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PREFACE TO THE SECOND EDITION

In the years since publication of the first editions of Basic Real Analysis and
Advanced Real Analysis, many readers have reacted to the books by sending
comments, suggestions, and corrections. They appreciated the overall compre-
hensive nature of the books, associating this feature with the large number of
problems that develop so many sidelights and applications of the theory.

Along with the general comments and specific suggestions were corrections,
and there were enough corrections to Basic Real Analysis to warrant a second
edition. A second edition of Advanced Real Analysis was then needed for
compatibility. As long as this volume was being changed, it seemed appropriate
to add the two important topics that are listed below.

For the first editions, the author granted a publishing license to Birkhéduser
Boston that was limited to print media, leaving the question of electronic publi-
cation unresolved. A major change with the second editions is that the question
of electronic publication has now been resolved, and for each book a PDF file,
called the “digital second edition,” is being made freely available to everyone
worldwide for personal use. These files may be downloaded from the author’s
own Web page and from elsewhere.

The two important additions to Advanced Real Analysis are as follows:

e Five sections on the Central Limit Theorem and an introduction to statistical
inference. This material appears at the end of Chapter IX, “Foundations of
Probability.” Four sections deal with the Central Limit Theorem itself. The
fifth section shows how the Central Limit Theorem arises in applications to
statistics as a limiting case of the ¢ distribution of W. S. Gosset, also known
as Student’s ¢ distribution. Gosset’s ¢ distribution plays a fundamental role in
statistical inference.

e A chapter on the theory of wavelets, with some commentary on applications.
This material occupies Chapter X, “Introduction to Wavelets.” Wavelets
form another theory, beyond the frequency analysis of Fourier series and the
Fourier transform, for decomposing functions of one or more variables into
component parts that bring out hidden behavior of the functions. The theory
was introduced in the 1980s and 1990s to bring together disparate applications
in signal processing and related fields, and it has now reached a sufficient state
of maturity that all mathematicians might benefit from some familiarity with

xi



xii Preface to the Second Edition

it. More information about the content of the chapter appears in the Guide to
the Reader on pages xviii—xxii.

In addition, there were some minor changes to Advanced Real Analysis. First,
Sections 1-4 of Chapter IX were revised and expanded to prepare for the Central
Limit Theorem later in the chapter. Second, a third part was added to Problem 12
at the end of Chapter III to allow for an alternative approach to smoothness
questions about wavelets. Third, a small number of minor corrections, fewer
than a dozen, were made in the first eight chapters. And fourth, the References
and Index were updated and expanded. No other changes were made to the body
of the text.

As was true in the first edition, references in Advanced Real Analysis to the
text of Basic Real Analysis abbreviate the title of the latter book as Basic.

Ann Kostant was the person who conceived the idea, about 2003, for Birkhduser
to have a series Cornerstones. Her vision was to enlist authors experienced at
mathematical exposition who would write compatible texts at the early graduate
level. The overall choice of topics was heavily influenced by the graduate curricula
of major American universities. The idea was for each book in the series to explain
what the young mathematician needs to know about a swath of mathematics in
order to communicate well with colleagues in all branches of mathematics in the
21% century. Taken together, the books in the series were intended as an antidote
for the worst effects of overspecialization. I am honored to have been part of her
project.

It was Benjamin Levitt, Birkhduser mathematics editor in New York as of 2014,
who encouraged the writing of second editions of the real analysis books. He made
a number of suggestions about pursuing them, and he passed along comments
from several anonymous referees about the strengths and weaknesses of each
book. I am especially grateful to those readers who have sent me comments over
the years. The typesetting was done by the program Textures using ApsS-TgX,
and the figures were drawn with Mathematica.

As with the first editions, I invite corrections and other comments about the
second editions from readers. For as long as I am able, I plan to point to lists of
known corrections from my own Web page, www.math.stonybrook.edu/~aknapp.

A. W. KNAPP
August 2016

The corrected version issued in 2017 incorporates six small changes to Chapter
III, one small change to Chapter IX, and approximately 80 small corrections to
Chapter X. The ones for Chapter X were kindly pointed out by Esshan Khanmo-
hammadi; one of them makes a correction to the formula in Theorem 10.10.

January 2017



PREFACE TO THE FIRST EDITION

This book and its companion volume Basic Real Analysis systematically develop
concepts and tools in real analysis that are vital to every mathematician, whether
pure or applied, aspiring or established. The two books together contain what the
young mathematician needs to know about real analysis in order to communicate
well with colleagues in all branches of mathematics.

The books are written as textbooks, and their primary audience is students
who are learning the material for the first time and who are planning a career in
which they will use advanced mathematics professionally. Much of the material
in the books corresponds to normal course work. Nevertheless, it is often the
case that core mathematics curricula, time-limited as they are, do not include all
the topics that one might like. Thus the book includes important topics that are
sometimes skipped in required courses but that the professional mathematician
will ultimately want to learn by self-study.

The content of the required courses at each university reflects expectations of
what students need before beginning specialized study and work on a thesis. These
expectations vary from country to country and from university to university. Even
so, there seems to be a rough consensus about what mathematics a plenary lecturer
at a broad international or national meeting may take as known by the audience.
The tables of contents of the two books represent my own understanding of what
that degree of knowledge is for real analysis today.

Key topics and features of Advanced Real Analysis are that it:

e Develops Fourier analysis and functional analysis with an eye toward partial
differential equations.

e Includes chapters on Sturm-Liouville theory, compact self-adjoint operators,
Euclidean Fourier analysis, topological vector spaces and distributions, com-
pact and locally compact groups, and aspects of partial differential equations.

e Contains chapters about analysis on manifolds and foundations of probability.
Proceeds from the particular to the general, often introducing examples well
before a theory that incorporates them.

e Includes many examples and almost 200 problems, and a separate section
“Hints for Solutions of Problems” at the end of the book gives hints or complete
solutions for most of the problems.

Xiii



xiv Preface to the First Edition

e Incorporates, both in the text and in the problems but particularly in the
problems, material in which real analysis is used in algebra, in topology,
in complex analysis, in probability, in differential geometry, and in applied
mathematics of various kinds.

It is assumed that the reader has had courses in real variables and either is
taking or has completed the kind of course in Lebesgue integration that might use
Basic Real Analysis as a text. Knowledge of the content of most of Chapters I-VI
and X of Basic Real Analysis is assumed throughout, and the need for further
chapters of that book for particular topics is indicated in the chart on page xvii.
When it is necessary in the text to quote a result from this material that might
not be widely known, a specific reference to Basic Real Analysis is given; such
references abbreviate the book title as Basic.

Some understanding of complex analysis is assumed for Sections 3—4 and 6 of
Chapter III, for Sections 10—11 of Chapter IV, for Section 4 of Chapter V, for all
of Chapters VII and VIII, and for certain groups of problems, but not otherwise.
Familiarity with linear algebra and group theory at least at the undergraduate level
is helpful throughout.

The topics in the first eight chapters of this volume are related to one another
in many ways, and the book needed some definite organizational principle for its
design. The result was a decision to organize topics largely according to their role
in the study of differential equations, even if differential equations do not explicitly
appear in each of the chapters. Much of the material has other uses as well, but
an organization of topics with differential equations in mind provides a common
focus for the mathematics that is presented. Thus, for example, Fourier analysis
and functional analysis are subjects that stand on their own and also that draw
on each other, but the writing of the chapters on these areas deliberately points
toward the subject of differential equations, and toward tools like distributions
that are used with differential equations. These matters all come together in two
chapters on differential equations, Chapters VII and VIII, near the end of in the
book.

Portions of the first eight chapters can be used as the text for a course in any
of three ways. One way is as an introduction to differential equations within a
course on Lebesgue integration that treats integration and the Fourier transform
relatively lightly; the expectation in this case is that parts of at most two or three
chapters of this book would be used. A second way is as a text for a self-contained
topics course in differential equations; the book offers a great deal of flexibility
for the content of such a course, and no single choice is right for everyone. A
third way is simply as a text for a survey of some areas of advanced real analysis;
again the book offers great flexibility in how such a course is constructed.

The problems at the ends of chapters are an important part of the book. Some



Preface to the First Edition XV

of them are really theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.

This book seeks in part to help the reader look for and appreciate the unity of
mathematics. For that reason some of the problems and sections go way outside
the usual view of real analysis. One of the lessons about advanced mathematics
is that progress is better measured by how mathematics brings together different
threads, rather than how many new threads it generates.

Almost all of the mathematics in this book and Basic Real Analysis is at least
forty years old, and I make no claim that any result is new. The two books are
together a distillation of lecture notes from a 35-year period of my own learning
and teaching. Sometimes a problem at the end of a chapter or an approach to the
exposition may not be a standard one, but normally no attempt has been made to
identify such problems and approaches.

Iam grateful to Ann Kostant and Steven Krantz for encouraging this project and
for making many suggestions about pursuing it, and to Susan Knapp and David
Kramer for helping with the readability. The typesetting was by ApsS-TgX, and
the figures were drawn with Mathematica.

I invite corrections and other comments from readers. I plan to maintain a list
of known corrections on my own Web page.

A. W. KNAPP
June 2005
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DEPENDENCE AMONG CHAPTERS

The chart below indicates the main lines of logical dependence of sections of
Advanced Real Analysis on earlier sections and on chapters in Basic Real Analysis.
Starting points are the boxes with double ruling. All starting points take Chapters
I-VI and X of Basic Real Analysis as known. Uses of complex analysis as in
Appendix B of Basic Real Analysis are indicated in the Guide for the Reader.
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GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the chart on page xvii and in the abstracts that begin each of
the chapters.

Advanced Real Analysis deals with topics in real analysis that the young
mathematician needs to know in order to communicate well with colleagues
in all branches of mathematics. These topics include parts of Fourier analysis,
functional analysis, spectral theory, distribution theory, abstract harmonic analy-
sis, and partial differential equations. They tend to be ones whose applications
and ramifications cut across several branches in mathematics. Each topic can
be studied on its own, but the importance of the topic arises from its influence
on the other topics and on other branches of mathematics. To avoid having all
these relationships come across as a hopeless tangle, the book needed some
organizational principle for its design. The principle chosen was largely to
organize topics according to their role in the study of differential equations. This
organizational principle influences what appears below, but it is certainly not
intended to suggest that applications to differential equations are the only reason
for studying certain topics in real analysis.

As was true also in Basic Real Analysis, several techniques that are used
repeatedly in real analysis play a pivotal role. Examples are devices for justifying
interchanges of limits, compactness and completeness as tools for proving exis-
tence theorems, and the approach of handling nice functions first and then passing
to general functions. By the beginning of the present volume, these techniques
have become sophisticated enough so as to account for entire areas of study within
real analysis. The theory of weak derivatives illustrates this principle: The theory
allows certain interchanges of limits involving weak derivatives to be carried out
routinely, and the hard work occurs in translating the results into statements about
classical derivatives. The main tool for this translation is Sobolev’s Theorem,
which in turn becomes the foundation for its own theory.

Each chapter is built around one or more important theorems. The commentary
below tells the nature of each chapter and the role of some important theorems.

Chapter I marks two transitions—from concrete mathematics done by cal-
culation to theorems established by functional analysis on the one hand, and
from ordinary differential equations to partial differential equations on the other

Xviii



Guide for the Reader Xix

hand. Section 2 about separation of variables is relatively elementary, introducing
and illustrating a first technique for approaching partial differential equations.
The technique involves a step of making calculations and a step of providing
justification that the method is fully applicable. When the technique succeeds,
the partial differential equation is reduced to two or more ordinary differential
equations. Section 3 establishes, apart from one detail, the main theorem of
the chapter, called Sturm’s Theorem. Sturm’s Theorem addresses the nature of
solutions of certain kinds of ordinary differential equations with a parameter.
This result can sometimes give a positive answer to the completeness questions
needed to justify separation of variables, and it hints at a theory known as Sturm—
Liouville theory that contains more results of this kind. The one detail with
Sturm’s Theorem that is postponed from Section 3 to Chapter II is the Hilbert—
Schmidt Theorem.

Chapter I1 is a first chapter on functional analysis beyond Chapter XII of Basic
Real Analysis, with emphasis on a simple case of the Spectral Theorem. The
result in question describes the structure of compact self-adjoint operators on a
Hilbert space. The Hilbert—Schmidt Theorem says that certain integral operators
are of this kind, and it completes the proof of Sturm’s Theorem as presented in
Chapter I; however, Chapter I is not needed for an understanding of Chapter II.
Section 4 of Chapter II gives several equivalent definitions of unitary operators
and is relevant for many later chapters of the book. Section 5 discusses compact,
Hilbert—Schmidt, and trace-class operators abstractly and may be skipped on first
reading.

Chapter Il is a first chapter on Fourier analysis beyond Chapters VIII and IX of
Basic Real Analysis, and it discusses four topics that are somewhat independent of
one another. The first of these, in Sections 1-2, introduces aspects of distribution
theory and the idea of weak derivatives. The main result is Sobolev’s Theorem,
which tells how to extract conclusions about ordinary derivatives from conclusions
about weak derivatives. Readers with a particular interest in this topic will want
to study also Problems 8—12 and 25-34 at the end of the chapter. Sections 3—4
concern harmonic functions, which are functions annihilated by the Laplacian,
and associated Poisson integrals, which relate harmonic functions to the subject of
boundary-value problems. These sections may be viewed as providing an example
of what to expect of the more general “elliptic” differential operators to be studied
in Chapters VII-VIIL. The main results are a mean value property for harmonic
functions, a maximum principle, a reflection principle, and a characterization
of harmonic functions in a half space that arise as Poisson integrals. Sections
5-6 establish the Calderén—Zygmund Theorem and give two applications to
partial differential equations. The theorem generalizes the boundedness of the
Hilbert transform, which was proved in Chapters VIII-IX of Basic Real Analysis.
Historically the Calderén—Zygmund Theorem was a precursor to the theory of
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pseudodifferential operators that is introduced in Chapter VII. Sections 7-8 gently
introduce multiple Fourier series, which are used as a tool several times in later
chapters. Chapter III makes connections with complex analysis in Sections 3—4
and 6, but complex analysis is needed only for examples and problems.

Chapter IV weaves together three lines of investigation in the area of functional
analysis—one going toward spaces of smooth functions and distribution theory,
another leading to fixed-point theorems, and a third leading to full-fledged spectral
theory. The parts of the chapter relevant for spaces of smooth functions and
distribution theory are Sections 1-2 and 5-7. This line of investigation continues
in Chapters V and VII-VIII. The parts of the chapter relevant for fixed-point the-
orems are Sections 1, 3—6, and 8-9. Results of this kind, which have applications
to equilibrium problems in economics and mathematical physics, are not pursued
beyond Chapter IV in this book. The parts of the chapter relevant to spectral
theory are Sections 1, 3—4, and 10-11, and spectral theory is not pursued beyond
Chapter I'V. Because the sections of the chapter have overlapping purposes, some
of the main results play multiple roles. Among the main results are the charac-
terization of finite-dimensional topological vector spaces as being Euclidean, the
existence of “support” for distributions, Alaoglu’s Theorem asserting weak-star
compactness of the closed unit ball of the dual of a Banach space, the Stone
Representation Theorem as a model for the theory of commutative C* algebras, a
separation theorem concerning continuous linear functionals in locally convex
topological vector spaces, the construction of inductive limit topologies, the
Krein—Milman Theorem concerning the existence of extreme points, the structure
theorem for commutative C* algebras, and the Spectral Theorem for commuting
families of bounded normal operators. Spectral theory has direct applications to
differential equations beyond what appears in Chapters I-II, but the book does not
go into these applications. Section 10 makes serious use of elementary complex
analysis, and complex analysis is used implicitly in Section 11.

Chapter V develops the theory of distributions, and of operations on them,
without going into their connection with Sobolev spaces. The chapter includes a
lengthy discussion of convolution. The main results are a structure theorem for
distributions of compact support in terms of derivatives of measures, a theorem
saying that the Fourier transforms of such distributions are smooth functions, and
a theorem saying that the convolution of a distribution of compact support and
a tempered distribution is meaningful and tempered, with its Fourier transform
being the product of the Fourier transforms. One theorem in Section 4 observes
that the Fourier transform of a distribution of compact supportis an entire function,
but complex analysis otherwise plays no role in the chapter.

Chapter VI introduces harmonic analysis using groups. Section 1 concerns
general topological groups, Sections 2—5 are about invariant measures on locally
compact groups and their quotients, and Sections 6—7 concern the representation
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theory of compact groups. Section 8 indicates how representation theory sim-
plifies problems concerning linear operators with a sizable group of symmetries.
One main result of the chapter is the existence and uniqueness of Haar measure,
up to a scalar factor, on any locally compact group. Another is the Peter—Weyl
Theorem, which is a completeness theorem for Fourier analysis on a general
compact group akin to Parseval’s Theorem for Fourier series and the circle group.
The proof of the Peter—Weyl Theorem uses the Hilbert—Schmidt Theorem.

Chapter VII is a first systematic discussion of partial differential equations,
mostly linear, using tools from earlier chapters. Section 1 seeks to quantify
the additional data needed for a differential equation or system simultaneously to
have existence and uniqueness of solutions. The Cauchy—Kovalevskaya Theorem,
which assumes that everything is holomorphic, is stated in general and gives alocal
result; for special kinds of systems it gives a global result whose proof is carried
out in problems at the end of the chapter. Complex analysis of course plays a
serious role in this section; it is used a little after Section 1, but its role thereafter
is a minor one. Section 2 mentions some other properties and examples of
differential equations, including the possibility of nonexistence of local solutions
for linear equations Lu = f when f is not holomorphic. Section 3 contains
a general theorem asserting local existence of solutions for linear equations
Lu = f when L has constant coefficients; the proof uses multiple Fourier
series. Section 5 concerns elliptic operators L with constant coefficients; these
generalize the Laplacian. A complete proof is given in this case for the existence
of a “parametrix” for L, which leads to control of regularity of solutions, and for
the existence of “fundamental solutions.” Section 6 introduces, largely without
proofs, a general theory of pseudodifferential operators. To focus attention on
certain theorems, the section describes how the theory can be used to obtain
parametrices for elliptic operators with variable coefficients.

Chapter VIII in Sections 1—4 introduces smooth manifolds and vector bundles
over them, particularly the tangent and cotangent bundles. Readers who are
already familiar with this material may want to skip these sections. Sections
5-8 use this material to extend the theory of differential and pseudodifferential
operators to the setting of smooth manifolds, where such operators arise naturally
in many applications. Section 7 in particular describes how to adapt the theory
of Chapter VII to obtain parametrices for elliptic operators on smooth manifolds.

Chapter IX is a stand-alone chapter on probability theory. Although partial
differential equations interact with probability theory and have applications to
differential geometry and financial mathematics, such interactions are too ad-
vanced to be addressed in this book. Instead four matters are addressed that are
foundational and yet at the level of this book: how measure theory is used to model
real-world probabilistic situations, how the Kolmogorov Extension Theorem
constructs measure spaces that underlie stochastic processes, how probabilistic
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independence and a certain indifference to the nature of the underlying measure
space lead to a proof of the Strong Law of Large Numbers, and how the measure-
theoretic techniques of the book yield a proof of the Central Limit Theorem. The
material on the Central Limit Theorem occupies about half of the chapter and
makes extensive use results from Basic Real Analysis about the Fourier transform.
A final section introduces the subject of statistical inference and makes use of
complex analysis in one calculation. In the simplest case the subject of statistical
inference seeks to deduce the mean and variance of a whole population from those
of a small sample. The probabilities in question are captured by the ¢ distribution
of W. S. Gosset. The main theorem calculates the ¢ distribution, and it iS seen
under suitable hypotheses that the ¢ distribution tends to the normal distribution
as the sample size tends to infinity.

Chapter X introduces wavelets. In the simplest case a wavelet is a function of
one variable such that the dilations by powers of 2 of the integer translates of the
function form an orthogonal basis of the space of square integrable functions.
Square integrable functions may be regarded as signals to be used as input.
Associated to any wavelet is an analysis of all signals that is quite different from
Fourier analysis via frequencies. Namely for each resolution, i.e., for each power
of 2 determining a dilation, the function is decomposed into one function giving
a rough approximation and another function providing some detail. The exact
decomposition depends on the original wavelet and is regarded by people who do
signal processing as the result of passing the signal through two complementary
filters. After the decomposition the function giving the rough approximation is
processed at successively higher resolutions, while the function giving the detail
is retained as a component of the given function. The result is that the given
signal is decomposed into infinitely many functions giving details. In practice,
the detail functions for all the coarsest resolutions are lumped into a single
function, a first approximation to the given signal, and the components giving
the higher-order detail may be regarded as improving on the first approximation.
Chapter X studies a mechanism called a multiresolution analysis for carrying
out this decomposition systematically. Several of the main theorems construct
concrete wavelets and families of wavelets, progressively more sophisticated, that
have been found useful in applications. The last section of the chapter addresses
the question of using wavelet analysis to decompose functions in practice, and
it provides commentary on a number of applications. Chapter X intermittently
makes use of complex analysis, mostly by directly applying results in Appendix
B of Basic Real Analysis. Beyond that, Sections 7 and 9 prove and apply two
further theorems in complex analysis, namely a formula for the sum over integers
n of (z — n)~? and the classical Paley—Wiener Theorem.
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This section lists notation and a few unusual terms from elementary mathematics
and from Basic Real Analysis that are taken as standard in the text without further
definition. The items are grouped by topic. Complex analysis is not included.

Set theory

€ membership symbol

#S or |S] number of elements in §

(] empty set

{x e E| P} the set of x in £ such that P holds

E€ complement of the set E

FUF, ENF, E—F union, intersection, difference of sets

Uy Eer Ny Ea union, intersection of the sets E,,

ECF, EDF E is contained in F, E contains F

ExF, X ses Xs products of sets

(ar,...,ay) ordered n-tuple

{ai, ..., a,} unordered n-tuple

fiE—>F, x— f(x) function, effect of function

fog, f | £ composition of f following g, restriction to E
fC,y the function x — f(x, y)

f(E), f~UE) direct and inverse image of a set

countable finite or in one-one correspondence with integers
24 set of all subsets of A

BA set of all functions from B to A

card A cardinality of A

Number systems

dij Kronecker delta: 1ifi = j,0ifi # j

() binomial coefficient

n positive, n negative n>0,n<0

Z,Q,R,C integers, rationals, reals, complex numbers

F R or C, the underlying field of scalars

max maximum of finite subset of a totally ordered set
min minimum of finite subset of a totally ordered set

door]] sum or product, possibly with a limit operation

XXiii
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[x]

Re z,Im 7
Z

|z]

Notation and Terminology

greatest integer < x if x is real

real and imaginary parts of complex z
complex conjugate of z

absolute value of z

Linear algebra and elementary group theory

Rn, (Cn’ F"

spaces of column vectors with n entries
dot product

j™ standard basis vector of R”

identity matrix or operator

determinant of A

transpose of A

diagonal square matrix

trace of A

matrix with (i, j)™ entry M;;
dimension of vector space

additive identity in an abelian group
multiplicative identity in a group or ring
is isomorphic to, is equivalent to

Real-variable theory and calculus

R*

sup and inf
(a,b), la,b]
(a,b]l, la, b)
limsup,, liminf,
lim

x|

e

exp x, sin x, cos x, tan x
arcsin x, arctan x

log x

af

an

Ck(vV), k>0

C=(V)
f :V — F is smooth

homogeneous of degree d

extended reals, reals with o0 adjoined
supremum and infimum in R*

open interval in R*, closed interval
half-open intervals in R*

inf,, sup;., in R*, sup, inf;~, in R*

limit in R or R* or RY

(Zjvzl |)cj|2)1/2 if x = (x1, ..., xy), scalars
inRorC

Yzo 1/n!

exponential and trigonometric functions
inverse trigonometric functions

natural logarithm function on (0, 4+-00)
partial derivative of f with respect to j variable

scalar-valued functions on open set V C RN
with all partial derivatives continuous through
order k, no assumption of boundedness

Mo CE(V)

f is scalar valued and is in C*°(V)

satisfying f(rx) = r? f(x) for all x # 0 in R
and all » > O if f is a function f : RV —{0} — F
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Metric spaces and topological spaces

d

B(r; x)

Acl

A()

separable

D(x, A)

X, = xorlimx, =x
SN—I

support of function
£ g

B(S)

B(S,C)or B(S,R)
c(s)

C(S,C)orC(S,R)
Ceom(S)
Co(S)

X*

Measure theory

m(E) or |E|

indicator function of set £
Ig(x)

ft

I

iy fdpor [ fO0)dp(x)
dx

Ji f dx

(X, A, ) or (X, w)

ae. [du]

v= fdu

Ax B

XV

(WA

p/

LP(X, A, n)or LP(X, )

typical name for a metric

open ball of radius r and center x

closure of A

interior of A

having a countable base for its open sets
distance to a set A in a metric space

limit relation for a sequence or a net

unit sphere in RV

closure of set where function is nonzero

Sup,cs | f(x)|if f : X — FFis given

space of all bounded scalar-valued functions on S
space of members of B(S) with values in C or R
space of all bounded scalar-valued continuous
functions on § if S topological

space of members of C(S) with values in C or R
space of functions in C(S) with compact support
space of functions in C(S) vanishing

at infinity if § is locally compact Hausdorff
one-point compactification of X

Lebesgue measure of E

function equal to 1 on E, 0 off E

indicator function of E at x

max( f, 0) for f with values in R*

—min(f, 0) for f with values in R*

Lebesgue integral of f over E with respect to u
abbreviation for du(x) for u=Lebesgue measure
Lebesgue integral of f on interval (a, b)

with respect to Lebesgue measure

typical measure space

almost everywhere with respect to

complex measure v with v(E) = [ g fdun
product of o -algebras

product of o-finite measures

L? norm,1 < p < o0

dual index to p with p’ = p/(p — 1)

space of functions with || f| p <00 modulo
functions equal to O a.e. [du]
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dow

Qn-y

I'(s)

V<L

Borel set in locally compact
Hausdorff space X

B(X)

compact G

Baire set in locally compact
Hausdorff space X

M(X)

M(X,C) or M(X, R)

Notation and Terminology

convolution

Hardy-Littlewood maximal function, given by
the supremum of the averages of | f| over balls
centered at x

spherical part of Lebesgue measure on RV,
measure on SV ! withdx =r¥ "1 drdow
“area” of SV~ given by Qy_; = Sonor do
gamma function with I'(s) = fooo 5= le= dt

v is absolutely continuous with respect to u

set in o -algebra generated by compact sets in X

o -algebra of Borel sets if X is locally compact
Hausdorff

compact set equal to countable intersection of
open sets

set in o -algebra generated by compact G’s in X

space of all finite regular Borel complex
measures on X if X is locally compact Hausdorff
M(X) withvaluesinF =CorF =R

Fourier series and Fourier transform

Ch = % [T f(x)e™ ™ dx
FO)~ >0 ™
sy(f12) = Ly cue™
FO) = fon Ji(x)e—mzix»y dx
;‘r(x) = Jav )TV dy

I, =111,
Sor S(RY)

1 q; S&—1)
;llmgiof‘tlzg — dt

Fourier coefficient

Fourier series of f, with ¢, as above
partial sum of Fourier series

Fourier transform of an f in L' (RV)
Fourier inversion formula

Fourier transform as an operator
Plancherel formula

Schwartz space on RY

Hilbert transform of function f on R!

Normed linear spaces and Banach spaces

-
(" )
MJ_

X*

2
B(X,Y)

typical norm in a normed linear space

typical inner product in a Hilbert space,

linear in first variable, conjugate linear in second
space of vectors orthogonal to all members of M
dual of normed linear space X

canonical mapping of X into X** = (X*)*

space of bounded linear operators from X into Y
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CHAPTERI

Introduction to Boundary-Value Problems

Abstract. This chapter applies the theory of linear ordinary differential equations to certain
boundary-value problems for partial differential equations.

