result once the right side is expanded out since
l2αl2β = l2(α+β).
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30–31. For f in C∞(T N ), let f have Fourier coefficients cl . The l th Fourier
coefficient of Dα f is then i |α|lαcl , and hence kDα f k22 =

P
l |cl |2l2α . Consequently

k f kL2k(T N )
=

P
l |cl |2

°P
|α|≤k l2α

¢
. Then the estimate required for Problem 31 in

the case of functions in C∞(T N ) is immediate from the inequalities of Problem 29.
Problem 26 shows that C∞(T N ) is dense in L2k(T

N ). Let f be given in L2k(T
N ),

and choose f (n) in C∞(T N ) convergent to f in L2k(T
N ). Since f (n) tends to f in

L2, the Fourier coefficients c(n)l of f (n) tend to those cl of f for each l. Applying
Problem 29 to each f (n) and using Fatou’s Lemma, we obtain

P
l |cl |2(1+ |l|2)k ≤

Ckk f k2L2k(T N )
. On the other hand, if f is given in L2k(T

N ) with Fourier coefficients

cl , then we can put f (n)(x) =
P

|l|≤n cleil·x . Since f (n) is given by a finite sum and
since Dα f (x) =

P
l cllαeil·x in the L2 sense for |α| ≤ k, we see that f (n) converges

to f in L2k(T
N ). The left inequality of Problem 31 holds for each f (n) since f (n)

is in C∞(T N ), and the expression in the middle of that inequality for f (n) is ≤ the
corresponding expression for f . Passing to the limit, we obtain the left inequality of
Problem 31 for f .
This settles Problem 31. It shows also that if f is in L2k(T

N ), then we haveP
l |cl |2(1+|l|2)k < ∞. On the other hand, if this sum is finite, thenwe define f (n) to

be
P

|l|≤n cleil·x . Problem 31 gives us Bkk f (n)k2L2k(T N )
≤

P
l |cl |2(1+|l|2)k for each

n. Each Dα f (n) for |α| ≤ k is convergent to something in L2, and the completeness
of L2k(T

N ) proved in Problem 25 shows that f (n) converges to something in L2k(T
N ).

Consideration of Fourier coefficients shows that the limit function must be f . Hence
f is in L2k(T

N ).
32. Put c = K/N > 1/2. Term by term we have

P
l∈ZN (1 + |l|2)−(N+1)/2 ≤

P
l1∈Z · · ·

P
lN∈Z (1 + l21)

−c · · · (1 + l2N )−c =
QN

j=1
°P

m∈Z (1 + m2)−c
¢
, and the

right side is finite since c > 1/2. This proves convergence of the sum.
Now suppose that f is in L2K (T N ), and suppose that f has Fourier coefficients cl .

Problem 31 shows that
P

l |cl |2(1+ |l|2)K < ∞. The Schwarz inequality gives
P

l |cl | =
P

l |cl(1+ |l|2)K/2|(1+ |l|2)−K/2

≤
°P

l |cl |2(1+ |l|2)K
¢1/2°P

l (1+ |l|2)−K
¢1/2

,

and we conclude that
P

|cl | < ∞. Therefore the partial sums of the Fourier series
of f converge to a continuous function. This continuous function has to match the
L2 limit almost everywhere, and the latter is f .
33. Let cl be the Fourier coefficients of f . If f is in L2K (T N ) with K > N/2,

then Problem 32 shows that f is continuous and is given pointwise by the sum
of its Fourier series. The inequalities in the solution for that problem show that
| f (x)| ≤

P
l |cl | ≤ AK

°P
l |cl |2(1 + |l|2)−K

¢1/2. In turn, Problem 31 shows that
the right side is ≤ AKC

1/2
k k f kL2K (T N )

. This gives the desired estimate for α = 0
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with m(0) = K for any integer K greater than N/2. Combining this estimate with
the result of Problem 27, we obtain an inequality for all α, with m(α) = K + |α| and
Cα = AKC

1/2
K .

34. The comparisons of size are given in Problems 28 and 33. These comparisons
establish the uniform continuity of the identity map in both directions, by the proof
of Proposition 3.2. (The statement of the proposition asserts only continuity.)

Chapter IV

1. With the explicit definition of the norm topology on X/Y , we have kx + Yk ≤
kxk, and consequently the quotient mapping q : X → X/Y is continuous onto the
normed X/Y . Because of completeness the Interior Mapping Theorem applies and
shows that the quotient mapping carries open sets to open sets. Consequently a subset
E of X/Y in the norm topology is open if and only if q−1(E) is open. This is the same
as the defining condition for a subset of X/Y to be open in the quotient topology, and
hence the topologies match.
2. Let K = ker(T ), and let q : X → X/K be the quotient map. By linear

algebra the map T : X → Y induces a one-one linear map T 0 : X/K → Y , and
then T = T 0 ◦ q. Since K is closed in X , Proposition 4.4 shows that X/K is a
topological vector space. Since T (X) is finite dimensional and T 0 is one-one, X/K
is finite dimensional. Proposition 4.5 implies that T 0 is continuous. Since T is the
composition of continuous maps, it is continuous.
3. Let T : X → Y be a continuous linearmap fromoneBanach space onto another,

and let K = ker T . As in Problem 2, write T = T 0 ◦ q, where q : X → X/K is
the quotient mapping. Here T 0 is one-one. Since a subset E of X/K is open if and
only if q−1(E) is open, T 0 is continuous. Problem 1 shows that the topology on X/K
comes from a Banach space structure. By the assumed special case of the Interior
Mapping Theorem, T 0 carries open sets to open sets. Therefore the composition T
carries open sets to open sets.
4. This follows from Proposition 4.5.
5. Take xn to be the nth member of an orthonormal basis. Then kxnk = 1 for all n.

Any u in H has an expansion u =
P∞

n=1 cnxn , convergent in H , with cn = (u, xn)
and

P
|cn|2 < ∞. Then {(u, xn)} tends to 0 for each u, and {xn} therefore tends to 0

weakly.
6. The weak convergence implies that limn( fn, f ) = ( f, f ) = k f k2. Therefore

k fn − f k2 = k fnk2 − 2Re( fn, f ) + k f k2 tends to k f k2 − 2k f k2 + k f k2 = 0.
7. Let the dense subset of X∗ be D. For x∗ in X∗ and y∗ in D, we have
|x∗(xn) − x∗(x0)| ≤ |(x∗ − y∗)(xn)| + |y∗(xn) − y∗(x0)| + |(y∗ − x∗)(x0)|

≤ kx∗ − y∗kkxnk + |y∗(xn) − y∗(x0)| + kx∗ − y∗kkx0k
≤ (C + kx0k)kx∗ − y∗k + |y∗(xn) − y∗(x0)|,
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where C = supn kxnk. Given x∗ ∈ X∗ and ≤ > 0, choose y∗ in D to make the
first term on the right be < ≤, and then choose n large enough to make the second
term < ≤.
8. For (a), let D( f ) = 1. Then t 7→

R
[0,t] | f |

p dx is a continuous nondecreasing
function on [0, 1] that is 0 at t = 0 and is 1 at t = 1. Therefore there exists a partition
0 = a0 < a1 < · · · < an = 1 of [0, 1] such that

R
[0,aj ] | f |

p dx = j/n for 0 ≤ j ≤ n.
If f j for j ∏ 1 is the product of n and the indicator function of [aj−1, aj ], then
D( f j ) = 1

n n
p = n−(1−p), and f = 1

n ( f1 + · · · + fn).
For (b), let gj = c fj in (a), so that D(gj ) = |c|pD( f j ) = |c|pn−(1−p). If we

put c = n(1−p)/p, then D(gj ) = 1. Thus we obtain the expansion n(1−p)/p f =
1
n (g1 + · · · + gn) with D(gj ) = 1 for each j . Since D(n(1−p)/p f ) = n1−pD( f ) =
n1−p, the multiple n(1−p)/p f of f is a convex combination of functions h with
D(h) ≤ 1. Taking a convex combination of 0 and this multiple of f shows that r f
is a convex combination of functions h with D(h) ≤ 1 if 0 ≤ r ≤ n(1−p)/p. Since
supn n(1−p)/p = +∞, every nonnegative multiple of f is a convex combination of
functions h with D(h) ≤ 1.
For (c), we scale the result of (b). The smallest convex set containing all functions

ε1/ph with D(h) ≤ 1 contains all nonnegative multiples of f . Since D(ε1/ph) =
εD(h), the smallest convex set containing all functions k with D(k) ≤ ε contains all
nonnegative multiples of f . Since f is arbitrary, this convex set is all of L p([0, 1]).
For (d), the sets where D( f ) ≤ ε form a local neighborhood base at 0. Thus if

L p([0, 1]) were locally convex, then any convex open set containing 0 would have
to contain, for some ε > 0, the set of all f with D( f ) ≤ ε. But the only convex set
containing all f with D( f ) ≤ ε is all of L p([0, 1]) by (c). Hence L p([0, 1]) is not
locally convex.
For (e), suppose that ` is a continuous linear functional on L p([0, 1]). Then we

can find some ε > 0 such that D( f ) < ε implies Re `( f ) < 1. The set of all f where
Re `( f ) < 1 is a convex set, and it contains the set of all f with D( f ) < ε. But we
saw in (c) that the only such convex set is L p([0, 1]) itself. Therefore Re `( f ) < 1
for all f in L p([0, 1]). Using scalar multiples, we see that Re `( f ) = 0 for all f .
Therefore `( f ) = 0, and the only continuous linear functional ` on L p([0, 1]) is
` = 0.
9. In (a), if ϕ is compactly supported in Kp0 , then ε−1

p supx /∈Kp
sup|α|≤mp

|Dαϕ(x)|
is 0 for p ∏ p0. Thus kϕkm,ε is a supremum for p < p0 of finitely many expressions
that are each finite for any smooth function onU . Hence kϕkm,ε is finite. Conversely
if ϕ is not compactly supported, then the expressions sp = supx /∈Kp

|ϕ(x)| have
0 < sp ≤ ∞ for all p. If we define the sequence ε by εp = min(p−1, sp), then εp
decreases to 0 and every sequence m has kϕkm,ε ∏ ε−1

p supx /∈Kp
|ϕ(x)| ∏ p for all

p. Since p is arbitrary, kϕkm,ε = ∞.
For (b), we have only to show that the inclusion of C∞

Kp
into (C∞

com(U), T 0) is
continuous for every p. If (m, ε) is given, we are to find an open neighborhood of 0 in
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C∞
Kp
such that kϕkm,ε < 1 for all ϕ in this neighborhood. PutM = max(m1, . . . ,mp)

and δ = min(ε1, . . . , ϕp). If ϕ is supported in Kp and supx∈Kp
sup|α|≤M |Dαϕ(x)| <

δ, then ε−1
r supx /∈Kr sup|α|≤mr

|Dαϕ(x)| is 0 for r ∏ p and is< 1 for r < p. Therefore
its supremum on r , which is kϕkm,ε, is < 1.
For (c), define mp = max{p, n1, . . . , np} for each p, and then {mp} is monotone

increasing and tends to infinity. Next chooseCp for each p by the compactness of the
support of √p and the use of the Leibniz rule on √pη so that whenever |Dαη(x)| ≤ c
for someη ∈ C∞(U), all x /∈ Kp, and allαwith |α| ≤ mp, then2p+1|Dα(√pη)(x)| ≤
Cpc for that η, all x ∈ U , and all α with |α| ≤ mp. Choose εp to be < δp/Cp and
to be such that {εp} is monotone decreasing and has limit 0. If kϕkm,ε < 1, then
supx /∈Kp

sup|α|≤mp
|Dαϕ(x)| < εp for all p. Taking η = ϕ in the definition ofCp, we

see that supx∈U sup|α|≤mp
2p+1|Dα(√pϕ)(x)| ≤ Cpεp < δp. Since √pϕ is in C∞

Kp+3

and mp ∏ np, we see that 2p+1√pϕ meets the condition for being in N ∩ C∞
Kp+3

.
For (d), we see from (c) that 2p+1√pϕ is in N for all p ∏ 0. The expansion

ϕ =
P

p∏0 2−(p+1)(2p+1√pϕ) is a finite sum since ϕ has compact support, and it
therefore exhibits ϕ as a convex combination of the 0 function and finitely many
functions 2p+1√pϕ, each of which is in N . Since N is convex, ϕ is in N . This proves
the asserted continuity.
For (e), each vector subspaceC∞

Kp
is closed nowhere dense, and the union of these

subspaces is all of C∞
com(U).

10. Disproof: The answer is certainly independent of H , and we can therefore
specialize to H = L2([0, 1]). The multiplication algebra by L∞([0, 1]) is isometric
to a subalgebra ofB(H, H) and is not separable. ThereforeB(H, H) is not separable.

11. Certainly A0 ⊇ M(L2(S, µ)). Let T be in A0, and put g = T (1). For
f continuous, T f = T ( f 1) = T Mf 1 = Mf T1 = Mf g = f g = g f . If we
can prove that g is in L∞(S, µ), then T and Mg will be bounded operators equal
on the dense subset C(S) of L2(S, µ) and therefore equal everywhere. Let EN =
{x

Ø
Ø N ≤ |g(x)| ≤ N + 1}, and suppose that µ(EN ) > 0. We shall derive an

upper bound for N . Choose a compact set KN ⊆ EN with µ(KN ) > 0. Then
choose f in C(S) with values in [0, 1] such that f ∏ 1 on KN and

R
S f dµ ≤

2µ(KN ). Then
R
S |g f |2 dµ ∏

R
KN

|g f |2 dµ =
R
KN

|g|2 dµ ∏ N 2µ(KN ). Also,
R
S | f |2 dµ ≤

R
S f dµ ≤ 2µ(KN ) since 0 ≤ f ≤ 1. Therefore Nµ(KN )1/2 ≤

kg f k2 ≤ kTkk f k2 ≤
p
2 kTkµ(KN )1/2, and we obtain N ≤

p
2 kTk. This gives

an upper bound for N and shows that g is in L∞(S, µ).

12. The Spectral Theorem shows that wemay assume that A is of the formMg and
acts on H = L2(S, µ), with g in L∞(S, µ). Certainly we have supk f k2≤1

|(Mg f, f )|
≤ kgk∞. Let us prove the reverse inequality. Lemma 4.55 and Proposition 4.43 show
that kgk∞ is the supremum of the numbers |∏0| such that ∏0 is in the essential image
of Mg . For ∏0 in the essential image, fix ≤ > 0 and let f1 be the indicator function of
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g−1({|∏ − ∏0| < ≤}). Then
R
S g| f1|

2 dµ =
R
|g(x)−∏0|<≤ g dµ = ∏0µ

°
|g(x)−∏0| < ≤

¢
+

R
|g(x)−∏0|<≤ (g−∏0) dµ.

The last term on the right is ≤ ≤µ
°
|g(x) − ∏0| < ≤

¢
in absolute value. HenceR

S g| f1|
2 dµ = (∏0 + ≥ )µ

°
|g(x) − ∏0| < ≤

¢
with |≥ | ≤ ≤. Dividing by k f1k22 =

µ
°
|g(x) − ∏0| < ≤

¢
and setting f = f1/k f1k2, we obtain

Ø
Ø R

S g| f |
2 dµ − ∏0

Ø
Ø ≤ ≤.

Since ≤ is arbitrary, ∏0 is in the closure of
©
(Mg f, f )

Ø
Ø k f k2 = 1

™
. Taking the

supremum over ∏0 in the essential image, we obtain supk f k2≤1
|(Mg f, f )| ∏ kgk∞.

13. This is what the proof of Theorem 4.53 gives when the assumption that A is
maximal is dropped and the cyclic vector is produced by a hypothesis rather than by
Proposition 4.52.
14. Apply the previous problem. Proposition 4.63 shows that A∗

m is canonically
homeomorphic to σ(A). Under this identification we want to see that U AU−1 is
multiplication by z. Thus let√ : σ(A) → A∗

m be the homeomorphism obtained from
the proposition. The solution of the previous problem and the proof of Theorem 4.53
show thatU AU−1 is multiplication by bA when we work withA∗

m, and it is therefore
bA◦√ whenweworkwithσ(A). Thedefiningpropertyof√ is that f (z) = f ◦bA(√(z))
for f ∈ C(σ (A)) and z ∈ σ(A). This equation for the function f (z) = z says that
bA ◦ √(z) = z, and hence U AU−1 is multiplication by z on σ(A).
15. For (a), A immediately contains all MP for arbitrary polynomials P with

complex coefficients on [0, 1]. By the Stone–Weierstrass Theorem, A contains all
operators Mf with f continuous on [0, 1]. This collection of operators is an algebra
closed under adjoints and operator limits (which are the same as essentially uniform
limits of the functions), and hence it exhausts A. If we then form A1, we obtain all
continuous functions in L2([0, 1]), and these are dense. Hence 1 is cyclic.
For (b), Proposition 4.63 says that the spectrum may be identified with σ(Mx ),

and Lemma 4.55 shows that this is [0, 1].
In (c), the system of operators Mϕ satisfies conditions (a) through (d) for the

system ϕ(Mx ) of Theorem 4.57. By uniqueness, ϕ(Mx ) = Mϕ for every bounded
Borel function on [0, 1].
17. If 0 < µ(S) < 1, then µ is a nontrivial convex combination of 0 and a

measure with total mass 1 and is therefore not extreme. Since 0 is evidently extreme,
the problem is to identify the extreme measures among those with total mass 1. If
µ is given with µ(S) = 1 and if some Borel set E has 0 < µ(E) < 1, define
µ1(A) = µ(E)−1µ(E ∩ A) and µ2 = µ(Ec)−1µ(Ec ∩ A). Then µ1 and µ2 have
total mass 1, and the equality µ = µ(E)µ1 + µ(Ec)µ2 shows that µ is not extreme.
Thus we may assume that µ takes on only the values 0 and 1. In this case the

regularity of µ implies that µ is a point mass, as is shown in Problem 6 of Chapter XI
of Basic.
18. For (a), we have f = (1 − t)k f1k−1

1 f1 + tk f2k−1
1 f2 with t = k f2k1. For

(b), we observe for any f in L1([0, 1]) with k f k1 = 1 that t 7→
R
[0,t] | f | dx is
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continuous on [0, 1], is 0 at t = 0, and is 1 at t = 1. Therefore there exists some t0
with

R
[0,t0] | f | dx = 1

2 . The set E = [0, t0] is then a set to which we can apply (a) to
see that f is not an extreme point of the closed unit ball.

19. For the compactness of K in (a), we are to show that the set of invariant
measures is closed. Suchmeasuresµ have

R
S f dµ =

R
S ( f ◦F) dµ for all f ∈ C(S).

If we have a net {µn} of such measures convergent weak-star to µ, then we can pass
to the limit in the equality for each µn and obtain

R
S f dµ =

R
S ( f ◦ F) dµ for the

limitµ since f and f ◦ F are both continuous. If we define ∫(E) = µ(F−1(E)), this
equality says that

R
S f dµ =

R
S f d∫ for every f ∈ C(S). By the uniqueness in the

Riesz Representation Theorem, µ = ∫. Therefore the limit µ is invariant under F .
In (b), if µ could be extreme but not ergodic, we could find a Borel set E with

0 < µ(E) < 1 such that F(E) = E . Put µ1(A) = µ(E)−1µ(A ∩ E) and µ2(A) =
µ(Ec)−1µ(A∩ Ec). The invariance of the set E implies thatµ1 andµ2 are invariant.
Since µ = µ(E)µ1 + µ(Ec)µ2, µ is exhibited as a nontrivial convex combination
of invariant measures and cannot be extreme.
For (c), the answer is “no.” Take S to be a two-point set with the discrete topology,

and let F interchange the two points. Then every measure µ on S with µ(S) = 1 is
ergodic, but only the two point masses are extreme points.

20. For (a) the assumed condition on f for the function c(n) that is nonzero at
n = 0 and is 0 elsewhere shows that f (0) ∏ 0. The condition on f for the function
c(n) that is nonzero at 0 and k and is 0 elsewhere is that the matrix

≥
f (0) f (k)
f (−k) f (0)

¥
is

Hermitian and positive semidefinite. The Hermitian condition forces f (−k) = f (k),
and the condition determinant ∏ 0 then says that | f (k)|2 ≤ f (0)2.
For (b), Example 2 of weak-star convergence in Section 3 says that a necessary

and sufficient condition for a sequence { fn} in L∞ to converge to f weak-star is that
{k fmk∞} be bounded, which we are assuming, and that

R
E fn dµ →

R
E f dµ for

every E of finite measure. Here the sets of finite measure in Z are the finite sets, and
thus the relevant convergence is pointwise convergence.
For (c), Theorem 4.14 shows that the weak-star topology on the closed unit ball of

L∞(Z) is compact metric, and therefore the topology is specified by sequences. The
convexity of K is routine, and we just have to see that K is closed. We can do this
by assuming that we have a pointwise convergent sequence whose members are in K
and by proving that the limit is in K . This too is routine.
For (d), suppose that einθ = (1−t)F1(n)+t F2(n) nontrivially. Taking the absolute

value and using (a), we have 1 ≤ (1− t)|F1(n)| + t |F2(n)| ≤ (1− t) + t = 1, and
equality must hold throughout. Therefore |F1(n)| = |F2(n)| = 1. Suppressing the
parameter n, suppose that we have ei√ = (1− t)eiϕ1 + teiϕ2 nontrivially. Multiplying
through by e−i√ , we reduce to the case that√ = 0. Sowe have 1 = (1−t)eiϕ0

1+teiϕ
0
2 .