Section 1 briefly introduces some notation and defines the three partial differential equations of
principal interest—the heat equation, Laplace’s equation, and the wave equation.

Section 2 is a first exposure to solving partial differential equations, working with boundary-value
problems for the three equations introduced in Section 1. The settings are ones where the method of
“separation of variables” is successful. In each case the equation reduces to an ordinary differential
equation in each independent variable, and some analysis is needed to see when the method actually
solves a particular boundary-value problem. In simple cases Fourier series can be used. In more
complicated cases Sturm’s Theorem, which is stated but not proved in this section, can be helpful.

Section 3 returns to Sturm’s Theorem, giving a proof contingent on the Hilbert—Schmidt Theorem,
which itself is proved in Chapter II. The construction within this section finds a Green’s function for
the second-order ordinary differential operator under study; the Green’s function defines an integral
operator that is essentially an inverse to the second-order differential operator.

1. Partial Differential Operators

This chapter contains a first discussion of linear partial differential equations. The
word “equation” almost always indicates that there is a single unknown function,
and the word “partial” indicates that this function probably depends on more than
one variable. In every case the equation will be homogeneous in the sense that it
is an equality of terms, each of which is the product of the unknown function or
one of its iterated partial derivatives to the first power, times a known coefficient
function. Consequently the space of solutions on the domain set is a vector
space, a fact that is sometimes called the superposition principle. The emphasis
will be on a naive-sounding method of solution called “separation of variables”
that works for some equations in some situations but not for all equations in all
situations. This method, which will be described in Section 2, looks initially for
solutions that are products of functions of one variable and hopes that all solutions
can be constructed from these by taking linear combinations and passing to the
limit.
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For the basic existence-uniqueness results with ordinary differential equations,
one studies single ordinary differential equations in the presence of initial data
of the form y(t) = yo, ..., y* D) = y{""". Implicitly the independent
variable is regarded as time. For the partial differential equations in the settings
that we study in this section, the solutions are to be defined in a region of space
for all time ¢+ > 0, and the corresponding additional data give information to be
imposed on the solution function at the boundary of the resulting domain in space-
time. Behavior at ¢+ = 0 will not be sufficient to determine solutions uniquely;
we shall need further conditions that are to be satisfied for all # > 0 when the
space variables are at the edge of the region of definition. We refer to these two
types of conditions as initial data and space-boundary data. Together they are
simply boundary data or boundary values.

For the most part the partial differential equations will be limited to three —the
heatequation, the Laplace equation, and the wave equation. Each of these involves
space variables in some R”, and the heat and wave equations involve also a time
variable ¢. To simplify the notation, we shall indicate partial differentiations by
subscripts; thus u,; is shorthand for 8%u / dxdt. The space variables are usually
X1, ..., Xy, but we often write x, y, z for them if n < 3. The linear differential
operator A given by

A=ty + o+ Uy,

is involved in the definition of all three equations and is known as the Laplacian
in n space variables.
The first partial differential equation that we consider is the heat equation,
which takes the form
u; = Au,

the unknown function u(xy, ..., x,, t) being real-valued in any physically mean-
ingful situation. Heat flows by conduction, as a function of time, in the region
of the space variables, and this equation governs the temperature on any open
set where there are no external influences. It is usually assumed that external
influences come into play on the boundary of the space region, rather than the
interior. They do so through a given set of space-boundary data. Since time and
distance squared have distinct physical units, some particular choice of units has
been incorporated into the equation in order to make a certain constant reduce
to 1.

The second partial differential equation that we consider is the Laplace
equation, which takes the form

Au =0,

the unknown function u(xy, ..., x,) again being real-valued in any physically
meaningful situation. A C? function that satisfies the Laplace equation on an
open set is said to be harmonic. The potential due to an electrostatic charge is
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harmonic on any open set where the charge is 0, and so are steady-state solutions
of the heat equation, i.e., those solutions with time derivative 0.

The third and final partial differential equation that we consider is the wave
equation, which takes the form

Uy = Au,

the unknown function u(xy, ..., x,) once again being real-valued in any physi-
cally meaningful situation. Waves of light or sound spread in some medium in
space as a function of time. In our applications we consider only cases in which
the number of space variables is 1 or 2, and the function u is interpreted as the
displacement as a function of the space and time variables.

2. Separation of Variables

We shall describe the method of separation of variables largely through what
happens in examples. As we shall see, the rigorous verification that separation of
variables is successful in a particular example makes serious analytic demands
that bring together a great deal of real-variable theory as discussed in Chapters
I-IV of Basic.! The general method of separation of variables allows use of a
definite integral of multiples of the basic product solutions, but we shall limit
ourselves to situations in which a sum or an infinite series of multiples of basic
product solutions is sufficient. Roughly speaking, there are four steps:

(i) Search for basic solutions that are the products of one-variable functions,
and form sums or infinite series of multiples of them (or integrals in a
more general setting).

(ii) Use the boundary data to determine what specific multiples of the basic
product solutions are to be used.

(iii)) Address completeness of the expansions as far as dealing with all sets of
boundary data is concerned.

(iv) Justify that the obtained solution has the required properties.

Steps (i) and (ii) are just a matter of formal computation, but steps (iii) and (iv)
often require serious analysis. In step (iii) the expression “all sets of boundary
data” needs some explanation, as far as smoothness conditions are concerned.
The normal assumption for the three partial differential equations of interest is
that the data have two continuous derivatives, just as the solutions of the equations
are to have. Often one can verify (iii) and carry out (iv) for somewhat rougher

IThroughout this book the word “Basic” indicates the companion volume Basic Real Analysis.
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data, but the verification of (iv) in this case may be regarded as an analysis problem
separate from solving the partial differential equation.

The condition that the basic product solutions in (i) form a discrete set, so that
the hoped-for solutions are given by infinite series and not integrals, normally
results from assuming that the space variables are restricted to a bounded set and
that sufficiently many boundary conditions are specified. In really simple situa-
tions the benefit that we obtain is that an analytic problem potentially involving
Fourier integrals is replaced by a more elementary analytic problem with Fourier
series; in more complicated situations we obtain a comparable benefit. Step (iii)
is crucial since it partially addresses the question whether the solution we seek is
at all related to basic product solutions. Let us come back to what step (iii) entails
in a moment. Step (iv) is a matter of interchanges of limits. One step consists
in showing that the expected solution satisfies the partial differential equation,
and this amounts to interchanging infinite sums with derivatives. It often comes
down to the standard theorem in real-variable theory for that kind of interchange,
which is proved in the real-valued case as Theorem 1.23 of Basic and extended
to the vector-valued case later. We restate it here in the vector-valued case for
handy reference.

Theorem 1.1. Suppose that { f,,} is a sequence of functions on an interval with
values in a finite-dimensional real or complex vector space V. Suppose further
that the functions are continuous for a < ¢ < b and differentiable fora <t < b,
that { f,/} converges uniformly for a < ¢ < b, and that { f,,(xo)} converges in V
for some xo with a < xo < b. Then {f,} converges uniformly fora <t < b to
a function f, and f'(x) = lim, f,(x) fora < x < b, with the derivative and the
limit existing.

Another step in handling (iv) consists in showing that the expected solution has
the asserted boundary values. This amounts to interchanging infinite sums with
passages to the limit as certain variables tend to the boundary, and the following
result can often handle that.

Proposition 1.2. Let X be a set, let Y be a metric space, let A,(x) be a
sequence of complex-valued functions on X such that ZZO: 1 A, (x)| converges
uniformly, and let B, (y) be a sequence of complex-valued functions on Y such
that | B,(y)| < 1 for all n and y and such that lim,_, y, B,(y) = B,(yo) for all n.

Then

Y=o
n=

lim Y A, (x)By(y) = Y An(x)By(30),
1

n=1

and the convergence is uniform in x if, in addition to the above hypotheses, each
A, (x) is bounded.
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PROOF. Lete > 0be given, and choose N large enoughsothat 2 N1l An ()]
is < €. Then

> 408 0) = D A B0 = | D A (B ) = Ba(r0))|
n=1 n=1

n=1

N 00
<Y 1A B = B0l +2 D A, (0]
n=1

n=N-+1

N
<26+ ) 14| [Ba(y) = Ba(o)-

n=1

For y close enough to yy, the second term on the right side is < €, and the pointwise
limit relation is proved. The above argument shows that the convergence is
uniform in x if max;<,<y |A,(x)| < M independently of x. O

In combination with a problem? in Basic, Proposition 1.2 shows, under the
hypotheses as stated, that if X is a metric space and if ZZ‘;I A,(x)B,(y) is
continuous on X X (Y — {yp}), then it is continuous on X x Y. This conclusion
can be regarded, for our purposes, as tying the solution of the partial differential
equation well enough to one of its boundary conditions. It is in this sense that
Proposition 1.2 contributes to handling part of step (iv).

Let us return to step (iii). Sometimes this step is handled by the completeness
of Fourier series as expressed through a uniqueness theorem? or Parseval’s Theo-
rem.* But these methods work in only a few examples. The tools necessary to deal
completely with step (iii) in all discrete cases generate a sizable area of analysis
known in part as “Sturm—Liouville theory,” of which Fourier series is only the
beginning. We do not propose developing all these tools, but we shall give in
Theorem 1.3 one such tool that goes beyond ordinary Fourier series, deferring
any discussion of its proof to the next section.

For functions defined on intervals, the behavior of the functions at the endpoints
will be relevant to us: we say that a continuous function f : [a, b] — C with a
derivative on (a, b) has a continuous derivative at one or both endpoints if f’ has
a finite limit at the endpoint in question; it is equivalent to say that f extends to a
larger set so as to be differentiable in an open interval about the endpoint and to
have its derivative be continuous at the endpoint.

Theorem 1.3 (Sturm’s Theorem). Let p, ¢, and r be continuous real-valued
functions on [a, b] such that p’ and r” exist and are continuous and such that p

ZProblem 6 at the end of Chapter II.
3Corollaries 1.60 and 1.66 in Basic.
4Theorem 1.61 in Basic.
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and r are everywhere positive fora <t < b. Let ¢y, ¢3, di, d» be real numbers
such that ¢; and ¢, are not both 0 and d; and d, are not both 0. Finally for
each complex number A, let (SL) be the following set of conditions on a function
u : [a, b] — C with two continuous derivatives:

(pOuUY —qg@u + rr(t)u =0, (SL1)
ciu(a) +cu'(@) =0 and du(b) + du’(b) = 0. (SL2)

Then the system (SL) has a nonzero solution for a countably infinite set of values of
A. If E denotes this set of values, then the members X of E are all real, they have no
limit pointin R, and the vector space of solutions of (SL) is 1-dimensional for each
such A. The set E is bounded below if c;c; < 0 and did, > 0, and E is bounded
below by O if these conditions and the condition ¢ > 0 are all satisfied. In any
case, enumerate E as A, Ay, ..., let u = ¢, be a nonzero solution of (SL) when
A=Ay, define (f, 8), = [J f(g@r@ drand | fI, = ([ 1f P r@)dr)"”
for continuous f and g, and normalize ¢, so that ||¢,||, = 1. Then (¢,, ¢,), =0
for m # n, and the functions ¢, satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series > o, (4, @), %, (1) converges absolutely
uniformly to u(¢) on [a, b],

(b) the only continuous ¢ on [a, b] with (¢, ¢,), =0 forallnis ¢ =0,

(c) any continuous ¢ on [a, b] satisfies ||<p||f = ZZ’;] [(e, (pn)r|2.

REMARK. The expression converges absolutely uniformly in (a) means that
> o 1w, @), @a(t)| converges uniformly.

EXAMPLE. The prototype for Theorem 1.3 is the constant-coefficient case
p =r = landg = 0. The equation (SL1) is just u” +Au = 0. If > happens to be
> 0, then the solutions are u(t) = C; cos pt + C sin pt, where A = p?. Suppose
[a, b] = [0, r]. The condition c1u(0) + cou’(0) = 0 says that ¢;C; + pc,C, =0
and forces a linear relationship between C; and C, that depends on p. The
condition dyu () + dou’(;v) = 0 gives a further such relationship. These two
conditions may or may not be compatible. An especially simple special case is
that ¢c; = dp = 0, so that (SL2) requires u(0) = u(wr) = 0. From u(0) = 0,
we get C; = 0, and then u(w) = 0 forces sin pr = 0 if u is to be a nonzero
solution. Thus p must be an integer. It may be checked that A < 0 leads to no
nonzero solutions if ¢; = d, = 0. Part (a) of the theorem therefore says that any
twice continuously differentiable function u(¢) on [0, 7] vanishing at 0 and =
has an expansion u(t) = Z;ozl b, sin pt, the series being absolutely uniformly
convergent.

The first partial differential equation that we consider is the heat equation
u; = Au, and we are interested in real-valued solutions.



2. Separation of Variables 7

EXAMPLES WITH THE HEAT EQUATION.

(1) We suppose that there is a single space variable x and that the set in
1-dimensional space is a rod 0 < x < [. The unknown function is u(x, t), and
the boundary data are

u(x,0) = f(x) (initial temperature equal to f(x)),
u,t)=u(l,t) =0 (ends of rod at absolute O temperature for all # > 0).

Heat flows in the rod for ¢+ > 0, and we want to know what happens. The
equation for the heat flow is u, = u,,, and we search for solutions of the form
u(x,t) = Xx)T(t). Unless T(¢) is identically O, the boundary data force
Xx)T(0) = f(x) and X(0) = X(I) = 0. Substitution into the heat equation
gives

XOT () = X" ()T ().

We divide by X (x)T (¢) and obtain

T'(t)  X"(x)
T()  X(x)'

A function of ¢ alone can equal a function of x alone only if it is constant, and
thus
')  X'(x)
= =C
I  X(x)

for some real constant c. The bound variable is x, and we hope that the possible
values of ¢ lie in a discrete set. Suppose that ¢ is > 0, so that ¢ = p? with p > 0.
The equation X”(x)/ X (x) = p? would say that X (x) = cjeP* + coe”P*. From
X (0) =0, we get c; = —cy, so that X (x) = c(eP* — e P¥). Since e* — e™P*
is strictly increasing, c¢j(e”* — e7P*) = 0 is impossible unless ¢; = 0. Thus we
must have ¢ < 0. Similarly ¢ = 0 is impossible, and the conclusion is that ¢ < 0.
We write ¢ = —p? with p > 0. The equation is X”(x) = —p?X (x), and then
X (x) = cjcos px + ¢ sin px. The condition X (0) = 0 says ¢; = 0, and the
condition X (/) = O then says that p = nx /[ for some integer n. Thus

X (x) =sin(nwx /1),
up to a multiplicative constant. The ¢ equation becomes 7'(t) = —p?*T =

—(nm/1)?T (¢), and hence
T(t) = ef(nn/l)2t’



8 1. Introduction to Boundary-Value Problems

up to a multiplicative constant. Our product solution is then a multiple of
e~ (/D% sin(nmx /1), and the form of solution we expect for the boundary-value
problem is therefore

o
u(x,t) = che_(””/”z’ sin(nmx/1).

n=1

The constants ¢, are determined by the condition at + = 0. We extend f(x),
which is initially defined for 0 < x <[, to be defined for —/ < x <[ and to be
an odd function. The constants ¢, are then the Fourier coefficients of f except
that the period is 2/ rather than 27:

o0
F)~ 3 epsin ™ withe, = 1 [1 f(y)sin 2 dy = 2 [ f(y)sin 2 dy.

n=1

Normally the Fourier series would have cosine terms as well as sine terms, but the
cosine terms all have coefficient O since f is odd. In any event, we now have an
explicit infinite series that we hope gives the desired solution u(x, t). Checking
that the function u(x, t) defined above is indeed the desired solution amounts
to handling steps (iii) and (iv) in the method of separation of variables. For
(iii), we want to know whether f(x) really can be represented in the indicated
form. This example is simple enough that (iii) can be handled by the theory
of Fourier series as in Chapter I of Basic: since f is assumed to have two
continuous derivatives on [0, /], the Fourier series converges uniformly by the
Weierstrass M test, and the sum must be f by the uniqueness theorem. Another
way of handling (iii) is to apply Theorem 1.3 to the equation y” + Ay = 0
subject to the conditions y(0) = 0 and y(/) = 0: The theorem gives us a certain
unique abstract expansion without giving us formulas for the explicit functions
that are involved. It says also that we have completeness and absolute uniform
convergence. Since our explicit expansion with sines satisfies the requirements
of the unique abstract expansion, it must agree with the abstract expansion and
it must converge absolutely uniformly. Whichever approach we use, the result
is that we have now handled (iii). Step (iv) in the method is the justification
that u(x, ¢) has all the required properties: we have to check that the function in
question solves the heat equation and takes on the asserted boundary values. The
function in question satisfies the heat equation because of Theorem 1.1 and the
rapid convergence of the series Y o | e~ (7/! )’ and s first and second derivatives.
The question about boundary values is completely settled by Proposition 1.2. For
the condition u(x,0) = f(x), we take X = [0,[], Y = [0,+00), y = ¢,
Ay(x) = cpsin(nmx/l), By(t) = e~ /D and yo = 0 in the proposition;
uniform convergence of Y _ | A, (x)| follows either from Theorem 1.3 or from the
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Fourier-series estimate |c,| < C/n?, which in turn follows from the assumption
that f has two continuous derivatives. The conditions u(0, t) = u(l, t) = 0 may
be verified in the same way by reversing the roles of the space variable and the
time variable. To check that (0, t) = 0, for example, we use Proposition 1.2
with X = (§, 400), Y = [0,]], and yp = 0. Our boundary-value problem is
therefore now completely solved.

(2) We continue to assume that space is 1-dimensional and that the object of
interest is arod O < x < /. The unknown function for heat flow in the rod is still
u(x, t), but this time the boundary data are

u(x,0) = f(x) (initial temperature equal to f(x)),
u,(0,1) =u,(,t) =0 (ends of rod perfectly insulated for all > 0).

In the same way as in Example 1, a product solution X (x)7 (¢) leads to a separated
equation 7'(¢)/ T (t) = X" (x)/ X (x), and both sides must be some constant —A.
The equation for X (x) is then

X"+1X =0 with X’(0) = X'(I) = 0.
We find that A has to be of the form p? with p = n/I for some integer n > 0,

and X (x) has to be a multiple of cos(nwx/[). Taking into account the formula
A = p?, we see that the equation for T (¢) is

T'(t) = —p*T(1).

Then T (¢) has to be a multiple of e~ "7/ ”2’, and our product solution is a multiple
of e~ /D’ cos(nmx /1). The form of solution we expect for the boundary-value
problem is therefore

o
ulx,t) = che_(””/l)zt cos(nmx/1).
n=0
We determine the coefficients ¢, by using the initial condition u(x,0) = f(x),
and thus we want to represent f (x) by a series of cosines:

o
f(x) ~ ch cos .
n=0

We can do so by extending f (x) from [0, /] to [, [] so as to be even and using

ordinary Fourier coefficients. The formulais therefore ¢, = % fol f(y)cos @ dy

forn > 0, with ¢y = % fol f(y)dy. Again as in Example 1, we can carry out step
(iii) of the method either by using the theory of Fourier series or by appealing
to Theorem 1.3. In step (iv), we can again use Theorem 1.1 to see that the
prospective function u(x, t) satisfies the heat equation, and the boundary-value
conditions can be checked with the aid of Proposition 1.2.
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(3) We still assume that space is 1-dimensional and that the object of interest
isarod 0 < x < [. The unknown function for heat flow in the rod is still u(x, 1),
but this time the boundary data are

u(x,0) = f(x) (initial temperature equal to f(x)),
u,1) =0 (one end of rod held at temperature 0),
uc(l,t) = —hu(,t) (other end radiating into a medium of temperature 0),

and £ is assumed positive. In the same way as in Example 1, a product solution
X (x)T (¢) leads to a separated equation 7'(¢)/T(t) = X"(x)/ X (x), and both
sides must be some constant —A. The equation for X (x) is then

X(0) =0,

X' +2X =0  with {
hX{)+ X'(1) = 0.

From the equation X” + AX = 0 and the condition X (0) = 0, X (x) has to be
a multiple of sinh px with A = —p? < 0, or of x with A = 0, or of sin px with
A = p? > 0. In the first two cases, #X (I) + X'(I) equals h sinh pl + p cosh pl
or hl + 1 and cannot be 0. Thus we must have A = p?> > 0, and X (x) is a
multiple of sin px. The condition X () + X'(l) = 0 then holds if and only if
h sin pl 4+ p cos p/ = 0. This equation has infinitely many positive solutions p,
and we write them as py, py, ... . See Figure 1.1 for what happens when !/ = .

s
=

2 4 6 8 0
-2.5
-5

-7.5
-10

FIGURE 1.1. Graphs of sinp and — p cos wp. The graphs
intersect for infinitely many values of 4 p.

IfA = pﬁ, then the equation for T'(¢) is T/ (¢) = —p,%T(t), and T (¢) has to be a
multiple of ¢~Px . Thus our product solution is a multiple of e Pl sin PnX, and
the form of solution we expect for the boundary-value problem is

o
2
u(x,t) = E cpe Pl sin p,x.

n=1
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Putting t+ = 0, we see that we want to choose constants ¢, such that

o0

fx) ~ Z Cp Sin ppx.

n=I
There is no reason why the numbers p, should form an arithmetic progression,
and such an expansion is not a result in the subject of Fourier series. To handle
step (iii), this time we appeal to Theorem 1.3. That theorem points out the
remarkable fact that the functions sin p,x satisfy the orthogonality property
fol sin p,x sin p,x dx = 0 if n # m and therefore that

l l
Cn=/ f(y)sinpnydy// sin® pyy dy .
0 0

Even more remarkably, the theorem gives us a completeness result and a conver-
gence result. Thus (iii) is completely finished. In step (iv), we use Theorem 1.1 to
check that u(x, t) satisfies the partial differential equation, just as in Examples 1
and 2. The same technique as in Examples 1 and 2 with Proposition 1.2 works to
recover the boundary value u(x, 0) as a limit; this time we use Theorem 1.3 for the
absolute uniform convergence in the x variable. For u(0, ¢), one new comment
is appropriate: we take X = (8, 400), Y =[0,/], yo =0, 4,(x) = efpf’, and
B, (y) = ¢, sin p,x; although the estimate |B,(y)] < 1 may not be valid for
all n, it is valid for n sufficiently large because of the uniform convergence of
> ¢y sin ppx.

4) This time we assume that space is 2-dimensional and that the object of
interest is a circular plate. The unknown function for heat flow in the plate is
u(x, y, 1), the differential equation is u; = u,, + u,,, and the assumptions about
boundary data are that the temperature distribution is known on the plate at = 0
and that the edge of the plate is held at temperature O for all # > 0. Let us use polar
coordinates (r, ) in the (x, y) plane, let us assume that the plate is described by
r < 1, and let us write the unknown function as v(r, 6, t) = u(r cos6, r sinf, t).
The heat equation becomes

v =V 1 v gy,
and the boundary data are given by
v(r, 6,0) = f(r,0) (initial temperature equal to f(r, 6)),
v(l,0,t) =0 (edge of plate held at temperature 0).

We first look for solutions of the heat equation of the form R(r)®(0)T ().
Substitution and division by R(r)®(0)T (t) gives
R'(r) 1R(r) 1O070) T'@)
R(r) r R(r) r20O@) T

)
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so that T'(¢) is a multiple of e~“'. The equation relating R, ®, and ¢ becomes

r’R'(r) rR(r)  ©"6)
RO RO 6@

Therefore
e"(9) r’R"(r) rR(r) 5
S — —cr

©® 7 RO R(r)

Since ®(#) has to be periodic of period 27, we must have A = n? with n an
integer > 0; then ®(0) = ¢ cosnb + ¢ sinn6d. The equation for R(r) becomes

r’R"+rR + (cr* = n®)R =0.

This has a regular singular point at 7 = 0, and the indicial equation is s> = n>.

Thuss = %n. Infact, we can recognize this equation as Bessel’s equation of order
n by a change of variables: A little argument excludes ¢ < 0. Putting k = /c,
p = kr,and y(p) = R(r) leads to y” 4+ p~'y' + (1 — n?>p~%)y = 0, which is
exactly Bessel’s equation of order n. Transforming the solution y(p) = J,(p)
back withr = k~!p, we see that R(r) = y(p) = J,(p) = J,(kr) is a solution of
the equation for R. A basic product solution is therefore %ao’k Jotkr)ifn =0 or

Jn(kr) (ay x cos n® + by, ;. sin n@)e k1

if n > 0. The index n has to be an integer in order for v to be well behaved at the
center, or origin, of the plate, but we have not thus far restricted & to a discrete
set. However, the condition of temperature 0 at » = 1 means that J,, (k) has to be
0, and the zeros of J, form a discrete set. The given condition at ¢+ = 0 means
that we want

o0

o~ 3 aprdoer)+> ( 3" (@nscosnd+ by sinn@)]n(kr)>.

k>0 with n=1 k>0 with

Jo(kr)=0 o (kr)=0
‘We do not have the tools to establish this kind of relation, but we can see a hint
of what to do. The orthogonality conditions that allow us to write candidates for
the coefficients are the usual orthogonality for trigonometric functions and the
relation

1
/ Ju(kr)Jy(K'r)r dr =0 if J,(k) = J,(K) =0and k # k.
0

The latter is not quite a consequence of Theorem 1.3, but it is close since the
equation satisfied by y; (r) = J,(kr), namely

(ryp) + K*r —n?’r Yy = ryy + oy + K*r —n’ r Yy =0,
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fails to be of the form in Theorem 1.3 only because of trouble at the endpoint
r = 0 of the domain interval. In fact, the argument in the next section for the
orthogonality in Theorem 1.3 will work also in this case; see Problem 2 at the
end of the chapter. Thus put

1 (7 1 ("
a,(r) = - f@r,0)cosnddod and b,(r)=— f(@r,0)sinnb do,

_ T Jxn

so that

o
f@,0)~ %ao(r) + Z (a,(r)cosnb + b, (r) sinno) for each r.

n=1
1 1

Then put an,k:/ a,(r)yr(ryrdr // yk(r)zrdr
0 0

1 1
and bpi = / b, (r)yi(r)rdr // yk(r)zr dr .
0 0

With these values in place, handling step (iii) amounts to showing that

o0
F0) =3 D axdotkr)+ Y (D0 (@uxcosnt +buysinnd), k)
k>0 with n=1 k>0 with
Jo(kr)=0 Ju (kr)=0

for functions f of class C 2 This formula is valid, but we would need a result
from Sturm-Liouville theory that is different from Theorem 1.3 in order to prove
it. Step (iv) is to use the convergence from Sturm—Liouville theory, together with
application of Proposition 1.2 and Theorem 1.1, to see that the function u(r, 6, t)
given by

1 _
> 2 ook ™ Y (D (@ cosnd + by sinnd) J, (krye ™)
2 k>0 with n=1 k>0 with

Jo(kr)=0 Ju(kr)=0

has all the required properties.

The second partial differential equation that we consider is the Laplace
equation Au = (0. Various sets of boundary data can be given, but we deal
only with the values of u# on the edge of its bounded domain of definition. In this
case the problem of finding u is known as the Dirichlet problem.
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EXAMPLES WITH LAPLACE EQUATION.

(1) We suppose that the space domain is the unit disk in R?. The Laplace
equation in polar coordinates (r, ) is u,, +r~'u, 4+ r2ugg = 0. The unknown
function is u(r, 6), and the given boundary values of u for the Dirichlet problem
are

u(l,0) = (@) (value on unit circle).

It is implicit that u(r, 6) is to be periodic of period 27 in 6 and is to be well
behaved at r = 0. A product solution is of the form R(r)®(6). We substitute
into the equation, divide by 7 2R (r)©®(6), and and find that the variables separate
as r2 R” rR’ ®"
R TR ® ¢

The equation for ® is ®” + ¢® = 0, and the solution is required to be periodic.
We might be tempted to try to apply Theorem 1.3 at this stage, but the boundary
condition of periodicity, ®(—m) = ©O(m), is not exactly of the right kind for
Theorem 1.3. Fortunately we can handle matters directly, using Fourier series
in the analysis. The periodicity forces ¢ = n* with n an integer > 0. Then
®(@) = cjcosnb + csinnf, except that the sine term is not needed when
n = 0. The equation for R becomes

r’R"4+rR —n*R =0.
This is an Euler equation with indicial equation s2 = n?, and hence s = +n. We
discard —n with n > 1 because the solution » ~" is not well behaved atr = 0, and
we discard also the second solution logr that goes with n = 0. Consequently
R(r) is a multiple of r", and the product solution is r"(a, cosnf + b, sinn6)
when n > 0. The expected solution of the Laplace equation is then

o
u(r,9) = %ao + Y r"(a, cosnb + b, sinnb).

n=1

We determine a, and b, by formally putting » = 1, and we see that a, and
b, are to be the ordinary Fourier coefficients of f(x). The normal assumption
for a boundary-value problem is that f is as nice a function as # and hence
has two continuous derivatives. In this case we know that the Fourier series
converges to f(x) uniformly. It is immediate from Theorem 1.1 that u(r, 6)
satisfies Laplace’s equation for r < 1, and Proposition 1.2 shows that u(r, 6) has
the desired boundary values. This completes the solution of the boundary-value
problem. In this example the solution u(r, ) is given by a nice integral formula:
The same easy computation that expresses the partial sums of a Fourier series in
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terms of the Dirichlet kernel allows us to write u(r, ) in terms of the Poisson
kernel

1—r? > ,
Pr 0) — — |n| zn9’
©) 1 —2rcosf +r2 Zr ¢

n=—oo

namely

u(r,0) = i rl"‘(% /;” fp)e " d<p>ei'19

n=—0oo

- %/_z f(¢)< i ,ln\einw—w)) dy

n=-—00
1

=5 f@P.(0 —@)dy
T Jn
1 T

=5 fO — )P (p)de.
T J-n

The interchange of integral and sum for the second equality is valid because of the
uniform convergence of the series Y oo r"lei"®=9) for fixed r. The resulting
formula for u(r, 0) is known as the Poisson integral formula for the unit disk.

(2) We suppose that the space domain is the unit ball in R®>. The Laplace
equation in spherical coordinates (r, ¢, 6), with ¢ measuring latitude from the
point (x, y, z) = (0,0, 1), is

1 . 1
r’u,)r + —— ((sin@)uy)y + —— gy =0.
sin @ sin“ ¢

The unknown function is u(r, ¢, 8), and the given boundary values of u for the
Dirichlet problem are

u(l,p,0) = f(p,0) (value on unit sphere).

The function « is to be periodic in 6 and is to be well behaved atr = 0, ¢ = 0, and
¢ = m. Searching for a solution R(r)® (¢)® (@) leads to the separated equation

r2R" +2r R’ ®" + (cotp)d’ 1 ®
- _ — — =c.
R P sin® g ©

The resulting equation for R is7>R” +2r R’ —cR = 0, which is an Euler equation
whose indicial equation has roots s satisfying s(s 4+ 1) = ¢. The condition that a
solution of the Laplace equation be well behaved at r = 0 means that the solution
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r® must have s equal to an integer m > 0. Then R(r) is a multiple of r”* with m
an integer > 0 and with ¢ = m(m + 1). The equation involving ® and ® is then

. ®" + (cotp)d’ O .
(s1n2 ) & +—+mim+1) sm2¢> =0.

) ®
This equation shows that ©”/© = ¢, and as usual we obtain ¢’ = —n? with n an
integer > 0. Then ®(0) = c; cosnb + c, sinnf. Substituting into the equation
for @ yields

®" + (cot)d’

o —n2+m(m+1)sin2<p:0.

(sin” )
We make the change of variables t = cos ¢, which has

. d P NS AP
— = —SIney — an —F = —(COS —_— sin —_—.
dy i g Y Y ar

Putting P(¢) = P(cos @) = O(¢) for 0 < ¢ < m leads to

1—t>)P" —tP t @) (—sing) P’
(1_t2)|:( ) ‘;(CO (0)( Sln(ﬂ) ]—n2+m(m—|—1)(1—t2) =0
and then to
2
(1—)P" — 2P + [m(m+ -+ tz]P —0.

This is known as an associated Legendre equation. For n = 0, which is the
case of a solution independent of longitude €, the equation reduces to the ordinary
Legendre equation.> Suppose for simplicity that f is independent of longitude 6
and that we can take n = 0 in this equation. One solution of the equation for P is
P(t) = P,(t), the m™ Legendre polynomial. This is well behaved at = %1, the
values of ¢ that correspond to ¢ = 0 and ¢ = . Making a change of variables,
we can see that the Legendre equation has regular singular points at # = 1 and
t = —1. By examining the indicial equations at these points, we can see that
there is only a 1-parameter family of solutions of the equation for P that are well
behaved at t = 1. Thus ®(¢) has to be a multiple of P,,(cos ¢), and we are led

to expect
o0

u(r, 9. 0) = Y _ cur™ Pp(cos )

m=0

5The ordinary Legendre equation is (1 — t2) P — 2t P’ +m(m + 1) P = 0, as in Section IV.8 of
Basic.
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for solutions that are independent of 0. If f(p,0) is independent of 6, we
determine c,, by the formula

[(@,0) ~ Y cnPulcos ).
m=0

The coefficients can be determined because the polynomials P, are orthogonal
under integration over [—1, 1]. To see this fact, we first rewrite the equation for
Pas (1 —t>)P')Y +m@m + 1)P = 0. This is almost of the form in Theorem
1.3, but the coefficient 1 — #? vanishes at the endpoints + = 1. Although the
orthogonality does not then follow from Theorem 1.3, it may be proved in the
same way as the orthogonality that is part of Theorem 1.3; see Problem 2 at the end
of the chapter. A part of the completeness question is easily settled by observing
that P, is of degree m and that therefore the linear span of {Py, P, ..., Py}
is the same as the linear span of {1,¢, ..., tN}. This much does not establish,
however, that the series Y _ ¢,, P, (¢) converges uniformly. For that, we would need
yet another result from Sturm-Liouville theory or elsewhere. Once the uniform
convergence has been established, step (iv) can be handled in the usual way.

The third and final partial differential equation that we consider is the wave
equation u;, = Au. We consider examples of boundary-value problems in one
and two space variables.

EXAMPLES WITH WAVE EQUATION.

(1) A string on the x axis under tension is such that each point can be displaced
only in the y direction. Let y = u(x, t) be the displacement. The equation for
the unknown function u(x, ¢) in suitable physical units is u;, = u,,, and the
boundary data are

u(x,0) = f(x) (initial displacement),
u;(x,0) = gx) (initial velocity),
u@0,1) =ul,t) =0 (ends of string fixed for all # > 0).

The string vibrates for ¢+ > 0, and we want to know what happens. Searching
for basic product solutions X (x)T'(¢), we are led to T”/T = X”/X = constant.
As usual the conditions at x = 0 and x = [ force the constant to be nonpositive,
necessarily —w? with @ > 0. Then X (x) = ¢; coswx + ¢ sinwx. We obtain
¢y = 0 from X(0) = 0, and we obtain @ = nm/l, with n an integer, from
X({) = 0. Thus X(x) has to be a multiple of sin(nwx/l), and we may take
n > 0. Examining the T equation, we are readily led to expect

ulx,t) = Z sin(nwx/1)[a, cos(nrt/l) + b, sin(nwt/l)].

n=1
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The conditions u(x, 0) = f(x) and u,(x, 0) say that

f(x) ~ X_: a, sin ("”Tx) and gx)~ > (%)bn sin (@),

n=1 n=1

so thata, and nmb, /I are coefficients in the Fourier sine series for f and g. Steps
(iii) and (iv) in the method follow in the same way as in earlier examples.

(2) We visualize a vibrating circular drum. A membrane in the (x, y) plane
covers the unit disk and is under uniform tension. Each point can be displaced
only in the z direction. Let u(x, y,t) = U(r,6,t) be the displacement. The
wave equation u;; = Uy + Uy, becomes Uy, = U, + r~ U, +r Uy in polar
coordinates. Assume for simplicity that the boundary data are

U, 0,0)= f(r) (initial displacement independent of 9),
U;(r,0,0) =0 (initial velocity 0),
ua,0,t)=0 (edge of drum fixed for all r > 0).

Because of the radial symmetry, let us look for basic product solutions of the
form R(r)T (¢t). Substituting and separating variables, we are led to T"/T =
(R” +r~'R)/R = c. The equation for R is r>R” +rR’ — cr’R = 0, and
the usual considerations do not determine the sign of ¢. The equation for R has
a regular singular point at » = 0, but it is not an Euler equation. The indicial
equation is s> = 0, with s = 0 as a root of multiplicity 2, independently of c.
One solution is given by a power series in r, while another involves logr. We
discard the solution with the logarithm because it would represent a singularity at
the middle of the drum. To get at the sign of ¢, we use the condition R(1) = 0 and
argue as follows: Without loss of generality, R(0) is positive. Suppose ¢ > 0,
and let r; < 1 be the first value of r > 0 where R(r;) = 0. From the equation
r~'(rR’) = cR and the inequality R(r) > 0 for 0 < r < r|, we see that 7 R’
is strictly increasing for 0 < r < r;. Examining the power series expansion for
R(r), we see that R’(0) = 0. Thus R'(r) > 0 for0 <r < r;. But R(0) > 0 and
R(r1) = 0 imply, by the Mean Value Theorem, that R'(r) is < 0 somewhere in
between, and we have a contradiction. Similarly we rule out ¢ = 0. We conclude
that ¢ is negative, i.e., c = —k? with k > 0. The equation for R is then

r’R"+rR +k*r*R =0.
The change of variables p = kr reduces this equation to Bessel’s equation of order

0, and the upshot is that R(r) is a multiple of Jo(kr). The condition R(1) = 0
means that Jy(k) = 0. If k,, is the n'" positive zero of Jy, then the T equation is
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T" + k2T = 0, so that T'(t) = c; cosk,t + ¢ sink,t. From U, (r, 6, 0) = 0, we
obtain ¢; = 0. Thus T (¢) is a multiple of cos k, ¢, and we expect that

o0
U, 6,t) = chjo(k,,r)cosknt.

n=1

In step (iii), the determination of the ¢,,’s and the necessary analysis are similar to
those in Example 4 for the heat equation, and it is not necessary to repeat them.
Step (iv) is handled in much the same way as in the vibrating-string problem.

3. Sturm-Liouville Theory

The name “Sturm-Liouville theory” refers to the analysis of certain kinds of
“eigenvalue” problems for linear ordinary differential equations, particularly
equations of the second order. In this section we shall concentrate on one theorem
of this kind, which was stated explicitly in Section 2 and was used as a tool for
verifying that the method of separation of variables succeeded, for some examples,
in solving a boundary-value problem for one of the standard partial differential
equations. Before taking up this one theorem, however, let us make some general
remarks about the setting, about “eigenvalues” and “eigenfunctions,” and about
“self-adjointness.”

Fix attention on an interval [a, b] and on second-order differential operators
on this interval of the form L = P(t)D> + Q(t)D + R(t)1 with D = d/dt, so
that

L) =P®u” + 0®)u’ + R(t)u.

We shall assume that the coefficient functions P, Q, and R are real-valued; then
L(it) = L(u). As was mentioned in Section 2, the behavior of all functions in
question at the endpoints will be relevant to us: we say that a continuous function
f :la, b] — C with a derivative on (a, b) has a continuous derivative at one or
both endpoints if f’ has a finite limit at the endpoint in question; it is equivalent
to say that f extends to a larger set so as to be differentiable in an open interval
about the endpoint and to have its derivative be continuous at the endpoint.

An eigenvalue of the differential operator L is a complex number ¢ such
that L(u) = cu for some nonzero function u#. Such a function u is called an
eigenfunction. In practice we often have a particular nonvanishing function r
and look for ¢ such L(u) = cru for a nonzero u. In this case, c is an eigenvalue
of r='L.

We introduce the inner-product space of complex-valued functions with two

continuous derivatives on [a, b] and with (u, v) = fab u(t)v(t) dt. Computation
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using integration by parts and assuming suitable differentiability of the coeffi-
cients gives

b
(L(w),v) = / (Pu” + Qu' + Ru)vdt
b
_ / (") (PB) + (W)(QF) + () (RD)) di

b b
=[P+ wi@p)] - [ wsy + wi@d - w®m)ar
b
= [@)PD) + (D) — W (P |

b
+ / ()(PD)" = )(QD) + () (RD)) dr
a
b
= (@, L* @) + [6)(PD) + (D) —u(Pd)]
where L*(v) = Pv" 4+ 2P’ — Q)v' + (P” — Q'+ R)v. The above computation
shows that (L(u),v) = (u, L*(v)) if the integrated terms are ignored; this
property is the abstract defining property of L*. The differential operator L*
is called the formal adjoint of L. We shall be interested only in the situation
in which L* = L, which we readily see happens if and only if P’ = Q; when
L* = L, we say that L is formally self adjoint. If L is formally self adjoint,
then substitution of Q = P’ shows that the above identity reduces to
b

(L. v) = @, L@) = [ (PY'T—ud)] .
which is known as Green’s formula.

Even when L as above is not formally self adjoint, it can be multiplied by a
nonvanishing function, specifically f ! exp[(Q(s) — P'(s))/P(s)]ds, to become
formally self adjoint. Thus formal self-adjointness by itself is no restriction on
our second-order differential operator.

In the formally self-adjoint case, one often rewrites P(1)D*> 4+ P'(t)D as
D(P(t)D). With this understanding, let us rewrite our operator as

L(u) = (p(u) —q()u

and assume that p, p’, and g are continuous on [a, b] and that p(z) > 0 for
a <t < b. We associate a Sturm-Liouville eigenvalue problem called (SL)
to the set of data consisting of L, an everywhere-positive function r with two
continuous derivatives on [a, b], and real numbers ¢y, ¢;, di, d> such that ¢; and
¢, are not both 0 and d; and d, are not both 0. This is the problem of analyzing
simultaneous solutions of
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L)+ Ar(t)u =0, (SL1)
ciu(a) + cou'(a) =0 and dyu(b) + du'(b) =0, (SL2)

for all values of A.

Each condition (SL1) and (SL2) depends linearly on u and u’ if A is fixed,
and thus the space of solutions of (SL) for fixed A is a vector space. We know®
that the vector space of solutions of (SL1) alone is 2-dimensional; let #; and u;

form a basis of this vector space. The Wronskian matrix is (Z,l 22 528; ), and the
1 2

determinant of this matrix, namely

ur (s (t) — u') (Hua(t),

is nowhere 0. If u; and u, were both to satisfy the condition cju(a) +cou’(a) = 0

with ¢; and ¢; not both 0, then (2 ) would be a nontrivial solution of the matrix

(ul(a) u’l(a)) (m) _ <0)
u(a) uh(a) ) \ c2 0

and we would obtain the contradictory conclusion that the Wronskian matrix at a
is singular. We conclude that the space of solutions of (SL) for fixed A is at most
1-dimensional.

Let (¢1, ¢2), = fab @1 (1)@ (t) r(¢) dt for any continuous functions ¢; and ¢,
on [a, b], and let |l¢; ||, = ((¢1, <p1)r)1/2. The unsubscripted expressions (¢1, ¢2)
and ||¢(|| will refer to (¢;, ¢2), and ||@;||, with » = 1. Then we can restate
Theorem 1.3 as follows.

equation

Theorem 1.3’ (Sturm’s Theorem). The system (SL) has a nonzero solution
for a countably infinite set of values of A. If E denotes this set of values, then
the members A of E are all real, they have no limit point in R, and the space of
solutions of (SL) is 1-dimensional for each such A. The set E is bounded below
if cjcp < 0 and djd; > 0, and E is bounded below by O if these conditions and
the condition g > 0 are all satisfied. In any case, enumerate E in any fashion as
M, A2, ..., letu = ¢, be anonzero solution of (SL) when A = X,,, and normalize
¢, so that ||@,|l, = 1. Then (¢, @), = 0 for m # n, and the functions ¢,
satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series Y o | (u, ¢,),®,(f) converges absolutely
uniformly to u(¢) on [a, b],

(b) the only continuous ¢ on [a, b] with (¢, ¢,), = 0forallnis ¢ =0,

(c) any continuous ¢ on [a, b] satisfies ||<p||f = ZZOZI |(p, (pn)r|2.

8From Theorem 4.6 of Basic, for example.
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REMARKS. In this section we shall reduce the proof of everything but (b)
and (c) to the Hilbert—-Schmidt Theorem, which will be proved in Chapter II.
Conclusions (b) and (c) follow from (a) and some elementary facts about Hilbert
spaces, and we shall return to prove these two conclusions at the time of the
Hilbert—Schmidt Theorem in Chapter I1.

PROOF EXCEPT FOR STEPS TO BE COMPLETED IN CHAPTER II. By way of
preliminaries, let # and v be nonzero functions on [a, b] satisfying (SL2) and
having two continuous derivatives. Green’s formula gives

(L)) =, L) = [(P) @5 — ui)]!
= p() (' B)V(®B) — uBV D)) — p(@) (' (@v(@) — u(@v'(@)).

Condition (SL2) says that
ciu(a) +cu'(@) =0 and civ(a) + cav'(a) =0.
Since ¢ and c; are real, these equations yield
cru(@)v(a) + cou'(@)yv(a) = 0 and ciu(a)v(a) + coua)v'(a) =0,
as well as
cru(@)v'(a) + cou'(@)v'(@) =0 and cu'(a)v(a) + cru' (@)v'(a) = 0.

Subtracting, for each of the above two displays, each second equation of a display
from the first equation of the display, we obtain

o2 (' (@)v(a) — u(a)v'(a)) =0
and c (u(a)m — u’(a)@) 0.

Since ¢ and ¢; are not both 0, we conclude that p(a) (4’ (a)v(a) —u(a)v'(a)) = 0.
A similar computation starting from

diu(b) + dou'(b) =0 and djv(b) + drv'(b) =0

shows that p(b)(u'(b)v(b) — u(b)v’'(b)) = 0. Consequently
(L(u),v) — (u, L(v)) =0

whenever 1 and v are functions on [a, b] satisfying (SL2) and having two con-
tinuous derivatives.
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Now we can begin to establish the properties of the set £ of numbers A for which
(SL) has a nonzero solution. Suppose that ¢, and @g satisfy L(¢y) +Ae7@o =0
and L(pg) + Agrog = 0. By what we have just seen,

0= (L(¢s), 98) — (@u, L(9p))

b b
=/ L(‘Poz)(/_)ﬁdt_/ ¥o L(pp) dt
—_ b —_
= (—Ay + )hﬂ)/ Wu@ﬂrdt = (—Aq + )\'ﬁ)(W(x’ (p,B)r-

Taking ¢, = ¢p in this computation shows that A, = Ao hence A, is real. With
Ay and Ag real and unequal, this computation shows that (¢, ¢g), = 0. Thus
the members of E are real, and the corresponding ¢’s are orthogonal. We have
seen that the dimension of the space of solutions of (SL) corresponding to any
member of E is 1-dimensional.

We shall prove that E is at most countably infinite. Let ¢ = ( fab r(t) dt)
Any continuous ¢ on [a, b] satisfies

1/2

b 12 b 1/2
fot, = ([ worroa)” < Csup ([ rora) " =eswlol,

a<t<b

Consider the open ball B(k; ¢) of radius k and center ¢ in the space C([a, b]) of
continuous functions on [a, b]; the metric is given by the supremum of the absolute
value of the difference of the functions. If 1 is in this ball, then sup | — ¢| < &,
csup | —o| < ck,and || —¢|, < ck. Choose k with ck = % Suppose that ¢,
and gg correspond as above to unequal A, and Ag and that ¢, and @g have been
normalized so that |¢q|l, = llggll, = 1. If ¥ is in B(k; ¢,) N B(k; ¢g), then
¥ —gull, < 4 and [ —ggll, < 3. The triangle inequality gives ||g, —ggll, < 1,
whereas the orthogonality implies that

l0a — @ll7 = (P — 98 Gu — Pp),

= (Vo> Pa)y — (@as 98), — (Pp: Pa), + (P, 08),

The existence of ¥ thus leads us to a contradiction, and we conclude that B(k; ¢,)
and B(k; ¢g) are disjoint. Since [a, b] is acompact metric space, C([a, b]) is sep-
arable as a metric space,’ and hence so is the metric subspace S = |, B(k; ¢q).
The collection of all B(k; ¢,) is an open cover of S, and the separability gives us

"By Corollary 2.59 of Basic.



24 1. Introduction to Boundary-Value Problems

a countable subcover. Since the sets B(k; ¢,) are disjoint, we conclude that the
set of all ¢, is countable. Hence E is at most countably infinite.

The next step is to bound E below under additional hypotheses as in the
statement of the theorem. Let A be in E, and let ¢ be a nonzero solution of (SL)
corresponding to A and normalized so that ||¢||, = 1. Multiplying (SL1) by ¢
and integrating, we have

b b b
A=/ x|<p|2rdr=—/ (pw’)’@dr+/ gll? dt

b b
/=1b /
= —[py ¢]a+/ ple Izdt+/ qlel*dt

a a

v

b
—pb)g (b)p(b) + p(a)¢ (a)p(a) + / (lel*r)(r~'q)dt

—p(0)¢' B)e(®) + pl@)¢' (@@ + inf r(H)~'q(0)).

v

Let us show under the hypotheses cjc; < 0 and d1d, > 0 that (p’(a)m >0
and ¢’ (b)p(b) < 0, and then the asserted lower bounds will follow. Condition
(SL2) gives us cj¢(a) + c2¢'(a) = 0. If ¢; = 0 orc; = 0, then ¢’(a) = 0
or ¢(a) = 0, and hence (p’(a)m > 0. If cic; # 0, then cjc; < 0. The
identity c;¢(a) + c2¢'(a) = 0 implies that c%|<,o(a)|2 + cie2¢'(@)p(a) = 0 and
hence —cjc¢’ (@)p(a) = C%|§D((1)|2 > 0. Because of the condition ¢jc; < O,
we conclude that ¢'(a)@(a) > 0. A similar argument using d;d, > 0 and
dip(b) +d>¢'(b) = 0 shows that ¢’ (b)p(b) < 0. This completes the verification
of the lower bounds for A.

We have therefore established all the results in the theorem that are to be proved
at this time except for

(i) the existence of a countably infinite set of A for which (SL) has a nonzero
solution,
(ii) the fact that £ has no limit point in R,
(iii) the assertion (a) about completeness.

Before carrying out these steps, we may need to adjust L slightly. We are studying
functions u satisfying L(u) + Aru = 0 and (SL2), and we have established that
the set E of A for which there is a nonzero solution is at most countably infinite.
Choose a member Ag of the complementary set E€ and rewrite the differential
equation as M (u) + vru = 0, where M (u) = L(u) + doru and v = (A — XAg).
Then M has properties similar to those of L, and it has the further property that O
is not a value of v for which M (1) + vru = 0 and (SL2) together have a nonzero
solution. It would be enough to prove (i), (ii), and (iii) for M (u) + vru = 0 and
(SL2). Adjusting notation, we may assume from the outset that 0 is not in E.
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The next step is to prove the existence of a continuous real-valued function
Gi(t,s) on [a, b] X [a, b] such that G(t, s) = G,(s, t), such that the operator
T, given by

b
T F () = f G1(t.5)f(s)ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
space Dla, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b] — C|a, b] is a two-sided inverse
function to 7. The existence will be proved by an explicit construction that will
be carried out as a lemma at the end of this section. The function G (¢, s) is called
a Green’s function for the operator L subject to the conditions (SL2). Assuming
that a Green’s function indeed exists, we next apply the Hilbert—Schmidt Theorem
of Chapter II in the following form:

SPECIAL CASE OF HILBERT-SCHMIDT THEOREM. Let G(z,s) be a
continuous complex-valued function on [a, b] X [a, b] such that
G(t,s) = G(s,t), and define

b
Tf(t):/ G(t,s)f(s)ds

from the space Cla, b] of continuous functions on [a, b] to itself.
Define an inner product (f, g) = fab f(t)g(¢) dt and its corresponding
norm || - || on C[a, b]. For each complex p # 0, define

V. ={f :la,bl - C| f is continuous and T (f) = uf}.

Then each V), is finite dimensional, the space V,, # 0 is nonzero
for only countably many pu, the u’s with V,, # 0 are all real, and
for any € > 0, there are only finitely many u with vV, # 0
and || > €. The spaces V,, are mutually orthogonal with respect
to the inner product (f, g), and the continuous functions orthogonal
to all V,, are the continuous functions 2 with T (h) = 0. Letvy, vo, ...
be an enumeration of the union of orthogonal bases of the spaces V,,

with [lv;|| = 1 for all j. Then for any continuous f on [a, b],
o
T(f)(6) =D (T(f) va)va(t),
n=1

the series on the right side being absolutely uniformly convergent.
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The theorem is applied not to our Green’s function G and the operator 7 as
above but to

G(t,s) =r®)"?G @, s)r(s)"/?

b
and TF(1) =/ G(t,s)f(s)ds =r®)"?Ti(r"* £)(1).

If T(f) = uf for areal number . # 0, then we have T,(r'/2 f) = ur=/2f.
Application of L gives r'/2f = puL@r~'2f). If we put u = r~'/2f, then
we obtain uL(u) = r'2f = r(r~"2f) = ru. Hence L(u) + Aru = 0 for
A = —u~'. Also, the equation u = r~'/2f = u='T;(r'/? ) exhibits u as in
the image of 7} and shows that u satisfies (SL2). Conversely if L(u) + Aru =0
and u satisfies (SL2), recall that we arranged that O is not in E, so that A has a
reciprocal. Define f = r'/2u. Application of T; to L(u) 4+ Aru = 0 gives 0 =
u+ AT (ru) =r= 2 f £ AT (r'/2 ). Then T(f) = r'?Ty(r' /2 f) = =171 f.
We conclude that the correspondence f = r!/?u exactly identifies the vector
subspace of functions u in D[a, b] satisfying L(u) + Aru = 0 with the vector
subspace of functions f in C[a, b] satisfying T(f) = —A~! f.

The statement of Sturm’s Theorem gives us an enumeration A, Ay, ... of E.
We know for each A = A, that the space of functions u solving (SL) for A = 1,
in E is 1-dimensional, and the statement of Sturm’s Theorem has selected for
us a function u = ¢, solving (SL) such that ||¢,||, = 1. Define v, = r'2g,
and u, = —A;l, so that T'(v,) = w,v, and ||v,|| = [l@.ll, = 1. Because of
the correspondence of p’s and A’s, the v, may be taken as the complete list of
vectors specified in the Hilbert—Schmidt Theorem. Since the ¢, ’s are orthogonal
for (-, -),, the v,’s are orthogonal for (-, -).

The operator T} has O kernel on Cla, b], being invertible, and the formula
for T in terms of T} shows therefore that 7 has O kernel. Thus the sequence
Ui, U2, ... is infinite, and the Hilbert—Schmidt Theorem shows that it tends to
0. The corresponding sequence A, Ay, ... of negative reciprocals is then infinite
and has no finite limit point. This proves results (i) and (ii) announced above.

Let u have two continuous derivatives on [a, b] and satisfy (SL2). Then u is in
the image of T;. Write u = T, (f) with f continuous, and put g = r~!/2 f. Then
u=T(f)=r""PT@""2f) =r""2T(g) and (u, ¢s), = (T(g), va). Hence

r)"2u(t) = T(g)(t)
and r() 2, @), 0a(t) = (T(8), va)va(2).