The real part is 1 = (1− t) cosϕ0
1 + t cosϕ0

2, and we must have cosϕ
0
1 = cosϕ0

2 = 1
and eiϕ0

1 = eiϕ
0
2 = 1. Hence F1(n) = einθ = F2(n), and n 7→ einθ is an extreme

point.
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For (e), the Fourier coefficientmapping from complexBorelmeasures on the circle
to doubly infinite sequences is linear and one-one, and we are told to assume that the
mapping carries the set of Borel measures onto the set of positive definite functions.
The value of the positive definite function at 0 is then the total measure of the circle.
Hence the question translates into identifying the extreme Borel measures of total
mass 1 on the circle. Problem 17 shows that these are the point masses.
21. For (a), the convergence is proved by showing that the partial sums form

a Cauchy sequence. For m ≤ n, we have
∞
∞Pn

k=0( f/C)k −
Pm

k=0( f/C)k
∞
∞
sup =

∞
∞Pn

k=m+1( f/C)k
∞
∞
sup ≤

Pn
k=m+1 k f/Ckksup, and the right side tends to 0 as m and

n tend to infinity because k f/Cksup = |C|−1k f ksup < 1. So the series converges to
some x . Since

°Pn
k=0( f/C)k

¢
(1− f/C) = 1− ( f/C)n+1 and since multiplication

is continuous, the element x is a multiplicative inverse to 1− f/C .
In (b), `( f ) = C would imply `(1 − f/C) = `(1) − `( f )/C = 0. But then

0 = 0 · `(x) = `(1− f/C)`(x) = `(1) = 1 would give a contradiction.
From (b) we obtain |`( f )| ≤ 1. Taking the supremum over all f with k f ksup ≤ 1,

we find that k`k ≤ 1. Thus ` is bounded. This proves (c).
22. Problem 21 shows that ` is bounded. The result follows by using the Stone

Representation Theorem and the first example after its proof.
23. If t is in T , define `u(t)( f ) = (U f )(t) for f inC(S). It is routine to check that

`t satisfies the hypotheses of Problem 22 and is therefore given by evaluation at some
s in S. Define this s to be u(t). The proofs of (a), (b), and (c) are then straightforward.
24. This is just a matter of applying Problem 23 and tracking down the isomor-

phisms.
25. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)

with the properties thatA is stable under complex conjugation and contains 1. If S2 is
a compactHausdorff space andV : A → C(S2) is an algebra isomorphismmapping 1
to 1 and respecting conjugation and if S1, p, andU are as in Theorem 4.15, then there
exists a unique homeomorphism 8 : S2 → S1 such that (U f )(8(s2)) = (V f )(s2)
for all f in A. Then one has to give a proof.
26. For (a), the reflexive and symmetric properties are immediate from the defi-

nition. For the transitive property let xi ∼ xj and xj ∼ xl . Say that i ≤ k, j ≤ k,
√ki (xi ) = √k j (xj ), j ≤ m, l ≤ m, √mj (xj ) = √ml(xl). Choose n with k ≤ n
and m ≤ n. Application of √nk to √ki (xi ) = √k j (xj ) gives √ni (xi ) = √nj (xj ),
and application of √nm to √mj (xj ) = √ml(xl) gives √nj (xj ) = √nl(xl). Therefore
√ni (xi ) = √nl(xl), and ∼ is transitive.
For (b), suppose that √ki (xi ) = √k j (xj ). We are to show that √li (xi ) = √l j (xj )

whenever i ≤ l and j ≤ l. Assume the contrary for some l. Choose m with k ≤ m
and l ≤ m. Application of √mk to √ki (xi ) = √k j (xj ) gives √mi (xi ) = √mj (xj ). On
the other hand, application of √ml to √li (xi ) 6= √l j (xj ) gives √mi (xi ) 6= √mj (xj )
since √ml is by assumption one-one. Thus we have a contradiction.
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27. Suppose that we are given maps ϕi : Wi → Z with ϕj ◦ √j i = ϕi whenever
i ≤ j . Define e8 :

`
Wi → Z by e8(xj ) = ϕj (x) if xj is in Wj . The map e8

is continuous, and the claim is that it descends to the quotient to give a map 8

satisfying 8(q(xj )) = e8(xj ). To see the necessary consistency, suppose xj ∼ xl
with xl in Wl . Say that j ≤ k, l ≤ k, and √k j (xj ) = √kl(xl). Then we have
e8(xj ) = ϕj (xj ) = ϕk√k j (xj ) = ϕk√kl(xl) = ϕl(xl) = e8(xl), and the consistency is
proved. The definition of8 is complete, and we have arranged that8 ◦ (q

Ø
Ø
Wj

) = ϕj
for each j . This establishes existence of themap8 in the universal mapping property.
Since q carries

`
i Wi onto W , the formulas 8 ◦ (q

Ø
Ø
Wj

) = ϕj force the definition
we have used for 8. This establishes the uniqueness of the map 8 in the universal
mapping property.
28. With (V, {pi }) as a direct limit, take Z = W and ϕi = qi . Each map ϕi

carries Wi into Z , and the universal mapping property of (V, {pi }) yields a mapping
F : V → W with qi = F ◦ pi for all i . Reversing the roles of (V, {pi }) and (W, {qi }),
we obtain a mapping G : V → W with pi = G ◦ qi for all i .
With (V, {pi }) as a direct limit, take Z = V and ϕi = pi . Then the identity 1

Ø
Ø
V

meets the condition of the universal mapping property for this situation. On the other
hand, so doesG ◦ F , which carries V to itself and has pi = G ◦qi = (G ◦ F)◦ pi . By
the uniqueness that is part of the universal mapping property, G ◦ F = 1

Ø
Ø
V . Similarly

F ◦ G = 1
Ø
Ø
W . Thus F is a homeomorphism.

The homeomorphism F is unique because any such mapping F# must similarly
have G ◦ F# = 1

Ø
Ø
V and F

# ◦ G = 1
Ø
Ø
W . Thus F

# must be a two-sided inverse to G,
and there can be only one such function.
29. For (a), let U be an open set in

`
i Wi . We are to prove that q(U) is open.

Since eachWi is open in the disjoint union, we may assume thatU ⊆ Wi for some i .
We are to prove that q−1(q(U)) is open, hence that q−1(q(U))∩Wj is open for each
j . Thus we are to show that the set V of all xj in Wj such that xj ∼ xi for some xi in
U is open inWj . Choose k with i ≤ k and j ≤ k. Then we have V = √−1

k j (√ki (U)).
The hypothesis for this problem makes √ki (U) open in Wk , and then √−1

k j (√ki (U))

is open since √k j is continuous.
For (b), we are to separate q(xi ) and q(xj ) by disjoint open sets if xi and xj are not

equivalent. Choose k with i ≤ k and j ≤ k, so that √ki (xi ) and √k j (xj ) are both in
Wk . They are distinct in Wk by Problem 26b. Since Wk is Hausdorff, we can choose
disjoint open sets A and B inWk with√ki (xi ) in A and √k j (xj ) in B. Then q(A) and
q(B) are disjoint since q is one-one on Wk , and they are open by (a).
For (c), the mapping into the direct limit is continuous and open and therefore

carries compact neighborhoods to compact neighborhoods. Since the quotient map
is onto the direct limit, every point of the direct limit has a compact neighborhood.
For an example in (d), take Wi = {1, . . . , i} for each i , with √j i equal to the

inclusion if i ≤ j . Each Wi is finite, hence compact, and the direct limit is the set of
positive integers with the discrete topology.
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30. Each X (S) is Hausdorff as the product of Hausdorff spaces. The space°×i /∈SKi
¢
is compact by the Tychonoff Product Theorem, and then X (S) is the

product of finitely many locally compact spaces, which is locally compact. The
Hausdorff property is handled by Problem 29b, and the final assertion is clear from
the definition.

Chapter V

1. If K is compact in U , then K is compact in V , and hence the inclusion of
C∞
K into C∞

com(V ) is continuous. By Proposition 4.29 the inclusion of C∞
com(U) into

C∞
com(V ) is continuous.
2. Fix K compact large enough to contain support(ϕ). Then the map √ 7→ √ϕ is

continuous from C∞(U) into C∞
K . The inclusion of C

∞
K into C∞

com(U) is continuous,
and hence √ 7→ √ϕ, being a composition of continuous functions, is continuous
from C∞(U) into C∞

com(U).
3. Let {Kj } be an exhausting sequence of compact subsets of U , and choose

√j ∈ C∞
com(U) that is 1 on Kj and is 0 off Kj+1. For each j , the product (ϕ

Ø
Ø
U −ϕ1)√j

is in C∞
com(U) with support contained in the open setU ∩ (support(TU ))c. Therefore

TU ((ϕ
Ø
Ø
U − ϕ1)√j ) = 0 for each j . The functions (ϕ

Ø
Ø
U − ϕ1)√j tend to ϕ

Ø
Ø
U − ϕ1 in

the topology ofC∞(U), and therefore TU (ϕ
Ø
Ø
U −ϕ1) = 0. Hence TU (ϕ

Ø
Ø
U ) = TU (ϕ1)

as required.
4. An adjustment is needed to the proof of Theorem 5.1. The proof in the

text in effect used the expressions k f kK 0,α = supx∈K 0 |(Dα f )(x)| as seminorms
together describing the relative topology of C∞

K 0 as a subspace of C∞(Rn). To
modify the proof of the theorem, we need to see that the same relative topology
results from using the expressions k f kK 0,α,new = k(Dα f )kL2(K 0)

. In one direction
we have k(Dα f )kL2(K 0)

≤ C supx∈K 0 |(Dα f )(x)|, the constant C being the L2 norm
of the function 1 on K 0. In the reverse direction we apply Sobolev’s inequality
(Theorem 3.11) with U equal to the interior of K 0. This open set satisfies the cone
condition. Sobolev’s inequality shows for k > N/2 that supx∈K 0 |(Dα f )(x)| ≤
C(

P
|β|≤k k(Dα+β f )k2L2(K 0)

)1/2. We follow the lines of the proof of Theorem 5.1,
using these new seminorms and using linear functionals on spaces of L2 functions
instead of spaces of continuous functions, and the desired result follows.
5. For (a), we write hT, ϕi =

P
α

R
RN Dαϕ dρα(x) by means of Theorem 5.1.

Substitution and use of Lemma 5.6 gives

hT, Fi =
P

α

R
RN Dα

x
R
K 8(x, y) dµ(y) dρα(x)

=
P

α

R
RN

R
K Dα

x8(x, y) dµ(y) dρα(x).

On the other hand,
R
K hT,8( · , y)i dµ(y) =

R
K

P
α

R
RN Dα

x8(x, y) dρα(x) dµ(y),
and the two expressions are equal by Fubini’s Theorem.
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For (b), choose a compact subset L of RN such that L × K contains support(8),
and choose η in C∞

com(RN ) that is identically 1 on L . Part (a) shows that

hηS, Fi =
R
K hηS,8( · , y)i dµ(y).

On the other hand, we have hηS, Fi = hS, ηFi = hS, Fi, and hηS,8( · , y)i =
hS, η( · )8( · , y)i = hS,8( · , y)i, and the result follows.
6. For any member η of C∞

com(U) with values in [0, 1], ηT is a member of
E 0(U). If ϕ is a real-valued member of C∞

com(U), then for both choices of the sign
±, η(kϕksup ± ϕ) is a member of C∞

com(U) that is ∏ 0. Hence hT, η(kϕksup ± ϕ)i ∏

0, and hT, ηikϕksup = hT, ηkϕksupi ∏ ∓hT, ηϕi = ∓hηT, ϕi, i.e., |hηT, ϕi| ≤

hT, ηikϕksup. For complex-valued ϕ, such an estimate is valid for the real and
imaginary parts separately, and we conclude that ϕ 7→ hηT, ϕi is a bounded linear
functional on C∞

com(U) relative to the supremum norm. Corollary 3.6a shows that
C∞
com(U) is dense in Ccom(U) and that the approximating functions to a function∏ 0
can be taken to be ∏ 0. Consequently the continuous extension of ηT is a positive
linear functional on Ccom(U). By the Riesz Representation Theorem the extension is
given by a Borel measureµη. The boundedness of the linear functional forcesµη(U)

to be finite.
Let {Kp} be an exhausting sequence. Define ηp to be a member of C∞

com(U) with
values in [0, 1] that is 1 on K2p and is 0 off Ko

2p+1, andwriteµp for the corresponding
Borel measure µηp . Then the sequence {ηp(x)} is nondecreasing for each x and has
limit 1. The measures µp have to be nondecreasing on each set, and we define
µ(E) = limp µp(E) for each Borel set E . The nondecreasing limit of measures is a
measure, with the complete additivity holding by monotone convergence. We show
that hT, ϕi =

R
U ϕ dµ for every ϕ in C∞

com(U).
For any ϕ in C∞

com(U), as soon as p0 is large enough so that K2p0 contains
support(ϕ), we have hηpT, ϕi = hT, ϕi for p ∏ p0. Also, µp(E) remains constant
for each Borel subset of K2p when p ∏ p0, and hence µ(E) = µp(E) for such
subsets. Thus hT, ϕi = hηpT, ϕi =

R
U ϕ dµp =

R
U ϕ dµ, as asserted.

7. Computation gives 1(e−π |x |2) = 4π2|x |2e−π |x |2 − 2πNe−π |x |2 . What needs
computing is

R
RN |x |−(N−2)|x |2pe−π |x |2 dx for p = 1 and p = 0, and then one has

to sort out the result. This integral equals ƒN−1
R ∞
0 r2p+1e−πr2 dr . For p = 1 and

p = 0, the integral is elementary. Alternatively, it can be converted into a value of
the gamma function by the change of variables πr2 7→ s. In neither case does the
value of ƒN−1 need to be computed.
8. Part (a) follows from the chain rule and the boundedness of each derivative of

η since (ηε)
(k)(x) = ε−kη(k)(ε−1x).

For (b), if ϕ has compact support, then (1− ηε)ϕ has compact support away from
{0}. Therefore hT, (1 − ηε)ϕi = 0, and hT, ϕi = hT, (1 − ηε)ϕi + hT, ηεϕi =
hT, ηεϕi. Since ϕ 7→ hT, ϕi and ϕ 7→ hT, ηεϕi are continuous and C∞

com(RN ) is
dense in C∞(RN ), hT, ϕi = hT, ηεϕi for all ϕ in C∞(RN ).
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In (c), we apply (a) and obtain

|hT, ηεϕi| ≤ C
Pn

k=0 sup|x |≤M |Dk(ηεϕ)(x)| = C
Pn

k=0 sup|x |≤ε |Dk(ηεϕ)(x)|

≤ C 0 Pn
k=0

Pk
l=0 sup|x |≤ε |Dk−l(ηε)(x)(Dlϕ)(x)|

≤ C 00 Pn
k=0

Pk
l=0 εl−k sup|x |≤ε |(Dlϕ)(x)|

≤ C 000 Pn
l=0 εl−n sup|x |≤ε |(Dlϕ)(x)|.

When ϕ(x) = √(x)xn+1, |Dlϕ(x)| ≤ c
Pl

r=0 |Dl−r√(x)||xn+1−r |, and the supre-
mum for |x | ≤ ε is ≤ c0εn+1−l . Therefore

|hT, ϕi| = |hT, ηεϕi| ≤ c0C 000 Pn
l=0 εl−nεn+1−l = c0C 000(n + 1)ε.

The right side tends to 0 as ε decreases to 0, and thus hT, ϕi = 0.
In (d), the Taylor expansion of a general ϕ is ϕ(x) =

Pn
k=0

1
k!ϕ

(k)(0)xk +
√(x)xn+1 with √ in C∞(R1). Applying hT, · i to both sides and using (c), we
obtain hT, ϕi =

Pn
k=0

1
k! ϕ

(k)(0)hT, xki.
9. The adjustments in the argument are to (a) and (c). For (a), the estimate is

|(Dαηε(x)| ≤ C|α|ε
−|α| and is again proved by the chain rule. Each differentiation

introduces a factor of ε−1. For (c), Taylor’s Theorem says that the remainder term in
computing a smooth function ϕ(x) about the point 0 is

P

l1+···+lN=n+1,
all lj∏0

n+1
l1!···lN ! x

l1
1 · · · xlNN

R 1
0 (1− s)n @n+1ϕ

@xl11 ···xlNN
(sx) ds,

hence is of the form
P

l1+···+lN=n+1,
all lj∏0

√l1,...,lN (x)xl11 · · · xlNN .

Thusoneworkswith a function√(x)xl11 · · · xlNN with√ smoothandwith
P

j lj = n+1.
The argument for (c) in Problem 8 now can be used.
10. Aswith Problem9, the arguments for (a) and (c) in Problem8 need adjustment,

and this time we need to change (d) completely. For (a), we use the above function
η for RN−L , and we define ηε(x 0, x 00) = η(ε−1x 00). Then (a) causes no difficulties.
For (c), we need a new form of Taylor’s Theorem. The point is to treat ϕ(x 0, x 00) as
a function of x 00 alone, form a Taylor expansion with remainder, and carry along x 0

as a parameter. The result is that the remainder term is a sum of terms of the form
√(x 0, x 00)M(x 00), where √ is in C∞(RN ) and M is a homogeneous monomial in the
x 00 variables of total degree n + 1. Then (c) causes no difficulties and again gives 0.
In (d), the main terms of the Taylor expansion are of the form cαDαϕ(x 0, 0)(x 00)α ,
where α is a multi-index that is nonzero only in the positions corresponding to x 00

and has total degree ≤ n. We introduce a linear functional Tα on C∞(RL) by
the definition hTα, √(x 0)i = cαhT, √(x 0)(x 00)αi. Then Tα is continuous, and the
expansion hT, ϕi =

P
|α|≤nhTα, (Dαϕ)

Ø
Ø
RL i has the required form.
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11. Subtracting two tempered distributions solving1u = f , we obtain a tempered
distribution u with 1u = 0. From F(Dαu) = (2π i)|α|ξαF(u) and F(1u) = 0, we
obtain |ξ |2F(u) = 0. It follows that F(u) is supported at {0}. Problem 9 then shows
thatF(u) is a finite sum of the form

P
α cαDαδ. Taking the inverse Fourier transform

of both sides, we see that the distribution u equals a polynomial function.
12. Apply Theorem 5.1 to a member S of E 0((−2π, 2π)N ), writing it as a sum

of finitely many derivatives of complex Borel measures ρα of compact support:
hS, ϕi =

P
|α|≤m

R
K Dαϕ dρα , where K is a compact subcube of (−2π, 2π)N . For

ϕ(x) = e−ik·x , we have supx∈K |Dα(e−ik·x )| ≤ |kα|, and therefore |hS, e−ik·x i| ≤P
|α|≤m |kα|kραk ≤ C(1+ |k|2)m/2, where C =

P
|α|≤m kραk.

13. Change notation and suppose that |ck | ≤ C(1 + |k|2)m for all k. The series

f (x) =
X

k

ckeik·x

(1+ |k|2)m+N+1 is then absolutely uniformly convergent, and f (x) is

continuous periodic. Define S0 ∈ E 0((−2π, 2π)N ) by

hS0, ϕi = (2π)−N
R
[−π,π]N f (x)ϕ(x) dx .

Let D = 1− 1, and define S = Dm+N+1S0. Then

hS, e−ik·x i = hS0,Dm+N+1(e−ik·x )i = (1+ |k|2)m+N+1hS0, e−ik·x i

= (1+ |k|2)m+N+1(2π)−N
R
[−π,π]N f (x)e−ik·x dx

= (1+ |k|2)m+N+1 ck
(1+|k|2)m+N+1 = ck,

as required.
14. For each ϕ, the set of √ with |B(ϕ,√)| ≤ kϕkL2k(T N )

is the set where the
continuous function |B(ϕ, · )| is≤ some constant, and this is closed. The set Ek,M is
the intersection of such sets and is therefore closed. For each√ , the function B( · , √)

is linear and continuous, and therefore there exists an integer k and a constant M for
which |B(ϕ,√)| ≤ MkϕkL2k(T N )

for all ϕ. This proves (a).