The Hilbert—Schmidt Theorem tells us that the series Z;’,O:I(T(g), V) v, (1)
converges absolutely uniformly to 7'(g)(¢). Because r(¢)!/? is bounded above
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and below by positive constants, it follows that the series Zzo:] (4, @n), @ ()
converges absolutely uniformly to u(¢). This proves result (iii), i.e., the com-
pleteness assertion (a) in the statement of Sturm’s Theorem, and we are done
for now except for the proof of the existence of the Green’s function G. (]

Lemma 1.4. Under the assumption that there is no nonzero solution of (SL) for
A = 0, there exists a continuous real-valued function G (z, s) on [a, b] X [a, b]
such that G(¢, s) = G(s, t), such that the operator 7| given by

b
T f () = / G(t.5)1(s)ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
space Dla, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b] — C|a, b] is a two-sided inverse
function to 7.

PROOF. Since L(u) = pu” + p'u’ — qu, a solution of L(u) = 0 has u” =
—p~'p'u’ 4+ p~'qu. Fix a point ¢ in [a, b]. Let ¢;(¢) and ¢,(t) be the unique
solutions of L(u) = 0 on [a, b] satisfying

gi@ =1 and ¢[(©) =0,  ¢(c) =0 and pj(c) = 1.

Since the complex conjugate of ¢; or ¢, satisfies the same conditions, we must
have ¢; = ¢, and ¢, = ;. Hence ¢; and ¢, are real-valued. The associated
Wronskian matrix is

(1@ (D)
W(g1, ¢2)(t) = ((pi(t) <p§(t)>’

and its determinant is
det W (g1, 2)(t) = @1 (D)@ (1) — @1 ()2 (2).

Then det W (g1, ¢2)(c) = 1 and det W (g1, ¢,)(t) satisfies the first-order linear
homogeneous differential equation

(det W(g1, 92)) = @195 — @] @2
=@i(=p ' P'os+ p'q02) — e2(=p7' ol + P qe1)
=—p ' p' (0190} — ¥} 02)
= —p ' p det W(gi, ¢2).
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Therefore

det W(g1, 92)(t) = exp (— [, p'(s)/p(s)ds) = exp ( —log p(t) + log p(c))
= exp(log(p(c)/p(1))) = p(c)/p(®).

For f continuous, consider the solutions of the equation L(#) = f. A specific

solution is given by variation of parameters, as stated in Theorem 4.9 of Basic.

To use the formula in that theorem, we need L to have leading coefficient 1. For
—1 7,/

that purpose, we rewrite L(u) = f asu” + p~'p'u’ — p~'qu = p~'f. The
theorem shows that one solution u*(¢) is given by the first entry of

t _ 0
W(§01,<ﬂ2)(l)/; W(gr, 92)(s) ! (p—l(s)f(s)) ds.

Since W (¢, (pz)(s)_1 = (det W (¢y, (,02)(s))_1 (fé(bj) *fﬂz(b:) ), the result is
01(s)  @i(s)

% _/t —01 O @2()p~ () F(8) + 21 (s) p~ 1 (5) £ (s)
u*(t) = ds
a p(c)/p(s)

= p()~! / (—@1(2(s) + @2(D)@1(5)) f (5) ds.
Define

Golt.s) = { PO (= o1ea(s) + 2(Dei(s))  ifs <,

if s > ¢.

This function is continuous everywhere on [a, b] X [a, b], including where s = ¢,
and it has been constructed so that

t b
u*(t):/ Go(t,s)f(s)ds=/ Go(t,s)f(s)ds

—1 7.7

is a solution of u” 4+ p~'p'u’ — p~'qu = p~' f,ie., of L(u) = f. In particular,
the form of the equation shows that #* has two continuous derivatives on [a, b].
Therefore the operator

b
To(f)(1) :/ Go(t,s) f(s)ds

carries Cla, b] into the space of twice continuously differentiable functions on
[a, b].
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The final step is to adjust Go and Ty so that the operator produces twice
continuously differentiable functions satisfying (SL2). Fix f continuous, and
let u*(t) = fab Go(t, s) f(s)ds. By assumption the equation L(#) = 0 has no
nonzero solution that satisfies (SL2). Thus the function ¢ () = x1¢1(¢) +x202(2)
does not have both

c1p(@) +e¢'(@) =0 and  dip(b) + dag'(b) =0
unless x| and x; are both 0. In other words the homogeneous system of equations
<C1(ﬂ1(a) + cp1(@)  c1ga(a) + crph(a) ) (x1 ) _ (0)
dig1(b) + drpy(b)  di1pa(D) + (D) ) \ x2 0
has only the trivial solution. Consequently the system given by

<Cl§01 (@) + 29} (@) c192(a) + 295 (a) ) <k1 )
dip1(b) + drpy (D)  dip2(b) + dagy(b) ) \ ko

__( cu*(a) + cou*'(a)
N diu*(b) + dru™ (b)

()

has a unique solution (2) for fixed f. We need to know how k; and k; depend
on f. From the form of Gy, we have

w' ) = p@~ (—o10) / 0205)f () ds + g2 / 01()f () ds ).

By inspection, two terms in the differentiation drop out and the derivative is

t t
u*' (1) = p(C)_1< — ¢} (t)/ @2(s) f(s) ds + wé(t)/ @1(5) f(5) dS>.
Evaluation of these formulas at a and b gives
u*(a) = u"'(a) =0,

b b
w*(b) = p(c)' (- <01(b)/ @a(s5) f(s)ds +<p2(b)/ 1(s) f (s) ds),

b b
u’'(b) = p(©)~' (= ¢ (b) f @2(s) f(s) ds + ¢5(b) / @1(s) f(s) ds).
Thus the right side of the equation (x) that defines k; and k; is of the form

_ [ au*(a) + cou™'(a)
diu*(b) + dru™ (b)

0
- ( [P rgi(s) + ezwz(s))f(s)ds> ’
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where e and e, are real constants independent of f. Hence k| and k, are of the

form ,
("I> _ (fu (@pi(s) +ﬁsoz(S))f(S)dS>
ka 17 (rei(s) + 8pa(s) f(s)ds )

where «, 8, v, § are real constants independent of f. The fact that (2) solves
the system (x) means that the function v(#) given by

b b
M*(l)+§01(t)/ (06<P1(S)+,3</)2(S))f(s)dS+<P2(f)/ (Y@1(s)+38@2(s)) f () ds

satisfies civ(a) + cov'(a) = 0 and dyv(b) + drv'(b) = 0. Put

Ki(s)) _ ((@91(s) + Bea(s)

K> (s) ye1(s) +8¢2(s) )
We can summarize the above computation by saying that the real-valued contin-
uous function

Gi(t,5) = Go(t, ) + Ki(s)p1 (1) + Ka(s)a (1)

has, for every continuous f, the property that v(z) = fab Gi(t,s) f(s) ds satisfies
L(v) = f and the condition (SL2).

Define T7(f)(t) = jab Gi(t,s)f(s)ds. We have seen that T carries Cla, b]
into Dla, b] and that L(T;(f)) = f. Now suppose thatu isin Dla, b]. Since L(u)
is continuous, 77 (L(u)) is in Dla, b] and has L(T,(L(u))) = L(u). Therefore
Ty (L(u)) —u is in D[a, b] and has L(T] (L(u)) — u) = 0. We have assumed that
there is no nonzero solution of (SL) for A = 0, and therefore 77 (L (1)) = u. Thus
T, and L are two-sided inverses of one another.

Finally we are to prove that G (¢, s) = G(s, t). Let f and g be arbitrary real-
valued continuous functions on [a, b], and put u = T;(f) and v = T1(g). We
know from Green’s formula and (SL2) that (L(u), v) = (4, L(v)). Substituting
the formulas f = L(u) and g = L(v) into this equality gives

b b b
//Gl(t,S)f(t)g(S)dsdt=/ F@v()dt = (L(u), v)

b b b
:(u,L(v»:/ u(s)g(s)ds=/ / Gi(s, 1) f(1)g(s) dt ds.

By Fubini’s Theorem the identity

b b
/ / (Gi(t,s) — Gi(s,0)F(s,t)dtds =0
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holds when F is one of the linear combinations of continuous functions f (s)g(t).
We can extend this conclusion to general continuous F' by passing to the limit
and using uniform convergence because the Stone—Weierstrass Theorem shows
that real linear combinations of products f(z)g(s) are uniformly dense in the
space of continuous real-valued functions on [a, b] X [a, b]. Taking F (s, t) =
G (t, s)—G1(s, 1), we see that fab fab(Gl (t,s)—G (s, 1))*>dt ds = 0. Therefore
Gi(t,s) —Gi(s,t) = 0and G(t,s) = G(s,t). This completes the proof of
the lemma. O

HISTORICAL REMARKS. Sturm’s groundbreaking paper appeared in 1836. In
that paper he proved that the set £ in Theorem 1.3’ is infinite by comparing the
zeros of solutions of various equations, but he did not address the question of
completeness. Liouville introduced integral equations in 1837.

4. Problems

1. Let p, bethe n"-smallest positive real number p such that 4 sin pl+p cos pl = 0,
as in Example 3 for the heat equation in Section 2. Here / and [ are positive con-
stants. Prove directly that fé sin p,x sin py,x dx = 0 for n # m by substituting

1

from the trigonometric identity sina sinb = —3 ( cos(a + b) — cos(a — b)).

2.  Multiplying the relevant differential operators by functions to make them for-
mally self adjoint, and applying Green’s formula from Section 3, prove the
following orthogonality relations:

(a) f_ll P,(t)P,(t)dt =0if P, and P, are Legendre polynomials and n # m.
The m'™ Legendre polynomial P, is a certain nonzero polynomial solution
of the Legendre equation (1 —t2) P” —2t P’ +m(m + 1) P = 0. It is unique
up to a scalar factor. These polynomials are applied in the second example
with the Laplace equation in Section 2.

(b) fol Jo(kyr)Jo(kyr)r dr = 0if k,, and k,,, are distinct zeros of the Bessel func-

n42n
tion Jo. The function Jy is the power series solution Jo(¢) = Zzio (7(1’),)5

of the Bessel equation of order 0, namely 12y” + 1y’ + 1>y = 0. It is applied
in the last example of Section 2.

3. In the proof of Lemma 1.4:
(a) Show directly by expanding out u*(¢) = fut Go(t, s) f(s)ds thatu* satisfies
Lw*) = f.
(b) Calculate Gy (z, s) and G1(z, s) explicitly for the case that L(u) = u” + u
when the conditions (SL2) are that u(0) = 0 and u(;r/2) = 0.



32

4.

1. Introduction to Boundary-Value Problems

This problem discusses the starting point for Sturm’s original theory. Suppose
that p(t), p'(t), g1(t), and g»(¢) are real-valued and continuous on [a, b] and
that p(#) > 0 and g>(f) > g1(¢) everywhere on [a, b]. Let y;(¢) and y,(¢) be
real-valued solutions of the respective equations

(P@Y) +g1()y=0 and  (p(1)y") +g2()y =0.

Follow the steps below to show that if #; and #, are consecutive zeros of y;(z),

then y;(#) vanishes somewhere on (#1, t2).

(a) Arguing by contradiction and assuming that y, (¢) is nonvanishing on (1, #,),
normalize matters so that y; () > 0 and y,(¢) > 0 on (¢, ). Multiply the
first equation by y,, the second equation by y;, subtract, and integrate over
[#1, t2]. Conclude from this computation that [ py|y, — py yé]g > 0.

(b) Taking the signs of p, y, y; and the behavior of the derivatives into account,
prove that p(1)y(1)y2(t) — p(1)y1(t)y5(t) is < 0 att = 1, and is > O at
11, in contradiction to the conclusion of (a). Conclude that y,(¢#) must have
equaled 0 somewhere on (¢, £2).

(c) Suppose in addition that g(¢) and r(¢) are continuous on [a, b] and that
r(t) > 0 everywhere. Let y;(¢) and y,(¢) be real-valued solutions of the
respective equations

()Y —q@y+rr@®)y =0 and (p()y) —q(®)y+ror(t)y =0,

where A; and X, are real with A; < X,. Obtain as a corollary of (b) that
¥ (t) vanishes somewhere on the interval between two consecutive zeros of

y1().

Problems 5-8 concern Schrodinger’s equation in one space dimension with a time-
independent potential V (x). In suitable units the equation is

5.

W (x,1) AW(x, 1)
T + VX)WV (x,t) = ZT.
(a) Show that any solution of the form W(x,7) = v (x)e(f) is such that
¥ 4+ (E — V(x))¥ = 0 for some constant E.
(b) Compute what the function ¢(¢) must be in (a).

Suppose that V (x) = x2, so that " + (E —x2) ¢ = 0. Put ¥ (x) = e~ /2H (x),
and show that
H" —2xH + (E —1)H =0.

This ordinary differential equation is called Hermite’s equation.

Solve the equation H” — 2xH' 4+ 2nH = 0 by power series. Show that there
is a nonzero polynomial solution if and only if # is an integer > 0, and in this
case the polynomial is unique up to scalar multiplication and has degree n. For
a suitable normalization the polynomial is denoted by H,(x) and is called a
Hermite polynomial.
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8. Guided by Problem 6, let L be the formally self-adjoint operator

LGy =y — x*y.

Using Green’s formula from Section 3 for this L on the interval [—N, N] and
letting N tend to infinity, prove that

N

lim Hy () Hypy(x)e™ dx =0 ifn #m.
N—oo -N



CHAPTER 11

Compact Self-Adjoint Operators

Abstract. This chapter proves a first version of the Spectral Theorem and shows how it applies to
complete the analysis in Sturm’s Theorem of Section 1.3.

Section 1 introduces compact linear operators from a Hilbert space into itself and characterizes
them as the limits in the operator norm topology of the linear operators of finite rank. The adjoint
of a compact operator is compact.

Section 2 proves the Spectral Theorem for compact self-adjoint operators on a Hilbert space,
showing that such operators have orthonormal bases of eigenvectors with eigenvalues tending to 0.

Section 3 establishes two versions of the Hilbert—-Schmidt Theorem concerning self-adjoint
integral operators with a square-integrable kernel. The abstract version gives an L2 expansion of
the members of the image of the operator in terms of eigenfunctions, and the concrete version, valid
when the kernel is continuous and the space is compact metric, proves that the eigenfunctions are
continuous and the expansion in terms of eigenfunctions is uniformly convergent.

Section 4 introduces unitary operators on a Hilbert space, establishing the equivalence of three
conditions that may be used to define them.

Section 5 studies compact linear operators on an abstract Hilbert space, with special attention
to two kinds—the Hilbert—Schmidt operators and the operators of trace class. All three sets of
operators—compact, Hilbert-Schmidt, and trace-class—are ideals in the algebra of all bounded
linear operators and are closed under the operation of adjoint. Trace-class implies Hilbert—Schmidt,
which implies compact. The product of two Hilbert—Schmidt operators is of trace class.

1. Compact Operators

Let H be a real or complex Hilbert space with inner product! (-, -) and norm
| - |l. A bounded linear operator L : H — H is said to be compact if L
carries the closed unit ball of H to a subset of H that has compact closure, i.e., if
each bounded sequence {u,} in H has the property that {L(u,)} has a convergent
subsequence.? The first three conclusions of the next proposition together give a
characterization of the compact operators on H.

IThis book follows the convention that inner products are linear in the first variable and conjugate
linear in the second variable.

2Some books use the words “completely continuous™ in place of “compact” for this kind of
operator.

34
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Proposition 2.1. Let L : H — H be a bounded linear operator on a Hilbert
space H. Then

(a) L is compact if the image of L is finite dimensional,

(b) L is compact if L is the limit, in the operator norm, of a sequence of
compact operators,

(c) L compactimplies that there exist bounded linear operators L,, : H — H
such that L = lim L,, in the operator norm and the image of each L, is
finite dimensional,

(d) L compact implies L* compact.

PROOF. For (a), let M be the image of L. Being finite dimensional, M is
closed and is hence a Hilbert space. Let {vy, ..., v;} be an orthonormal basis.
The linear mapping that carries each v; to the j™ standard basis vector ¢; in the
space of column vectors is then a linear isometry of M onto R¥ or C¥. In R* and
C*, the closed ball about 0 of radius ||L|| is compact, and hence the closed ball
about O of radius ||L|| in M is compact. The latter closed ball contains the image
of the closed unit ball of H under L, and hence L is compact.

For (b), let B be the closed unit ball of H. Write L = lim L,, in the operator
norm, each L, being compact. Since the subsets of acomplete metric space having
compact closure are exactly the totally bounded subsets, it is enough to prove that
L(B) is totally bounded. Let € > 0 be given, and choose n large enough so that
IL, —L|| < €/2. Withn fixed, L, (B) is totally bounded since L, (B) is assumed
to have compact closure. Thus we can find finitely many points vy, ..., vx such
that the open balls of radius € /2 about the v;’s together cover L, (B). We shall
prove that the open balls of radius € about the v;’s together cover L(B). In
fact, if u is given with |u|| < 1, choose j with ||L,(u) — v;|| < €/2. Then
ILu)—vill < IL@)—La@) [ +ILa(u)—v;ll < ILy—Lllllull+5 < 5+5 =¢,
as required.

For (c), we may assume that H is infinite dimensional. Since L is compact,
there exists a compact subset K of H containing the image of the closed unit ball.
As a compact metric space, K is separable. Let {w,} be a countable dense set,
and let M be the smallest closed vector subspace of H containing all w,. Since
the closure of {w,} contains K, M contains K. The subspace M is separable:
in fact, if the scalars are real, then the set of all rational linear combinations of
the w,’s is a countable dense set; if the scalars are complex, then we obtain a
countable dense set by allowing the scalars to be of the form a + bi with a and b
rational.

Since M is aclosed vector subspace, itis a Hilbert space and has an orthonormal
basis S. The set § must be countable since the open balls of radius 1/2 centered at
the members of § are disjoint and would otherwise contradict the fact that every
topological subspace of a separable topological space is Lindelof. Thus let us
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list the members of S as vy, vy, ... . For each n, let M,, be the (closed) linear
span of {vy, ..., v,}, and let E, be the orthogonal projection on M,. The linear
operator E, L is bounded, being a composition of bounded linear operators, and
its image is contained in the finite-dimensional space M,,. Hence it is enough
to show for each € > 0 that there is some n with |[(1 — E,)L| < €. If this
condition were to fail, we could find some € > O such that ||(1 — E,)L|| > € for
every n. With € fixed in this way, choose for each n some vector u,, of norm 1
such that || (1 — E,,)L(u,)|| > €/2. The sequence {L(u,)} lies in the compact set
K. Choose a convergent subsequence {L(u,,)}, and let v = lim L(u,, ). For nj
sufficiently large, we have |[v — L(u,,)|| < €/4. In this case,

1= En)vll = 111 = En) L) = (1 = En) (@ = L)) = § = § = 5.

On the other hand, v is in M, and v is of the form v = Z;il(v, v;)vj. In this
expression we have E, (v) = Z?:l (v, vj)v;, and these partial sums converge to
vin H. Inshort, lim, E,v = v. Then ||(1 — E,,)v|| tends to 0, and this contradicts
our estimate ||(1 — E, vl > 3.

For (d), first suppose that the image of L is finite dimensional, and choose an
orthonormal basis {uy, . .., u,} of the image. Then L(u) = Z'].’zl (L(u), uj)uj =
27:1 (u, L*(uj))u;. Taking the inner product with v gives (u, L*(v)) =
(L(u),v) = 2}1:1 (u, L*(uj))(uj, v). This equality shows that L*(v) and
Z;Z] (v, u;) L*(u;) have the same inner product with every u. Thus they must
be equal, and we conclude that the image of L* is finite dimensional.

Now suppose that L is any compact operator on H. Given € > 0, use (c¢)
to choose a bounded linear operator L, with finite-dimensional image such that
IL — L,|| < €. Since a bounded linear operator and its adjoint have the same
norm, ||[L*— L}|| < €. Since L} has finite-dimensional image, according to what
we have just seen, and since we can obtain such an approximation for any € > 0,
(b) shows that L* is compact. O

2. Spectral Theorem for Compact Self-Adjoint Operators

Let L : H — H be a bounded linear operator on the real or complex Hilbert
space H. One says that a nonzero vector v is an eigenvector of L if L(v) = cv for
some constant ¢; the constant c is called the corresponding eigenvalue. The set
of all u for which L(u) = cu is a closed vector subspace; under the assumption
that this subspace is not 0, it is called the eigenspace for the eigenvalue c.

In the finite-dimensional case, the self-adjointness condition L* = L means
that L corresponds to a Hermitian matrix A, i.e., a matrix equal to its conjugate
transpose, once one fixes an ordered orthonormal basis. In this case it is shown
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in linear algebra that the members of an orthonormal basis can be chosen to
be eigenvectors of L, the eigenvalues all being real. In terms of matrices, the
corresponding matrix A is conjugate via a unitary matrix, i.e., a matrix whose
conjugate transpose is its inverse, to a diagonal matrix with real entries. This result
is called the Spectral Theorem for such linear operators or matrices. A quick proof
goes as follows: An eigenvector v of L with eigenvalue c has (L —cI)(v) = 0, and
this implies that the matrix A of L has the property that A — ¢/ has a nonzero null
space. Hence det(A — c/) = 0 if and only if c is an eigenvalue of L. One readily
sees from the self-adjointness of L that all complex roots of det(A — c¢I) have to
be real. Moreover, if L carries a vector subspace M into itself, then L carries M +
into itself as well. Finite-dimensionality forces A to have a complex eigenvalue,
and this must be real. Hence there is a nonzero vector u with L(u) = cu for
some real c. Normalizing, we may assume that # has norm 1. If M consists of
the scalar multiples of u, then L carries M L to itself, and the restriction of L
to M= is self adjoint. Proceeding inductively, we obtain a system of orthogonal
eigenvectors for L, each of norm 1.

A certain amount of this argument works in the infinite-dimensional case. In
fact, suppose that L is self adjoint. Then any u in H has

(L(u), u) = (u, L*(w)) = (u, L)) = (L(u), u),

and hence the function # +— (L(u), u) is real-valued. If u is an eigenvector in
H with eigenvalue c, i.e., if L(u) = cu, then c(u, u) = (L(u), u) is real; since
(u, u) is real and nonzero, c is real. If u; and u, are eigenvectors for distinct
eigenvalues ¢ and c;, then u; and u; are orthogonal because

(c1 — c2)(ur, u2) = (crur, u2) — (U1, couz) = (L(u1), uz) — (w1, L(uz)) =0.

If M is a vector subspace of H with L(M) C M, then also L(M*) € M~
because m € M and m* € M~ together imply

0 = (L(m), m*) = (m, L(m%)).

These observations prove everything in the following proposition except the last
statement.

Proposition 2.2. If L : H — H is a bounded self-adjoint linear operator
on a Hilbert space H, then u +— (L(u), u) is real-valued, every eigenvalue of L
is real, eigenvectors under L for distinct eigenvalues are orthogonal, and every
vector subspace M with L(M) € M has L(M+) € M*. In addition,

LIl = sup [(L(u),u))|.

lull<1
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PROOF. We are left with proving the displayed formula. Inequality in one
direction is easy: we have

sup |[(L(u), u))| < sup [(L(u),v)| = |L].
lull<1 lull <1,
o<1

With C = sup, <, (L(u), u)), we are therefore to prove that |L|| < C, hence
that ||L(u)|| < C|lu|l for all u. In doing so, we may assume that u # O and
L(u) # 0. Let ¢ be a positive real number. Since (L*(w), u) = (L(u), L(n)), we
have

LG
= [ (Lt L@, e L) = (L= L), = Lw) |
=3[l + T L@l + Cllw = L

= %c[nmn2 + ||f‘L(u)||2],

the last step following from the parallelogram law. By differential calculus
the minimum of an expression a%t2 + b*~2, in which a and b are positive

constants, is attained when > = b/a. Here a = |lu|| and b = ||L(u)|, and
thus [L@)[* < SIL@)ull + IL@)|llul] = CIL@)]l||u|. Dividing by
|L(u)|| gives ||L(u)]| < C|lu|| and completes the proof. [

In the infinite-dimensional case, in which we work with the operator L but
no matrix, consider what is needed to imitate the proof of the finite-dimensional
Spectral Theorem and thereby find an orthonormal basis of vectors carried by L
to multiples of themselves. In the formula of Proposition 2.2, if we can find some
u with |lu|| = 1 such that |L|| = |(L(u), u)|, then this u satisfies ||L||u||*> =
|(L@), )| < IL@)|lull < |IL|lllx]? and we conclude that |(L(u),u)| =
|L()||||ull, i.e., that equality holds in the Schwarz inequality. Reviewing the
proof of the Schwarz inequality, we see that L () and u are proportional. Thus u
is an eigenvector of L, and we can at least get started with the proof.

Unfortunately an orthonormal basis of eigenvectors need not exist for a self-
adjoint L without an extra hypothesis. In fact, take H = L>([0, 1]) with (f, g) =
fol fgdx, and define L(f)(x) = xf(x). This linear operator L has norm 1,

and the equality (f, L(g)) = [, xf(x)g(x)dx = (L(f),g) shows that L is
self adjoint. On the other hand, the only function f with xf = c¢f a.e. for some
constant c¢ is the 0 function. Thus we get no eigenvectors at all, and the supremum
in the formula of Proposition 2.2 need not be attained.
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The hypothesis that we shall add to obtain an orthonormal basis of eigenvectors
is that L is compact in the sense of the previous section. Each compact self-adjoint
operator has an orthonormal basis of eigenvectors, according to the following
theorem.

Theorem 2.3 (Spectral Theorem for compact self-adjoint operators). Let
L : H — H be a compact self-adjoint linear operator on a real or complex
Hilbert space H. Then H has an orthonormal basis of eigenvectors of L. In
addition, for each scalar A, let

H, ={u e H| L(u) = Au},

so that H, — {0} consists exactly of the eigenvectors of L with eigenvalue A.
Then the number of eigenvalues of L is countable, the eigenvalues are all real,
the spaces H, are mutually orthogonal, each H, for A # 0 is finite dimensional,
any orthonormal basis of H of eigenvectors under L is the union of orthonormal
bases of the H,’s, and for any € > 0, there are only finitely many A with H; # 0
and |A| > €. Moreover, either or both of ||L| and —||L| are eigenvalues, and
these are the eigenvalues with the largest absolute value.

PROOF. We know from Proposition 2.2 that the eigenvalues of L are all real
and that the spaces H, are mutually orthogonal. In addition, the formula ||L| =
supy, <1 IL(u)]l shows that no eigenvalue can be greater than |[L|| in absolute
value.

The theorem certainly holds if L = 0 since every nonzero vector is an eigen-
vector. Thus we may assume that ||L]|| > O.

The main step is to produce an eigenvector with one of || L || and —|| L|| as eigen-
value. Taking the equality || L || = sup, < [(L(u), u))| of Proposition 2.2 into ac-
count, choose a sequence {u,,} with ||lu, || = 1 suchthatlim, [(L(u,), u,)| = ||L].
Since the proposition shows that (L(u,), u,) has to be real, we may assume that
this sequence is chosen so that A = lim,(L(u,), u,) exists. Then A = %||L]||.
Using the compactness of L and passing to a subsequence if necessary, we may
assume that L(u,) converges to some limit vo. Meanwhile,

0 < IL(un) — Mtn||* = IL(un)II* — 22 Re(L (1), uy) + A% luy |12
< |IL|I* = 2ARe(L(uy), uy) + 22

The equalities A> = ||L||?> and lim,, (L (u,,), u,) = A show that the right side tends
to 0, and thus lim,, | L («,) — Au,| = 0. Since lim,, ||L(u,) — vyl = O also, the
triangle inequality shows that lim Au,, exists and equals vy. Since A # 0, limu,
exists and vg = Alimu,. Consequently ||vg|| = |A|lim ||u,| = |A| = ||L|| # 0.
Applying L to the equation vp = Alimu, and taking into account that L is
continuous and that lim L(u,) = vy, we see that L(vy) = Avg. Thus vy is an
eigenvector with eigenvalue A, and the main step is complete.
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Now consider the collection of all orthonormal systems of eigenvectors for
L, and order it by inclusion upward. A chain consists of nested such systems,
and the union of the members of a chain is again such an orthonormal system.
By Zorn’s Lemma the collection contains a maximal element S. Let M be the
smallest closed vector subspace containing this maximal orthonormal system S of
eigenvectors. Since the collection of all finite linear combinations of members of
S is dense in M, the continuity of L shows that L(M) € M. By Proposition 2.2,
L(M™*) € M*. The equality (L(u), v) = (u, L(v)) for any two members u and
v of M+ shows that the restriction of L to M~ is self adjoint, and this restriction
is certainly bounded and compact. Arguing by contradiction, suppose M+ # 0.
Then either L = 0 or else L # 0 and the main step above shows that L has an
eigenvector in M*. Thus L has an eigenvector vy of norm 1 in M+~ in either
case. But then S U {vg} would be an orthonormal system of eigenvectors properly
containing S, in contradiction to the maximality. We conclude that M+ = 0.
Since M is a closed vector subspace of H, it satisfies M Ll — M. Therefore
M = (M*+)* =0+ = H, and H has an orthonormal basis of eigenvectors.

With the orthonormal basis S = {v,} of eigenvectors fixed, consider all v,’s
for which the corresponding eigenvalue A, has [A,| > €. If @ and o, are two
distinct such indices, we have

1L (va,) — LWa)II* = ke Vay — Ay Veso I
= |[Ae, Vg, ||2 + | Aoy Ve ||2 by the Pythagorean theorem
= Aoy I* + A I*

> 262,

If there were infinitely many such eigenvectors v,,, the bounded sequence
{L(vgy,)} could not have a convergent subsequence, in contradiction to compact-
ness. Thus only finitely many members of S have eigenvalue with absolute value
> €.

Fix & # 0, let S, be the finite set of members of S with eigenvalue A, and
let H, be the linear span of S,. If v is an eigenvector of L for the eigenvalue A
beyond the vectors in H,, then the expansion

V= Z (v, V)V + Z (v, V) Vg

Vg €S, Vg €ES—Si

shows that (v, vy) # 0 for some v, in § — ;. This v, must have eigenvalue A’
different from X, and then Proposition 2.2 gives the contradiction (v, v,) = 0. We
conclude that H, is the entire eigenspace for eigenvalue A and that the eigenvalues
of the members of S are the only eigenvalues of L.
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For each positive integer n, we know that only finitely many eigenvalues A
corresponding to members of S have |A| > 1/n. Since every eigenvalue of L
is the eigenvalue for some member of S, the number of eigenvalues A of L with
L] > 1/n is finite. Taking the union of these sets as n varies, we see that the
number of eigenvalues of L is countable. This completes the proof. O

3. Hilbert-Schmidt Theorem

The Hilbert—Schmidt Theorem was postponed from Section I.3, where it was used
in connection with Sturm—Liouville theory. The nub of the matter is the Spectral
Theorem for compact self-adjoint operators on a Hilbert space, Theorem 2.3.
But the actual result quoted in Section 1.3 contains an overlay of measure theory
and continuity. Correspondingly there is an abstract Hilbert—Schmidt Theorem,
which combines the Spectral Theorem with the measure theory, and then there
is a concrete form, which adds the hypothesis of continuity and obtains extra
conclusions from it.

The abstract theorem works with an integral operator on L? of a o-finite
measure space (X, ), the operator being of the form

Tf(x) = fX Ky f ) du(y).

where K (x, y) is measurable on X x X. The function K is called the kernel of
the operator.® If f is in L?(X, 1), then the Schwarz inequality gives | T f (x)| <
1K (x, I, Il fll, foreachx in X. Squaring both sides, integrating, and taking the

square root yields | T£[l, < ( [y, x IKI>d(e x 1)) "1 £1l,- As alinear operator
on L%(X, u), T therefore has operator norm satisfying

5 12
171 = ([ [ KGR e dnm) = 1K,

In particular, T is bounded if K is square-integrable on X x X. In this case the
adjoint of T is given by

T*g(x) = / KO 050 du(y)
X

because (Tf,8) = [y [y K(x,y)f(y)g(x)du(y)du(x) and because the as-
serted form of 7* has

(f.T78) = [x F@)([x K(y. 0)g(») dpu(y)) dpu(x)
= [y Jx F@OK(, x)g() dp(y) du(x).

3Not to be confused with the abstract-algebra notion of “kernel” as the set mapped to 0.
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Theorem 2.4 (Hilbert—Schmidt Theorem, abstract form). Let (X, u) be a
o-finite measure space, and let K(-, -) be a complex-valued L? function on
X x X such that K(x,y) = K(y,x) for all x and y in X. Then the linear
operator T defined by

(T ) = [X K. y) ) du(y)

is a self-adjoint compact operator on the Hilbert space L?(X, ) with |T| <
K |l,. Consequently if for each complex A # 0, a vector subspace V;, of L*(X, )
is defined by

Vi={feLl’X.w|Tf=xrf}

then each V, is finite dimensional, the space V) is nonzero for only countably
many A, the spaces V) are mutually orthogonal with respect to the inner product
on L?(X, 1), the A’s with V;, # 0 are all real, and for any € > 0, there are only
finitely many A with V, # 0 and |A| > €. The largest value of |A| for which
V. # 0/is ||T||. Moreover, the vector subspace of L? orthogonal to all V;, is the
kernel of T, so that if vy, vy, ... is an enumeration of the union of orthonormal
bases of the spaces V; with A # 0, then for any f in LZ(X, W,

Tf = (Tf va)un,

n=1

the series on the right side being convergent in L2(X, ).

PROOF. Theorem 2.3 shows that it is enough to prove that the self-adjoint
bounded linear operator 7" is compact. Choose a sequence of simple functions
K, square integrable on X x X such that lim, ||[K — K,||, = 0, and define
T,f(x) = fx K,(x,y)f(y)du(y). The linear operator 7, is bounded with
171l < IIK.ll,, and it has finite-dimensional image since K,, is simple. By
Proposition 2.1a, 7, is compact. Since |T — T,|| < ||[K — K,||, and since the
right side tends to 0, T is exhibited as the limit of 7}, in the operator norm and is
compact by Proposition 2.1b. (]

Now we include the overlay of continuity. The additional assumptions are that
X is a compact metric space, u is a Borel measure on X that assigns positive
measure to every nonempty open set, and K is continuous on X x X. The
additional conclusions are that the eigenfunctions for the nonzero eigenvalues are
continuous and that the series expansion actually converges absolutely uniformly
as well as in L2. The result used in Section 1.3 was the special case of this result
with X = [a, b] and p equal to Lebesgue measure.
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Theorem 2.5 (Hilbert—Schmidt Theorem, concrete form). Let X be a compact
metric space, let 1 be a Borel measure on X that assigns positive measure to every
nonempty open set, and let K (-, -) be a complex-valued continuous function on
X x X suchthat K (x, y) = K(y, x) forall x and y in X. Then the linear operator
T defined by

TF(x) = / K y) ) du(y),
X

is a self-adjoint compact operator on the Hilbert space L?(X, ) with ||T| <
IK|l,, and its image lies in C(X). Consequently the vector subspace V) of
L%(X, u) defined for any complex A # 0 by

Vi={feLl*X.w|Tf=Axrf}

consists of continuous functions, each V; is finite dimensional, the space V, is
nonzero for only countably many A, the spaces V, are mutually orthogonal with
respect to the inner product on L2(X, 1), the A’s with V;, % 0 are all real, and for
any € > 0, there are only finitely many A with V, # 0 and |A| > €. The largest
value of |A| for which V;, #£ Qis || T||. If vy, vy, ... is an enumeration of the union
of orthonormal bases of the spaces V, with A # 0, then for any f in L*(X, ),

o

Tf(x) =Y (Tf va)va(x),

n=1

the series on the right side being absolutely uniformly convergent for x in X.

REMARK. The hypothesis that p assigns positive measure to every nonempty
open set is used only to identify ZZO=1 (Tf, vy)v,(x) with T f (x) at every point.
Without this particular hypothesis on p, the series is still absolutely uniformly
convergent, but its sum is shown to equal 7 f(x) only almost everywhere with
respect to [L.

PROOF. Given € > 0, choose § > 0 by uniform continuity of K such that
|K (x, y) — K(x0, yo)| < € whenever (x, y) and (xq, yo) are at distance < §. If f
isin L?(X, n) and the points x and x, are at distance < §, then (x, y) and (xo, )
are at distance < § and hence

ITf(x) = Tf(xo)l < [y IK(x,y) = K (xo, MILFODdp(y)
<e [y IfDMldu@y) < el fll(wX)'7?,
the last step following from the Schwarz inequality. This proves that Tf is

continuous for each f in L>(X, ). In particular, if Tf = Af with A # 0,
then f = T(A~' f) exhibits f as in the image of 7 and therefore as continuous.
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Everything in the theorem now follows from Theorem 2.4 except for the absolute
uniform convergence to 7 f (x) in the last sentence of the theorem.

For the absolute uniform convergence, let (-, -) denote the inner product in
L%(X, ). We begin by considering the function K (x, -) for fixed x. It satisfies

(K(x, ), ) = [ KO, ) va(0) dp(y) = (Tv,) (x) = oy 0 (x)

if v, is in V, , and Bessel’s inequality gives

N
D Pl < fx K (e, 1P dp(y) < 11K [5pm (X0 ()
n=1

for all N and x. Since the v, form an orthonormal basis of V;',
limy s 00 ” Tg — Zﬁ’:l (Tg, vy, ||2 =0 (%)
for all g in L?(X, ). Meanwhile, we have

(Tg, v)v,(x) = (g, T, (x) = Ap(g, v)va (X).

Application of the Schwarz inequality and (x) gives

N N
> (T v)vn() = 3 |An(8, va)vn(x)]
=M =M

n n

1/2

IA

(£ aPlnoR) (£ g0

1/2 ul 2 172
< 1Kt GOV (X 18 0)
n=M

Bessel’s inequality shows that the series Zfloz (g, v,)|? converges and has sum
< ||g||%. Therefore Zflvz w18, v,)|? tends to 0 as M and N tend to infinity, and
the rate is independent of x. Consequently the series Z:il [(Tg, v,)v,(x)] is
uniformly Cauchy, and it follows that the series 220:1 (Tg, v,)v,(x) is abso-
lutely uniformly convergent for x in X. Since the uniform limit of continuous
functions is continuous, the sum has to be a continuous function. Since ()
shows that Z,Ilvzl(Tg, v,)v, converges in L?(X, 1) to Tg, a subsequence of
Z;V:l (Tg, v,)v,(x) converges almost everywhere to 7g(x). Since Tg is con-
tinuous, the set where Z,fozl (Tg, vy)v,(x) # Tg(x) is an open set. The fact
that this set has measure O implies, in view of the hypothesis on p, that this set is
empty. Thus 2,11\121 (Tg, vy)v,(x) converges absolutely uniformly to Tg(x). O
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4. Unitary Operators

In CV, a unitary matrix corresponds in the standard basis to a unitary linear
transformation U, i.e., one with U* = U~!. Such a transformation preserves
inner products and therefore carries any orthonormal basis to another orthonor-
mal basis. Conversely any linear transformation from C¥ to itself that carries
some orthonormal basis to another orthonormal basis is unitary. For the infinite-
dimensional case we define a linear operator to be unitary if it satisfies the
equivalent conditions in the following proposition.*

Proposition 2.6. If V is a real or complex Hilbert space, then the following
conditions on a linear operator U : V — V are equivalent:
() UU*=U*U =1,
(b) Uisonto V,and (Uv, Uv') = (v,v') forall vand v’ in V,
(c) Uisonto V,and ||Uv| = ||v|| forall vin V.

A unitary operator catries any orthonormal basis to an orthonormal basis. Con-
versely if {u;} and {v;} are orthonormal bases, then there exists a unique bounded
linear operator U such that Uu; = v; for all i, and U is unitary.

REMARKS. In the finite-dimensional case the condition “UU™* = 1” in (a) and
the condition “U is onto V” in (b) and (c) follow from the rest, but that implication
fails in the infinite-dimensional case. Any two orthonormal bases have the same
cardinality, by Proposition 12.11 of Basic, and hence the index sets for {u;} and
{v;} in the statement of the proposition may be taken to be the same.

PROOF. If (a) holds, then UU* = 1 proves that U is onto, and U*U = 1
proves that (Uv, Uv") = (U*Uv, v") = (v, v'). Thus (b) holds. In the reverse
direction, suppose that (b) holds. From (U*Uv, v') = (Uv, Uv") = (v, V') for
all v and v/, we see that U*U = 1. Thus U is one-one. Since U is assumed onto,
it has a two-sided inverse, which must then equal U* since any left inverse equals
any right inverse. Thus (a) holds, and (a) and (b) are equivalent. Conditions (b)
and (c) are equivalent by polarization.

If {u;} is an orthonormal basis and U is unitary, then (Uu;, Uu;) = (u;, u;) =
d;; by (b), and hence {Uu;} is an orthonormal set. If (v, Uu;) = O for all i, then
(U*v,u;) =0foralli, U*v =0,and v = U(U*v) = U0 = 0. So {Uu;} is an
orthonormal basis.

If {u;} and {v;} are orthonormal bases, define U on finite linear combinations

of the u; by U(Zi ciui) = Y . civi. Then ”U(Z, c,~u,~)||2 = || > i civ; ||2 =

“4This book uses the term “unitary” for both real and complex Hilbert spaces. A unitary linear
operator from a real Hilbert space into itself is traditionally said to be orthogonal, but there is no
need to reject the word “unitary” for real Hilbert spaces.



46 1. Compact Self-Adjoint Operators

Yo le > = > cilt [I>. Hence U extends to a bounded linear operator on V,
necessarily preserving norms. It must be onto V since it preserves norms and
its image contains the dense set of finite linear combinations ), ¢;v;. Thus (c)
holds, and U is unitary. OJ

Since unitary operators are exactly the invertible linear operators that preserve
inner products, they are the ones that serve as isomorphisms of a Hilbert space with
itself. Theorem 2.3 and Proposition 2.6 together give us a criterion for deciding
whether two compact self-adjoint operators on a Hilbert space are related to each
other by an underlying isomorphism of the Hilbert space: the criterion is that the
two operators have the same eigenvalues, that the dimension of the eigenspace for
each nonzero eigenvalue of one operator match the dimension of the eigenspace
for that eigenvalue of the other operator, and that the Hilbert-space dimension of
the zero eigenspaces of the two operators match.

5. Classes of Compact Operators

In this section we bring together various threads concerning compact operators,
integral operators, the Hilbert—Schmidt Theorem, the Hilbert—Schmidt norm of
a square matrix, and traces of matrices. The end product is to consist of some
relationships among these notions, together with the handy notion of the trace of
an operator. Once we have multiple Fourier series available as a tool in the next
chapter, we will be able to supplement the results of the present section and obtain
a formula for computing the trace of certain kinds of integral operators. Let us
start with various notions about bounded linear operators from an abstract real
or complex Hilbert space V to itself, touching base with familiar notions when
vV =Cm.

Compact linear operators were discussed in Section 1. Compactness means
that the image of the closed unit ball has compact closure in V. We know
from Proposition 2.1 that the compact linear operators are exactly those that can
be approximated in the operator norm topology by linear operators with finite-
dimensional image. The adjoint of a compact linear operator is compact. Being
the members of the closure of a vector subspace, the compact linear operators form
a vector subspace. When V = C", every linear operator is of course compact.

If L is a compact linear operator, then L A and AL are compact whenever
A is a bounded linear operator. In fact, if L, is a sequence of linear operators
with finite-dimensional image such that ||L — L, || — O, then ||[LA — L, A| <
IL — L,||||A]l — O; since L, A has finite-dimensional image, L A is compact.
To see that AL is compact, we take the adjoint: L* is compact, and hence
L*A* = (AL)* is compact; since (AL)* is compact, so is AL. In algebraic



5. Classes of Compact Operators 47

terminology the compact linear operators form a two-sided ideal in the algebra
of all bounded linear operators.

Next we introduce Hilbert—Schmidt operators. If L is abounded linear operator
on V and if {#;} and {v;} are orthonormal bases of V, then Parseval’s equality
gives

> Lui|? = > |1(Lu, v)? = > G, L*v;)?
= Zi,j |(L*vjy ui)|2 = Zi,j |(L*Uj, Mi)|2 = Zj ”L*anz-

Application of this formula twice shows that if we replace {u;} by a different
orthonormal basis {u/}, we get >, |[Lu;||> = Y_; | Lu}||>. The expression

ILIGs = Y ILuil* =D [(Lui, vp) P,
i ij

which we therefore know to be independent of both orthonormal bases {u;} and
{v}}, is the square of what is called the Hilbert-Schmidt norm || L|| ;5 of L.
For the finite-dimensional situation in which the underlying Hilbert space is
R" or C", we can take {u;} and {v;} both to be the standard orthonormal basis, and
then the Hilbert—Schmidt norm of the linear function corresponding to a matrix

.. 1/2
A is just (Zi’j |Aij|2) 2,
Our computation with || L||;; above shows that
ILlls = IL"ls-
The bounded linear operators that have finite Hilbert—Schmidt norm are called

Hilbert—Schmidt operators. The name results from the following proposition.

Proposition 2.7. Let (X, i) be a o-finite measure space such that L>(X, u)
is separable, and let K (-, -) be a complex-valued L? function on X x X. Then
the linear operator T defined by

(TH ) = [X K. y) ) du(y)

is a compact operator on the Hilbert space L?(X, i) with || Tlys = IIKl,-
REMARK. No self-adjointness is assumed in this proposition.

PROOF. If {u;} is an orthonormal basis of L?(X, i), then the functions
(uj @ ui)(x,y) = u;j(x)u;(y) form an orthonormal basis of L*(X x X, ;0 x i)
as a consequence of Proposition 12.9 of Basic. Hence

(Tui, uj) = [y [ K, »ui(Duj(x) dux) di(y) = (K, (u; ® ;).

Taking the square of the absolute value of both sides and summing on i and j,
we obtain || T|l5s = IIK|3. O




48 1I. Compact Self-Adjoint Operators

Returning to an abstract Hilbert space V and the bounded linear operators on
it, let us observe for any L that

IZII < [ILNgs-

In fact, if # in V has ||u|| = 1, then the singleton set {u} can be extended to an
orthonormal basis {1;}, and we obtain ||Lul||> < > | Lu;|? = ||L||12{s- Taking
the supremum over u with ||u| = 1, we see that ||L|> < ||L||%IS. Two easier but
related inequalities are that

IALllgs < I1AINLIgs ~ and  [ILAlgs < AL ]I

The first of these follows from the inequality ||ALu;||> < || A||*||Lu;||* by sum-
ming over an orthonormal basis. The second follows from the first because
1L Allgs = (LA s = 1 A*L*llys < IATIIL s = 1AL -

Any Hilbert—Schmidt operator is compact. In fact, if L is Hilbert—Schmidt,
let {u;} be an orthonormal basis, let € > 0 be given, and choose a finite set F
of indices i such that ), ¢r I1Lu; |> < €. If E is the orthogonal projection on
the span of the u; for i in F, then we obtain |L* — EL*||> = |[L — LE|?> <
IL — LE|}s = Y; I(L — LE)u;||* < €. Hence L* can be approximated in
the operator norm topology by operators with finite-dimensional image and is
compact; since L* is compact, L is compact.

The sum of two Hilbert—Schmidt operators is Hilbert—Schmidt. In fact, we
have [[(L + M)u;|| < |[Lu;ll + |Mu;|l < 2 max{||Lu;||, |[Mu;|}. Squaring gives
(L + Myu|* < 4max{l| Lul*, |Muill’} < 4(l|Lull* + [Mu;|*), and the
result follows when we sum on i. Thus the Hilbert—Schmidt operators form a
vector subspace of the bounded linear operators on V, in fact a vector subspace
of the compact operators on V. As is true of the compact operators, the Hilbert—
Schmidt operators form a two-sided ideal in the algebra of all bounded linear
operators; this fact follows from the inequalities ||AL|yq < [IA|lllL]lys and
ILAllgs < AL gs-

The vector space of Hilbert—Schmidt operators becomes a normed linear space
under the Hilbert-Schmidt norm. Even more, it is an inner-product space. To see
this, let L and M be Hilbert—Schmidt operators, and let {«;} be an orthonormal
basis. We define (L, M) = ), (Lu;, Mu;). This sum is absolutely convergent
as we see from two applications of the Schwarz inequality: ), [(Lu;, Mu;)| <
S NLu I Musl) < (3 1 Lual?) (3, 1Mul) " = ILlsI Mls < oo
Substituting from the definitions, we readily check that

> LIL+ Mg if Visreal,
kef0.2}

3,
> CIL +i*Mllfs if V is complex.
k=0

(L, M) =
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Hence the definition of (L, M) is independent of the orthonormal basis. It is
immediate from the definition and the above convergence that the form (-, -)
makes the vector space of Hilbert—Schmidt operators into an inner-product space
with associated norm || - [|yg-

If L has finite-dimensional image, then L is a Hilbert—Schmidt operator. In
fact, let E be the orthogonal projection on image L, take an orthonormal basis
{u; | i € F} of image L, and extend to an orthonormal basis {u; | i € S}
of V; here F is a finite subset of S. Then Y, ¢ ILu;|> = Y ;s |ELu;||> =
s IL*Eui||> = Y, p IIL*u;||* < oo. Thus the Hilbert-Schmidt operators
form an ideal between the ideal of compact operators and the ideal of operators
with finite-dimensional image.

Now we turn to a generalization of the trace Tr A = ) _; A;; of a square matrix
A. This generalization plays a basic role in distribution theory, in index theory
for partial differential equations, and in representation theory. In this section we
shall describe the operators, and at the end of Chapter III we shall show how
traces can be computed for simple integral operators. Realistic applications tend
to be beyond the scope of this book.

Although the trace of a linear operator on C" may be computed as the sum of
the diagonal entries of the matrix of the operator in any basis, we shall continue
to use orthonormal bases. Thus the expression we seek to extend to any Hilbert
space V is ) . (Lu;, u;). The operators of “trace class” are to be a subset of the
Hilbert—Schmidt operators. It might at first appear that the condition to impose for
the definition of trace class is that ) _, (Lu;, u;) be absolutely convergent for some
orthonormal basis, but this condition is not enough. In fact, if a bounded linear
operator L is defined on a Hilbert space with orthonormal basis uy, us, ... by
Lu; = u;4 forall i, then (Lu;, u;) = 0 for all i; on the other hand, | Lu;||> =1
for all i, and L is not Hilbert—Schmidt.

We say that a bounded linear operator L on V is of trace class if it is a
compact operator’> such that > [(Luj, vi)| < oo for all orthonormal bases
{u;} and {v;}. Since compact operators are closed under addition and under
passage to adjoints, we see directly from the definition that the sum of two trace-
class operators is of trace class and that the adjoint of a trace-class operator is
of trace class. The operator L = B*A with A and B Hilbert—Schmidt is an
example of a trace-class operator. In fact, the operator L is compact as the
product of two compact operators; also, (Lu;, v;) = (B*Au;, v;) = (Au;, Bv;),
and we therefore have ) . [(Lu;, v;)| = ) _; [(Au;, Bv))| < Y, lAu;||[|Bvi| <

5This condition is redundant; it is enough to assume boundedness. However, to proceed without
using compactness of L, we would have to know that L* L has a “positive semidefinite” square root,
which requires having the full Spectral Theorem for bounded self-adjoint operators. This theorem
is not available until the end of Chapter IV. The development here instead gets by with the Spectral
Theorem for compact self-adjoint operators (Theorem 2.3).
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(Zi ||Au,-||2)1/2(zi ||Bv,~||2)1/2 = [|AllgsllBllgs- The following proposition
shows that there are no other examples.

Proposition 2.8. If L : V — V is a trace-class operator on the Hilbert space
V, then L factors as L = B*A with A and B Hilbert—-Schmidt. Moreover, the
supremum of )", |(Lu;, v;)| over all orthonormal bases {u;} and {v;} equals the
infimum, over all Hilbert—-Schmidt A and B such that L = B* A, of the product

[ Allgs Il Blls-

PROOF. First we produce a factorization. Since L is a compact operator,
L*L is a compact self-adjoint operator, and Theorem 2.3 shows that L*L has an
orthonormal basis of eigenvectors w; with real eigenvalues A; tending to 0. Since
Ai(w;, w;) = (L*Lw;, w;) = (Lw;, Lw;), we see that all A; are > 0. Define a
bounded linear operator T by Tw; = +/A; w; for all i. The operator T is self
adjoint, it has (Tv, v) > 0O for all v, its kernel N is the smallest closed vector
subspace containing all the w; with A; = 0, and its image is dense in N*. Since
N N N1t =0, T is one-one from N+ into Nt. Thus Tv + Luv is a well-
defined linear function from a dense vector subspace of N+ into V. The map
Tv +— Lv has the property that || Lv||?> = (Lv, Lv) = (L*Lv,v) = (T?v,v) =
(Tv, Tv) = || Tv|?>. Thus Tv — Luv is a linear isometry from a dense vector
subspace of N+ into V. Since V is complete, Tv > Lv extends to a linear
isometry U : N* — V. This U satisfies L = UT.

Let I be the set of indices i for the orthonormal basis {w;}, and let P be the
subset with A; > 0. By polarization, U preserves inner products in carrying N+
into V. Extend U to all of V by setting it equal to O on N, so that U* is well
defined. The system {w; };cp is an orthonormal basis of N+, and hence the system
{fi}iep with f; = Uw; fori € P is an orthonormal setin V. Since U : Nt >V
is isometric, we have (w;, U*f;) = (Uw;, f;) = (Uw;, Uw;) = (w;, w;). Since
T w; is a multiple of w;, we obtain (Tw;, U*f;) = (T w;, w;). Therefore

> (Lwi, )l = X}D ((UTw;, f)l =3 (Tw;, Uf)]

ieP ieP
=Y |[(Twi, w)| = Y (Tw;, w;).
ieP ieP

Extend { f;}icp to an orthonormal basis { f;} of V; since any two orthonormal
bases of a Hilbert space have the same cardinality, we can index the new vectors
of this set by / — P. The operators L and T have the same kernel, and thus the
sums for i € P can be extended over all i in [ to give

Z |(Lwiv fl)| = Z(Twiv wi)-

iel iel

Define a bounded linear operator S on V by Sw; = /A; w; for all i. Then
|(Swi, wj) > = 8;;(S*w;, w;) = 8;(Tw;, w;), and hence S is a Hilbert-Schmidt
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operator with ”5”1215 =Y Tw;,w;). Take A = S and B* = US; each
of these is Hilbert—Schmidt since ||U S||ys < IIU|lIS|lys, and we have B*A =
USS = UT = L. This proves the existence of a decomposition B¥*A = L.

For the bases {w;} and { f;}, we have just seen that

I AlluslBllgs < ISlgsllUISIys < ISIfs = Y- (Twi, wi) = Y [(Lw;, fi)l.
iel iel

But if L = B'*A’ is any decomposition of L as the product of Hilbert—Schmidt
operators and if {u;} and {v;} are any two orthonormal bases, we have

Z [(Lu;, vi)| = Z [(B™*A'ui, v;)| = Z [(A'u;, B'v;)
1 1 1
< Z A u; || B'vill < 1A gl B llys-
l

Therefore sup > [(Lu;j, vi)| < inf[|A"||gs | Bl gss

as asserted. O

If {u;} is an orthonormal basis of V and L is of trace class, we can thus write
L = B*A with A and B Hilbert—-Schmidt. We define the trace of L to be

TrL = Zi (Lui, M,’) = Zi (B*Au,-, I/ti) = Zi (Au,-, BM,) = (A, B)

The series ), (Lu;, u;) is absolutely convergent by definition of trace class. The
trace of L is independent of the orthonormal basis since it equals (A, B), and it
is independent of A and B since it equals ), (Lu;, u;).

In practice it is not so easy to check from the definition that L is of trace class.
But there is a simple sufficient condition.