Since C∞(T N ) is complete, the Baire Category Theorem shows that some Ek,M
has nonempty interior, hence contains a basic open set, i.e., some set of the form
U = {√ 0

Ø
Ø k√ 0 − √0kL2s (T N )

< ≤}. If √ has k√kL2s (T N )
< ≤, then √0 + √ is inU and

thus has |B(ϕ,√0 + √)| ≤ MkϕkL2k(T N )
for all ϕ in C∞(T N ). Then

|B(ϕ,√)| ≤ |B(ϕ,√0 + √)| + |B(ϕ,√0)| ≤ MkϕkL2k(T N )
+C√0,k(√0)kϕkL2k(√0)(T

N )
.

The right side is ≤ M 0kϕkL2k1 (T
N )
for k1 = max{k, k(√0)} and M 0 = M +C√0,k(√0).

Hence |B(ϕ,√)| ≤ M 0≤−1kϕkL2k1 (T
N )

k√kL2s (T N )
≤ M 0≤−1kϕkL2k2 (T

N )
k√kL2k2 (T

N )
,

where k2 = max{k1, s}.
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15. We apply the inequality of Problem 14b to Dαϕ and Dβ√ , and then the result
follows by applying the norm inequality of Problem 27 in Chapter III to kDαϕkL2k(T N )

and kDβ√kL2k(T N )
.

16. The functions eil·xeim·y are orthonormal in L2(T N × T N ), and it is therefore
enough to show that the sum of the absolute-value squared of the coefficients is finite.
That is, we are to show that

X

l,m∈ZN

|blm |2l2αm2β
°P

|α0|≤k0 l2α0¢2°P
|β 0|≤k0 m2β 0¢2 < ∞

whenever |α| ≤ k0 and |β| ≤ k0. Since l2α ≤
P

|α0|≤k0 l2α
0 and m2β ≤

P
|β 0|≤k0 m2β

0 ,
it is enough to prove that

X

l,m∈ZN

|blm |2
°P

|α0|≤k0 l2α0¢°P
|β 0|≤k0 m2β 0¢ < ∞. (∗)

If we use the estimate of Problem 15 for ϕ = eil·( · ) and √ = eim·( · ), we have
l2αm2β |blm |2 = |B(Dαeil·( · ), Dβeim·( · ))|2 ≤ C2keil·( · )k2L2k0 (T

N )
keim·( · )k2L2k0 (T

N )

for |α| ≤ K and |β| ≤ K . Hence
l2αm2β |blm |2 ≤ C2

° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢

.

Summing over α and β for |α| ≤ K and |β| ≤ K and taking into account Problem 29
in Chapter III, we obtain

(1+ |l|2)K (1+ |m|2)K |blm |2 ≤ C 0
° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢

for a constantC 0. Thus the left side of (∗) is≤ C 0 P
l,m∈ZN (1+|l|2)−K (1+|m|2)−K ,

and Problem 32 of Chapter III shows that this is finite.
17. Since Fα,β is in L2(T N × T N ), B0 is a continuous function of two L2(T N )

variables Dαϕ and Dβ√ . In particular it is well defined for ϕ and √ in C∞(T N ).
Because of continuity in L2 and orthogonality, we have

(2π)−2N
Z

[−π,π]2N
Fα,β(x, y)Dαeil·x Dβeim·y dx dy

= (2π)−2N
Z

[−π,π]2N

blm(−i)|α|+|β|lαmβ i |α|+|β|lαmβ

° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢ dx dy

=
blml2αm2β° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢ .

Summing for α and β with |α| ≤ k0 and |β| ≤ k0, we obtain B0(eil·( · ), eim·( · )) =
B(eil·( · ), eim·( · )).
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18. The result of Problem 17 implies that B0(ϕ,√) = B(ϕ,√) if ϕ and √ are
trigonometric polynomials. It shows also that convergence in L2 of either variable
and its derivatives through order k0 implies convergence of B0. Since convergence
in C∞(T N ) implies convergence in L2k0(T N ) and since B is separately continuous,
B0 = B on C∞(T N ). The expression on the right side of the display in the statement
of Problem 17 is the action of a distribution on T N × T N upon the function ϕ ⊗ √ ,
and thus B(ϕ,√) = hS, ϕ ⊗ √i for a suitable distribution S.
19. By the Schwarz inequality, |B( f, g)| ≤ kH(η f )k2kηgk2 = kη f k2kηgk2 ≤

k f k2kgk2 ≤ k f ksupkgksup. This proves (a).
For (b), we argue by contradiction. Using continuous functions f and g with

disjoint supports, we see near (0, 0) that wemust have dρ(x, y) = 1
π

dx dy
x−y . However,

the function 1
x−y is not locally integrable, and there can be no such signed measure

ρ.

Chapter VI

1. For (a), let C be the connected component of 1. Since multiplication is
continuous, it carries the connected setC×C to a connected set containing 1, hence to
a subset of C . Thus C is closed under products. Similarly it is closed under inverses.
It is topologically closed since the closure of a connected set is connected. If x is in
G, then the map x 7→ gxg−1 is continuous and therefore carries the connected set C
to a connected set containing 1, hence to a subset of C . Thus gCg−1 ⊆ C for all g,
and C is normal. For (b), one can take the additive rationals or the countable product
of two-element groups; for each the identity component contains only the identity
element.
2. In (a), if g fixes the first standard basis vector, then the first column of g

is the first standard basis vector. Since g is a rotation, gtrg = 1. In particularP
j (gtr)i j gj1 = δi1. Thus (gtr)i1 = δi1 for all i , and g1i = δi1. In other words, the

first row of g is 0 except in the first entry.
In (b), let v be any unit vector in RN , and extend v to a basis v, v2, . . . , vN . The

Gram–Schmidt orthogonalization process replaces this basis by an orthonormal basis
such that the first member is still v. We form a matrix with this orthonormal basis
as its columns. If it has determinant −1, we multiply the last column by −1, and
then the determinant will be 1. The resulting matrix is in SO(N ) and carries the first
standard basis vector to v.
For (c), we obtain a continuous function SO(N ) → SN−1 given by g 7→ ge1,

where e1 is the first standard basis vector. This function descends to a function
SO(N )/SO(N − 1) → SN−1 that is necessarily continuous. It is one-one onto, its
domain is compact, and the image is Hausdorff. Hence it is a homeomorphism.
3. What needs to be shown is that every sufficiently small open neighborhood

N of 1 · H in G/H is mapped to an open set by π . Since G/H is locally compact
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and has a countable base, there exist open neighborhoods Uk of 1 · H such that U cl
k

is compact, U cl
k ⊆ Uk+1, and G/H =

S
k Uk . The Baire Category Theorem for X

shows that π(Un) has nonempty interior V for some n. Let y be a member of G such
that π(yH) is in V , and put U = π−1(y−1V ). Then U is an open neighborhood of
1 · H in G/H and π(U) = y−1V is open in X . Also, U cl is compact as a closed
subset ofU cl

n . Let N be any open neighborhood of 1 · H in G/H that is contained in
U . SinceU cl is compact, π is a homeomorphism fromU cl with the relative topology
to π(U cl) with the relative topology. Thus π(N ) is relatively open in π(U cl). Hence
π(N ) = π(U cl) ∩ W for some open set W in X . Since π(N ) ⊆ π(U), we can
intersect both sides with π(U) and get π(N ) = π(U cl) ∩ W ∩ π(U) = W ∩ π(U).
Since W ∩ π(U) is open in X , π(N ) is open in X .
4. This is a special case of the previous problem.
5. No. The reason is that the subset R1 p cannot be locally compact. In fact,

if it were locally compact, then it would be open in its closure, by Problem 4 in
Chapter X of Basic. Since T 2 is a group and R1 p is a subgroup, (R1 p)cl is a group,
and R1 p would be an open dense subgroup. An open subgroup is closed, and hence
R1 p would be equal to (R1 p)cl, i.e., R1 p would have to be closed in T 2. Then
R1 ∩ {(eiθ , 1)} would be a closed subgroup of the circle group {(eiθ , 1)} and would
have to be a finite subgroup or the entire circle. On the other hand, we readily check
that R1 p ∩ {(eiθ , 1)} is countably infinite. It therefore cannot be closed.
6. Take V to be any bounded open neighborhood of 1. Inductively for n ∏ 1,

choose gn such that gn /∈
Sn−1

k=1 gkV . Then choose an open neighborhood U of 1
with U = U−1 and UU ⊆ V . Let us see that gkU ∩ gnU = ∅ if k < n. If g is in
gkU ∩ gnU , then gku = gnu0 with u and u0 inU , and hence gn is in gkUU−1 ⊆ gkV .
This contradicts the defining property of gn . Thus the sets gnU are disjoint. The
left Haar measure of their union therefore equals the sum of their left Haar measures,
and their left Haar measures are equal to some positive number,U being a nonempty
open set. Consequently the left Haar measure of G is infinite.
7. For (a), we have

∏(E)ρ(G) =
R
G

R
G IE (y) d∏(y) dρ(x) =

R
G

R
G IE (xy) d∏(y) dρ(x)

=
R
G

R
G IE (xy) dρ(x) d∏(y) =

R
G

R
G IE (x) dρ(x) d∏(y)

= ∏(G)ρ(E).

Therefore ∏(E)ρ(G) = ∏(G)ρ(E) as asserted.
For (b), let ∏1 and ∏2 be two left Haar measures. Without loss of generality, we

may assume that ∏1(G) = ∏2(G) = 1. Let ρ be a right Haar measure (existence by
Theorem 12.1). Applying (a) twice, we obtain ∏1(E)ρ(G) = ∏1(G)ρ(E) = ρ(E) =
∏2(G)ρ(E) = ∏2(E)ρ(G), and hence ∏1(E) = ∏2(E) on Baire sets. Consequently
∏1 = ∏2 as regular Borel measures.
8. In (a), both are Haar measures on G(n) of total measure one. Parts (b) and (c)

are special cases of Problems 15–19 of Chapter XI of Basic.
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9. For fixed g in G, we have dl(8(gx)) = dl(8(g)8(x)) = dl(8(x)), and hence
dl(8( · )) and dl( · ) are left Haar measures on G. The uniqueness in Theorem 6.8
shows that they are multiples of one another.
10. Under left translation we have (s0, t0)(s, t) = (s0s)((s−1t0s)t). If ϕ is left

translation by (s0, t0), then (ds dt)ϕ−1 = d(s0s) d((s−1t0s)t) = ds dt , and ds dt is a
left Haar measure. Under right translation we have (s, t)(s0, t0) = (ss0)((s−10 ts0)t0).
Thus ds dt goes to d(ss0) d((s−10 ts0)t0) = ds d(s−10 ts0) = δ(s−10 ) ds dt , and
δ(s) ds dt goes to δ(ss0)δ(s−10 ) ds dt = δ(s) ds dt . In other words, δ(s) ds dt is
a right Haar measure.
11. In (a), we have

R
V f (c−1x) dx =

R
V f (x) d(cx) = |c|V

R
V f (x) dx for f in

Ccom(V ). Hence |c1c2|V
R
V f (x) dx =

R
V f ((c1c2)

−1x) dx =
R
V f (c

−1
2 x) d(c1x) =

|c1|V
R
V f (c−12 x) dx = |c1|V |c2|V

R
V f (x) dx . Choosing f with

R
V f (x) dx 6= 0,

we obtain |c1c2|V = |c1|V |c2|V when c1 6= 0 and c2 6= 0. The equality is trivial
when one or both of c1 and c2 are 0, and hence we have |c1c2|V = |c1|V |c2|V in all
cases.
To prove continuity, we first check continuity at each c0 6= 0. Let S = support( f ),

and let N be a compact neighborhood of c0 not containing 0. If c is in N , then
f (c−1x) is nonzero only for x in the compact set NS. Let ≤ > 0 be given. Continuity
of (c, x) 7→ f (c−1x) allows us to find, for each x in NS, an open subneighborhood
Nx of c0 and an open neighborhoodUx of x such that | f (c−1y) − f (c−10 x)| < ≤ for
c ∈ Nx and y ∈ Ux . Then | f (c−1y) − f (c−10 y)| < 2≤ for c ∈ Nx and y ∈ Ux .
The open sets Ux cover NS. Forming a finite subcover and intersecting the cor-
responding finitely many sets Nx , we obtain an open neighborhood N 0 of c0 such
that | f (c−1y) − f (c−10 y)| < 2≤ for c ∈ N 0 whenever y is in NS. As a result,
c 7→

R
V f (c−1x) dx is continuous at c = c0. Therefore c 7→ |c|V

R
V f (x) dx is

continuous at c0, and so is c 7→ |c|V .
To prove continuity at c = 0, we are to show that limc→0

R
V f (c−1x) dx = 0.

Let U be any compact neighborhood of 0 in V . Find a sufficiently small neigh-
borhood N of 0 in V such that c ∈ V implies that c support( f ) does not meet
Uc. Then c−1Uc ∩ support( f ) = ∅. For such c’s, we have

Ø
Ø R

V f (c−1x) dx
Ø
Ø =Ø

Ø R
U f (c−1x) dx

Ø
Ø ≤ k f ksup (dx(U)). The desired limit relation follows.

Finally, even without the continuity at c = 0, these properties imply that |c|V =
|c|t for some real t . The continuity at c = 0 forces t ∏ 0. Then it follows that
|c1|V ≤ |c2|V if |c1| ≤ |c2|.
In (b), V/W is itself a locally compact topological vector space, and its group

operation is addition. With the normalization of Haar measures as in Theorem 6.18,
µ becomes aHaarmeasure on V/W , andwewrite it as d(v+W ). Then

R
V f (v) dv =R

V/W
° R

W f (v +w) dw
¢
d(v +W ). If we replace f by f (c−1 · ) and move the c into

the measures, we obtain
R
V f (v) d(cv) =

R
V/W

° R
W f (v + w) d(cw)

¢
d(c(v +W ))

and therefore |c|V
R
V f (v) dv = |c|V/W

R
V/W

°
|c|W

R
W f (v + w) dw

¢
d(v + W ).

Hence |c|V = |c|V/W |c|W .
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In (c), choose N such that |2|V < 2N . IfV has an N -dimensional subspaceW , then
Proposition 4.5 and Corollary 4.6 show that this subspace is closed and is Euclidean.
Therefore |2|W = 2N . Then (b) shows that |2|V/W = |2|V /|2|W = 2−N |2|V < 1.
But this conclusion contradicts the fact that |c|V/W ∏ 1 if |c| ∏ 1. We conclude that
dim V < N .
12. By inspection, (`v1, `v2) = (v2, v1) has the properties of an inner product.

The Banach-space norm of `v is supkv0k≤1 |`v(v
0)| = supkv0k≤1 |(v0, v)|. This is

≤ kvk = k`vk by the Schwarz inequality, and it is ∏ kvk = k`vk because we can
choose v0 = v/kvk.
The contragredient has (8c(x)`v)(v

0) = `v(8(x−1)v0) = (8(x−1)v0, v) =
(v0,8(x)v) = `8(x)v(v

0). Hence 8c(x)`v = `8(x)v , and (8c(x)`v,8
c(x)`0

v) =
(8(x)v0,8(x)v) = (v0, v) = (`v, `v0).
13. Taking the adjoint of E8(g) = 80(g)E gives8(g)∗E∗ = E∗80(g)∗ for all g.

Since8 is unitary,8(g)−1E∗ = E∗80(g)−1 for all g, and thus8(g)E∗ = E∗80(g).
Then E∗E8(g) = E∗80(g)E = 8(g)E∗E . By Schur’s Lemma, E∗E is scalar, say
equal to cI . Since E is invertible, c is not zero. If v 6= 0, then ckvk2 = (cI (v), v) =
(E∗E(v), v) = (E(v), E(v)) ∏ 0. So c > 0. If

p
c denotes the positive square root

of c, then F = (
p
c)−1E exhibits 8 and 80 as equivalent, and F is unitary because

F∗F = (
p
c)−2E∗E = c−1cI = I .

14. The operator8(ρ), for ρ in O(N ), makes sense on all of L2(RN ), as well as
on the vector space Hk . It was observed in the example toward the end of Section 8
that the Fourier transform F commutes with the action by members of O(N ). Thus
we have F(8(ρ)(hj (x) f (|x |))) = 8(ρ)F(hj (x) f (|x |)). The left side at y equals
the expression

P
i 8(ρ)i jF((hi (x) f (|x |)))(y) =

P
i 8(ρ)i j

P
s hs(y) fsi (|y|) =P

s
°P

i 8(ρ)i j fsi (|y|)
¢
hs(y), and the right side is 8(ρ)

°P
t ht (y) fti (|y|)

¢
=

=
P

t
P

s 8(ρ)st hs(y) fti (|y|) =
P

s
°P

t 8(ρ)st fti (|y|)
¢
hs(y). The equality of

the two sides gives us, for each |y|, the matrix equality asserted in (a).
Corollary 6.27, the formula of part (a), and the irreducibility of Hk together imply

that F(|y|) is a scalar matrix for each |y|. In other words, fi j (|y|) = g(|y|)δi j
for some scalar-valued function g. Then F(hj (x) f (|x |))(y) =

P
i hi (y) fi j (|y|) =P

i hi (y)g(|y|)δi j = hj (y)g(|y|) for all j . Since h is a linear combination of the
hj ’s, F(h(x) f (|x |))(y) = h(y)g(|y|). This proves (b).
For (c), we observe that F(|y|) is continuous if f (|x |) is continuous of compact

support. In fact, the inner product on Hk can be taken to be integration with dω over
the unit sphere SN−1. By homogeneity this is the same as the inner product relative
to r−2k dω over the sphere of radius r centered at 0. Then the formula for fi j is

fi j (r) =
R
SN−1 F(hj (x) f (|x |))(rω)hi (rω)r−2k dω

=
R
SN−1 F(hj (x) f (|x |))(rω)hi (ω)r−k dω

for r > 0, and this is continuous in r sinceF(hj (x) f (|x |)) is continuous onRN . Thus
the vector subspace of all f in L2((0,∞), r N−1+2k dr) for which F(h(x) f (|x |))
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is of the form h(y)g(|y|) contains the dense subspace Ccom((0,∞)). Let f (n) in
Ccom((0,∞)) tend to f in L2((0,∞), r N−1+2k dr). Then h(x) f (n)(|x |) tends to
h(x) f (|x |) in L2(RN ), and F(h(x) f (n)(|x |)) tends to F(h(x) f (|x |)) in norm. A
subsequence therefore converges almost everywhere. Since F(h(x) f (n)(|x |))(y) =
h(y)g(n)(|y|) almost everywhere, the limit function must be of the form h(y)g(|y|)
almost everywhere.
15. If {vj } is an orthonormal basis of V , then {`vj } is an orthonormal basis of V ∗,

and (8c(x)`vj , `vj ) = (`8(x)vj , `vj ) = (vj ,8(x)vj ) = (8(x)vj , vj ). Summing on j
gives the desired equality of group characters.
16. Following the notation of that example, let τi j (x) = (τ (x)uj , ui ), let l

be the left-regular representation, and let `v be as in Problem 12. Consider, for
fixed j0, the image of τ c(g)`ui under the linear extension of the map E 0(`uk )(x) =
(τ (x)uj0, uk). This is E 0(`P

kckuk
)(x) = E 0

°P
k c̄k`uk

¢
(x) =

P
k c̄k E 0(`uk )(x) =

P
k c̄k(τ (x)uj0, uk) = (τ (x)uj0,

P
k ckuk), and hence E 0(`v)(x) = (τ (x)uj0, v).

Then the image of interest is

E 0(τ c(g)`ui )(x) = E 0(`τ(g)ui )(x) = (τ (x)uj0, τ (g)ui )

= (τ (g−1x)uj0, ui ) = (l(g)τi j0)(x).