Proposition 2.9. If L : V — V is a bounded linear operator on the Hilbert
space V and if Zi’j |(Lu;, vj)| < oo for some orthonormal bases {u;} and {v;},
then L is of trace class.

PROOF. Since |(Lu;, v;)| < ||L||, we have |(Lu;, vj)l2 < ILII(Lu;, vj)| for
all i and j, and it follows from the finiteness of Zi’j |(Lu;, vj)| that || L||}s =
Zi,j |(Lu;, v;)|? is finite. Thus L is a Hilbert-Schmidt operator and has to be

compact.
If {ex} and { f;} are orthonormal bases, we expand e, = ), (ex, u;)u; and f =

Zj (fk, vj)v; and substitute to obtain (Ley, fr) = Zi’j (ex, ui)(Lui, vj)(fr, vj).
Taking the absolute value and summing on k gives

; |(Lex, fol = 32 |(Lui, v))] Zk: [(ex, ui)(fr, vj)|.
2¥)
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Application of the Schwarz inequality to the sum on k and then Bessel’s inequality
to each factor of the result yields

Y I(Lews fl = X 1L pl(X Iews undP) (3 10 v P)
LJ

< 2 [(Lui vpllluillllofll = 32 1(Lug, vj)| < oo,
i, LJ

and therefore L is of trace class. O

6. Problems

1. Let (S, n) be a o-finite measure space, let f be in L°°(S, u), and let My be the
bounded linear operator on L2(S, 1) given by Mr(g) = fg.
(a) Find a necessary and sufficient condition for My to have an eigenvector.
(b) Find a necessary and sufficient condition for My to be compact.

2. Let L be a compact operator on a Hilbert space, and let A be a nonzero complex
number. Prove that if L/ — L is one-one, then the image of A — L is closed.

3. Prove for a Hilbert space V that the normed linear space of Hilbert—Schmidt
operators with the norm || - || is a Banach space.

4. If L is a trace-class operator on a Hilbert space V, let || L || equal the supremum
of >; [(Luj, v;)| over all orthonormal bases {u;} and {v;}. By Proposition 2.8
this equals the infimum, over all Hilbert—-Schmidt A and B such that L = B*A,
of the product || Al g1l B llyg- Prove that the vector space of trace-class operators
is a normed linear space under || - || as norm.

5. If L is a trace-class operator on a complex Hilbert space V and A is a bounded
linear operator, prove that Tr AL = Tr L A and conclude that Tr((BLB~') = Tr L
for any bounded linear operator B.

Problems 6-8 deal with some extensions of Theorem 2.3 to situations involving
several operators. A bounded linear operator L is said to be normal if LL* = L*L.
6. Suppose that {L,} is a finite commuting family of compact self-adjoint operators

on a Hilbert space. Prove that there exists an orthonormal basis consisting of

simultaneous eigenvectors for all L,,.

7. Fix a complex Hilbert space V.

(a) Prove that the decomposition L = 1(L + L*) + i 5-(L — L*) exhibits
any normal operator L : V — V as a linear combination of commuting
self-adjoint operators.

(b) Prove that the operators in (a) are compact if L is compact.

(c) State an extension of Theorem 2.3 that concerns compact normal operators
on a complex Hilbert space.
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Fix a Hilbert space V.
(a) Prove that a unitary operator from V to itself is always normal.
(b) Under what circumstances is a unitary operator compact?

Problems 9-13 indicate an approach to second-order ordinary differential equations
by integral equations in a way that predates the use of the Hilbert—Schmidt Theorem.

9.

10.

11.

12.

13.

For w # 0, show that the unique solution u(7) on [a, b] of the equation u” +w’u =
g(r) and the initial conditions u(a) = 1 and u’(a) =0 is

u(t) =coso(t —a)+w ! [ g(s)sinw(t —s)ds.

Let p(¢) be a continuous function on [a, b], and let u(¢) be the unique solution
of the equation u” + [w?> — p(¢)]u = 0 and the initial conditions u(a) = 1 and
u'(a) = 0. Show that u satisfies the integral equation

u(t) — ™' [1 p(s)sinw(t — s)u(s)ds = cosw(t — a),

whichis of the formu(t)—fa' K(t,s)u(s)ds = f(t),where K (¢, s) is continuous

on the trianglea < s <t < b.

Let K (¢, s) be continuous on the triangle a < s <t < b. For f continuous on

[a, b], define (Tf)(t) = [} K(t,5) f(s)ds.

(a) Prove that f continuous implies 7' f continuous.

(b) Put M = max|K(z,s)|. If f hasC = fab | f(¢)|dt, prove inductively that
(T 0] < 455 ¢t —ay"~ forn = 1.

(c) Deduce that the series f + T f 4+ T2 f + - - - converges uniformly on [a, b].

Setu = f +Tf+T?f +--- inthe previous problem, and prove that u satisfies

u—Tu=f.

In the previous problem prove thatu = f +Tf 4+ T?f 4 - - - is the only solution
ofu —Tu=f.



CHAPTER III

Topics in Euclidean Fourier Analysis

Abstract. This chapter takes up several independent topics in Euclidean Fourier analysis, all having
some bearing on the subject of partial differential equations.

Section 1 elaborates on the relationship between the Fourier transform and the Schwartz space,
the subspace of L' (RY) consisting of smooth functions with the property that the product of any
iterated partial derivative of the function with any polynomial is bounded. It is possible to make
the Schwartz space into a metric space, and then one can consider the space of continuous linear
functionals; these continuous linear functionals are called “tempered distributions.” The Fourier
transform carries the space of tempered distributions in one-one fashion onto itself.

Section 2 concerns weak derivatives, and the main result is Sobolev’s Theorem, which tells how
to recover information about ordinary derivatives from information about weak derivatives. Weak
derivatives are easy to manipulate, and Sobolev’s Theorem is therefore a helpful tool for handling
derivatives without continually having to check the validity of interchanges of limits.

Sections 3—4 concern harmonic functions, those functions on open sets in Euclidean space that
are annihilated by the Laplacian. The main results of Section 3 are a characterization of harmonic
functions in terms of a mean-value property, a reflection principle that allows the extension to all of
Euclidean space of any harmonic function in a half space that vanishes at the boundary, and a result
of Liouville that the only bounded harmonic functions in all of Euclidean space are the constants.
The main result of Section 4 is a converse to properties of Poisson integrals for half spaces, showing
that harmonic functions in a half space are given as Poisson integrals of functions or of finite complex
measures if their L? norms over translates of the bounding Euclidean space are bounded.

Sections 5-6 concern the Calder6n—Zygmund Theorem, a far-reaching generalization of the
theorem concerning the boundedness of the Hilbert transform. Section 5 gives the statement and
proof, and two applications are the subject of Section 6. One of the applications is to Riesz transforms,
and the other is to the Beltrami equation, whose solutions are “quasiconformal mappings.”

Sections 7-8 concern multiple Fourier series for smooth periodic functions. The theory is
established in Section 7, and an application to traces of integral operators is given in Section 8.

1. Tempered Distributions

We fix normalizations for the Euclidean Fourier transform as in Basic: For f in
L'(RV), the definition is

7o) = (FHO) = /R Fe T d,

54
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with x - y referring to the dot product and with the 27 in the exponent. The
inversion formula is valid whenever f is in L'; it says that f is recovered as

w0 =F P = [ Foreray

almost everywhere, including at all points of continuity of f. The operator F
carries L' N L? into L? and extends to a linear map F of L? onto L? such that
IF£1l, = Il fll,. This is the Plancherel formula.

The Schwartz space S = S(RY) is the vector space of all functions f in
C*(R") such that the product of any polynomial by any iterated partial derivative
of f is bounded. This is a vector subspace of L' N L?, and it was shown in Basic
that F carries S one-one onto itself. It will be handy sometimes to use a notation
for partial derivatives and their iterates that is different from that in Chapter I.

Namely,! let D; = % If « = (aq,...,an) is an N-tuple of nonnegative
J
integers, we write |a| = Zj.vzlozj, al =l ayl,x® =x{" - xy¥, and D* =
D" --- D{. Addition of such tuples « is defined component by component, and
we say that o < Bif o; < B; for 1 < j < N. We write || for the total
order o + --- + ay, and we call @ a multi-index. If Q(x) = > a,x* is a
complex-valued polynomial on RY, define Q(D) to be the partial differential
operator ), a, D* with constant coefficients obtained by substituting, for each
jwithl < j < N, the operator D; = 8% for x;. The Schwartz functions are

then the smooth functions f on R" such that P(x)Q(D) f is bounded for each
pair of polynomials P and Q.

The Schwartz space is directly usable in connection with certain linear par-
tial differential equations with constant coefficients. A really simple example
concerns the Laplacian operator A = aa_jf 4+ 4 % which we can write as
A = | D|? in the new notation for differential operators. Specifically the equation

(I—Mu=f

has a unique solution « in S for each f in S. To see this, we take the Fourier
transform of both sides, obtaining Fu — F(Au) = Ff or Fu—F(|D|*(u)) = Ff.
Using the formulas relating the Fourier transform, multiplication by polynomials,
and differentiation,” we can rewrite this equation as (1 4+ 472|y|>) F(u) = F(f).
Problem 1 at the end of the chapter asks one to check that (1+472|y|?) ! g isin Sif

ISome authors prefer to abbreviate % as 0j, reserving the notation D; for the product of 9; and
; g

a certain imaginary scalar that depends on the definition of the Fourier transform.
2These, with hypotheses in place, appear as Proposition 8.1 of Basic.
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g isin S, and then existence of a solution in S to the differential equation is proved
by the formulau = F~'((1+4mx2|y|*) ' F(f)). For uniqueness let u; and u, be
two solutions in S corresponding to the same f. Then (1 — A)(u; —uy) = 0, and
hence (1 + 472 y|?)F(u; — uz)(y) = 0 for all y. Therefore F(u; — uz)(y) =0
everywhere. Since F is one-one on S, we conclude that u; = u5.

A deeper use of the Schwartz space in connection with linear partial differential
equations comes about because of the relationship between the Schwartz space
and the theory of “distributions.” Distributions are continuous linear functionals
on vector spaces of smooth functions, i.e., continuous linear maps from such a
space to the scalars, and they will be considered more extensively in Chapter V.
For now, we shall be content with discussing “tempered distributions,” the dis-
tributions associated with the Schwartz space. In order to obtain a well-defined
notion of continuity, we shall describe how to make S(R") into a metric space.

For each pair of polynomials P and Q, we define

Ifllp,o = sup [P(x)(Q(D)[f)(x)].

xeRN

Each function || - || , on S is a seminorm on S in the sense that?

@ IIfllp o =0forall finS,
(i) llefllp,o = lell fllp o forall fin S and all scalars c,

(i) |If + g”p,Q = ”f”p,Q + ||g||p‘Q forall f and g in S.

Collectively these seminorms have a property that goes in the converse direction
to (i), namely

@v) I fllp o =0forall P and Q implies f = 0.

In fact, f will already be O if the seminorm for P = Q = 1isOon f.

Each seminorm gives rise to a pseudometric dp o(f.g) = I f — gl P.0 in
the usual way, and the topology on S is the weakest topology making all the
functions dp (-, g) continuous. That is, a base for the topology consists of all
sets Ug p,on ={f | If —8llp o <1/n}.

A feature of S is that only countably many of the seminorms are relevant for
obtaining the open sets, and a consequence is that the topology of Sis defined by a
metric. The important seminorms are the ones in which P and Q are monomials,
each with coefficient 1. In fact, if P(x) = ), a,x* and Q(x) = > 5 bgx?, then
it is easy to check that dp o(f, g) < Za’ﬂ laobgld 6 (f, g). Hence any open
set that dp o defines is a union of finite intersections of the open sets defined by
the finitely many d ,s’s.

3The reader may notice that the definition of “seminorm” is the same as the definition of
“pseudonorm” in Basic. The only distinction is that the word “seminorm” is often used in the
context of a whole family of such objects, while the word “pseudonorm” is often used when there is
only one such object under consideration.
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Let us digress and consider the situation more abstractly because it will arise
again later. Suppose we have a real or complex vector space V on which are
defined countably many seminorms || - ||, satisfying (i), (ii), and (iii) above.

Each seminorm || - ||, gives rise to a pseudometric Zlvn on V and then to open

sets defined relative to Jn. For any pseudometric g, the function p = min{1, p}
is easily checked to be a pseudometric, and p defines the same open sets on V as
0 does. We shall use the following abstract result about pseudometrics; this was
proved as Proposition 10.28 of Basic, and we therefore omit the proof here.

Proposition 3.1. Suppose that V is a nonempty set and {d,},> is a sequence
of pseudometrics on V such that d,,(x, y) < 1 for all n and for all x and y in V.
Then d(x,y) = Zzozl 27"d, (x, y) is a pseudometric. If the open balls relative

to d, are denoted by B, (r; x) and the open balls relative to d are denoted by
B(r; x), then the B,,’s and B'’s are related as follows:

(a) whenever some B, (r,; x) is given with r, > 0, there exists some B(r; x)
with r > 0 such that B(r; x) C B, (r,; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many r, > 0,
say for n < K, such that ﬂ,f:l B, (rp; x) € B(r; x).

In the situation with countably many seminorms || - ||, for the vector space V,
we see that we can introduce a pseudometric d such that three conditions hold:

e d(x,y)=d(0,y —x) forall x and y,

e whenever some x in V is given and an index 7 and corresponding number
rp > 0 are given, then there is a number » > 0 such that d(x, y) < r
imphes ”y - X”n <Tn,

e whenever some x in V is given and some r > 0 is given, then there exist
finitely many r,, > 0, say forn < K, such that any y with ||y —x||,, < r,
forn < K impliesd(x,y) <r.

If the seminorms collectively have the property that ||x||, = O for all n only for
x = 0, then d is a metric, and we say that the family of seminorms is a separating
family. The specific form of d is not important: in the case of S, the metric d
depended on the choice of the countable subfamily of pseudometrics and the order
in which they were enumerated, and these choices do not affect any results about
S. The important thing about this construction is that it shows that the topology
is given by some metric.

The three conditions marked with bullets enable us to detect continuity of
linear functions with domain V and range another such space W by using the
seminorms directly.

Proposition 3.2. Let L : V — W be a linear function between vector spaces
that are both real or both complex. Suppose that V' is topologized by means of
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countably many seminorms || - ||, ,, and W is topologized by means of countably
many seminorms || - ||y, ,,. Then L is continuous if and only if for each n, there
is a finite set F = F(n) of m’s and there are corresponding positive numbers &,
such that |[v]ly, ,, < d, forallm € F implies [[L(v) |y, < 1.

PROOF. Let dy and dy be the distance functions in V and W. When n is
given, the second item in the bulleted list shows that there is some r > 0 such
that dw (0, w) < r implies ||w||y, , < 1. If L is continuous at 0, then there is a
& > 0 such that dy (0, v) < § implies dw (0, L(v)) < r. From the third item in
the bulleted list, we know that there is a finite set F' of indices m and there are
corresponding numbers §,, > 0 such that [v||y , < , implies dy (0, v) < 4.
Then [Jv]ly,, < &y forall m in F implies |L(v)[ly,, < L.

Conversely suppose for each # that there is a finite set F and there are numbers
S, > Oform in F such that the stated condition holds. To see that L is continuous
at 0, let ¢ > 0 be given. Choose K and numbers €, > 0 for n < K such
that [|w(y , < €, forn < K implies dyw (0, w) < €. Foreachn < K, the
given condition on L allows us to find a finite set F,, of indices m and numbers
8m > 0 such that |[vlly , < & implies [[L)[ly, < 1. If [vlly, < dmen
for all m in F = |J, g F, then [[L(W)|y,, < € forall n < K and hence
dw (0, L(v)) < €. We know that there is a number 8§ > 0 such that dy (0, v) < 8
implies [[vly ,, < dme, for all m in F, and then dw (0, L(v)) < €. Hence L is
continuous at 0.

Once L is continuous at 0, itis continuous everywhere because of the translation
invariance of dy and dy: dy (vi, v2) = dy (0, vo — vy) and dw (L(v;), L(v2)) =
dw (0, L(v2) — L(v1)) = dw(0, L(v2 — v1)). U

Now we return to the Schwartz space S to apply our construction and Propo-
sition 3.2. The bulleted items above make it clear that it does not matter which
countable set of generating seminorms we use nor what order we put them in; the
open sets and the criterion for continuity are still the same. The following corollary
is immediate from Proposition 3.2, the definition of S, and the behavior of the
Fourier transform under multiplication by polynomials and under differentiation.

Corollary 3.3. For the Schwartz space S on RV,

(a) a linear functional £ is continuous if and only if there is a finite set
F of pairs (P, Q) of polynomials and there are corresponding numbers
dp,o > Osuchthat||f||P’Q < ép,gforall (P, Q)in F implies [£(f)| < 1.

(b) the Fourier transform mapping F : S — & is continuous, and so is its
inverse.

A continuous linear functional on the Schwartz space is called a tempered
distribution, and the space of all tempered distributions is denoted by S’ =
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S’(RM). It will be convenient to write (T, @) for the value of the tempered
distribution 7 on the Schwartz function ¢. The space of tempered distributions
is huge. A few examples will give an indication just how huge it is.

EXAMPLES.

(1) Any function f on R with | f(x)| < (1 + |x|>)"|g(x)| for some integer n
and some integrable function g defines a tempered distribution 7 by integration:
(T,p) = fRN f(x)e(x)dx when ¢ is in S. In view of Corollary 3.3a, the
continuity follows from the chain of inequalities

UT, @) < Jan (ILFEIA 4 1xP) ™) (1 + 1x )" |@(x)]) dx
< (Jev 18I dx) (sup {(1 4 x )" [@(x)[})
= lglhllgllp,  for P(x) = (14 |x[»)".

(2) Any function f with | £ (x)| < (14|x]?)"|g(x)| for some integer n and some
function g in L>°(R") defines a tempered distribution 7' by integration: (T, ¢) =
Jav FO@()dx. In fact, [f(x)] < (1 + [x["™ (A + [x[)~V|g(x)]), and
(1+|x|>)~N|g(x)| is integrable; hence this example is an instance of Example 1.

(3) Any function f with | f(x)] < (1 + |x]*)"|g(x)| for some integer n and
some function g in L?(R"), where 1 < p < oo, defines a tempered distribution
T by integration because such a distribution is the sum of one as in Example 1
and one as in Example 2.

(4) Suppose that f is as in Example 3 and that Q (D) is a constant-coefficients
partial differential operator. Then the formula (7', ¢) = fRN QD)) (x)dx
defines a tempered distribution.

(5) In the above examples, Lebesgue measure dx may be replaced by any Borel
measure du(x) on RY such that [ (1 + |x[*)™ du(x) < oo for some ny. A
particular case of interest is that d ¢ (x) is a point mass at a point xp; in this case,
the tempered distributions ¢ +— (7', @) that are obtained by combining the above
constructions are the linear combinations of iterated partial derivatives of ¢ at the
point xg.

(6) Any finite linear combination of tempered distributions as in Example 5 is
again a tempered distribution.

Two especially useful operations on tempered distributions are multiplication
by a Schwartz function and differentiation. Both of these definitions are arranged
to be extensions of the corresponding operations on Schwartz functions. The
definitions are (YT, ¢) = (T, ¥¢) and (DT, ¢) = (=T, D%p); in the
latter case the factor (—1)/*! is included because integration by parts requires its
presence when T is given by a Schwartz function.
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A useful feature of distributions in connection with differential equations, as we
shall see in more detail in later chapters, is that we can first look for solutions of a
given differential equation that are distributions and then consider how close those
distributions are to being functions. The special feature of fempered distributions
is that the Fourier transform makes sense on them, as follows.

As with the operations of multiplication by a Schwartz function and differen-
tiation, the definition of Fourier transform of a tempered distribution is arranged
to be an extension of the definition of the Fourier transform of a member ¢ of
S when we identify the function ¥ with the distribution ¥ (x) dx. If ¢ is in S,
then [ Y@ dx = [ Y@ dx by the multiplication formula,* which we reinterpret
as (F(y dx), ¢) = (¥ dx, ¢ ). The definition is

(F(T), @) =(T.,9)

for T € S’ and ¢ € S. To see that F(T) is in S’, we have to check that
J(T) is continuous. The definition is F(T) = T o F, and F is continuous on S
by Corollary 3.3b. Thus the Fourier transform carries tempered distributions to
tempered distributions.

Proposition 3.4. The Fourier transform F is one-one from S’(R") onto
S’'(RM).

PROOF. If T is in S’ and F(T) = 0, then (T, F(¢)) = 0 for all ¢ in S. Since
F carries Sonto S, (T, ¥) = 0 for all ¥ in S, and thus T = 0. Therefore F is
one-one on §’.

If T'is given in S/, put T = T’ o F~!, where F~! is the inverse Fourier
transform as a map of Sto itself. Then 7' =T o Fand F(T) =T o F =T'.
Therefore Fis onto S’. g

2. Weak Derivatives and Sobolev Spaces

A careful study of a linear partial differential equation often requires attention
to the domain of the operator, and it is helpful to be able to work with partial
derivatives without investigating a problem of interchange of limits at each step.
Sobolev spaces are one kind of space of functions that are used for this purpose,
and their definition involves “weak derivatives.” At the end one wants to be
able to deduce results about ordinary partial derivatives from results about weak
derivatives, and Sobolev’s Theorem does exactly that.

We shall make extensive use in this book of techniques for regularizing func-
tions that have been developed in Basic. Let us assemble a number of these in
one place for convenient reference.

“4Proposition 8.1e of Basic.
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Proposition 3.5.

(a) (Theorems 6.20 and 9.13) Let ¢ be in L'(RY, dx), define ¢, (x) =
e Np(e~'x) fore > 0,and put c = [y (x) dx.

(i) If fisin LP(RY,dx) with 1 < p < oo, then
lgiﬁ)l lge x f—cfll, =0.

(i) If f is bounded on R" and is continuous at x, then lim, (@ *xfx) =
cf (x), and the convergence is uniform for any set £ of x’s such that
f is uniformly continuous at the points of E.

(b) (Proposition 9.9) If u is a Borel measure on a nonempty open set U in
RY and if 1 < p < oo, then LP(U, ) is separable, and C.on(U) is dense in
LP(U, ).

(c) (Corollary 6.19) Suppose that ¢ is a compactly supported function of
class C" on RY and that f isin L? (RN, dx) with I < p < co. Then ¢ * f is of
class C", and D%(¢ * f) = (D“¢p) % f for any iterated partial derivative D* of
order < n.

(d) (Lemma 8.11) If §; and §; are given positive numbers with §; < §;, then
there exists ¥ in C gg’m(RN ) with values in [0, 1] such that ¢ (x) = ¥ (|x]), P is
nonincreasing, ¥ (x) = 1 for |x| < §;, and ¥ (x) = O for |x| > §,.

(e) (Consequence of (d)) If § > 0, then there exists ¢ > 0 in Cé’gm(]RN )
such that ¢(x) = ¢o(|x]) with ¢y nonincreasing, ¢(x) = 0 for |x| > 1, and
Jev 0(x)dx = 1.

(f) (Proposition 8.12) If K and U are subsets of RN with K compact, U
open, and K C U, then there exists ¢ € CZo (U) with values in [0, 1] such that
@ is identically 1 on K.

In this section we work with a nonempty open subset U of RY, an index p
satisfying 1 < p < oo, and the spaces L?(U) = LP(U, dx), the underlying
measure being understood to be Lebesgue measure. Let p’ = p/(p — 1) be the
dual index. For Sobolev’s Theorem, we shall impose two additional conditions on
U, namely boundedness for U and a certain regularity condition for the boundary
U = U —U of the open set U, but we do not impose those additional conditions
yet.

Corollary 3.6. If U is a nonempty open subset of RV, then C%°_(U) is

com
(a) uniformly dense in Ccon (U),
(b) dense in L?(U) for every p with 1 < p < oo.

In (a), any member of Ceon (U) is the uniform limit of members of C° (U).

com
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PROOF. Let f in C¢om(U) be given. Choose by Proposition 3.5¢ a function
¢ in CZ, (RV) that is > 0, vanishes outside the unit ball about the origin, and
has total integral 1. For ¢ > 0, define ¢,(x) = ¢ Vp(¢~'x). The function
e x f is of class C*° by (¢). If U = RY, let &g = 1; otherwise let gy be the
distance from the support of f to the complement of U. For ¢ < g9, ¢, * f has
compact support contained in U. As ¢ decreases to 0, Proposition 3.5a shows
that ||, * f — f||sup tends to 0 and so does || ¢; * f — f||p. This proves the first
conclusion of the corollary and proves also that C5o (U) is L? dense in Ceom(U)

if 1 < p < oo. Since Proposition 3.5b shows that C.o,n(U) is dense in L?(U),
the second conclusion of the corollary follows. O

Suppose that f and g are two complex-valued functions that are locally
integrable on U in the sense of being integrable on each compact subset of
U. If « is a differentiation index, we say that D“f = g in the sense of weak
derivatives if

/f(x)D"(p(x)dx = (—1)|a|/ g)p(x)dx  forallg € CZ (V).
U U

The definition is arranged so that g gives the result that one would expect
for iterated partial differentiation of type « if the integrated or boundary term
gives 0 at each stage. More precisely if f is in C!*/(U), then the weak derivative
of order o exists and is the pointwise derivative. To prove this, it is enough to
handle a first-order partial derivative D;h for a function 4 in C'(U), showing that
[y hDjpdx = — [, (Djh)pdx for ¢ € C, (U), i.e., that [, D;(hp)dx = 0.
Because ¢ is compactly supported in U, ¥ = h¢ makes sense as a compactly
supported C' function on RY, and we are to prove that [,y D;y dx = 0. The
Fundamental Theorem of Calculus gives ffu Diyrdx; = [w]i’;a_a fora > 0,
and the compact support implies that this is O for a sufficiently large. Thus
[z Dj¥r dx; = 0, and Fubini’s Theorem gives [,y D;jy dx = 0.

The function g in the definition of weak derivative is unique up to sets of
measure O if itexists. In fact, if g, and g, are both weak derivatives of order o, then
fU (g1 — &2)pdx = 0 for all ¢ in CZ (U). Fix an open set V having com-
pact closure contained in U. If f is in Ccom(V), then Corollary 3.6a pro-
duces a sequence of functions ¢, in Cg,, (V) tending uniformly to f. Since
g1 — & is integrable on V, the equalities f v (&1 — 82)¢, dx = 0 for all n imply
fv (g1 — &2) f dx = 0. By the uniqueness in the Riesz Representation Theorem,
g1 = grae.on V. Since V is arbitrary, g, = g» a.e. on U.

EXAMPLE. In the open set U = (—1,1) € R!, the function ¢!/*! is locally
integrable and is differentiable except at x = 0, but it does not have a weak
derivative. In fact, if it had g as a weak derivative, we could use ¢’s vanishing in
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neighborhoods of the origin to see that g(x) has to be —ix~?(sgnx)e’/ ! almost
everywhere. But this function is not locally integrable on U.

If f has o™ weak derivative D*f and D*f has B weak derivative D? (D*f),
then f has (8 + «)™ weak derivative DfT*f and DPT*f = DP(D®f). In fact, if
@ isin CZ, (U), then this conclusion follows from the computation

[y fDP ™ pdx = [, fD*(DPp)dx = (=) [, D*f DPpdx
= (=D)AL [ DP(D*f)pdx.

If f has weak j" partial derivative D; f and if ¥ is in C*°(U), then f has a
weak j" partial derivative, and it is given by (D; f)¥+ f(Djy). Infact, this con-
clusion holds because [, f¥(Djp)dx = [, fD;j(yp)dx — [, f(Djy)pdx =
~ [uDiHvedx — [, fF(Diy)pdx = — [, (f(D;j¥) + (D; fHy)pdx.

If f has B weak derivative DPf for every g with 8 < a andif ¥ is in C*®(U),
then £ has an o™ weak derivative. It is given by the Leibniz rule:

D” 7Df3 D
(fy) = ﬂ;ﬁ% —g1 LN,

This formula follows by iterating the formula for D;( f) in the previous para-
graph.