Hence l carries a column of matrix coefficients to itself and is equivalent on such a
column to τ c.
17. In (a), the left-regular representation on G = R/2πZ is given by (l(θ) f )(eiϕ)

= f (ei(ϕ−θ)). Assuming on the contrary that l is continuous in the operator norm
topology, choose δ > 0 such that |θ | < δ implies kl(θ)−1k < 1. Since keinϕk2 = 1,
we must have kl(θ)(einϕ) − einϕk2 < 1 for |θ | < δ. Then

|e−inθ − 1|2 = 1
2π

R π
π |e−inθ − 1|2 dϕ = 1

2π
R π
−π |ein(ϕ−θ) − einϕ|2 dϕ < 1

for all θ with |θ | < δ and for all n. For large N , θ = π
2N satisfies the condition on θ ,

and n = N has |e−inθ − 1|2 = | − i − 1|2 = 2, contradiction.
In (b), k8(g)v −vk2 = (8(g)v −v,8(g)v −v) = k8(g)k2−2Re(8(g)v, v)+

kvk2 = 2kvk2−2Re(8(g)v, v). The weak continuity shows that the right side tends
to 0 as g tends to 1, and hence the left side tends to 0, i.e., 8 is strongly continuous.
18. In (a), we apply Problem 15. Let {ui } be an orthonormal basis of the space

of 8. In the formula (8( f )uk, uk) =
R
G (8(x)uk, uk) f (x) dx , we take f to be of

the form f (x) = (8(x)uj , ui ). Substituting and using Schur orthogonality gives
(8( f )uk, uk) = d−1(uk, uj )(uk, ui ). Summing on k shows that Tr8( f ) = d−1δi j ,
and the right side is d−1 f (1) for this f . Thus f (1) = d8( f ). Passing to a linear
combination of such f ’s, we obtain the asserted formula.
Part (b) follows by taking linear combinations of results from (a), and part (c)

follows by applying (b) to a function f ∗ ∗ f , where f ∗(x) = f (x−1). Part (d)
follows by decomposing the right-regular representation on L2(G) into irreducible
representations and using the identification in Section 8 of the isotypic subspaces.
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19. For (a), h ∗ f (x) =
R
G h(xy

−1) f (y) dy =
R
G h(y

−1x) f (y) dy = f ∗ h(x).
For (b), it is enough to check the assertion for f equal to a matrix coefficient

x 7→ (8(x)uj , ui ) = 8i j (x) of an irreducible unitary representation 8. If 8 has
degree d, then we have
R
G f (gxg−1) dg =

R
G 8i j (gxg−1) dg =

P
k,l

R
G 8ik(g)8kl(x)8l j (g−1) dg

=
P

k,l 8kl(x)
R
G 8ik(g)8jl(g) dg =

P
k,l 8kl(x)d−1δi jδkl = δi j d−1P

k 8kk(x),

as required.
In (c), Corollary 6.33 shows that h is the uniform limit of a net of trigonometric

polynomials. Since C(G) is metrizable, h is the uniform limit of a sequence of
trigonometric polynomials hn . If ≤ > 0 is given, we can find N such that n ∏ N
implies |hn(y) − h(y)| ≤ ≤ for all y. Then |hn(gxg−1) − h(gxg−1)| ≤ ≤ and soØ
Ø R

G hn(gxg
−1) dg−

R
G h(gxg

−1) dg
Ø
Ø ≤ ≤. The function Hn(x) =

R
G hn(gxg

−1) dg
is a linear combination of irreducible characters by (b), and

R
G h(gxg

−1) dg is just
h. Thus h is the uniform limit of the sequence of functions Hn , each of which is a
linear combination of characters.
In (d), it is enough to prove that the space of linear combinations of irreducible

characters is dense in the vector subspace of L2 in question. If h is in this sub-
space, choose a sequence of functions hn in C(G) converging to h in L2. Then
Hn(x) =

R
G hn(gxg

−1) dg converges to h in L2, and each Hn is continuous and
has the invariance property that Hn(gxg−1) = Hn(x). Hence the vector subspace
of members of C(G) with this invariance property is L2 dense in the subspace of
L2 in question. By (c), any member of C(G) with the invariance property is the
uniform limit of a sequence of functions, each of which is a finite linear combination
of characters. Since uniform convergence implies L2 convergence on a space of finite
measure, the space of linear combinations of irreducible characters is L2 dense in the
space in question.
20. In (a), the sum

P
α (d(α))2 counts the number of elements in the basis of L2(G)

in Corollary 6.32. Another basis consists of the indicator functions of one-element
subsets of G, and the two bases must have the same number of elements.
In (b), again we have two ways of computing a dimension, one from (d) in the

previous problem, and the other from indicator functions of single conjugacy classes.
The two computations must give the same result.
In (c), representatives of the possible cycle structures are (1234), (123), (12),

(12)(34), (1). By (b), the number of8(α)’s is 5. Two of these have degree 1. For the
other three the sums of the squares of the degrees must equal 24− 1− 1 = 22. The
only possibility is 22 = 9+ 9+ 4, and thus the degrees are 1, 1, 2, 3, 3.
21. Letƒ ⊆ G be the set of products ST , and let K = S∩T . The group S×T acts

continuously on ƒ by (s, t)ω = sωt−1, and the isotropy subgroup at 1 is the closed
subgroup diag K . Thus the map (s, t) 7→ st−1 descends to a map of (S× T )/diag K
ontoƒ. Sinceƒ is assumed open in G, it is locally compact Hausdorff in the relative
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topology. Then Problem 3 shows that the map of (S × T )/diag K onto ƒ is open,
and it follows by taking compositions that the multiplication map of S × T to ƒ is
open.
22. In the twoparts, AN andMAN are subgroupsclosedunder limits of sequences,

hence are closed subgroups. Consider the decompositions in (a) and (b). For the
decomposition in (a), we multiply out the relation kθaxny =

≥
a b
c d

¥
and solve for θ ,

x , and y, obtaining

ex =
p
a2 + c2, cos θ = e−xa, sin θ = e−xc, y = e−2x (ab + cd).

Hence we have the required unique decomposition. Since K AN equals all of G,
the image under multiplication of K × AN is open in G. For the decomposition in
(b), we multiply out the relation vtm±axny =

≥
a b
c d

¥
and solve for t , m±, x , and y,

obtaining
± = sgn a, ex = |a|, y = b/a, t = c/a.

Hence we have the required unique decomposition if a 6= 0, and the decomposition
fails if a = 0. Since VMAN equals the open subset of G where the upper left entry
is nonzero, the image under multiplication of V × MAN is open in G.
The group G = SL(2, R) is unimodular, being generated by commutators, and

hence the formula in Theorem 12.9 simplifies to
R
G f (x) dx =

R
S×T f (st) dls dr t .

For (a), we apply this formulawith S = K and T = AN . The group K is unimodular,
so that dls becomes dθ , and we easily compute that dr t can be taken to be e2x dy dx .
For (b), we apply the formula with S = V and T = MAN . The group V is
unimodular, and we find that the right Haar measure for MAN can be taken to be
e2x dy dx on the m+ part and the same thing on the m− part.
25. If h is in C([0, π]), the previous two problems produce a unique f = fh in

C(G) such that fh is constant on conjugacy classes and has h(θ) = fh(tθ ). Define
`(h) =

R
G fh(x) dx . This is a positive linear functional on C([0, π]) and yields

the measure µ, by the Riesz Representation Theorem. If f is any member of C(G)

and f0(x) =
R
G f (gxg−1) dg, then

R
G f (x) dx =

R
G f0(x) dx and f0 is fh for the

functionh(θ) = f0(tθ ). The constructionofµmakes
R
[0,π] f0(tθ ) dµ =

R
G f0(x) dx .

Substitution gives
R
[0,π]

£ R
G f (gtθg−1) dg

§
dµ =

R
G f0(x) dx =

R
G f (x) dx .

26. The crux of the matter is (a). The formula of Problem 25, together with the
character formula for χn , gives

δn0 =
R
G χnχ0 dx =

R
[0,π] (e

inθ + ei(n−2)θ + · · · + e−inθ ) dµ(θ).

This says that
R
[0,π] dµ(θ) = 1 for n = 0,

R
[0,π] (e

iθ + e−iθ ) dµ(θ) = 0 for n = 1,
and

R
[0,π] (e

2iθ + 1+ e−2iθ ) dµ(θ) = 0 for n = 2. The middle term of the integrand
for n = 2 has already been shown to produce 1, and thus the n = 2 result may be
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rewritten as
R
[0,π] (e

2iθ +e−2iθ ) dµ(θ) = −1. For n ∏ 3, comparisonof the displayed
formula for n with what it is for n−2 gives 0 =

R
[0,π] (e

inθ + e−inθ ) dµ(θ)+ δn−2,0.
Since n − 2 > 0, we obtain

R
[0,π] (e

inθ + e−inθ ) dµ(θ) = 0 for n > 2.
For the rest we replace θ by −θ in our integrals and see that the integralR

[−π,0] (e
inθ + e−inθ ) dµ(−θ) is 0 for n = 1 and n ∏ 3, and is −1 for n = 2.

Therefore
R
[−π,π] (e

inθ + e−inθ ) dµ0(θ) is 0 for n = 1 and n ∏ 3, and is −1 for
n = 2. We can regard µ0 as a periodic Stieltjes measure whose Fourier series
may be written in terms of cosines and sines. Since µ0(E) = µ0(−E), only the
cosine terms contribute. There are no point masses since only finitely many Fourier
coefficients are nonzero. Since cos 2θ has a cosine series with no other cos kθ
contributing,

R
[−π,π] cos nθ dµ0(θ) = − 1

2δn,2 = − 1
2π

R
[−π,π] cos nθ cos 2θ dθ for

all n > 0. Taking into account that µ0([−π, π]) = 1, we conclude from the Fourier
coefficients that dµ0(θ) = 1

2π (1 − cos 2θ) dθ = 1
π sin

2 θ dθ . Since
R
G f (x) dx =R

[−π,π]
R
G f (gtθg−1) dg dµ0(θ), substitution into the formula of Problem 25 gives

the desired result.
27. Problem19d shows that the irreducible charactersgive anorthonormalbasis for

the subspace of L2 functions on SU(2) invariant under conjugation. In view of Prob-
lem 26d, the restrictions of these characters to the diagonal subgroup T therefore form
an orthonormal basis of the subspace of all functions χ in L2

°
[−π, π], 1π sin

2 θ dθ
¢

with χ(θ) = χ(−θ). Since sin2 θ = 1
4 |e

iθ − e−iθ |2, the conditions to have a new χ

are that it be a continuous function with χ(θ) = χ(−θ) such that
R π
−π(eiθ − e−iθ )χ(θ)(ei(n+1)θ − e−i(n+1)θ ) = 0

for every integer n ∏ 0. Using the conditionχ(θ) = χ(−θ), we can write the Fourier
series of χ as χ(θ) ∼ a0

2 +
P∞

k=1 ak cos kθ . For n ∏ 1, the orthogonality condition
says that

R π
−π χ(θ)(cos(n + 2)θ − cos nθ) dθ = 0. Hence an+2 = an for n ∏ 1. By

the Riemann–Lebesgue Lemma, all an are 0 for n ∏ 1. Thus χ is constant. Since
χ0 = 1 is already a known character, χ = 0.
28. Let F be a compact topological field. If F is discrete, then each one-point

set is open, and the compactness forces F to be finite. Otherwise, every point in F
is a limit point. Take a net {xα} in F − {0} with limit 0, and form the net {x−1

α }. By
compactness this has a convergent subnet {x−1

αµ
}with some limit x0. By continuity of

multiplication, {x−1
αµ
xαµ} converges to 0x0 = 0. On the other hand, every term of the

subnet is 1, and we conclude that a net that is constantly 1 is converging to 0. This
behavior means that F is not Hausdorff, contradiction.
29. In (a), the argument that c 7→ |c|F is continuous and satisfies |c1c2|F =

|c1|F |c2|F is the same as in Problem 11a.
For (b), we have d(cx)/|cx |F = (|c|F dx)/(|c|F |x |F ) = dx/|x |F . For (c), |x |F =

|x | if F = R, and |x |F = |x |2 if F = C. For (d), |x |F = |x |p if F = Qp. For (e),
we have I = pZp, and therefore the Haar measure of I is the product of |p|p = p−1

times the Haar measure of Zp. Hence the Haar measure of I is p−1.
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30. In (a), the image of amultiplicative charactermust be a subgroup of S1, and the
only subgroup of S1 contained within a neighborhood of radius 1 about the identity
is {1}. Thus as soon as n is large enough so that pnZp is mapped into the unit “ball”
about 1, pnZp is mapped to 1.
In (b),Qp/Zp is discrete since Zp is open. Hence the cosets of the members ofQ

exhaust Qp/Zp, and it is enough to define a multiplicative character of the additive
group Q that is 1 on every member of Q ∩ Zp. Let a/b be in lowest terms with
b > 0 and with |a/b|p = pk . If k ≤ 0, then set ϕ0(a/b) = 1. If k ∏ 0, write
b = b0 pk . Since b0 and pk are relatively prime, we can choose integers c and d with

cpk + b0d = a, and then
a

b0 pk
=

c
b0

+
d
pk
. We set ϕ0(a/b) = e2π id/pk . The result

is well defined because if c0 pk + b0d 0 = a, then (c − c0)pk + (d − d 0)b0 = 0 shows
that d − d 0 is divisible by pk and hence that e2π id/pk = e2π id 0/pk . One has to check
that ϕ0 has the required properties.
In (c), we may assume that ϕ is not trivial. The p-adic number k can be formed by

an inductive construction. Use (a) to choose the smallest possible (i.e., most negative)
integer n such that ϕ is trivial on pnZp. Then x 7→ ϕ(pnx) is trivial on Zp and must
be a power of e2π i/p on p−1. Wematch this, adjust ϕ, iterate the construction through
powers of p−1, and prove convergence of the series obtained for k.
31. Write r in Q as r = ±m/n, assume without loss of generality that r 6= 0,

and factor m and n as products of powers of primes. Only finitely many primes can
appear, and |r |p = 1 if p is prime but is not one of those primes. The only other v is
∞, and thus |r |v = 1 except for finitely many v.
32. With r 6= 0 and with r = ±m/n in lowest terms, factor m and n into products

of primes as m =
Qk

i=1 p
ai
i and n =

Ql
j=1 q

bj
j . Then |r |pi = p−ai

i and |r |qj = qbjj .
Hence

Y

p prime
|r |p =

≥ kY

i=1
p−ai
i

¥≥ lY

j=1
qbjj

¥
= |r |−1 and

Y

v∈P
|r |p = |p|−1|p|∞ = 1.

33. The product of topological groups is a topological group, and thus each X (S)
is a topological group. The defining properties of a group depend only on finitely
many elements at a time, and these will all be in some X (S). Thus X acquires a
group structure. The operations are continuous because again they can be considered
in a suitable neighborhood of each point, and these points can be taken to be in some
X (S) × X (S) in the case of multiplication, or in some X (S) in the case of inversion.
Thus X is a topological group. The assertions about the situation with topological
rings are handled similarly.
35. By continuity of translations, it is enough to find an open neighborhoodU of 0

inAQ withU ∩Q = {0}. Since eachAQ(S) is open inAQ, it is enough to find thisU
in someAQ(S). We do so for S = {∞}. LetU = (−1/2, 1/2)×

°×p primeZp
¢
. If x

is in U , then |x |p ≤ 1 for all primes p and |x |∞ < 1/2. By Problem 32, x cannot be
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in Q unless x = 0. Hence U ∩ Q = {0}. Proposition 6.3b shows that Q is therefore
discrete.
36. If x = (xv) is in AQ, let p1, . . . , pn be the primes p where |xp|p > 1, and let

|xp|pj = pajj . If r =
Qn

j=1 p
−aj
j and if we regard r as embedded diagonally in AQ,

then |xpr−1|p ≤ 1 for every prime p. Hence xr−1 is inAQ({∞}). Choose an integer
n such that |x∞r−1 − n|∞ ≤ 1. If we then regard n as embedded diagonally in AQ,
then |n|p ≤ 1 for all primes p, and hence n is in AQ({∞}). Thus xr−1 − n is in the
compact subset K = [−1, 1]×

°×p primeZp
¢
ofAQ. The continuous image of K in

AQ/Q is compact, and we have just seen that this image is all ofAQ/Q. ThusAQ/Q
is compact.
37. Fix a finite subset S of P containing {∞}. Then the projection of×w∈SQ

×
w

to Q×
v is continuous for each v ∈ S. Since also the inclusion Q×

v → Qv is
continuous, the composition ×w∈SQ

×
w → Qv is continuous. Thus the corre-

sponding mapping ×w∈SQ
×
w → ×w∈SQw is continuous. In similar fashion

×w/∈SZ
×
w → Zv is a continuous function as a composition of continuous func-

tions. Thus×w/∈SZ
×
w → ×w/∈SZw is continuous. Putting these two compositions

together shows that A×
Q(S) → AQ(S) is continuous, and therefore A×

Q(S) → AQ is
continuous. Since this is true for each S, it follows that A×

Q → AQ is continuous.
The topologies on the adelesAQ and the idelesA×

Q are regular and Hausdorff, and
they are both separable. Hence AQ and A×

Q are metric spaces, and the distinction
between the topologies can be detected by sequences. Let pn be the nth prime, and
let xn = (xn,v) be the adele with xn,v = pn if v = pn and xn,v = 1 if v 6= pn . The
result is a sequence {xn} of ideles, and we show that it converges to the idele (1) in
the topology of the adeles but does not converge in the topology of ideles. In fact,
each xn lies in AQ({∞}), which is an open set in AQ. For each prime p, xn,p = 1
if n is large enough, and also xn,∞ = 1 for all n. Since AQ({∞}) has the product
topology, {xn} converges to (1). On the other hand, if {xn} were to converge to some
limit x in A×

Q, then x would have to lie in some A×
Q(S), and the ideles xn would have

to be in A×
Q(S) for large n. But (xn,v) is not in A×

Q(S) as soon as v is outside S.
39. In (a), let f be in C(K ). Corollary 6.7 shows that the map k 7→ k f of K into

the left translates of f is continuous into C(K ). The continuous image of a compact
set is compact, and thus f is left almost periodic. Similarly f is right almost periodic.
In (b), let g be inG. Then (g f )(x) = f (g−1x) = F(∂(g−1x)) = F(∂(g)−1∂(x)) =

((∂(g)F)(∂(x)) shows that the set of left translates of f can be regarded as a subset
of the set of left translates of F . The latter is compact, and hence the closure of the
former is compact.
40. We may view the unitary representation 8 as a continuous homomorphism

of G into the compact group K = U(N ) for some N . If f (x) = 8(x)i j , then
f (x) = F(8(x)), where F : U(N ) → C is the (i, j)th entry function. Thus
Problem 39b applies.
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41. In (a), assume the contrary. Then for some ≤ > 0 and for every neighborhood
N of the identity, there exists gN in N with kgN f − f ksup ∏ ≤. Here {gN f } is a net
in the compact metric space K f , and there must be a convergent subnet {gNα f } with
limit some function h in K f . Since kgNα f − hksup tends to 0, h is not f . Thus gNα f
converges uniformly to h while, by continuity, tending pointwise to f . Since h 6= f ,
we have arrived at a contradiction.
Part (b) follows from the formula kg0(g1 f ) − g0(g2 f )ksup = kg1 f − g2 f ksup,

and part (c) follows from (b), uniform continuity, and completeness of the compact
set K f .
42. Part (a) follows from a remark with Ascoli’s Theoremwhen stated as Theorem

2.56 ofBasic: the remark says that ifwe have an equicontinuous sequenceof functions
from a compact metric space into a compact metric space, then there is a uniformly
convergent subsequence. Here if we have a sequence {ϕn} of isometries of X onto
itself, then the ϕn are equicontinuous with δ = ≤. Since the domain X is compact
and the image X is compact, the sequence has a uniformly convergent subsequence,
and we readily check that the limit is an isometry. Since every sequence in 0 has a
convergent subsequence, 0 is compact.
For (b), let members of 0 have ϕn → ϕ and √n → √ . Then

ρ(ϕn ◦ √n, ϕ ◦ √) ≤ ρ(ϕn ◦ √n, ϕn ◦ √) + ρ(ϕn ◦ √, ϕ ◦ √).

The first term on the right side equals ρ(√n, √) because ϕn is an isometry, and the
second term equals ρ(ϕn, ϕ) because √(x) describes all members of X as x varies
through X . These two terms tend to 0 by assumption and hence ϕn ◦ √n → ϕ ◦ √ .
This proves continuity of multiplication. Similarly inversion is continuous.
For (c), let ∞n → ∞ and xn → x . Then

d(∞n(xn), ∞ (x))≤ d(∞n(xn), ∞ (xn))+d(∞ (xn), ∞ (x)) ≤ ρ(∞n, ∞ )+d(∞ (xn), ∞ (x)),

and both terms on the right side tend to 0.
43. In (a), let {gn} be a net convergent to g0 in G, and form {∂(gn)}. Then

ρ(∂(gn),∂(g0))=suph∈K f
k∂(gn)h−∂(g0)hksup=suph∈K f ,x∈G |∂(gn)h(x)−∂(g0)h(x)|

= suph∈K f , x∈G |h(g−1
n x) − h(g−1

0 x)| = supy∈G, x∈G |(y f )(g−1
n x) − (y f )(g−1

0 x)| =

supy∈G, x∈G | f (y−1g−1
n x) − f (y−1g−1

0 x)|. If this does not tend to 0 as gn tends to
g0, then we can find a subnet of {gn}, which we write without any change in notation,
and some ≤ > 0 such that this supremum is ∏ ≤ for every n. To each such n, we
associate some yn such that supx∈G | f (y−1

n g−1
n x) − f (y−1

n g−1
0 x)| ∏ ≤/2. By left

almost periodicity we can find a subnet of {yn f } that converges uniformly to some
function, say H . This function H has to be left uniformly continuous, and we may
suppose that kyn f − Hksup ≤ ≤/8 for n ∏ N . Then n ∏ N implies

|(yn f )(g−1
n x) − (yn f )(g−1

0 x)|

≤ |(yn f )(g−1
n x)−H(g−1

n x)|+|H(g−1
n x)−H(g−1

0 x)| + |H(g−1
0 x)−(yn f )(g−1

0 x)|

≤ ≤
8 + |H(g−1

n x) − H(g−1
0 x)| + ≤

8 .
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The left uniform continuity of H implies that the right side is eventually ≤ 3≤
8 . This

contradicts the condition supx∈G | f (y−1
n g−1

n x) − f (y−1
n g−1

0 x)| ∏ ≤/2, and (a) is
proved.
In (b), the action 0 f × K f → K f is continuous by Problem 42c, and therefore

∞ 7→ ∞ −1h is continuous. Evaluation ofmembers of K f at 1 is continuous, and hence
Ff (h) is continuous on 0 f . If {gn} is a net with gn f → h, then Ff (h)(∂ f (g0)) =
((∂ f (g0))−1h)(1) = limn((∂ f (g0))−1gn f )(1) = limn(gn f )(g0) = h(g0).
For (c), we apply (b) with h = f . Then f arises from the compact group 0 f via

the construction in Problem 39b. Therefore f is right almost periodic.
44. If f is a given almost periodic function, the function F to use takes an elementQ
f 0(∞ f 0) to Ff (∞ f ). Then the equality F(∂(x)) = Ff (∂ f (x)) = f (x) shows that f

arises from the compact group 0.
45. Problem 44 produces an isomorphism of the algebra LAP(G) of almost

periodic functions onG ontoC(0), and the Stone Representation Theorem (Theorem
4.15) produces an isomorphism of LAP(G) with C(S1), where S1 is the Bohr com-
pactification of G. The result then follows after applying Problem 23 in Chapter IV.
46. Finite-dimensional unitary representations of 0 give rise to finite-dimensional

unitary representations of G, and thus Corollary 6.33 for 0 gives the desired result.
47. Any continuous multiplicative character of K yields a continuous multi-

plicative character of G. Conversely any continuous multiplicative character of G
is almost periodic by Problem 40 and therefore yields a continuous function on
K . The multiplicative property of this continuous function on the dense set p(G),
together with continuity of multiplication on K , implies that the function on K is a
multiplicative character.

Chapter VII

1. If x0 is in ƒ, let ϕ be a compactly supported smooth function on ƒ equal to
(x − x0)α in an open neighborhood V of x0. Then 0 = (P(x, D)u)(x) = (α!)aα(x)
on V , and hence aα(x) = 0 for x in V .
2. Within the Banach space C(ƒcl, R), S is the vector subspace of all functions

u with Lu = 0 on ƒ. It contains the constants and hence is not 0. The restriction
mapping R : S → C(@ƒ, R) is one-one by the maximum principle (Theorem 7.12),
and it has norm 1. Let V be the image of R, and let R−1 : V → S be the inverse
of R : S → V . The operator R−1 has norm 1 as a consequence of the maximum
principle. If ep denotes evaluation at the point p ofƒ, then ep◦R−1 is a bounded linear
functional on V of norm 1. The Hahn–Banach Theorem shows that ep ◦ R−1 extends
to a linear functional ` on C(@ƒ, R) of norm 1. We know that `(1) = ep ◦ R−1(1) =
ep(1) = 1. If f ∏ 0 is a nonzero element in C(@ƒ, R), then 1 − f/k f ksup has
norm ≤ 1. Therefore |`(1 − f/k f ksup)| ≤ 1 and 0 ≤ `( f/k f ksup) ≤ 2. Thus the
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linear functional ` is positive. By the Riesz Representation Theorem, ` is given by a
measure µp. Consequently every u is S has u(p) =

R
@ƒ u(x) dµp(x). Taking u = 1

shows that µp(@ƒ) = 1 for every p.
3. In (a), the line integral

H
|(x,y)|=ε (P dx + Q dy) is equal to

R 2π
0 ϕ(ε cos θ, ε sin θ)ε−2°(ε cos θ)(−ε sin θ) + (ε sin θ)(ε cos θ)

¢
dθ,

and the integrand is identically 0. Part (b) is just a computation of partial derivatives.
If (c), we know from Green’s Theorem that for any positive numbers ε < R,

° H
|(x,y)|=R −

H
|(x,y)|=ε

¢
(P dx + Q dy) =

RR
ε≤|(x,y)|≤R

° @Q
@x − @P

@y
¢
dx dy.

With our P and Q, for sufficiently large R, the line integral
H
|(x,y)|=R is 0 since P and

Q have compact support, and (a) says that the limit of the line integral
H
|(x,y)|=ε is 0 as ε

decreases to 0. The function @Q
@x − @P

@y = yϕx−xϕy
x2+y2 is integrable near (0, 0), andwe thus

conclude from the complete additivity of the integral that
RR

R2
° yϕx−xϕy

x2+y2
¢
dx dy = 0.

In (d), with a new P and Q, the line integral
H
|(x,y)|=ε (P dx + Q dy) is equal to

R 2π
0 ϕ(ε cos θ, ε sin θ)ε−2°(−ε sin θ)(−ε sin θ) + (ε cos θ)(ε cos θ)

¢
dθ.

This simplifies to
R 2π
0 ϕ(ε cos θ, ε sin θ) dθ , which tends to 2πϕ(0, 0) by continuity

of ϕ. Part (e) is just a computation of partial derivatives, and part (f) is proved in the
same way as part (c).
For (g), we have z−1 @ϕ

@ z̄ = z−1(ϕx + iϕy) = x−iy
x2+y2 (ϕx + iϕy) = xϕx+yϕy

x2+y2 +
i(xϕy−yϕx )
x2+y2 . Combining (c) and (f) gives

RR
R2 z

−1 @ϕ
@ z̄ dx dy = −2πϕ(0, 0) + i0, and

hence 1
2π

RR
R2 z

−1 @ϕ
@ z̄ = −ϕ(0, 0).

For (h), we use (g) and obtain h @T
@ z̄ , ϕi = −hT, @ϕ

@ z̄ i = −
RR

R2(2πz)
−1 @ϕ

@ z̄ dx dy =
ϕ(0, 0) = hδ, ϕi.
4. In (a), letϕ be inC∞

com(R1). Then hDx H, ϕi=−hH, ϕ0i=−
R ∞
−∞ H(x)ϕ0(x)dx

= −
R ∞
0 ϕ0(x) dx = − limN [ϕ(x)]N0 = ϕ(0) = hδ, ϕi.

In (b) let ϕ be in C∞
com((−1, 1)). We are to verify that

R 1
−1 max{x, 0}ϕ

0(x) dx =

−
R 1
−1 H(x)ϕ(x) dx , i.e., that

R 1
0 xϕ

0(x) dx = −
R 1
0 ϕ(x) dx . This follows from

integration by parts because
R 1
0 xϕ

0(x) dx = [xϕ(x)]10−
R 1
0 ϕ(x) dx = −

R 1
0 ϕ(x) dx .

The answer to (c) is no. If gwere aweak derivative, then the left side of the equalityR 1
−1 H(x)ϕ0(x) dx = −

R 1
−1 g(x)ϕ(x) dx would be 0 whenever ϕ ∈ C∞

com((−1, 1))
vanishes in a neighborhood of 0. Then g(x) would have to be 0 almost everywhere
for x 6= 0, and we would necessarily have 0 =

R 1
0 ϕ0(x) dx = [ϕ(x)]10 = −ϕ(0) for

all ϕ in C∞
com((−1, 1)).
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In (d), hDx (H × δ), ϕi = −hH × δ, Dxϕi = −
R ∞
0 (Dxϕ)(x, 0) dx , and this

= − limN [ϕ(x, 0)]x=Nx=0 = ϕ(0, 0) = hδ, ϕi.
In (e), the support of H is [0,∞) and the singular support is {0}, while for H × δ

the support and the singular support are both R × {0}.
5. We apply Lemma 7.8 to R(x) = P(i x). The preliminary step in the proof

multiplies the given distribution f by something so that f has support near 0. We
form e−iα·x f as a member of E 0((−2π, 2π)N ) and restrict it to a member ofP 0(T N ).
Then it has a Fourier series e−iα·x f ∼

P
k dkeik·x . Put ck = dk

R(k+α) , α being the
member ofRN produced by the lemma. Then |ck | ≤ C(1+|k|2)p for some p, and (b)
produces a distribution S in E 0((−2π, 2π)N ) with hS, e−ik·x i = ck for all k. Define
u = eiα·x S as a member of E 0((−2π, 2π)N ). Let √(x) be a smooth function with
compact support near 0, and extend √ to be periodic, i.e., to be in C∞(T N ). The
multiple Fourier series of√ is then of the form√(x) =

P
k ∞keik·x with ∞k decreasing

faster than any power of |k|. The functionϕ(x) = √(x)e−iα·x is inC∞((−2π, 2π)N )

but is not necessarily periodic. Applying P(D) to u and having the result act on ϕ,
we write

hP(D)u, ϕi = hP(D)u,
P

k ∞kei(k−α)·x i = hP(D)u,
P

k ∞−ke−i(k+α)·x i.

Since the ∞k are rapidly decreasing and P(D)u is continuous on C∞((−2π, 2π)N ),
we can interchange the summation and the operation of P(D)u. Thus the right side
of the display is
P

k ∞−khP(D)u, e−i(k+α)·x i =
P

k ∞−khu, P(−D)(e−i(k+α)·x )i

=
P

k ∞−kheiα·x S, P(i(k+α))e−i(k+α)·x i =
P

k ∞−khS, P(i(k+α))e−ik·x i

=
P

k ∞−kck P(i(k + α)) =
P

k ∞−k
dk

R(k+α) P(i(k + α)) =
P

k ∞−kdk .

Nowdk = he−iα·x f, e−ik·x i. The rapid convergenceof the series
P

k ∞−ke−ik·x means
that he−iα·x f, √i=

P
k ∞−khe−iα·x f, e−ik·x i =

P
k ∞−kdk . Therefore hP(D)u, ϕi =P

k ∞−kdk = he−iα·x f, √i = he−iα·x f, eiα·xϕi = h f, ϕi. Near 0, the function ϕ is
an arbitrary smooth function, and thus P(D)u = f near 0.
6. The coefficient of xα in (x1 + · · · + xN )|α| is the multinomial coefficient° |α|

α1,...,αN

¢
= |α|!

α! . This is a positive integer, and hence α! ≤ |α|!. Fixing |α| = l and
putting x1 = · · · = xN = 1, we obtain the formula Nl =

P
|α|=l

l!
α! , and thereforeP

|α|=l (1/α!) = Nl/ l!. The identitywith z can be proved by induction on q, the base
case being q = 0, where the expansion is a geometric series. If the case q is known,
we differentiate both sides and divide by q+1 to obtain the case q+1. Alternatively,
one can derive the identity from the binomial series expansion in Section I.7 of Basic.
7. Here is the solution apart from some details. The argument uses induction, the

base case being m = 1, where the result describes the given system of differential
equations. Assuming thatDm−1

t is of the asserted form,wedifferentiate the expression



Chapter VII 585

with respect to t . In the 2m−1 terms of the first kind, the derivative acts on some
expression Dα

x u, giving Dα
x Dtu. We substitute for Dtu from the given system and

sort out what happens; we get 2m terms involving an x derivative of u and 2m−1 terms
involving a derivative of F . In the 2m−1 − 1 terms of the second kind, the derivative
acts on some iterated partial derivative of F and just raises the order of differentiation.
The total number of terms involving F is then 2m−1 + 2m−1 − 1 = 2m − 1.

8. In (a), just apply Dβ
x to the formula for Dm

t u in the previous problem. The
operator gets applied to each u or F that appears in the formula, and there is no
simplification. Then one evaluates at (0, 0). In (b), the asserted finiteness implies
that the multiple power series

U(x, t) =
P

β

P
m∏0

Dβ
x Dm

t u(0,0)
β!m! xβ tm

convergeswhen |t | < r and |xj | < r for all j and that Dβ
x Dm

t U(0, 0) = Dβ
x Dm

t u(0, 0)
for all β andm. Then it follows that the sumU(x, t) solves the given Cauchy problem
for thesevaluesof (x, t). Sincer is arbitrary, the series converges for all (x, t) ∈ CN+1

and the sum U(x, t) solves the Cauchy problem globally.

9. In (a), we consider a single term of the expansion of Dm
t u(0, 0), namely

T1 · · · TmDα
x u(0, 0) = T1 · · · TmDα

x g(0). Here each of T1, . . . , Tm is equal to some
Aji or to B, and Dα

x is the product over i of the Dji for those Ti with Ti = Aji .
The term has kT1 · · · TmDα

x g(0)k∞ ≤ MmkDα
x g(0)k∞, and the boundedness of the

series involving g(0) implies that (α!)−1kDα
x g(0)k∞R|α| ≤ C . Let k be the number

of factors of T1 · · · Tm equal to B. Then |α| = m − k, and hence MmkDα
x g(0)k∞ ≤

CMmα!R−(m−k). Each Ti equal to Aji has to be summed over the N values of ji , and
we get a contribution of Nm−k from all these sums. Finally the number of such terms
involving k factors B is the number of subsets of k elements in a set of m elements
and is

°m
k
¢
, and α! ≤ (m − k)! by Problem 6. The desired estimate results.

In (b), we adjust the above estimate by replacing kDα
x g(0)k∞ by kDα+β

x g(0)k∞.
Then Cα!R−(m−k) gets replaced by C(α + β)!R−(m−k+l), where l = |β|. Since
(α +β)! ≤ (m− k+ l)!, the term is≤

Pm
k=0 CMmNm−k(m− k+ l)!

°m
k
¢
R−(m−k+l).

In (c), we are to sum the product of the estimate in (b) by
rl+m

β!m!
, the sum extending

over all m ∏ 0, all l ∏ 0, and all β with |β| = l. Thus we are to bound

∞X

m=0

∞X

l=0

X

|β|=l

mX

k=0

CMmNk−m(m − k + l)!
°m
k
¢
R−(m−k+l)rl+m

β!m!

=
∞X

m=0

∞X

l=0

mX

k=0

CMmNm−k+l(m − k + l)!
°m
k
¢
R−(m−k+l)rl+m

l!m!
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= C
∞X

m=0

∞X

k=0

h ∞X

l=0

µ
m − k + l

l

∂≥Nr
R

¥liMmNm−k R−(m−k)rm

k!

= C
∞X

m=0

∞X

k=0

≥
1−

Nr
R

¥−(m−k)−1 MmNm−k R−(m−k)rm

k!
,

the first and third steps using Problem 6 and the third step requiring the assumption
on R that Nr/R < 1. If we assume in fact that Nr/R ≤ 1/2, then

°
1− Nr

R
¢−1

≤ 2,
and the above expression is

≤ C
∞X

m=0

∞X

k=0

2m−k+1MmNm−k R−(m−k)rm

k!
≤ 2C

∞X

m=0
eR/(2N )

≥2MrN
R

¥m
,

the second inequality following from the series expansion of the exponential function.
The series on the right is convergent if 2MrN/R < 1. This proves (c).
In (d), the analog of (a) is to consider a term T1 · · · TsDα

x D
m−1−s
t F , where each

Ti is some Aji or B. Let k be the number of factors B, so that s − k factors are
some Aj and |α| = s − k. The contributions to Dα

x come from the factors Aj ; regard
the m − 1− s contributions to Dm−1−s

t as coming from factors of the identity I . In
this way the two phenomena can be handled at the same time. Ignore the fact that
I commutes with the other matrices; it is easier to treat it as if its occurrences in
different positions were different. The effect is the same as expanding the set of n
matrices Aj to include I , yielding a set of N + 1 matrices. The requirement M ∏ 1
makes it so that the estimate kIvk∞ ≤ Mkvk∞ is valid for the new member of the
set, as well as the old members. The steps for imitating (b) and (c) are then essentially
the same as before except that m is replaced by m − 1 and N is sometimes replaced
by N + 1.
10. The crux of thematter is to show that if {ui, j (x, y)} solves the Cauchy problem

for the first-order system, then ui, j (x, y) = Di
x D

j
yu0,0(x, y) for i+ j ≤ m and hence

u0,0(x, y) solves the mth-order equation. The proof proceeds by induction on j .
The case j = 0 is okay because the first-order system has Dxui,0 = ui+1,0 for
i < m. Suppose the identity holds for some j . Then Dxui, j+1 = Dyui+1, j from
the system, and this is = DyDxui, j by induction. Hence Dx (ui, j+1 − Dyui, j ) =
0, and we obtain ui, j+1 − Dyui, j = c(y). Put x = 0 and get ui, j+1(0, y) =

D j+1
y f (i)(y) = DyD

j
y f (i)(y) = Dyui, j (0, y). Therefore c(y) = 0, and ui, j+1 =

Dyui, j = Di
x D

j+1
y u0,0. This completes the induction.

11. The second index ( j in Problem 10) is replaced by an (N − 1)-tuple α =
(α1, . . . , αN−1). If β 6= 0, the equation for Dxui,β is Dxui,β = Dyj ui,α , where j
is the first index for which αj 6= 0 and where α is obtained from β by reducing the
j th index by 1. If β = 0, the equations are as in Problem 10. The Cauchy data
are ui,β(0, y) = Dy f (i)(y) except when (i, β) = (m, 0), and they are the data of
Problem 10 when (i, β) = (m, 0). The argument now inducts on β1, . . . , βN−1, and
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the functions c(y) that appear are of the form c(y1, . . . , yN−1). The Cauchy data are
for x = 0, and we get an equation c(y1, . . . , yN−1) = 0 in one step in each case.
12. The equations Dxui, j+1 = Dyui+1, j involve first partial derivatives in the y

directionwith coefficient 1, and Dxui,0 = ui+1,0 involves an undifferentiated variable
with coefficient 1. The equation for Dxum,0 involves a linear combination of variables
and first partial derivatives in the y direction of variables, plus the term Fx , which is
an entire holomorphic function of (x, y). So the equations of the first-order system
are as in Problems 6–9.

Chapter VIII

1. What needs checking is that the two charts are smoothly compatible. The
set M∑1 ∩ M∑2 is Sn − {(0, . . . , 0,±1)}, and the image of this under ∑1 and ∑2 is
Rn−{(0, . . . , 0)}. Put yj = xj/(1−xn+1), so that ∑−1

1 (y1, . . . , yn) = (x1, . . . , xn+1).
Then

∑2 ◦ ∑−1
1 (y1, . . . , yn) = (x1/(1+ xn+1), . . . , xn/(1+ xn+1))

= (y1(1− xn+1)/(1+ xn+1), . . . , yn(1− xn+1)/(1+ xn+1)).

To compute (1 − xn+1)/(1 + xn+1), we take |x | = 1 into account and write 1 =Pn+1
j=1 x2j = x2n+1+

Pn
j=1 y2j (1−xn+1)2. Then

Pn
j=1 y2j = (1−x2n+1)/(1−xn+1)2 =

(1+ xn+1)/(1− xn+1), and

∑2 ◦ ∑−1
1 (y1, . . . , yn) =

°
y1

±Pn
j=1 y2j , . . . , yn

±Pn
j=1 y2j

¢
.

The entries on the right are smooth functions of y since y 6= 0, and the two charts are
therefore smoothly compatible.
3. If it is σ -compact, it is Lindelöf. If it is Lindelöf, countably many charts suffice

to cover X . If there is a countable dense set, then we can choose one chart for each
member of the dense set, and these will have to cover X . This proves (a). For (b),
each chart has a countable base, and the union of these countable bases, as the chart
varies, is a countable base for X .
4. For (a), multiplication is given by polynomial functions, which are smooth.