Now we can give the definition of Sobolev spaces. Let k > 0 be an integer,
and let 1 < p < oo. Define

L{(U) ={f € LP(U) | all D*f exist weakly for || < k and are in L”(U)}.

Then L,f (U) is a vector space, and we make it into a normed linear space by

defining
11y = Z/ fp dx)”

la|<k

The normed linear spaces Lf (U) are the Sobolev spaces for U. All the remaining
results in this section concern these spaces.’

3The subject of partial differential equations makes use of a number of families that generalize
these spaces in various ways. Of particular importance is a family H* such that H® = L,% when s is
an integer k > 0 but s is a continuous real parameter with —0co < s < co. The spaces H*(RV) are
introduced in Problems 8—12 at the end of the chapter. For an open set U, the two spaces H3, (U)
and Hj} .(U) are introduced in Chapter VIIL. All of these spaces are called Sobolev spaces.
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Proposition 3.7. If £ > 0 is an integer and if 1 < p < oo, then the normed
linear space LY (U) is complete.

PROOF. If { f,,;} is a Cauchy sequence in L,f (U), then for each o with || < k,
the sequence {D*f,,} is Cauchy in L?(U). Since L?(U) is complete, we can
define @ to be the L?(U) limit of D*f,,. For ¢ in CX . (U), we then have

Jy f@¢dx = [, (im, Df,) dx = lim,, [, (D*fy)pdx,

the second equality holding since ¢ is in the dual space L” (U). In turn, this
expression is equal to

(=DMim,, [, (f)(D*@)dx = (=D [, (fO)(D¢) dx,

the second equality holding since D% is in L? (U). Therefore f@ = D¥f©
and f,, tends to £ in LY (U). O

Proposition 3.8. If £ > 0 is an integer and if 1 < p < o0, then a function f
isin L,’:(U) if fisin L?(U) and there exists a sequence { f,,} in C¥(U) such that
@) limy, | f — full, =0,
(b) for each o with || < k, the iterated pointwise partial derivative D*f,, is
in L?(U) and converges in L?(U) as m tends to infinity.

PROOF. By (b), || D*(f; — fu)ll f,’ for each fixed o tends to 0 as / and m tend to
infinity. Summing on & and taking the p™ root, we see that || f; — f,, | . tends to 0.
k

In other words, { f,,} is Cauchy in L,f (U). By Proposition 3.7, { f,,} converges to
some g in L} (U). The limit function g has to have the property that || f,, — g/l »
tends to 0, and (a) shows that we must have g = f. Therefore f is in Lf (). O

The key theorem is the following converse to Proposition 3.8.

Theorem 3.9. If k > 0 is an integer and if 1 < p < oo, then C*°(U)N Lf(U)
is dense in L} (U).

On the other hand, despite Corollary 3.6b, it will be a consequence of Sobolev’s
Theorem that Coo, (U) is not dense in L,f (U) if k is sufficiently large. The proof
of the present theorem will be preceded by a lemma affirming that at least the
members of L,f (U) with compact support in U can be approximated by members
of CZ . (U).

In addition, the proof of the theorem will make use of an “exhausting sequence”
and a smooth partition of unity based on it. Since U is locally compact and

o -compact, we can find a sequence {K,}° , of compact subsets of U with union
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U suchthat K, € K, forall n. This sequence is called an exhausting sequence
for U. We construct the partition of unity {v,},>1 as follows. Forn > 1, we use
Proposition 3.5f to choose a C* function ¢,, with values in [0, 1] such that

) { 1 for x € K3,
X) =
. 0 for x € (K7)<,
and forn > 2,
1 forx € Kyo — K2, |,
%m:{ o
0 forx € (K 3)UK,.

In the sum Yo | ¢,(x), each x has a neighborhood in which only finitely many
terms are nonzero and some term is nonzero. Therefore ¢ = Y 7o, ¢, is a
well-defined member of C*®°(U). If we put ¥, = ¢, / @, then ¥, is in C*(U),
Y ¥ =1onU, ¥(x)is > 0on K3 and is = 0 on (KY)*, and for n > 2,

>0 forx € K12 — K4,

=0 forx € (K 3)UK,.

Lemma 3.10. Let ¢ be a member of ngm(RN ) vanishing for [x| > 1 and

having total integral 1, put ¢,(x) = e Vp(e7'x) for & > 0, and let f be a
function in L,f (U) whose support is a compact subset of U. For ¢ sufficiently
small, ¢, * fisin CZ_(U), and

com

Y (x) {

lim llge % f = £l =0.

PROOF. As in the proof of Corollary 3.6, ¢, * f has compact support contained
in U if & < g9, where g is 1 if U = R" and ¢ is the distance of the support
of f to the complement of U if U # RY. Moreover, the function ¢, * f is in
C®(RYN) with D*(g, * f) = (D%@,) * f for each a. Thus ¢, * f is in cxL.)
if ¢ < g9. By the first remark after the definition of weak derivative, ¢, * f
has weak derivatives of all orders for € < o, and they are given by the ordinary

derivatives D (¢, * f). For ¢ < &,
D¥(@e * [)(x) = [, fF(D(DY@e)(x — y)dy
= (=Dl [, FOD*(y = @e(x — ) dy.

Since f by assumption has weak derivatives through order k and since y
s (x — y) has compact support in U, the right side is equal to

Ju D f e (x — y)dy = (¢ * D*f)(x)
for || < k. Therefore, for ¢ < g9 and || < k, we have
ID%(¢e % [ = ), = llge % (D°f) — DSl

For these same «’s, Proposition 3.5a shows that the right side tends to O as ¢ tends
to 0. Therefore ¢, * f — f tends to O in L,f(U). O
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PROOF OF THEOREM 3.9. Let f be in Lf (U). The idea is to break f into a
countable sum of functions of compact support, apply the lemma to each piece,
and add the results. The difficulty lies in arranging that each of the pieces of f
have controlled weak derivatives through order k. Thus instead of using indicator
functions to break up f, we shall use an exhausting sequence {K,},>; and an
associated partition of unity {,},>1 of the kind described after the statement of
the theorem. The discussion above concerning the Leibniz rule shows that each
¥, f has weak derivatives of all orders < k, and the construction shows that v, f
has support in K§ forn = 1 and in K], , — K, forn > 2.

Let € > 0 be given, let ¢ be a member of CZ, (RV) vanishing for |x| > 1 and
having total integral 1, and put ¢, (x) = e " Vp(e~'x) fore > 0. Applying Lemma
3.10 to ¥, f, choose &, > 0 small enough so that the function u,, = ¢,, * (¥, f)
has support in K¢ forn = 1 and in K, , — K, forn > 2 and so that

llun — WHf”L/I: <2™.

Putu =) o2 u,. Bach x in U has a neighborhood on which only finitely many
of the functions u, are not identically 0, and therefore u is in C*°(U). Also,

o0
u =
n=

(n = Yuf)+f  since Y v =1.
n=1

1

Since for each compact subset of U, only finitely many u, — i, f are not
identically O on that set, the weak derivatives of order < k satisfy D%u =
> o2 D*(uy — Y f) + D*f. Hence

o0

Du— f) = D*(up — Yu f).
n=1
Minkowski’s inequality for integrals therefore gives

2"[

n=1

1D = P, < 3 ND Gt = Ya )l < Y ltw =V fll,p <D o =€
n=1

n=1

Finally we raise both sides to the pth power, sum for o with || < k, and extract
the p'M root. If m (k) denotes the number of such «’s, we obtain

= flly <m0,

and the proof is complete. (]
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Now we come to Sobolev’s Theorem. For the remainder of the section, the
open set U will be assumed bounded, and we shall impose a regularity condition
on its boundary 8U = U — U. When we isolate one of the coordinates of
points in RY, say the j™, let us write y’ for the other N — 1 coordinates, so that
y = (yj,y"). We say that U satisfies the cone condition if there exist positive
constants ¢ and & such that for each x in U, there are a sign + and an index j
with 1 < j < N for which the closed truncated cone

Ie=x+{y=0;Y)| £y =clyland|y| <h}

lies in U for one choice of the sign . See Figure 3.1. Problem 4 at the end of the
chapter observes that if the bounded open set U has a C' boundary in a certain
sense, then U satisfies the cone condition.

Yj

Iy

X y/

FIGURE 3.1. Cone condition for a bounded open set.

Theorem 3.11 (Sobolev’s Theorem). Let U be a nonempty bounded open set
in RY, and suppose that U satisfies the cone condition with constants ¢ and h.
If1 < p <ooandk > N/p, then there exists a constant C = C(N, ¢, h, p, k)
such that
sup [u(x)| < Cllull»
xeU k

for all u in C*(U) N LY (V).

REMARK. Under the stated conditions on k and p, the theorem says that the
inclusion of C*°(U)N L,f (U) into the Banach space C (U) of bounded continuous
functions on U is a bounded linear operator relative to the norm of L ,f (U). Since
C>®(U)NLY(U)isdensein LY (U) by Theorem 3.9 and since C (U) is complete,
the inclusion extends to a continuous map of L ,f (U) into C(U). In other words,
every member of L{ (U) can be regarded as a bounded continuous function on
U.

PROOF. Fix g in C2°_(R!) with g(¢) equal to 1 for |¢]| < % and equal to O for

com
3

l£] > 4. Fixx in U and its associated sign & and index j. We introduce spherical
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coordinates about x with the indices reordered so that j comes first, writing x + y
for a point near x with

yj = %rcos g,
y1 = rsing cos 6y,
(with y; omitted)
YN—1 =Fsingsinf ---sinfy_3cosOy_,

Yy =rsingsinb ---sinfy_3sinfy_,

when
0<¢=m,

0<6, <mfori < N-2,

0 <0Ony_p <2m.

All the points x + y with 0 < ¢ < ®(c), where ®(c) is some positive number
and 0 < r < h, lie in the cone I, at x. For such ¢’s and for 0 < r < 1, we define

F(t) = g($)u(x + (£t cos g, tsingpcos by, ...))
and expand F in a Taylor series through order k£ — 1 with remainder about the
point + = h. Because of the behavior of g, F and all its derivatives vanish at
t = h. Therefore F(t) is given by the remainder term:
F(t) = g7 fy ¢ =) FO(s) ds.
Putting + = 0, we obtain
0 _ k
u(x) = (k—ll)! fh (=)t %[g(%)u(x + ¢ ))] dr

= ity o Y dels(ula + )]V ar

We regard the integral on the right side as taking place over the radial part of the
spherical coordinates that describe the set of y’s in ', and we want to extend
the integration over all of I'y. To do so, we have to integrate over all values
of 1,...,0y_p and for 0 < ¢ < ®(c). We multiply by the spherical part of
the Jacobian determinant for spherical coordinates and integrate both sides. The
integrand on the left side is constant, being independent of y, and gives a positive
multiple of u#(x). Dividing by that multiple, we get

u(x) =cr fr_ N S [g(Bux + y)]dy.
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Suppose temporarily that p > 1. With p’ still denoting the index dual to p,
application of Holder’s inequality gives

Ol < e1(fr, o VN7 dn) 7 (fr [ (e (Bhu + ]| ).

The first integral on the right side is the critical one. The radius extends from
0 to h, and the integral is finite if and only if (k — N)p’ > —N > 0, ie.,
k > N — N/p’ = N/p. This is the condition in the theorem.

The differentiation d% in the second factor on the right can be expanded in
terms of derivatives in Cartesian coordinates, and then the integration can be
extended over all of U. The result is that the second factor is dominated by a

multiple of [|ul|, ,. This completes the proof when p > 1.
k

Now suppose that p = 1. Then the above result from applying Holder’s
inequality is replaced by the inequality

)l < eIy o e |2 g (B)ute + ]| dy.

The first factor is finite if K > N, and the second factor is handled as before. This
completes the proof if p = 1. (]

Corollary 3.12. Suppose that U is a nonempty bounded open subset of RV
satisfying the cone condition, and suppose that 1| < p < oo and that m and k are
integers > O such thatk > m + N/p. If f isin L,’;(U), then f can be redefined
on a set of measure 0 so as to be in C™(U).

PROOF. Choose by Theorem 3.9 a sequence { f;} in C*°(U) N L,f (U) such that
lim f; = f in L,f(U). For |a| < m, we apply Theorem 3.11 to see that

sup |Df; — D*f;l
U

tends to 0 as i and j tend to infinity. Thus all the D®f; converge uniformly. It
follows that the uniform-limit function f = lim f; is in C"(U). Since f; — f
in LP(U) and f; — f uniformly, we conclude that f f almost everywhere.
Thus f tells how to redefine f on a set of measure 0 so as to be in C"(U). [

3. Harmonic Functions

Let U be an open setin R . The discussion will not be very interesting for N = 1,
and we exclude that case. A function u in C%(U) is harmonic in U if Au = 0
identically in U. Harmonic functions were introduced already in Chapter I and
investigated in connection with certain boundary-value problems. In the present
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section we examine properties of harmonic functions more generally. Harmonic
functions in a half space, through their boundary values and the Poisson integral
formula, become a tool in analysis for working with functions on the Euclidean
boundary, and the behavior of harmonic functions on general open sets becomes
a prototype for the behavior of solutions of further “elliptic” second-order partial
differential equations.

Harmonic functions will be characterized shortly in terms of a certain mean-
value property. To get at this characterization and its ramifications, we need the
N-dimensional “Divergence Theorem” of Gauss for two special cases—a ball
and a half space. The result for a ball will be formulated as in Lemma 3.13
below; we give a proof since this theorem was not treated in Basic. The argument
for a half space is quite simple, and we will incorporate what we need into the
proof of Proposition 3.15 below. For the case of a ball, recall® that the change-
of-variables formula x = rw, withr > 0 and |w| = 1, for transforming integrals
in Cartesian coordinates for R" into spherical coordinates involves substituting
dx = r¥Vdr dw, where dw is a certain rotation-invariant measure on the unit
sphere S¥~! that can be expressed in terms of N — 1 angular variables. The
open ball of radius xy and radius r is denoted by B(r; xy), and its boundary is
dB(r; xo).

Lemma 3.13. If F is a C' function in an open set on R" containing the closed
ball B(r; 0) andif 1 < j < N, then

oF N2
/ —(xo+x)dx = / X F(xo +row)r dw.
x€B(r:0) 8xj rwedB(r;0)

REMARKS. The lemma is a special case of the Divergence Theorem, whose
usual formula of is f y divFdx = f oy (F-m)dS, where U is a suitable bounded
openset, dU = U o _ U isits boundary, n is the outward-pointing unit normal,
F is a vector-valued C! function, and dS is surface area. In Lemma 3.13, U
is specialized to the ball B(r; 0), dS is the (N — 1)-dimensional area measure
rN=1 dw on the surface d B(r; 0) of the ball, F is taken to be the product of F by

the j™ standard basis vector ¢;, and ¢; - nis r ~'x;.

PROOF. Without loss of generality, we may take j = 1 and x9p = 0. Write
x = (x1,x), where x’ = (x2, ..., xy), and write @ = (w1, @) similarly. The
left side in the displayed formula is equal to

/r2_|x/|2 aF
‘/ix/lfr f)ﬂ:—\/m E(xl,x/) d.X] d_x/
S [FGPT= W2 = F(—/r? = WP x)] di

SFrom Section VL5 of Basic.
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Thus the lemma will follow if it is proved that

[ F(Jr?—x'12,x)dx = [ xFroyV?de (%)

[x'|<r lw|=1, ;>0

and

— [ F(=yr2=x2x)dx'= [ xiFroy"?do. (k)

|x'|<r lw]=1, ;=0

Let us use ordinary spherical coordinates for w, with

r cos 0
rwi r sin 6} cos 6,
roy rsin@)---sinfy_» cos Oy

rsin@y---sinOy_, sinOy_;

and
do =sinV 720, sinV 36, .. sinOy_,db; - -dOy_,.

The right side of (x) is equal to
[ Feowor"?de

lwl=1, w1=0
= [ FGo)yN='coso sin"=20,sin" >0, -sinOy_»db; ---doy_i,
0<6,=<m/2,
0<6j<m for 1<j<N—1,
0<On_1<27
and we show that it equals the left side of () by carrying out for the left side of
() the change of variables x’ <> (61, ..., Oy_1) given with r constant by

r sin6 cos 6
X2

x = . = .

) rsin@;---sinfy_s cosfy_1

XN . . .
rsin@g---sinOy_p sin Oy _;

The Jacobian matrix is the same as for the change to spherical coordinates
(r, 07, ...,0xn_1) except that the first column has a factor r cos 6, instead of 1
and the other columns have an extra factor of sin ;. Consequently

dx' = N1 (| cos 6| sin™ 2 91)(sinN_3 6, - -sin QN,z) do,---dby_;.

Therefore the measures match in the two transformed sides, the sets of integration
for (61, ..., Oy_1) are the same, and the integrands are the same because cos 6, =
| cos 8. This proves (). For (%) we make the same computation but the interval
of integration for 6, is 7 /2 < 0; < m. To get a match, the minus sign is necessary
because cos8; = —|cos 6. O
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Proposition 3.14 (Green’s formula’ for a ball). Let B be an open ball in RV,
let @ B be its surface, and let do be the surface-area measure of 0B. If u and v
are C? functions in an open set containing B, then

ov ou
Av —vA = — — v —
/;;(u v —vAu)dx /aB (u o v 8n) do,

where n : 9§ — R" is the outward-pointing unit normal vector.

PROOF. Apply Lemma 3.13 to F = u 2% and then to F = v 2, and subtract

dx; ax;°
the results. Then sum on j. (|

Let Qy_; be the surface area f gN-1 dw of the unit sphere in RY. A continuous
function u on an open subset U of R" is said to have the mean-value property
in U if the value of u at each point x in U equals the average value of u over each
sphere centered at x and lying in U, i.e., if

1
f u(x +tw)dw
Qn-1 Joesy-1

for every x in U and for every positive ¢ less than the distance from x to U€.
The mean-value property over spheres implies a corresponding average-value
property over balls. In fact, the volume | B(fy; 0)| of the ball B(#; 0) is given by
Ot" fovar N Ndwdt = N Sovo do = N~'#)'Qy_1. When the mean-value
property over spheres is satisfied and # is less than the distance from x to U, we
can apply the operation N7, N Oto (—) dt to both sides of the mean-value formula
and obtain

u(x) =

-N
N

N-1

to 1
u(x+to)t" 'dodt = ——— u(x+y)dy.
/0 /wESN‘l | B(to; 0)| JB(s:0

Proposition 3.15 (Green’s formula for a half space). Let H be the subset of
RN = {(x/,xy) | x’ € R¥"Tand xy € R} with xy > 0. Suppose that u and v
are C? functions on an open subset of R containing the closure H and that at
least one of 1 and v is compactly supported. Then

ou av ,
(uAv —vAu)dx = (v——u—)dx.
xeH X'eRN-1 N\ OXy dxy

PROOF. Suppose F is a C'! function compactly supported on an open subset of
RN containing H. If 1 < j < N — 1, then f " % dx = 0 since the integral with
7

u(x) =

TThis formula is related to but distinct from the formula with the same name at the beginning of
Section 1.3.



3. Harmonic Functions 73

respect to dx; is the difference between two values of F' and since these are 0 by
the compactness of the support. For j = N, however, one of the boundary terms

may fail to be 0, and the result is that fH oF. dx = — [pyv1 F(x')dx'.

Apply the j" of these formulas first to F = u Y and thento F = vg, sum
the results on j, and subtract the two sums. The result is the formula of the
proposition. ([l

Theorem 3.16. Let U be an open set in RY, and let u be a continuous scalar-
valued function on U. If u is harmonic on U, then u has the mean-value property
on U. Conversely if u# has the mean-value property on U, then u is in C*°(U)
and is harmonic on U.

PROOF. Suppose that u is harmonic on U. We prove that u has the mean-value
property. It is enough to treat x = 0. Green’s formula, as in Proposition 3.14,
directly extends from balls to the difference of two balls.® Thus we have

[ wAv —vAwydx = [, (u ﬂ—v )do (%)

whenever E is a closed ball B; of radius ¢ contained in U or is the difference
— (B¢)? of two concentric balls with € < ¢. Taking E = B, and v = 1 in (%),

we obtain
s, 3 do =0. (k)

Routine computation shows that the function given by

{ |x|~N-2) for N > 2,
log |x| for N = 2,

is harmonic for x # 0 and has 2! equal to a nonzero multiple of |x| V=1, r being
the spherical coordinate radlus |x|. If we apply (x) to this v and our harmonic u
when E = B, — (B.)°, we obtain

fa(B, (B. )o)( o vg—ﬁ)d0=0-

Since v depends only on |x|, (xx) shows that the second term of the integrand
yields 0. Thus this formula becomes

Jocw, 5.y wimdo =0.

8For the extended result, suppose that the balls have radii 7| < r». Then u and v are defined from
radius r; — € to ro + ¢ for some ¢ > 0. We can adjust u and v by multiplying by a suitable smooth
function that is identically 1 for radius > r; — 38 and identically O for radius < r; — %s and then
u and v will extend as smooth functions for radius < r, + ¢. Consequently Proposition 3.14 will
apply on each ball to the adjusted functions, and subtraction of the results gives the desired version
of Green’s formula.
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The normal vector for the inner sphere points toward the center. Hence we can
rewrite our equality as

Ju _ v
f\X|=e ustdo = fm:t ust do.

Since 2% = ¢|x|~V=D with ¢ # 0, we obtain

—-(N-1) — ¢~ (N=-D
€ e Udo =1 S wdo.

On the left side, do = €V~'dw, while on the right side, do = " !dow.
Therefore

S uew)do = [ u(tw)dw

whenever 0 < € < ¢ and B, is contained in U. Dividing by Qy_;, letting €
decrease to 0, and using the continuity of u, we see that u(0) = fw cgv—1 u(tw) do.
Thus u has the mean-value property.

For the converse direction suppose initially that u is in C?(U). Define

m(u)(x) = Q" f\w\:l u(x +tw)dw

whenever x is in U and ¢ is a positive number less than the distance of x to U°€.
With x fixed, the function m,(u)(x) has two continuous derivatives. We shall

show that 5

d
T M|y =N Au), (t)

the derivatives being understood to be one-sided derivatives as ¢ decreases to 0.
If u is assumed to have the mean-value property, m,(u)(x) is constant in ¢, and

we can conclude from (f) that Au(x) = 0. The computation of % m;(u)(x) is
m(u)(x) = Q' S #x1 + o1, .., xy + toy) do,
Lm,u)(x) = QL [l T 0 Dju(x + tw) do,
Lom)(x) = Q1 [ Yoy 0y Dy D (x + tw) do.
Letting ¢ decrease to 0, we obtain
om0 )],y = QL T DiDan) f,, @y do.

If j # k, then |

wj=1 @@k dw = 0 since the integrand is an odd function of

the j™ variable taken over a set symmetric about 0. The integral flw|=1 a)jz dowis



3. Harmonic Functions 75

independent of j and has the property that N times it is equal to f‘ lw]?dw =

f\wl:l dw = Qn_;. Thus f\a)l:l wjz do=N"'Qy_;, and

w|=1

Lom)],_y=N"" YN, D2ux) = N~ Au(x).

This proves (1) and completes the argument that a C? function in U with the
mean-value property is harmonic.

Finally suppose that u# has the mean-value property and is assumed to be
merely continuous. Proposition 3.5e allows us to choose a function ¢ > 0 in
ng’m(RN) with ¢ (x) = @o(|x]), fRN ¢(x)dx = 1,and p(x) = 0 for |x| > 1. Put
@:(x) = e Np(e7'x), and define u, (x) = fRN u(x — y)@:(y) dy in the open set
U, ={x e U | D(x,U°) > ¢}. Proposition 3.5c¢ shows that u, is in C*°(U,),
and the mean-value property of u, in combination with the radial nature of ¢, as
expressed by the equality ¢, (fw) = @ (tey), forces u.(x) = u(x) for all x in U,:

Ue(¥) = [ fio 4(x — t0)ge(t0)tN " dwdt
= [, Qn_1u(x)g.(te)tV " dt
= u(x) fgn () dy = u(x).

Since ¢ is arbitrary, u is in C*°(U). The function 1 has now been shown to be in
C?(U), and it is assumed to have the mean-value property. Therefore the previous
case shows that it is harmonic. ]

Corollary 3.17. If u is harmonic on an open subset U of RY, then u is in
C®(W).

PROOF. This follows by using both directions of Theorem 3.16. U

A sequence of functions {u,} on a locally compact Hausdorff space X is said
to converge uniformly on compact subsets of X if limu, = u pointwise on X
and if for each compact subset K of X, the convergence is uniform on K. For
example the sequence {x"} converges to the O function on (0, 1) uniformly on
compact subsets.

Corollary 3.18. If {u,} is a sequence of harmonic functions on an open subset
U of RV and if {u,} converges uniformly on compact subsets to u, then u is
harmonic on U.

PROOF. About any point of U is a compact neighborhood lying in U, and
the convergence is uniform on that neighborhood. Therefore u is continuous.
Each integration needed for the mean-value property occurs on a compact subset
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of U, and the uniform convergence allows us to interchange limit and integral.
Therefore the mean-value property for each u,,, valid because of one direction of
Theorem 3.16, implies the mean-value property for u. Hence u is harmonic by
the converse direction of Theorem 3.16. O

Suppose that U is open in R" and that u is harmonic on U. If B is an
open ball in U, then fU uAy dx = 0 forall ¥y € CZ_(B) by Green’s formula

com
(Proposition 3.14), since ¥ and % are both identically O on the boundary of B.
We shall use a smooth partition of unity to show that |, y WAV dx is therefore 0
forall Y € Cgy(U). Corollary 3.19 below provides a converse; we shall use the
converse in a crucial way in Corollary 3.23 below.

The argument to construct the partition of unity goes as follows. To each point
of K = support(y), we can associate an open ball centered at that point whose
closure is contained in U. As the point varies, these open balls cover K, and
we extract a finite subcover {Uq, ..., U;}. Lemma 3.15b of Basic constructs an
open cover {Wy, ..., Wi} of K such that Wfl is a compact subset of U; foreach i.
Now we argue as in the proof of Proposition 3.14 of Basic. A second application
of Lemma 3.15b of Basic gives an open cover {Vy, ..., Vi} of K such that Vl.Cl is
compact and ViCl C W; for each i. Proposition 3.5f constructs a smooth function
gi > O thatis 1 on ViC] and is O off W;. Then g = Zle gi 1s smooth and > 0
on R" and is > 0 everywhere on K. A second application of Proposition 3.5f
produces a smooth function # > 0 on R" that is 1 on the set where g is 0 and is 0
on K. Then g+h is everywhere positive on RY, and the functions ¢; = g; /(g+h)
form the smooth partition of unity that we shall use.

To apply the partition of unity, we write = ). ¢;¥. Then each term ¢;y/
is smooth and compactly supported in an open ball whose closure is contained in
U. Consequently we have fU uA(p;) dx = 0 for each i. Summing on i, we
obtain f v UAY dx = 0, which was what was being asserted.

Corollary 3.19. Suppose that U is open in R", that u is continuous on U, and
that fU uAy dx =0 forally € CZ (U). Then u is harmonic on U.

com
PROOF. Let B be an open ball of radius r with closure containedin U, fixe > 0
so as to be < r, and let B, be the open ball of radius r — ¢ with the same center as
B. Construct ¢, as in the proof of Theorem 3.16, and let u, = u * ¢.. Suppose
that ¥ is in Coo (B). For ¢ and x in RY with |¢]| < e, define ¥, (x) = ¥ (¢ + x).

Since v is supported in B, ¥, is supported in B, and therefore
Jpulx =AY (x)dx = [u(x)AY(x +1)dx = [ulAy, dx =0,

the last equality holding by the hypothesis. Multiplying by ¢, (), integrating for
|t| < e, and interchanging integrals, we obtain

0= [, [pvulx — D@ (DAY (x)dtdx = [pu.(x)AY(x)dx.