Inversion, according to Cramer’s rule, is given by polynomial functions and division
by the determinant, and inversion is therefore smooth.
For (b), we have

eAg f = (dlg)1(A)( f ) = A( f ◦ lg) = A( f (g · )) =
P

i, j
Ai j @( f (g · ))

@xi j (1)

=
P

i, j
Ai j

P
r,s

@ f
@xrs (g)

@((gx)rs)
@xi j (1) =

P

i, j,r,s
Ai j @ f

@xrs (g)griδs j

=
P

j,r,s
(gA)r jδs j

@ f
@xrs (g) =

P

r,s
(gA)rs

@ f
@xrs (g).
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For (c), the condition for smoothness, by Proposition 8.8, is that all eAxi j be smooth
functions. Part (b) gives eAxi j (g) = eAg(xi j ) =

P
r,s(gA)rsδirδjs = (gA)i j =P

k gik Ak j , and the right side is a smooth function of the entries of g. For the
left invariance, let F = lh , and put g0 = F−1(g) = h−1g. We are to check
that (dF)g0(eAg0)( f ) = eAg( f ) if f is defined near g. The left side is equal to
eAg0( f ◦ lh) = ((dlg0)1(A))( f ◦ lh) = (dlh)g0(dlg0)1(A)( f ), and the right side is
eAg( f ) = (dlg)1(A)( f ). These two expressions are equal by Proposition 8.7.
Parts (d) and (e) amount to the same thing. For (d), the question is whether

eAg0 exp t A f = (dc)t
° d
dt

¢
( f ). The right side is d

dt f (g0 exp t A), and that is why (d)
and (e) amount to the same thing. The left side is

P
r,s(g0(exp t A)A)rs

@ f
@xrs (g0 exp t A)

by (b), and this expression equals d
dt f (g0 exp t A) by the chain rule and the formula

d
dt exp t A = (exp t A)A known from Basic.
5. For (a), fix l. Choose, for each p in Ll , a compatible chart about p such that the

closure of the domain of the chart is a compact subset of Ul . The domains of these
charts form an open cover of Ll , and we extract a finite subcover. Taking the union
of such subcovers on l, we obtain the atlas {∑α}.
For (b) and (d), the solution will be a translation into the language of smooth

manifolds of a proof given in introducing Corollary 3.19: In (b), let the domains of
the charts constructed at stage l be M∑1, . . . ,M∑r . Lemma 3.15b of Basic constructs
an open cover {W1, . . . ,Wr } of Ll such thatW cl

j is a compact subset ofM∑j for each j .
A second application of Lemma 3.15b of Basic produces an open cover {V1, . . . , Vr }
of Ll such that V clj is compact and V

cl
j ⊆ Wj for each j . Proposition 8.2 constructs

a smooth function gj ∏ 0 that is 1 on V clj and is 0 off Wj . Then
Pr

j=1 gj is > 0
on Ll and has compact support in

Sr
j=1 M∑j . If we write {ηα} for the union of the

sets {g1, . . . , gr } as l varies, then the functions ϕα = ηα

±P
β ηβ have the required

properties.
For (c), we apply (b) to the smoothmanifoldU . The construction in (b) is arranged

so that about each point is an open neighborhood on which only finitely many ϕα’s
can be nonzero. As this point varies through K , the open neighborhoods cover K ,
and there is a finite subcover. Therefore only finitely many ϕα’s have the property
that they are somewhere nonzero on K . The sum of this finite subcollection of all
ϕα’s is then a smooth function with values in [0, 1] that is 1 everywhere on K and
has compact support in U .
For (d), we argue as in (b) with two applications of Lemma 3.15b of Basic to

produce an open cover {V1, . . . , Vr } of K such that for each j , V clj is a compact
subset of Wj , whose closure is a compact subset of Uj . Part (c) constructs a smooth
function gj ∏ 0 that is 1 on V clj and is 0 offWj . Then g =

Pr
j=1 gj is> 0 everywhere

on K and has compact support in
Sr

j=1Uj . A second application of (c) produces a
smooth function h ∏ 0 on M with values in [0, 1] that is 1 on K and is compactly
supported within the set where g > 0. Then g + (1− h) is smooth and everywhere
positive on M , and the functions ϕj = gj/(g+ (1− h)) have the required properties.
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6. In the notation of Proposition 8.6, the matrix
h@Fi
@uj

Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

i
,

which is of size k-by-n, has rank k. Choose k linearly independent columns. Possibly
after a change of notation that will not affect the conclusion, we may assume that
they are the first k columns. Call the n functions y1 ◦ F, . . . , yk ◦ F, xk+1, . . . , xn by

the names f1, . . . , fn . These are in C∞(M∑) and have matrix
h@( fi ◦ ∑−1)

@uj

i
of the

block form 



h@Fi
@uj

i h@Fi
@uj

i

0 1





at the point where (u1, . . . , un) = (x1(p), . . . , xn(p)). The upper left corner is
invertible by the condition of rank k, and hence the whole matrix is invertible. Then
the result follows from Proposition 8.4.

7. In the notation of Proposition 8.6, the matrix
h@Fi
@uj

Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

i
,

which is of size k-by-n, has rank n. Choose n linearly independent rows. Since
Fi = (yi ◦ F) ◦ ∑−1, Proposition 8.4 shows that the corresponding functions yi ◦ F
generate a system of local coordinates near p. This proves (a).
8. A little care is needed with the definition of measure 0 for a manifold because

the sets of measure 0 that arise are not shown to be Borel sets. However, for points
in the intersection of the domains of two charts ∑1 and ∑2, the change-of-variables
theorem shows that the two versions of Lebesgue measure near the two images in
Euclidean space of a point are of the form dx and (∑1 ◦ ∑−1

2 )0(x) dx , and the sets of
measure 0 are the same for these.
The solution of the problem as written is a question of localizing matters so that

the Euclidean version of Sard’s Theorem (Theorem 6.35 of Basic) applies. For each
point p in M , one can find a chart ∑p with p ∈ M∑p and a chart ∏p with F(p) ∈ N∏p

such that F(M∑p ) ⊆ N∏p . The Euclidean theorem applies to ∏p ◦ F ◦ ∑−1
p . The

separability implies that countably many of these M∑p ’s cover M . We get measure 0
for the critical valueswithin each F(M∑p ), and the countableunionof sets ofmeasure0
has measure 0.
9. Here we localize and apply Corollary 6.36 of Basic.
10. The reflexive condition followswith h = 1, and the transitive condition follows

by using the composition of two h’s. Strictly equivalent is the condition “equivalent”
with h = 1.
11. Substitution of the definitions gives

ḡk j (x)gji (x) = φ0
k,x

−1 ◦ hx ◦ φj,x ◦ φ−1
j,x ◦ φi,x = φ0

k,x
−1 ◦ hx ◦ φi,x = ḡki (x).

This proves the first identity, and the second identity is similar.
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12. For (a), if x lies inM∑j ∩M∑ 0
k
and y lies inFn , then the onlyway that h can have

the correct mapping function x 7→ ḡk j (x) is to have ḡk j (x)(y) = φ0
k,x

−1hφj,x (y).
Therefore we must have h(φj,x (y)) = φ0

k,x ḡk j (x)(y), and h is unique.
In (b), if h exists, then it is apparent from the formula for it that it is a diffeomor-

phism. In this case the function h−1 exhibits the relation “equivalent” as symmetric.
13. For (a), if x lies also in M∑i ∩ M∑ 0

l
, then we have

pj (b) = φ−1
j,x (b) = φ−1

j,x φi,xφ
−1
i,x (b) = gji (x)(pi (b))

and hence

hkj (b) = φ0
k,x ḡk j (x)(pj (b)) = φ0

k,x ḡk j (x)gji (x)(pi (b)) = φ0
k,x ḡki (x)(pi (b))

= φ0
l,x g

0
lk(x)ḡki (x)(pi (b)) = φ0

l,x ḡli (x)(pi (b)) = hli (b).
(∗)

The sets p−1(M∑j ∩ M∑ 0
k
) are open and cover B as j and k vary, and the consistency

condition (∗) therefore shows that the functions hkj piece together as a single smooth
function h : B → B0.
For (b), let y be in Fn . Put b = φj,x (y) in the definition of hkj (b), so that

y = φ−1
j,x (b) = pj (b), and then we have

φ0
k,x

−1hφj,x (y) = φ0
k,x

−1h(b) = φ0
k,x

−1φ0
k,x ḡk j (x)(pj (b)) = ḡk j (x)(y).

This shows that the functions x 7→ ḡk j (x) coincide with the mapping functions of h.

Chapter IX

1. The formula is µ|x | = µx + µ∨
x − 1

2µ({0}), where µ∨
x is the measure on R

defined by µ∨
x (A) = µx (−A).

2. Both sides equal
R
ƒ 8(x1, . . . , xn) dP .

3. For (a), we have σ 2n =
R

R (t − E)2 dµn(t) ∏
R
|t−E |∏δ (t − E)2 dµn(t) ∏

δ2P({|yn − E | ∏ δ}).
For (b), we calculate

|E(8(yn)) − 8(E)| =
Ø
Ø R

R [8(t) − 8(E)] dµn(t)
Ø
Ø ≤

R
R |8(t) − 8(E)| dµn(t)

=
R
|t−E |<δ +

R
|t−E |∏δ ≤

R
|t−E |<δ ≤ dµn(t) + 2MP({|yn − E | ∏ δ})

≤ ≤ + 2Mσ 2n δ−2.

In (c), let ≤ > 0 be given, and choose the δ of continuity for 8 and ≤. Then the
calculation in (b) applies. Since lim σ 2n = 0, the right side is≤ 2≤ for n large enough.
For such n, we have |E(8(yn)) − 8(E)| ≤ 2≤.
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In (d), the argument of (c) depends only on the continuity of8 at E and the global
boundedness of 8. In the situation of Theorem 9.7 with independent identically
distributed random variables xn , we put sn = x1 + · · · + xn and take yn = 1

n sn . We
saw that if E(xk) = E and Var(xk) = σ 2, then E(yn) = E and Var(yn) = 1

n σ 2.
Thus (c) applies.

4. Part (a) is a direct application of the Kolmogorov Extension Theorem. One
starts with the measure on R1 that assigns mass p to {1} and mass 1 − p to {0},
forms the n-fold product to model n independent tosses, and obtains the space for a
sequence of tosses from the Kolmogorov Theorem.
In (b), the mean is p · 1 + (1 − p) · 0 = p. The computation for the variance is

p · 12 + (1− p) · 02 − p2 = p − p2 = p(1− p).
For (c), the answer is the number of ways of obtaining k heads and n − k tails in

n tosses, namely
°n
k
¢
, times the probability of getting a specific sequence of k heads

and n − k tails, which is pk(1− p)n−k .
In (d), we put yn = 1

n sn . In view of (c), E(yn) is
Pn

k=08
° k
n
¢°n
k
¢
pk(1 − p)n−k ,

and (a) shows that8(E) is8(p). The variance of yn is p(1−p)
n , in view of (b); since

this tends to 0, Problem 3c is applicable and establishes the limit formula.
For (e), we go over the solution of Problem 3. The relevant facts for making

an estimate that is uniform in p are that 8 is uniformly continuous and that the
convergence of the variance to 0 is uniform in p.

6. For the regularity any set in F is in some Fn . The sets in Fn are of the form
eE = E ×

°×∞
k=n+1Xk) with E ⊆ ƒ(n) and ∫(eE) = ∫n(E). Given ≤ > 0, choose

K compact and U open in ƒ(n) with K ⊆ E ⊆ U and ∫n(U − K ) < ≤. In ƒ, eK is
compact, eU is open, eK ⊆ eE ⊆ eU , and ∫(eU − eK ) < ≤.

7. Let E =
S∞

n=1 En disjointly in F. Since ∫ is nonnegative additive, we haveP∞
n=1 ∫(En) ≤ ∫(E). For the reverse inequality let ≤ > 0 be given. Choose K

compact andUn openwith K ⊆ E , En ⊆ Un , ∫(Un−En) < ≤/2n , and ∫(E−K ) < ≤.
Then K ⊆

S∞
n=1Un , and the compactness of K forces K ⊆

SN
n=1Un for some N .

Then ∫(E) ≤ ∫(K ) + ≤ ≤ ∫
°SN

n=1Un
¢
+ ≤ ≤

PN
n=1 ∫(Un) + ≤ ≤

PN
n=1 ∫(En) +

2≤ ≤
P∞

n=1 ∫(En) + 2≤. Since ≤ is arbitrary, ∫(E) ≤
P∞

n=1 ∫(En).

8. The key is that ƒ is a separable metric space. Every open set is therefore the
countable union of basic open sets, which are in the various Fn’s.
10. The collection of subsets of ƒ that are of type J for some countable J is a

σ -algebra containingA0, and thus it containsA.
11. Continuity cannot be ensured by conditions at only countably many points,

as we see by altering the value of the function at a point not in a prospective such
countable set of points.

12. A nonempty set of A that is contained in C must be defined in terms of what
happens at countably many points, and no such conditions are possible, just as in the
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previous problem. So the set must be empty. Since ρ∗(C) is the supremum of ρ of
all such sets, we obtain ρ∗(C) = 0.
13. Ifω is inCj but not E , then the uniform continuity ofωmeans thatω

Ø
Ø
J extends

to a member of C . In other words, there is a member ω0 of ƒ that is 0 on J such that
ω + ω0 is in C . Since C ⊆ E , ω + ω0 is in E . The set E is by assumption of type J ,
and therefore the sum of any member of E with a member ofƒ that vanishes on J is
again in E . Hence ω = (ω + ω0) − ω0 is in E , contradiction.
14. Problem 13 shows that the infimumof ρ(E) for all E inA containingC equals

the infimum over all countable J of ρ(CJ ). Under the assumption this infimum is 1.
Thus ρ∗(C) = 1.
15. Proceeding inductively and using the convergence in probability, we can

construct a subsequence {xnk } of {xn}with P(|xnk − x | ≤ 2−k) ≤ 2−k for k ∏ 1. The
series

P∞
k=1 P(|xnk − x | ≤ 2−k) converges, and the Borel–Cantelli Lemma (Lemma

9.9) shows that except for ω in a set Z of measure 0, |xnk (ω) − x(ω)| > 2−k only
finitely often. Thus except when ω is in Z ,

P
k |xnk (ω) − x(ω)| converges. Since

|xnk+1(ω) − xnk (ω)| ≤ |xnk+1(ω) − x(ω)| + |xnk (ω) − x(ω)|

for all k,
P

k |xnk+1(ω) − xnk (ω)| converges. Therefore
P

k(xnk+1(ω) − xnk (ω))

converges. The partial sum of this series through the `th term is xn`+1(ω) − xn1(ω),
and therefore the series

P
k xnk (ω) converges for allω not in Z . Since {xnk } converges

to some random variable almost surely, Proposition 9.12 shows that the convergence
is to x almost surely.
16. Chebyshev’s inequality (Section VI.10 of Basic) shows that

R
X | f |2 dµ ∏

ξ2µ
°
{x

Ø
Ø | f (x)| ∏ ξ}

¢
for all ξ > 0 on any measure space. We apply this with

µ = P and with f = xn −c to obtain ξ2P
°
|xn −c| ∏ ξ

¢
≤ E((xn −c)2) = Var(xn).

The right side tends to 0 as n tends to infinity, and thus P
°
|xn − c| ∏ ξ

¢
tends to 0.

In other words, {xn} tends to c in probability.
17. Take µn to be a unit mass at {n}, and let µ = 0.
18. According to Problem 4, themean is E = p, and the variance is σ = p(1− p).

Thus the result follows directly by substituting into Theorem 9.19.
19. In (a), theBinomialTheoremgives

Pn
k=0

°n
k
¢°

∏
n
¢k°1− ∏

n
¢n−k

=
°

∏
n+(1− ∏

n )
¢n ,

and the right side is just 1. Also
P∞

k=0
∏
k! e

−∏ = e∏e−∏ = 1.
In (b), for each k ∏ 0, we have

pn,∏(k) =
°n
k
¢°

∏
n
¢k°1− ∏

n
¢n−k

=
£ n(n−1)...(n−k+1)

k!
° 1/n
1−∏/n

¢k§
∏k

°
1− ∏

n
¢n

.

With k fixed and n tending to infinity, the factor in brackets tends to 1
k! . Thus

limn pn,∏(k) = 1
k! ∏

ke−∏ = p∏(k). The cumulative distribution function Fxn,∏ of xn,∏
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at each point is the sum of certain values of pn,∏(k), and the cumulative distribution
function of Fx∏ at that same point is the sum of the corresponding values of p∏(k).
Therefore limn Fxn,∏ = Fx∏ pointwise. By definition xn,∏ tends to x∏ in distribution.
In (c), themean is ∏, and the variance is ∏. In fact, we have E(x∏) =

P
k k

∏k

k! e
−∏ =

e−∏∏ d
d∏

°P
k

∏k

k!
¢

= e−∏∏e∏ = ∏. Also

Var(x∏) = E(x2∏) − ∏2 =
P
k2 ∏k

k! e
−∏ − ∏2

= e−∏∏2
P°

k(k − 1) + k
¢

∏k−2

k! − ∏2

= e−∏∏2
° d2
d∏2

e∏
¢
+ e−∏∏

° d
d∏e

∏
¢
− ∏2 = ∏2 + ∏ − ∏2 = ∏.

20. In (a), consider u(s) = log(1 + c/s)s = s(log(s + c) − log s). This has
derivative u0(s) = log(s + c) − log s + s/(s + c) − s/s = log(1+ c/s) − c/(s + c).
Since u00(s) = 1/(s+ c)− 1/s+ c/(s+ c)2 = −c2/(s(s+ c)2) is positive for s > 0,
u0(s) is a strictly decreasing function. By inspection, lims→+∞ u0(s) = 0. Thus
u0(s) > 0 for all s > 0. We conclude that u(s) is an increasing function for s > 0,
and so is its exponential, which is (1+ c/s)s .
In (b), we know that lims→+∞(1+c/s)s = ec, and (a) says that this is an increasing

limit. Taking reciprocals shows that lims→+∞(1+ c/s)−s = e−c, a decreasing limit.
If we put c = t2/2 and s = (n − 1)/2, then we obtain

lim
n→+∞

°
1+ t2

n−1
¢(n−1)/2

= e−t
2/2,

a decreasing limit. The second statement follows because (1 + t2
n−1

¢(n−1)/2
=

c−1n fn(t).
In (c), we see from (b) that for n ∏ 2, (1+ t2

n−1
¢−(n−1)/2 is dominated by the case

n = 2, where the function is (1+ t2)−1/2. Multiplying by (1+ t2)−1/2, we see that
(1 + t2

n−1
¢−n/2

≤ (1 + t2)−1 for n ∏ 2. The function (1 + t2)−1 is integrable, and
thus dominated convergence allows us to conclude that limn

R
R(1 + t2

n−1
¢−n/2 dt =

R
R limn(1 + t2

n−1
¢−n/2 dt . By (b), the right side equals

R
R e

−t2/2 dt , which is
p
2π .

Since
R

R fn(t) dt = 1 for all n, the left side is limn c−1n . Thus limn c−1n =
p
2π .

21. Because of the dominated convergence in the previous problem,
R b
a fn(t) dt

has limit (2π)−1/2e−t2/2 dt , and this is just the statement of the convergence in
distribution.
22–23 and 25. The style of argument for these problems is all the same. In the

case of Problem 22, we have

P(a < x + c < b) = P(a − c < x < b − c) =
R b−c
a−c f (t) dt =

R b
a f (s − c) ds,

and thus the probability distribution of x + c is f (t − x) dt . Similarly in Problem 23
the probability distribution of cx is c−1 f (c−1t) dt , and in Problem 25 the probability
distribution of wn is 1

σ 2
p
2π
e−t2/(2σ 2).
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24. We are to consider 1
σ 2

p
2π
e−(x−µ)2/(2σ 2) ∗ 1

σ 02
p
2π
e−(x−µ0)2/(2σ 02). If we write

out the convolution of the two functions and complete the square in the exponent, we
see that the result is a multiple of some quadratic exponential, hence is normal. The
means have to add, and the independence implies that the variances have to add, by
a computation in Section 4. Thus the probability distribution of the sum has to be
N (µ + µ0, σ 2 + σ 02).
26. The probability distribution ofwn is equal to 1

σ 2
p
2π
e−t2/(2σ 2) for every n, and

we are considering the limit of a constant sequence.

Chapter X

1. Examination of the proof shows that equality can fail only at one step, and
that the inequality at that step step holds by the Schwarz inequality. For two nonzero
functions, equality holds in the Schwarz inequality if and only if the functions are
proportional to one another. Therefore the condition is that t f (t) is proportional to

f 0(t), i.e., that f 0(t) = kt f (t) for some constant k. Solving, we get f (t) = ce
1
2 kt

2
.

This function is in the Schwartz space if and only if Re k < 0.
2. The function f1(t) = t−1 sinπ t vanishes at every integer except 0, and the

Fourier transformF f1 is supported in [− 1
2 ,

1
2 ]. If f2(t) = f1( 12 t), then f1 vanishes at

every half integer except 0, and the Fourier transform is supported in [−1, 1]. Finally
the function f3 with f3(t) = f2(t − 1

2 ) vanishes at every half integer except
1
2 , and

the Fourier transform is supported in [−1, 1]. Thus f3 has the required properties.

3. For (b), write ∫(y) =
NP

k=M
cke−2π iky with cM 6= 0 and cN 6= 0. Then

1 = |∫(y)|2 is a trigonometric polynomial of the form

NP

k=M
cke−2π iky

NP

j=M
cje2π i j y =

NP

k=M

−MP

l=−N
ckc−l e−2π i(k+l)y .

The lowest order exponential that appears is e−2π i(N−M), and it has coefficient
cNcM 6= 0. Since the exponentials are linearly independent, N − M = 0, and
v(y) is a multiple of a single exponential.
4. For (a), define f #(x) = f (−x) for any function f on R. Let Vj be the set of

all f # such that f is in Vj . Then ϕ# and {V #j } form a multiresolution analysis.
Part (b) is routine.
For (c), the idea is that the Daubechies ϕ is constructed using a function L(y)

built from all the roots within the unit disk of a certain polynomial Q, while ϕ#, apart
from an integer translation, arises from the same construction with the corresponding
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L(y) built from all the roots outside the unit disk. In more detail let Q(z) be as in the
construction of ϕ, and define

L1(y) =
Q

|αj |<1
(e−2π iy − αj )

Q

βk

(e−2π iy − βk)
mk .

We set c1 = L1(0)−1, and then L(y) = c1L1(y) is the function L that appears in
Proposition 10.34. For each factor of L1, we have

(e2π iy − α) = αe2π iy(α−1 − e−2π iy) = −αe2π iy(e−2π iy − α−1).

Taking the product of all the factors, we obtain

L#1(y) = c2e2π i py
Q

|αj |>1
(e−2π iy − αj )

Q

βk

(e−2π iy − βk)
mk with c2 6= 0 and p ∈ Z.

Let L2(y) be the product on the right, so that L#1(y) = c2e2π i pyL2(y). Now

m0(y) =
≥1+ e−2π iy

2

¥N
L(y)

implies

m#0(y) =
≥1+ e2π iy

2
¢NL#(y)

= e2π i Ny
≥1+ e−2π iy

2

¥N
L#(y)

= c1e2π i Ny
≥1+ e−2π iy

2

¥N
L#1(y)

= c1c2e2π i(N+p)y
≥1+ e−2π iy

2

¥N
L2(y).

Form the h function that corresponds to m#0. The exponential e
2π i(N+p)y contributes

exactly e2π i(N+p)y to the infinite product, andF−1 carries the exponential to an integer
translation. For the constants we have

1 = L(0) = L#(0) = c1L#1(0) = c1c2L2(0),

and this is the correct normalization to have in the L part of the function m#0. Conse-
quently ϕ# comes from the same construction as ϕ but with the roots αj with |αj | > 1
in place of the roots αj with |αj | < 1, possibly in combination with a translation by
the integer N + p.
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5. Let V0 be the subspace of all functions in L2(R) that are a.e. constant on each
interval

£
n− 2

3 , n+ 1
3
¢
for n ∈ Z. Then the integer translates ofϕ form an orthonormal

basis of V0. We obtain Vj by dilation from V0 as usual, and the resulting sequence
{Vj }j∈Z of spaces forms a multiresolution analysis with ϕ.
6. For (a), we have m0(y) = 1

2 (1+ e4πy) = e−2π iy cos 2πy and

2n sin(2πy/2n)
nQ

j=1
m0(2− j y)

= 2ne−2π iy(
1
2+···+ 1

2n )
≥ nQ

j=1
cos(2πy/2 j )

¥
sin(2πy/2n)

= 2n−1e−2π iy(
1
2+···+ 1

2n )
≥ n−1Q

j=1
cos(2πy/2 j )

¥
sin(2πy/2n−1)

= · · · = 2e−2π iy(
1
2+···+ 1

2n ) cos(2πy/2) sin(2πy/2)

= e−2π iy(
1
2+···+ 1

2n ) sin(2πy).

Therefore

sin(2πy/2n)
2πy/2n

nQ

j=1
m0(2− j y) = e−2π iy(

1
2+···+ 1

2n )
≥ sin 2πy
2πy

¥
.

Letting n tend to infinity shows that

h(y) = e−2π iy
≥ sin 2πy

2π

¥
=

e−2π iy

2i(2π)
(e2π iy − e−2π iy) =

1− e−4π iy

4π iy
= (F I[0,2])(y).

Thus ϕ(x) = I[0,2](x).
For (b), ϕ(x) and ϕ(x−1) are not orthogonal, since they are∏ 0 and their supports

overlap. Hypothesis (iii) is not satisfied, since 12 (1 + e4πy) is not > 0 for |y| ≤ 1
4 ,

merely ∏ 0 .
7. Pm f is meaningful for f in L1(R) by Proposition 10.5. The formula is

Pm f (x) = |Im,k |−1
R
Im,k

f (y) dy for x ∈ Im,k .

Thus
R
Im,k

|Pm f (x)| dx = |Im,k ||Im,k |−1
Ø
Ø R

Im,k
f (y) dy

Ø
Ø ≤

R
Im,k

| f (y))| dy.

Summing on k, we obtain
R

R |Pm f (x)| dx ≤
R

R | f (y)| dy,
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i.e., kPm f k1 ≤ k f k1. To prove the convergence in L
1, we observe from Corollary

10.7 that Pmg tends to g uniformly if g is in Ccom(R). Since the convergence all
takes place within a compact set, Pmg tends to g in L1(R). Given f ∈ L1(R) and
≤ > 0, choose g ∈ Ccom(R) with kg− f k1 < ≤/3. If m is taken large enough so that
kPmg − gk1 < ≤/3, then

kPm f − f k1 ≤ kPm f − Pmgk1 + kPmg − gk1 + kg − f k1
≤ 2k f − gk1 + kPmg − gk1
≤ 2≤/3+ kPmg − gk1 < ≤.

8. From the first formula in the solution of Problem 7, we have
R
Im,k

Pm f (x) dx =
R
Im,k

f (x) dx . Summing on k then gives
R

R Pm f (x) dx =
R

R f (x) dx . Thus the
continuous linear functional `( f ) =

R
R f (x) dx on L1(R) has the property that

`(Pm f ) = `( f ). If f is a function in L1(R) for which Pm f tends to 0 in L1(R),
then the continuity of ` says we must have limm `(Pm f ) = 0 and hence `( f ) = 0.
Since `( f ) 6= 0 for f = I[0,1], limm→−∞ Pm f cannot be 0 for f = I[0,1].
9. The value of Pm f ( 13 ) for this f is 2

mØ
ØIm,k ∩ [0, 13 )

Ø
Ø, where

Im,k = {y ∈ R | k ≤ 2m y < k + 1},

and 1
3 is to be in Im,k . The binary expansion of 13 comes from the geometric series

1
3 = 1

4 + 1
42 + 1

43 + · · · , and the sets Im,k containing 1
3 are determined as follows.

If m = 2r is even, then k ≤ 4r/3 < k + 1 for k = 4r ( 14 + 1
42 + · · · + 1

4r ). The y’s
that are in Im,k are the ones with k ≤ 4r y < k + 1, the smallest of which is 4−r k,
i.e., y = 1

4 + 1
42 + · · · + 1

4r . The interval of such y’s is to be intersected with [0,
1
3 ),

and the measure of the result is 13 − ( 14 + 1
42 + · · · + 1

4r ) = 1
3 − 1−4−r

3 = 4−r/3. The
normalization by the factor 2m in the formula for Pm f ( 13 ) then yields 1/3. So the
value of Pm f ( 13 ) is

1
3 for every even m. A similar computation for odd m gives 23 .

Therefore
lim inf Pm( 13 ) = 1

3 < 2
3 = lim sup Pm( 13 ).

10. Let f be in L2(R)with support in [0, 1]. We can write out the one-sided Haar
series expansion of f as

f (x) =
P

k∈Z

° R
R f (y)ϕ0,k(y) dy

¢
ϕ0,k(x) +

∞P

j=0

P

k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x).

In the first term,
R

R f (y)ϕ0,k(y) dy = 0 for k 6= 0, since f is supported in [0, 1]. In
the second term,

R
R f (y)√j,k(y) dy = 0 unless√j,k is supported in [0, 1]. The result

is that

f (x) =
° R

R ϕ(y) dy
¢
ϕ(x) +

P

j∏0, k∈Z,

√j,k supported in [0,1]

° R
R √j,k(y) dy

¢
√j,k(x).
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This proves that every member of L2([0, 1]) is a limit of linear combinations of the
stated restrictions of functions. The restrictions are orthonormal as well, and hence
they form an orthonormal basis.
11. Let f (x) = f (2x) + f (2x − 1), and let bf = F f . Taking Fourier transforms,

we get

bf (y) =
R

R f (2x)e−2π i xy dx +
R

R f (2x − 1)e−2π i xydx

= 1
2
R

R f (x)e−2π i x
1
2 y dx + 1

2
R

R f (x)e−2π i(x+1)
1
2 y dx

= 1
2

bf ( 12 y) + 1
2e

−π iy bf ( 12 y)

= 1
2 (1+ e−π iy) bf ( 12 y)

= 1
4 (1+ e−π iy)(1+ e−π iy/2) bf ( 14 y)

= . . .

= e−π iy/2 cos(πy/2)e−π iy/4 cos(πy/4) · · · e−π iy/2n cos(πy/2n) bf (2−n y).

Thus

bf (y) sin(πy/2n)

= e−π iy/2 · · · e−π iy/2n cos(πy/2) cos(πy/4) · · · cos(πy/2n−1) sin(πy/2n−1) 12
× bf (2−n y)

= e−π iy( 12+
1
4+···+ 1

2n ) cos(πy/2) sin(πy/2) 1
2n−1

bf (2−n y),

and we obtain

bf (y)
sin(πy2−n)

2−n = e−π iy( 12+
1
4+···+ 1

2n ) sin(πy) bf (2−n y).

Dividing both sides by πy, we let n tend to infinity with y fixed, and the result is

bf (y) =
e−π iy sin(πy)

πy
bf (0),

since bf is continuous at 0. We can rewrite this equality as

bf (y) =
1− e−2π iy

2π iy
bf (0) = (FI[0,1](y) bf (0).

Therefore we can conclude that f is a multiple of I[0,1].
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12. Taking the inner product of both sides with 8(2x − n) and using the orthog-
onality of the functions8(2x − k) for k ∈ Z, we obtain

R
8(x)8(2x − n) dx = an

R
R 8(2x − n)2 dx = 1

2an
R

R 8(x)2 dx = 1
2an.

So

an = 2
R

R 8(x)8(2x − n) dx = 2
R 1/2
−1/28(2x − n) dx =

R 1
−18(x − n) dx .

We conclude that a0 = 1 and a−1 = a1 = 1
2 . The given identity thus has to be

8(x) = 8(2x) + 1
28(2x − 1) + 1

28(2x + 1).

For 12 < x < 3
4 , the left side is 0 while the right side is 0+ 1

2 + 0 = 1
2 , contradiction.

13. Since ∫ is of class Cm , the derivatives of P must match those of ∫ through
order m at x = 0 and x = 1. Then P(k(0) = 0 for 0 ≤ k ≤ m, P(1) = 1, and
P(k)(1) = 0 for 1 ≤ k ≤ m. The first of these conditions says that P(x) is divisible
by xm+1. Thus P is admissible.
14. Thedifferenceof twoadmissiblepolynomials is divisibleby xm+1 and (x−1)m ,

hence by xm(x − 1)m . Thus it has degree ∏ 2m + 2. This proves uniqueness of
admissible polynomials of degree ≤ 2m + 1. If P is admissible, then the Euclidean
algorithm allows us to write P(x) = A(x)xm+1(x − 1)m+1 + B(x) with B = 0 or
deg B ≤ 2m + 1, and B will be admissible. This proves existence of admissible
polynomials of degree≤ 2m+1 under the assumption that an admissible polynomial
of some degree exists.
15. If P(x) is admissible, then so is 1− P(1− x). The uniqueness in Problem 14

forces P(x) + P(1− x) = 1.
16. For (a), the Binomial Theorem gives

(1− z)m+1 =
m+1P

k=0
(−1)k

µ
m + 1
k

∂
zk

=
pP

k=0
(−1)k

µ
m + 1
k

∂
zk + [z p+1]

=
pP

q=0
(−1)p−q

µ
m + 1
p − q

∂
z p−q + [z p+1],

the last equality following after the change of indices k = p − q.
For (b), let D = d

dz . The binomial series, convergent for |z| < 1, is

(1− z)−(m+1) =
∞P

k=0

1
k!

°
Dk(1− z)−(m+1)¢(0)zk

= 1+
∞P

k=1

1
k! (m + 1)(m + 2) · · · (m + k)zk

=
∞P

k=0

µ
m + k
k

∂
zk,
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and the conclusion follows.
For (c), we multiply the results of (a) and (b) and obtain

1 = (1− z)m+1(1− z)−(m+1)

=
≥ pP

l=0
(−1)p−l

µ
m + 1
p − l

∂
z p−l

¥≥ pP

k=0

µ
m + k
k

∂
zk

¥
+ [z p+1].

Equating the coefficients of z p on the two sides of the equation gives the desired
result, since the z p term in the product arises exactly when k = l.

17. For (a), we set f (x) = xm+1 and g(x) =
mP

k=0

°m+k
k

¢
(1− x)k . Then we have

DpP(x) =
pP

q=0
Dp−q(xm+1)Dqg(x)

with

Dp−q(xm+1) = (m + 1)(m)(m − 1) · · · (m − p + q + 2)xm+1−p+q

Dp−q(xm+1)(1) =
(m + 1)!

(m − p + q + 1)!

Dqg(x) =
mP

k=0
(−1)qk(k − 1) · · · (k − q + 1)(1− x)k−q

Dqg(1) =

µ
m + q
q

∂
q!(−1)q .

So

DpP(1) =
pP

q=0

µ
p
q

∂
(m + 1)!

m − p + q + 1)!

µ
m + q
q

∂
(−1)qq!

=
pP

q=0

p!
q!(p − q)!

µ
m + 1
p − q

∂
(p − q)!

µ
m + q
q

∂
q!(−1)q

= p!
pP

q=0
(−1)q

µ
m + 1
p − q

∂µ
m + q
q

∂
.

For (b), we compute P(1) from (a)with p = 0 and obtain P(1) = 0!
°m+1
0

¢°m+0
0

¢
=

1. We compute P(p)(1) for 1 ≤ p ≤ m from (a) with p > 0 and obtain

P(p)(1) = p!
pP

q=0
(−1)q

µ
m + 1
p − q

∂µ
m + q
q

∂

= (−1)p p!
≥ pP

q=0
(−1)p−q

µ
m + 1
p − q

∂µ
m + q
q

∂¥
.
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The sum in parentheses on the right side is 0 by Problem16c, and thus P(p)(1) = 0 for
p > 0. The polynomial P is manifestly divisible by xm+1, and thus it is admissible.
Since P has degree2m+1, Problems14 and15 show that P is usable as the polynomial
in the definition of the Meyer wavelet of index m.
18. It is enough to treat the scaling function ϕ, since the wavelet equation shows

that √ is a linear combination of the functions ϕ1,k . We have

kϕk2Hs =
R
|y|≤1 |(Fϕ)(y)|2(1+ y2)s dy +

∞P

j=1

R
2 j−1≤|y|≤2 j |(Fϕ)(y)|2(1+ y2)s dy.

Since (1+ y2)s ≤ 2s for |y| ≤ 1, the first term on the right side is ≤ 2s
R

R |Fϕ|2 dy
and is harmless. The sum on the right side is

≤
∞P

j=1
2 j

≥
2N−1
p

πN

¥
(
p
4πN )− j (1+ 22 j )s,

and this is finite by the ratio test if the equal quantities

∞P

j=1
2 j (

p
4πN )− j 22s j =

∞P

j=1
(
p

πN )− j (4s) j

are finite, and in turn these quantities are finite if 4s <
p

πN . Taking log2 of both sides
shows that a sufficient condition for finiteness is that s < 1

4 log2(πN ), as required.
19. Problem 12c from Chapter III says that the members of Hs(R) are of class

Cm if s > 1
2 + m. Thus we want 12 + m < 1

4 log2(πN ) or

m < 1
4 log2(πN ) − 1

2 = 1
4
°
log2(πN ) − log2 4

¢
= 1

4 log2(πN/4).
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INDEX OF NOTATION

See also the list of Notation and Terminology on pages xix–xxii. In the list below,
items are alphabetized according to their key symbols. For letters the order is
lower case, italic upper case, Roman upper case, script upper case, blackboard
bold, and Gothic. Next come items whose key symbol is Greek, and then come
items whose key symbol is a nonletter. The last of these are grouped by type.

ba, 153
A∗

m, 153
AQ, 271
( · )c, 266
ck, 96
C∞(E, C), C∞(E, R), 324
C∞
com(U), 131

C+
com(G), 226

C∞
K , 180

Cp(M), 327
C 0p , C 1p , 345
d, 368
d(α), 250
dx, 237
dl x, dr x, 230
(dF)p, dFp, dF(p), 330
Dj , 55
Dα, 55
P(D), 284
P(x, D), 185
Q(D), 55
D 0(M), 352
D 0(U), 180
Eτ , 260
E(x), 379
E 0(M), 352
E 0(U), 114
Fx , 380

AF , PF , 393
F, 436
g f, f g, 222
gx, xg, 222
gµ, µg, 222
g∑ 0∑( · ), 338
g∑(x), 351
G tr, 355
G∑ , 362
G/H, 214
GL(N , C), 213
GL(N , F), 338
GL(N , R), 213, 223, 371
GLC(V ), 241
G, 310, 357, 361
Hs, 63, 100
Hs
K , 366

Hs
com(M), Hs

loc(M), 366
aH, 214
G/H, 214
Hn(x), 32
H( f, ϕ), 226
H p(R2+), 101
H, 236
Hp(RN+1

+ ), 81
Jm, 242, 490
Jn(r), 12
l, 256
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608 Index of Notation

`ϕ, 227
L , 501
L(u), 19
L∗(v), 20
L p([0, 1]), 0 < p < 1, 109
L p(G), 237
L2k(T N ), 103
L p
k (U), 63

L1com(M, µg), L1loc(M, µg), 352
LAP(G), 272
L, 500
m0, 455
m1, 456
M∑ , eM∑ , 322
M(L2(S, µ)), 160
N (µ, σ 2), 413
O(N ), 218
pt(x, dy), 392
P, 377
P(D), 284
P(x, D), 185
P(x, t), Pt(x), 80
P(x, 2π iξ), 287
Pj , 470
Pm(x, 2π iξ), 287
Pm(t), 16
Pr (θ), 15
PN , 501
Q(D), 55
Qp, 270
r, 257
r(a), 150
R(∏), 150
RN+1

+ , 80
s(ω), 420
sgn σ, 242
sing supp u, 303
support( · ), 192
Sm1,0(U), S−∞

1,0 (U), 307
Sm1,0,0(U ×U), S−∞

1,0,0(U ×U), 356
SL(2, R), 236, 268

SL(N , F), 218
SO(N ), 218, 264
Sp(N , F), 218
SU(2), 268
S 0(RN ), 59
Sn, 242
t (ω), 420
( · )tr, 188
T N , 102
Tf , 187, 352
T (M), 331, 344
T (M, R), T (M, C), 344
T ∗(M), 344, 345
T ∗(M, R), 355
T ∗(M, R)×, 364
Tp(M), 328
T ∗
p (M), 345
Tr L , 51, 249
uxt , 2
aU, Ub, 213
UV, U−1, 213
U(N ), 218
V0, 454
{Vj }∞j=−∞, 454
x̄(ω), 420
xj (q), 323
dx, 237
ϕx , 190
ZN , 292
Zp, 270

Greek
|α|, 55
α!, 55
Dα, 55
1∞, 477
m∞, 488
m∞0,k, 482
0(x), 420
δ, 206
δg, 489
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1, 2, 276, 480
1(g), 230
12m, 493
1G(t), 232
εh, 489
∑ : M∑ → eM∑ , 322
dµ(gH), 235
µg, 351
µx , 379
µx1,...,xN , 381
∫, 472
π, 338
[−π, π]N , 292
σ(a), 150
σL(p, ξ), 355
σ∑(x, ξ), 364
ϕ, 454
ϕj,k, 454
ϕx , 190, 409
φ∑, 338
8, 413
f 8, 221
µ8, 221
8( f ), 257
χ2(k), 424
√, 455, 456
ƒ, 377

Arrows
a.s.

−→, 403
P

−→, 403
L

−→, 403

Norms
k · kHS, 47
k · kHp

, 81
k · kHs , 100
k · kK ,p, 113
k · kL p

k
, 63

k · kL2k(T N )
, 103

| · |p, 269
k · kp,α, 180
k · kP,Q, 56
k · kα,β, 180

Other unary operations
@U, 61
ba, 153
f ∨, T∨, 189
f #, f ##, 234

Binary operations
hT, ϕi, 59, 181
K1 − K2, xix, 129
f ∗ h, 237
⊕, 247
U t V,

F
i Wi , 335

∼, 357
ϕ1 ⊗ ϕ2, 361

Other symbols
1, 214
@̄, 369
@
@ z̄ , 276£

@
@xj

§
p, 328
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about a point, 322
absolutely uniform convergence, 6
adele, 271
adjoint, formal, 20
Alaoglu’s Theorem, 120, 146
preliminary form, 81, 82

algebra
associative, 121
Banach, 122, 146
commuting, 161
multiplication, 160

almost periodic, 272, 273
amplitude, 356
Approximation Theorem, 255, 267, 274
Artin product formula, 270
Ascoli’s Theorem, 145
associated Legendre equation, 16
associative algebra, 121
Atiyah–Singer Index Theorem, 369
atlas, 322

B-spline, 478, 493
Baire Category Theorem, 114, 264
Baire set, xxvi
Banach algebra, 122, 146
band-limited, 440
base space, 338
basic separation theorem, 127
Battle–Lemarié degree, 483, 495
Battle–Lemarié scaling function, 495
Battle–Lemarié wavelet, 483, 495
Beltrami equation, 94
Bernstein polynomial, 430
Bessel function, 12, 31
Bessel potential, 100, 543
Bessel’s equation, 12
binomial distribution, 432
biorthogonal wavelet, 536
blocking, 442

Bohr compactification, 272
Borel set, xxvi
Borel–Cantelli Lemma, 398
boundary data, 2
boundary of open set, 61
boundary values, 2
boundary-value problem, 2, 277
bounding point, 126
Brouwer Fixed-point Theorem, 145
Brownian motion, 391, 431
bundle
coordinate vector, 338
cotangent, 344
space, 338
tangent, 344
vector, 341

C∗ algebra, 157
Calderón–Zygmund decomposition, 86
Calderón–Zygmund Theorem, 83, 102, 370
Cantor diagonal process, 225
Cantor measure, 431
Cauchy data, 279, 280
Cauchy problem, 284, 320
Cauchy–Kovalevskaya Theorem, 278, 279, 281,

282, 318, 320
Cauchy–Peano Existence Theorem, 145
Cauchy–Riemann equations, 92, 276
Cauchy–Riemann operator, 287, 318, 349
Central Limit Theorem, 413
chain rule, 331
character, 250
group, 250
multiplicative, 242
sign, 242

characteristic, 283
characteristic function, 409
chart, 322
atlas of, 322
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compatible, 322
Chebyshev’s inequality, 397
chi-square distribution, 424
circled set, 132
closed convex hull, 140
closed subgroup, 217
Cohen–Daubechies–Feauveau family, 536
coin tossing, 376
commuting algebra, 161
compact group, 217
compact operator, 34
compact ring, 270
compactification
Bohr, 272
one-point, 124
Stone–Čech, 125

compatible chart, 322
completely continuous, 34
complex tangent bundle, 344
compression, 442, 535
conditional probability, 383
cone condition, 67
constant coefficients, 279, 282, 292, 300
continuity
complete, 34
left uniform, 273
strong, 256
uniform, 219
weak, 267

continuous dual, 114
contragredient representation, 245, 266
convergence
absolutely uniform, 6
almost surely, 403
in distribution, 404
in law, 404
in probability, 398, 403
uniform on compact sets, 75
with probability 1, 403

convex set, 125
convolution
of distributions, 192, 195
of functions, 186, 237
of measures, 189

coordinate function, 338
coordinate transformation, 338
coordinate vector bundle, 338
equivalence, 373

cotangent bundle, 344

countable, xxiii
critical point, 372
critical value, 372
cumulative distribution function, 38
curve, 333
integral, 333

cyclic vector, 162

Daubechies scaling function, 513, 544
Daubechies wavelet, 498, 513, 544
order, 498, 513, 516

de Moivre and Laplace, 432
de Rham’s Theorem, 368
decomposition algorithm, 533
degree of B-spline, 483
degree of Battle–Lemarié wavelet, 483, 495
degree of homogeneity, xxiv, 83, 355
degree of representation, 250
degree of spline, 476
degrees of freedom, 420, 424
density, 381
derivation, 328
derivative
transverse, 209
weak, 62, 103, 290

diffeomorphism, 326
differential, 330
differential 1-form, 348
smooth, 348

differential operator, linear, 19, 353
transpose of, 20, 353

differentiation of distribution, 188
dimension of smooth manifold, 322
Dirac distribution, 201
Dirac operator, 369
direct limit, 139, 177
direct sum, 247
directed system, 177
Dirichlet problem, 13, 288
discrete cosine transform, 537
discrete group, 213
discrete wavelet transform, 529
disjoint union, 335
distribution, 179, 290, 352
arbitrary, 180
binomial, 432
chi-square, 424
convolution with, 192, 195
differentiation of, 188
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Dirac, 201
equal to a locally integrable function, 183
equal to a smooth function, 183
Fourier series of, 209
Fourier transform of, 60, 202, 203
gamma, 423
given by function, 187
Gosset’s t , 420
Heaviside, 318
kernel, 310, 357, 361
localization of, 186
normal, 413
of compact support, 114, 352
of random variable, 379
operation on, 187
periodic, 209
Poisson, 432
probability, 379
product with smooth function, 188
Student’s t , 420
support of, 181
supported at {0}, 208
supported on vector subspace, 208
tempered, 58

distribution function, 380
Divergence Theorem, 70

eigenfunction, 19
eigenspace, 36
eigenvalue, 19, 36
eigenvector, 36
elliptic
differential equation, 288
operator, index, 368
pseudodifferential operator, 315, 366

equal to a function, distribution, 183
equivalent coordinate vector bundles, 373
equivalent representations, 244, 259
unitarily, 266

equivalent vector bundles, 373
ergodic measure, 143, 176
essential image, 166
event, 376, 378
exhausting sequence, 64, 113, 350
expectation, 379
expected value, 379
experiment, 418
exponential type, 509
extreme point, 140, 175

F. and M. Riesz Theorem, 102
face, 140
Fatou’s Theorem, 81
Fejér and F. Riesz Lemma, 504
filter, 450, 498
finite-dimensional representation, 241
finite-dimensional topological vector space,

111
formal adjoint, 20
formally self adjoint, 20
Fourier inversion formula for compact group,

267
Fourier series
multiple, 96, 98, 192
of distribution, 209
use in local solvability, 292
use in separation of variables, 5

Fourier transform, 436
of distribution of compact support, 203
of tempered distribution, 60, 202

Franklin wavelet, 483
Fréchet limit, 139
Fréchet space, 139
freezing principle, 285
functional calculus, 167
fundamental solution, 206, 290, 300, 302, 318

gamma distribution, 423
gamma function, 420
Gårding’s inequality, 286
Gelfand transform, 153
Gelfand–Mazur Theorem, 151
general linear group, 213, 371
generalized pseudodifferential operator, 356
transpose of, 356

generating function, 455, 456
germ, 327
Gibbs phenomenon, 438
Gosset, 418
Gosset’s t distribution, 420
Green’s formula, 20, 31, 72, 73, 206
Green’s function, 25, 290
group action, 222
group character, 250

Haar covering function, 226
Haar measure, 223, 232
Haar multiresolution analysis, 454
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Haar scaling function, 444
Haar series expansion
one-sided, 450
two-sided, 449

Haar system, 443, 444, 541
Haar wavelet, 444
Hahn–Banach Theorem, 126
half space
Poisson integral formula, 80
Poisson kernel, 80

Hardy space, 101
harmonic, 2, 69
harmonic measure, 317
harmonic polynomial, 244, 263
heat equation, 2, 6
heat operator, 287
Heaviside distribution, 318
Heaviside function, 318
Helmert matrix, 428
Hermite polynomial, 32
Hermite’s equation, 32
Hermitian matrix, 36
high-pass filter, 450
Hilbert transform, xxvi, 83, 92, 101, 211
Hilbert–Schmidt norm, 47
Hilbert–Schmidt operator, 47
Hilbert–Schmidt Theorem, 22, 25, 42, 43
Hirzebruch–Riemann–Roch Theorem, 369
Hodge theory, 368
Hölder condition, 523
holomorphic polynomial, 243
homogeneous function, xxiv, 83, 355
homogeneous partial differential equation,

1, 276
homogeneous space, 214
homomorphism of topological groups, 213
Hopf maximum principle, 297
hyperbolic, 289

idele, 272
identically distributed, 381
identification space, 335
identity component, 264
identity element, 214
independent events, 384
independent random variables, 385
index
Meyer, 472
of elliptic operator, 368

indicator function, xxv
inductive limit topology, 139, 174
initial data, 2
initial-value problem, 277
integrable locally, 62
integral curve, 333
integral operator, 41
trace of, 98

Interior Mapping Theorem, 173
internal point, 126
invariant subspace, 243, 259
inverse, 149
invertible, 149
involution, 157
irreducible representation, 245, 259
isomorphism of topological groups, 213
isomorphism of topological vector spaces, 106
isotypic subspace, 261

joint probability density, 382
joint probability distribution, 381
JPEG, 442, 536
JPEG 2000, 539

kernel
distribution, 310, 357, 361
of integral operator, 41
Poisson, 15, 80

knot of spline, 477
Kolmogorov Extension Theorem, 394, 430
Kolmogorov’s inequality, 399
Krein–Milman Theorem, 140

Laplace equation, 2, 13
Laplacian, 2, 206, 276, 287
Law of Large Numbers
Strong, 398
Weak, 398

left almost periodic, 272
left coset, 214
left Haar measure, 223
left inverse, 149
left parametrix, 310
left uniform continuity, 273
left-invariant vector field, 371
left-regular representation, 256
Legendre equation
associated, 16
ordinary, 16
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Legendre polynomial, 16, 31
Leibniz rule, 63
Lévy Continuity Theorem, 411
Lewy example, 286, 349
LF topology, 139
Lie group, 349
line segment, 140
linear
differential operator, 19, 353
functional, multiplicative, 122, 148, 152
homogeneous partial differential equation,
276

operator (see operator)
partial differential equation, 1, 276
partial differential operator, 185, 188
topological space, 106

Liouville, 78
local coordinate system, 323, 372
local neighborhood base, 132
local solvability, 292
localization of distribution, 186
locally compact abelian group, 270
locally compact field, 270
locally compact group, 217
locally compact ring, 271
locally compact topological vector space, 111,

265
locally convex, 128
locally integrable, 62
low-pass filter, 450, 498

magnification, 449
manifold, 322
Riemannian, 349
smooth, 322

mapping function, 373
Marcinkiewicz Interpolation Theorem, 95
margin of error, 417
Markov–Kakutani Theorem, 143
matrix
Hermitian, 36
orthogonal, 218, 426
rotation, 218
trace of, 249
unitary, 37, 218

matrix coefficient, 250
matrix representation, 241
maximal abelian self-adjoint subalgebra, 161
maximal ideal, 152

maximum principle, 297
mean, 379
sample, 420

mean-value property, 72, 73
measurable set of type F , 393
measure
Cantor, 431
harmonic, 317
smooth, 351

measure 0, 372
metric, Riemannian, 349
Meyer index, 472
Meyer multiresolution analysis, 472
Meyer scaling function, 473
Meyer system, 473, 542
Meyer wavelet, 474, 542
modular function, 230
modulus of ellipticity, 296
Monotone Class Lemma, 170
multi-index, 55
multiple Fourier series, 96, 98, 102
of distribution, 209
use in local solvability, 292

multiplication algebra, 160
multiplication of smooth function

and distribution, 188
multiplicative character, 242
multiplicative linear functional, 122, 148, 152
multiplicity, 251
multiresolution analysis, 454
Daubechies system, 512
Haar system, 454
Meyer, 472
Shannon, 466

negative, xxiii
noncharacteristic, 283
norm, Hilbert–Schmidt, 47
normal distribution, 413
normal operator, 52, 165
normed linear space, 107

one-dimensional wavelet, 435
one-point compactification, 124
one-sided wavelet expansion, 529
operation on distribution, 187
by −1 in domain, 189
by convolution, 192, 195
by linear partial differential operator, 188
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of differentiation, 188
of Fourier transform, 202
of multiplication, 188
of transpose, 187

operator
compact, 34
completely continuous, 34
differential, linear, 353
Dirac, 369
elliptic, 288
elliptic pseudodifferential, 315, 366
generalized pseudodifferential, 356
Hilbert–Schmidt, 47
hyperbolic, 289
integral, 41
normal, 52, 165
orthogonal, 45
positive semidefinite, 165
pseudodifferential, 306, 308, 362
smoothing, 291, 301, 308, 357
trace of, 51, 98
trace-class, 49
transpose of, 185
unitary, 45, 163, 165

order of Daubechies wavelet, 498, 513, 516
order of differential equation, 276
order of differential operator, 185, 353
orthogonal group, 218
orthogonal matrix, 218, 426
orthogonal operator, 45
orthogonal wavelet, 435
orthonormalization trick, 483

p-adic integer, 270
p-adic norm, 269
Paley–Wiener Theorem, 512, 517, 518
parametrix, 292, 301, 307, 310, 315
partial differential equation, 276
elliptic, 288
homogeneous, 1, 276
hyperbolic, 289
linear, 1, 276
linear homogeneous, 276
order, 276
system, 276

partial differential operator
elliptic, 288
hyperbolic, 289
linear 185, 188

transpose of, 185, 353
partition of unity, 65, 113, 174, 351, 371
periodic distribution, 209
Peter–Weyl Theorem, 252
Phragmén–Lindelöf Theorem, 517
Picard–Lindelöf Existence Theorem, 145
Plancherel formula for compact group, 254, 257
Poisson distribution, 432
Poisson integral formula for half space, 80
Poisson integral formula for unit disk, 15
Poisson kernel for half space, 80
Poisson kernel for unit disk, 15
Poisson’s equation, 291
polynomial
Bernstein, 430
harmonic, 244, 263
holomorphic, 243
trigonometric, 254, 499

Portmanteau Lemma, 406
positive, xxiii
positive definite function, 142, 176
positive semidefinite operator, 165
Principal Axis Theorem, 289
principal symbol, 287, 355, 364
probability, 376, 378
conditional, 383
joint, 382

probability distribution, 379
joint, 381

probability model, 376
probability space, 378
product of topological groups, 213
projection, 338
projective space, 371
properly supported, 313, 357, 361
pseudodifferential operator, 306, 308, 362
elliptic, 315, 366
generalized, 356
transpose of, 308, 356

pseudolocal, 311, 357, 362
pseudonorm, 56
pull back, 221
push forward, 221

quotient of topological vector space, 110
quotient space, 214
of Lie group, 349

Radon–Nikodym Theorem, 224
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random number, 378
random variable, 378
rank, 338
real analytic, 528
real tangent bundle, 344
reconstruction algorithm, 534
regularizing, 61
Rellich’s Lemma, 368
representation
contragredient, 245, 266
finite-dimensional, 241
irreducible, 245, 259
left-regular, 256
matrix, 241
right-regular, 257
standard, 242
trivial, 242
unitary, 245, 256

resolution, 449
resolvent, 150
resolvent set, 150
restricted direct product, 178, 271
Riemann–Roch Theorem, 369
Riemannian manifold, 349
Riemannian metric, 349
Riesz Convexity Theorem, 95
Riesz Representation Theorem, 118, 164, 220
Riesz transform, 93
right almost periodic, 272
right group action, 223
right Haar measure, 223
right inverse, 149
right parametrix, 307
right-regular representation, 257
rotation group, 218
rotation matrix, 218

sample, 418
sample mean, 420
sample variance, 420
sampling, 439
Sard’s Theorem, 372
satisfy cone condition, 67
scaling equation, 455
scaling filter, 498
scaling function, 454
Battle-Lemarié, 495
Daubechies, 513, 544
Haar, 444

Meyer, 473
Shannon, 465, 510

Schauder–Tychonoff Theorem, 144
Schrödinger’s equation, 32
Schur orthogonality, 249
Schur’s Lemma, 247
Schwartz Kernel Theorem, 209, 361
Schwartz space, 55
Schwarz Reflection Principle, 78
section, 347
smooth, 347

self adjoint, formally, 20
self-adjoint subalgebra, 161
seminorm, 56
separable, xxv
separating family of seminorms, 57, 107
separation of variables, 1, 3
Shannon multiresolution analysis, 466
Shannon Sampling Theorem, 440, 535
Shannon scaling function, 465, 510
Shannon system, 465
Shannon wavelet, 466, 468
sign character, 242
signal, 435
singular support, 183, 303, 362
smooth curve, 333
smooth differential 1-form, 348
smooth function, 323, 326
smooth manifold, 322
dimension, 322

smooth measure, 351
smooth section, 347
smooth structure, 322
smooth vector field, 331, 332, 348
smoothing operator, 291, 301, 308, 357
Sobolev space, 63, 100, 103, 290, 308, 366
Sobolev’s Theorem, 67, 69, 100, 103, 368
space-boundary data, 2
special linear group, 218
Spectral Mapping Theorem, 155
spectral radius, 150
spectral radius formula, 155
Spectral Theorem
finite-dimensional, 37
for bounded normal operator, 166
for bounded self-adjoint operator, 165
for compact self-adjoint operator, 39
for unbounded self-adjoint operator, 172

spectrum, 150, 167
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spline, 476
of compact support, 477

standard representation, 242
standard symbol, 307
statistical inference, 417
Stieltjes integral, 380
stochastic process, 393
Stone Representation Theorem, 121, 147, 176
Stone–Čech compactification, 125
Stone–Weierstrass Theorem, 31, 124, 169, 263
strict equivalence, 341
strict inductive limit topology, 139
strong continuity, 256
Strong Law of Large Numbers, 398
Student’s t distribution, 420
Sturm–Liouville eigenvalue problem, 20
Sturm–Liouville theory, 5, 19, 172
Sturm’s Theorem, 5, 21
superposition principle, 1
support function of convex set, 126
support of distribution, 115, 181, 352
singular, 183, 303, 362

support of function, xxv, 324
supported properly, 313, 357, 361
symbol, 287, 306
principal, 287, 355, 364
standard, 307

symplectic group, 218
system of partial differential equations, 276

t distribution, 420
tangent bundle, 332, 344
tangent space, 328
tangent vector, 328
tempered distribution, 58
Theorem of de Moivre and Laplace, 432
topological field, 269
topological group, 213
isomorphism for, 213

topological ring, 270
topological vector space, 106
defined by seminorms, 107
finite-dimensional, 111
isomorphism for, 106
locally compact, 111, 265
locally convex, 128
quotient of, 110

trace of integral operator, 98
trace of linear map, 249

trace of matrix, 249
trace of operator, 51
trace-class operator, 49
transition function, 338
transition matrix, 338
translate, 190
transpose, 187, 352
of generalized pseudodifferential operator,
356

of operator, 185
of ordinary differential operator, 20
of partial differential operator, 185, 353
of pseudodifferential operator, 308, 356

transverse derivative, 209
trigonometric polynomial, 254, 499
trivial representation, 242
two-sided parametrix, 315
Tychonoff Product Theorem, 120, 225

ultrametric inequality, 269
Uncertainty Principle, 436
uniform continuity, 219
left, 273

uniform convergence on compact sets, 75
unimodular group, 232
unit disk
Poisson integral formula, 15
Poisson kernel, 15

unit sphere, 370
unitarily equivalent, 266
unitary group, 218
unitary matrix, 37, 218
unitary operator, 45, 163, 165
unitary representation, 245, 256
Urysohn Metrization Theorem, 323

Vandermonde convolution, 542
variance, 397
sample, 420

vector bundle, 341
coordinate, 338
equivalence, 373

vector field, 331, 348
left-invariant, 371
smooth, 331, 332, 348

vibrating drum, 18
vibrating string, 17

wave operator, 287
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wave equation, 3, 17
wavelet, 435, 455
Battle–Lemarié, 483, 495
biorthogonal, 536
Cohen–Daubechies–Feauveau, 536
Daubechies, 498, 513, 544
Franklin, 483
Haar, 444
Meyer, 474, 542
one-dimensional, 435
orthogonal, 435
Shannon, 466, 468

wavelet equation, 456

one-sided, 529
wavelet expansion, 435
weak continuity, 267
weak derivative, 62, 103, 290
Weak Law of Large Numbers, 398
weak topology on normed linear space, 108,

116
weak-star topology on dual of normed linear

space, 109, 116
weakly analytic, 150
Weierstrass Approximation Theorem, 430
Weyl integration formula, 269
Wiener Covering Lemma, 87