3. Harmonic Functions 77

Since 1 vanishes identically near the boundary of B, this identity and Green’s
formula (Proposition 3.14) together yield f g Y (X)Aug(x)dx = 0 for all ¢ in
CS . (Bg). Application of Corollary 3.6a allows us to extend this conclusion to
all ¥ in C¢om(B,), and then the uniqueness in the Riesz Representation Theorem
shows that we must have Au.(x) = O for all x in B,. As & decreases to 0, u,
tends to u uniformly on compact sets. By Corollary 3.18, u is harmonic in B.
Since the ball B is arbitrary in U, u is harmonic in U. g

Corollary 3.20. Let U be a connected open set in RY. If u is harmonic in U
and |¢| attains a maximum somewhere in U, then u is constant in U.

PROOF. Suppose that || attains a maximum at xo. Multiplying u by a suitable
constant ¢, we may assume that u(xo) = M > 0. The subset E of U where
u(x) equals M is closed and nonempty. It is enough to prove that E is open. Let
x1 be in E, and choose an open ball B centered at x, say of some radius r > 0,
that lies in U. We show that B lies in E. For 0 < ¢t < r, Theorem 3.16 says that
u has the mean-value property

Q;,l_l Sonor u(x + tw)do = u(x)) = M.
Arguing by contradiction, suppose that u(x; + fowg) 7# u(x1) for some fywy with
0 <ty < r. Then Reu(x; + towg) < M — € for some € > 0, and continuity
produces a nonempty open set S in the sphere S¥~! such that Re u(x| + tyw) <
M — ¢ for w in S. If o is the name of the measure on SV~!, then we have

MQy_; =Re ( fonor u(x) + tw) dw)

= [sReu(x; +1w)do + [(n_¢Reu(x; +tw)dw

= (M —€)o(S)+Ma(SV 1 -9)

=MQy_; —€a(S),

and we have arrived at a contradiction since o (S) > 0. O

Corollary 3.21. Let U be a bounded open subset of RY, and let U be its
boundary. If  is harmonic in U and is u is continuous on U, then sup,y lu(x)|=
maxyepy |u(x)|.

PROOF. Since u is continuous and U is compact, |u| assumes its maximum
M somewhere on U, If |u(xo)| = M for some xo in U, then Corollary 3.20
shows that u is constant on the component of U to which xy belongs. The closure
of that component cannot equal that component since R is connected. Thus the
closure of that component contains a point of dU, and |u| must equal M at that
point of 0U. Consequently sup,..;; [u(x)| < max,eyy |u(x)|. Since every point
of AU is the limit of a sequence of points in U, the reverse inequality is valid as
well, and the corollary follows. O
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Corollary 3.22 (Liouville). Any bounded harmonic function on RY is
constant.

REMARKS. The best-known result of Liouville of this kind is one from complex
analysis—that a bounded function analytic on all of C is constant. This complex-
analysis result is actually a consequence of Corollary 3.22 because the real and
imaginary parts of a bounded analytic function on C are bounded harmonic
functions on R?.

PROOF. Suppose that u is harmonic on RY with |u(x)| < M. Let x; and x,
be distinct points of RV, and let R > 0. Since u has the mean-value property
over spheres by Theorem 3.16, u equals its average value over balls. Hence

u(x;) = |B(R; 0)|! fB(R;xl) u(x)dx and u(x;) = |B(R; 0)|™! fB(R;xz) u(x)dx.
Subtraction gives
M(X])—M()Cz) == IB(R’ O)|_1(fB(R;x1) M(X) dx — fB(R;xz) M(X)dX)

= [B(R; O)| ™" (fror)— BeRe e # ) dX = [ o) peon 4 (X) dX).

Therefore
@) = u)| < IBR; O™ [ypiri)an(Riny 1) dx,

where B(R; x1) AB(R; x,) is the symmetric difference (B(R; x;) — B(R; x3)) U
(B(R; x3) — B(R; x1)). Hence

M|B(R; x1)AB(R; x2)| _ MRY|B(1: x1/R)AB(l; x2/R)|
lu(xy) —u(xz)| < - = N BT .
[B(R;0)] RY|B(1;0)]
The right side is | B(1; x;/R)AB(1; x/R)|, apart from a constant factor, and the
sets B(1; x;/R)AB(1; x;/R) decrease and have empty intersection as R tends
to infinity. By complete additivity of Lebesgue measure, the measure of the
symmetric difference tends to 0. We conclude that u(x) = u(x,). Therefore u
is constant. ]

In the final two corollaries let Rﬁ“ be the open half space of points (x, ¢) in
RN*! such that x is in RN and # > 0.

Corollary 3.23 (Schwarz Reflection Principle). Suppose that u(x, t) is har-
monic in R, that u is continuous on (RY ™)', and that u(x, 0) = 0 for all
x. Then the definition u(x, —t) = —u(x, t) for t > 0 extends u to a harmonic
function on all of RV +!,
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PROOF. Define

{ u(x,t) fort >0,
—u(x, —1t) fort <O0.

The function w is continuous. We shall show that fRN wAY dx = 0 for all
¥ € CL (RN, and then Corollary 3.19 shows that w is harmonic. Write ¥
as the sum of functions even and odd in the variable 7. Since w is odd in ¢, the
contribution to f]RN wA1r dx from the even part of i is 0. We may thus assume
that ¢ is odd in ¢.

Fore > 0, let R, = {(x,1) | t > ¢}. It is enough to show that fRs ulAy dx dt
has limit O as & decreases to O since fRN+I wAY dx dt is twice this limit. We
apply Green’s formula for a half space (Proposition 3.15) with v = i on the set
R. € RN*! except for one detail: to get the hypothesis of compact support to be
satisfied, we temporarily multiply y» by a smooth function that is identically 1 for
t > ¢ and is identically O for ¢ < %8. Since u is harmonic in R, the result is that

— [p uAYdxdt = [ (YAu—uAY)dxdi = [i oy (s — %) dx.

On the right side, limg o f{(x’l)‘t:g} uaa—‘f dx = 0 since u( -, €) tends uniformly
to 0 on the relevant compact set of x’s in RV,

Thus it is enough to prove that lim, o f{(xmt:s} %—'; dx = 0. Since ¥(x,t)
is of class C2, is odd in x, and is compactly supported, we have | (x, t)| < Ct
uniformly in x for small positive ¢. Thus it is enough to prove that

tim| 1 % e )| = 0 *)
im|t —(x,t)| = *
110 ot

uniformly on compact subsets of RY.

To prove (%), let ¢ be a function as in Proposition 3.5e, and let ¢, (x, 1) =
e~ WHDo(e~1(x, 1)). Fix xo in RY, and define Xy = (xo, fo) and X = (xo, 1).
If | X — Xo| < %t(), then the mean-value property of u in Rﬁ“ gives u(X) =
(u * (p%to)(X). Hence we have

500 = fawnr 93, (X = Vu(¥) dY
= favo 2 [ GNP ((G10) T (X = V) Ju(Y) dY.

In the computation of the partial derivative on the right side, the variable ¢ appears
as the last coordinate of X. Therefore this expression is equal to

(310) 7" faver G1o) N+ 22 (1o)X — Y))u(Y) dY.
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Changing variables in the integration by a dilation in Y shows that this expression
is equal also to

G1) ™" S F(G0) X = Y)u(3nY)dy.

If we write Y = (y, s) and take absolute values, we obtain

—1 8
|5 (o, 0 <315 |52, sup Ju()I.
|s—to|<2t0/3,
Y near X,
The required behavior of taa—’; follows from this estimate. (]

Corollary 3.24. Suppose that u (x, ¢) is harmonic in Rf“ , that u is continuous
on (RY <! and that u(x, 0) = O forall x. If u is bounded, then u is identically 0.

REMARK. Without the assumption of boundedness, the function u(x, t) = ¢ is
a counterexample.

PROOF. Corollary 3.23 shows that u extends to a bounded harmonic function
on all of R¥*!, and Corollary 3.22 shows that the extended function is constant,
hence identically 0. O

4. H? Theory

As was said at the beginning of Section 3, harmonic functions in a half space,
through their boundary values and the Poisson integral formula, become a tool in
analysis for working with functions on the Euclidean boundary. The Poisson in-
tegral formula, which was introduced in Chapters VIII and IX of Basic, generates
harmonic functions from boundary values.

The details are as follows. Let Rf *1 be the open half space of pairs (x, 7) in
RV*!withx € RN andwith7 > 0inR'. We view the boundary {(x, 0) | x € RV}
as RY. The function

CN T

P(x,t) = P(x) = ,
(X ) t(x) (tz + |x|2)%(N+l)

fort > 0, with cy = n‘%(N“)F(NT“), is called the Poisson kernel for RY*!.
The Poisson integral formula for Rﬁ“ isu(x,t) = (P, x f)(x), where f is
any given function in L?(RV) and 1 < p < o0, and the function u is called the
Poisson integral of f.
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If fisin LP?, then u is harmonic on Rﬁ“, u(-,t)isin L? foreacht > 0, and
luC-.0Oll, =lfll,- Forl < p < 00, lim; o u( -, t) = f inthe norm topology of
L7, while for p = oo, lim, o u(-, t) = f inthe weak-star topology of L> against
L'. Inboth cases, lim, o flu(-, Oll, =fIl, and lim; o u(x,t) = f(x) a.e.; this
latter result is known as Fatou’s Theorem. When p = oo, the a.e. convergence
occurs at any point where f is continuous, and the pointwise convergence is
uniform on any subset of RY where f is uniformly continuous.

The L? theory for p = 1 extends from integrable functions to the Banach space
M (RN) of finite complex Borel measures. Specifically if v is a finite complex
Borel measure on R, then the Poisson integral of v is defined to be the function
u(x, 1) = (P % n)(x) = [gn Pr(x — y)dv(y). Then u is harmonic on R,
lu(-, )ll; < llv|l foreacht > 0, lim; o u( -, t) = v in the weak-star topology of
M (RY) against Ceom(RY), and lim o [lu(-, D[, = l|p]l.

The new topic for this section is a converse to the above considerations. For
1 < p < oo, we define H? (RP') to be the vector space of functions u(x, ) on
RY*! such that

(i) u(x, t) is harmonic on RY ™",

(ii) sup,_g llu(-, |, < oo.
With [|u|,,, defined as sup,_ [[u(-, 1)||,, the vector space H” (]Rﬁ+l ) is anormed
linear space. If f isin L”(R"), then the facts about the Poisson integral formula
show that the Poisson integral of f is in H”(RY™") and its H”(RY™") norm
matches the L” (R") norm of f. For p = 1, we readily produce further examples.
Specifically if v is any member of M(R"), then the Poisson integral of v is in
H! (Rﬁ“ ), with the H! (Rﬁ +1) norm matching the M(R") norm. The theorem
of this section will say that there are no other examples.

The members of H*® (RT’I) are exactly the bounded harmonic functions in
the half space Rﬁ“, and the tool for obtaining an L*> function on R" from
this harmonic function is the preliminary form of Alaoglu’s Theorem proved in
Basic:® any norm-bounded sequence in the dual of a separable normed linear
space has a weak-star convergent subsequence.'® We shall use Corollary 3.24 to
see that the harmonic function has to be the Poisson integral of this L°° function.

Theorem 3.25. If 1 < p < oo, then any harmonic function in H” (RT’I) is
the Poisson integral of a function in L?(R"). For p = 1, any harmonic function
in H'(RY ™) is the Poisson integral of a finite complex measure in M (R").

PROOF. We begin by proving that u(x, t) is bounded for ¢t > #y. For this step
we may assume that p < oo. Theorem 3.16 shows that u has the mean-value

9Theorem 5.58 of Basic.
10The full-fledged version of Alaoglu’s Theorem will be stated and proved in Chapter IV.
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property. We know as a consequence that if B denotes the ball with center (x, ¢)
and radius %to, then the value of u at (x, ¢) equals the average value over B:
u(x,t) = ﬁ Jzu(y,s)dyds.
Since the measure |B|~! dy ds on B has total mass 1, Holder’s inequality gives
e, 1P < b [y lu(y. )7 dyds
1
181 JIs—t1<kno Jyern 1u(y, $)I7 dy ds

IA

IA

[(%to)N—HQN]_l (N + Do ”u”%pv

and the boundedness is proved.
For each positive integer k, define fi(x) = u(x,1/k) and w(x,t) =
(P; * fi)(x). Then the function wy(x, t) —u(x,t + 1/k) is
(i) harmonicin (x, t) for ¢t > 0 since wy and any translate of u are harmonic,
(ii) bounded as a function of (x, ¢) for ¢ > 0 since u(x, t 4+ 1/k) is bounded
fort > 0, according to the previous paragraph, and since wy, is the Poisson
integral of the bounded function f,
(iii) continuous in (x, t) for ¢ > 0 since u(x, t + 1/k) and wy (x, t) both have
this property, the latter because f; is continuous and bounded.
By Corollary 3.24, wy(x,t) —u(x,t + 1/k) = 0. That is,

u(x,t+1/k) = [en Pi(x — y) fi(y) dy.

Now suppose p > 1, so that L? is the dual space to L? if p~' + p/~! = 1.
Since u is in H?, || fill, < M for the constant M = ”“”H,,' By the preliminary
form of Alaoglu’s Theorem, there exists a subsequence { fi, } of { i} that is weak-
star convergent to some function f in L”. Since for each fixed ¢, P, isin L' N L™
and hence is in L?', each (x, t) has the property that

u(x,t+1/kj) = [on Pi(x — ) fi, ) dy = [pn Pi(x — y) f(y) dy.
But u(x,t + 1/k;) — u(x,t) by continuity of u. We conclude that u(x,t) =
Jrv Pr(x = y) f(y) dy.

This proves the theorem for p > 1. If p = 1, the above argument falls short
of constructing a function f in L' since L' is not the dual of L>°. Instead, we
treat f; as a complex measure fj(x) dx. The norm of f;(x)dx in M(R") equals
l fxll,, and thus the norms of the complex measures fi(x) dx are bounded. The
space M(R") is the dual of Ccom(R") and hence also of its uniform closure,
which is the Banach space Co(R") of continuous functions on R" vanishing at
infinity. Let { fi, (x) dx} be a weak-star convergent subsequence of { fi(x) dx},
with limit v in M(R"). Since each function y > P;(x — y) is in Co(R"), we
have limy fRN P(x —y) fiy ) dy = fRN P,(x — y)dv(y). This completes the
proof. O
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For N = 1, every analytic function in the upper half plane ]R.z+ is automatically
harmonic, and one can ask for a characterization of the subspace of analytic
members of H” (]Ri). Aspects of the corresponding theory are discussed in
Problems 13-20 at the end of the chapter.

5. Calderén—-Zygmund Theorem

The Calderon—Zygmund Theorem asserts the boundedness of certain kinds of
important operators on L?(RY) for 1 < p < oo. It is an N-dimensional
generalization of the theorem giving the boundedness of the Hilbert transform,
which was proved in Chapters VIII and IX of Basic. We state and prove the
Calder6n—Zygmund Theorem in this section, and we give some applications to
partial differential equations in the next section.

Theorem 3.26 (Calderén—Zygmund Theorem). Let K (x) be a C ! function on
RM — {0} homogeneous'! of degree 0 with mean value O over the unit sphere,
i.e., with

/ K(w)dw = 0.
SN-1

For each ¢ > 0, define

Tgf(X)=/ KO v

fze 1INV

whenever 1 < p < oo and f is in L?(R"). Then

(@) IIT: fll, < Ayl fll, for a constant A, independent of ¢ and f,
(b) liII(} T, f = Tf exists as an L? limit,
&

©) ITfll, < Apllifll, for a constant A, independent of f.

REMARKS. If 1 < p < oo and if p’ is the dual index to p, then the function
equal to K (¢)/|t|N for |t| > & and equal to O for |¢| < & is in L?'. Therefore, for
each such p, T, f is the convolution of an L?" function and an L? function and is
a well-defined bounded uniformly continuous function. In proving the theorem,
we shall use less about K (x) than the assumed C'! condition on RY — {0} but more
than continuity. The precise condition that we shall use is that | K (x) — K(y)| <
1//1(|x —y]) on S¥~! for anondecreasing function v/ (8) of one variable that satisfies
f Q)

ITA function F of several variables is homogeneous of degree m if F(rx) = r™ F (x) for all
r > 0andall x # 0.
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The main steps in the proof are to show that the operator 7 equal to 7, fore = 1
is bounded on L? and is of weak-type (1, 1) in the sense that |{x | |(T} f)(x) > £}
< C|fll1/€. The remainder of the argument is qualitatively similar to the
argument with the Hilbert transform, not really involving any new ideas. We
handle matters in the following order: First we prove as Lemma 3.27 two facts
needed in the L? analysis, second we give the proof of the boundedness of T}
on L2, third we establish in Lemmas 3.28 and 3.29 a weak-type (1, 1) result
for a wide class of operators, and fourth we show as a special case that 7} is of
weak-type (1, 1). Finally we tend to the remaining details of the proof.

Lemma 3.27. There is a constant C such that for all R > 1, all ¢ with
0 < & < 1, and all nonzero real a and b,

R sinar dr
@ | = =c
B r

R (cosar — cosbr) dr ‘ -

(b) ‘ C (1 + |log(la/b))|).

,
PROOF. In (a) and (b), the signs of @ and » make no difference, and we may
therefore assume that a > 0 and b > 0.
In (a), the change of variables s = ar converts the integral into f
—1

aR sinsds
s

Since s~ sin s is integrable near 0, it is enough to consider fo S“’j ds | Integration

by parts shows that this integral equals [lcﬂ] — fOS (CO”S# The integrated
term tends to a finite limit as S tends to infinity, and the integral is absolutely
convergent. Hence (a) follows.

In (b), possibly by interchanging a and b, we may assume thatc = b/a is < 1.
The change of varlables s = ar converts the integral into | R w Since
|1 —coss| < 1s2forall s, wehave |1 —coscs| < lc2s2 < 2s So the integrand
is<sin absolute value everywhere and in partlcular is integrable for s near 0. Itis

therefore enough to show that | /, 1S w | < C(1+log(c™1)). Integration
by parts gives f | cossds _ [w]s + ]S Si“; 45 The integrated term tends to a

N N

S cossds
s

finite limit, and the integral is absolutely convergent. Hence the term f

S coscsds
s

is bounded, and it is enough to handle . Putting + = cs changes this

integral to fc ,CS Co‘t—td’. If ¢S > 1, the 1ntegral from 1 to ¢S contributes a bounded
amount, as is seen by integrating by parts, and the integral from c to 1 contributes
in absolute value at most [ < bt — =logc~!. If ¢S < 1, the integral from ¢ to ¢S
contrlbutes in absolute value at most [ < bty + [ ! 4 = logc! 4 log(c$) ™! <
2logc™!. O

PROOF FOR THEOREM 3.26 THAT T IS BOUNDED ON L2. Define k(x) to be
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K (x)/|x|N for |x] > 1 and to be O for [x| < 1. Then k is an L? function, and
T, f = k % f. We show that 7} is bounded on L? by showing that the Fourier
transform Fk of k is an L°° function.

If I, denotes the indicator function of {|x| < n}, then the sequence {kI,}
converges to k in L2. By the Plancherel formula, {F(kI,)} converges to Fk in
L?. Thus a subsequence converges almost everywhere. To simplify the notation,
let n run through the indices of the subsequence. We have just shown that
k(x)e 2"*Y dx,

(Fk)(x) = limnf|

x|<n

the limit existing almost everywhere. Write x = rw and y = r'o’, where r = |x|
andr’ = |y|. Thenx - y =rr’'cosy, where y = w - &', and (Fk)(x) is the limit
on n of

n _2wirr! _
fsN—l Kr([\(/o) e 2wirr coser ldr dw

1
_ fSN—l [ ln e—2ﬂirr;'cosy dr]K(a)) da)

n —27irr’ oSy _npye ’ .
= fovr [ S| s K (w)dw  since K has
mean value 0

_ fsN,l [fln (cos(2ﬂrr’cosy)—0052ﬂrr’) dr]K(w) dw

r

. inQwrr’ d
— fSN?I [ 1n sin( nrrrcosy) r]K(a)) do.

Let us call the terms on the right side Term I and —i Term II. The inner integral
for Term II is bounded independently of r, ¥/, y, n by Lemma 3.27a. Since K is
bounded, Term II is bounded.

The inner integral for Term I is bounded by C (1 +log(| cos y|~! )), according
to Lemma 3.27b. Since K is bounded, the contribution from C by itself yields a
bounded contribution to Term I and is harmless. We are left with a term that in
absolute value is

< C [onoi log(lcos y| ™)K ()| dw = C [y log(| cos(w - )| )| K (w)| dw.

Since K is bounded, it is enough to estimate fstl log(] cos(w - @')|~") dw. This
integral is independent of @’. We introduce spherical coordinates

w] = cos Oy,

wp = sin 6B cos b,
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and take ' = (1,0, ..., 0). The integral becomes

f log(| cos 6, =1 sinV =26, - -sinOy_rdOy_; - --dby,
0<6;<m for j<N-1,
0<Oy_1 <27

which is a constant times f0" log(] cos@|~1) sin" 26 d6. This integral in turn
is < foﬂ log(| cos8|~") df, whose finiteness reduces to the local integrability of
log(|x|~") on the line. Thus TermI is bounded, and the boundedness of Fk
follows. O

Lemma 3.28 (Calder6n—Zygmund decomposition). Let f be in L' (RY), and
let £ be a positive real number. Then there exists a finite or infinite disjoint
sequence {E,},>1 of Borel subsets of RY such that

(a) foreach E,, there exists a ball B,, = B(r,; x,,) such that the balls B,, and
B} = B(5ry; x,) have B, C E, C B},

) X, 1E <5NIf1, /&,

(¢) |f(x)| < & almost everywhere off | J,, E,,

(d) ! |/ | f(y)|dy < 5V& for each n.
n E,

|E
FIGURE 3.2. Calderén—Zygmund decomposition of R" relative to a function at a
certain height. The set where the maximal function of f exceeds & lies in the
union of the gray balls. The gray balls have radii 5 times those of the black
balls, and the black balls are disjoint. The function | f] is < & almost

everywhere off the union of the gray balls, and the sum of the volumes
of the gray balls is controlled.

®

REMARKS. In the 1-dimensional case, this result was embedded in the proof
of Theorem 8.25 of Basic. The sets E, were open intervals. Extending that
argument too literally to the N-dimensional case is unnecessarily complicated
for current purposes. Instead, we settle for an n' set that contains a ball of some
radius about a point and is contained in a ball of 5 times that radius. Thus the n™"
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set E,, consists of a black ball and part of the corresponding gray ball in Figure
3.2. The fact that E,, has not been precisely located makes the proof of weak-type
(1, 1) in the present section more difficult than the proof of Theorem 8.25 of
Basic.

PROOF. Let f* be the Hardy—Littlewood maximal function
FH0) = SUPg_y o (B0 [y [ £ dy,

andlet E = {x | f*(x) > &}. If x isin E, then | B(r; x)| ™! fB(r;x) [fn)ldy > &
for some r > 0. On the other hand, lim,_, ~ |B(r; x)|™! fB(r;x) lf()]dy =0
since f is integrable. Thus, for each x in E, there exists an r = r, depending on
x such that

1Bra; O™ 5.0 1D dy > &
and 1B 0™ fyspin f W dy <.

Since || fll1 = [g.00) [N dy > E|B(re; x)| = rY £|B(1; 0)], the radii r, are
bounded. Applying the Wiener Covering Lemma'? to the cover { B(r; x) | x € E}

of E, we obtain a finite or infinite sequence of points xy, x3, ... such that the
balls B(r,,; x,) are disjoint and
E C U, B(5ry,; Xn). (%)

Write r,, for r,, . Put Ey = B(5ry; x1) — U#] B(rj; xj), and define inductively

En = B(5ry: x) — U2} Ej — U BGji X))
By inspection
(i) the sets E, are disjoint,

(i1) B(r,; x,) € E, C B(5r,; x,) for each n,

(ii)) U, En = U, BGra: xa).
Property (ii) immediately yields (a). The second inclusion of (ii) gives £ |E,| <
E|B(5ra; xa)| = SNEIB(ra; xa)| < 5V [g, . 1f(¥)dy. Summing on n and
taking into account the disjointness of the sets B(r,; x,), we obtain & ), |E,| <
5N fUnB(rn;xn) | f)|dy < 5M||fll;. This proves (b). The two inclusions

of (ii) together yield [, [f(MIdy < [gs, ..\ | fODIdy < EIB(Sry; x| =
5NE|B(ry; x,)| < 5VE|E,|, and this proves (d). Finally (%) and (iii) together
show that E C J, E,. Therefore f*(x) < & everywhere off | J, E,. Since

lim, 4o [B@: )™ [y [FO)dy = £(0)

almost everywhere on RY, we see that | f (x)| < & almost everywhere off U, En-
This proves (c). O

121 emma 6.41 of Basic.
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Lemma 3.29. Let k be in L>(R"), and define Tf = k * f for f in L' + L?.
If

@ ITfll, < Allfll, and
(b) there exist constants B and « > 0 such that

/ lk(x —y) —k(x)|dx < B
RN

independently of y,

then the operator T is of weak-type (1, 1) with a constant depending only on A,
B, o,and N.

PROOF. We are to estimate the measure of the set of x where [(T f)(x)| > &.
Fix f and &, and apply Lemma 3.28 to obtain disjoint Borel sets E, and balls
B, = B(ry; x,) and B} = B(5r,; x,) with B, € E, € B} and with the other
properties listed in the lemma. Now that the sets E, have been determined, we
decompose f into the sum f = g + b of a “good” function and a “bad” function
by

w1Jp, fO)dy  forx € E,,
gx) =

f(x) forx ¢ (U, En,
{ f(x)—lE—lle fO)dy forx € E,,
b(x) — n n
0 forx ¢ U, En.

Since {x | ITf(x)| > &} € {x||Tg)| > &/2} U{x|ITbx)| > &/2}, itis
enough to prove
() [{x]1Tg)| > &/2}| < ClfIl, /€ and
(i) {x|ITb)| > &/2}| < ClfIl, /8
for some constant C independent of £ and f.
The definition of g shows that [, |g(x)|dx < [ |f(x)|dx for all n and

that |g(x)| = | f(x)| for x ¢ |, En; therefore [py [g(x)|dx < [pn | f(X)]dx.
Also, properties (b) and (c) of the E,,’s show that |g(x)| < 5V& a.e. These two
inequalities, together with the bound || Tg|l, < Al gll,, give

Jan ITg@)[Pdx < A? [ 1g(x)|* dx
< 5NEA? [on lg(x)dx < SVEA? v [f(0)ldx.

Combining this result with Chebyshev’s inequality

{x | IF@)| > B} < B2 fan |F () |* dx
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for the function F = T g and the number § = £/2, we obtain
4-5NA%N £

4
[{x | ITg)| > &/2}] < —zstAZ/ |f ()] dx =
& RV 3

This proves (i).

For the function b, let b, be the product of b with the indicator function of
E,. Then we have b = ), b, with the sum convergent in L'. Inspection of
the definition shows that ||b, ||, < 2fEn | f ()| dy, and therefore ||b]|; < 2| fl,.

Since T is convolution by the L? function k and since b = Y, b, in L', Tb =
> Tb, with the sum convergent in L. A subsequence of partial sums therefore
converges almost everywhere. Inserting absolute values consistently with the
subsequence and then inserting absolute values around each term, we see that

Th(x)| < X, ITh(x)]  ace.
Let o be the constant in hypothesis (b). The measure of |, B(5ar,; x,) is
| U, BGary; x)| < X, |BGary; x)| =Y, 5N o |B(ry; x,)|
<5NaN 3 E.| < 5NN £l /6.

Let X = RY — |, B(5ary; x,). If we show that [, |Tb(x)|dx < C'| f]l1, then
we will have

[{x [ ITb@)] > &/2}] < 5N +2C)II£1, /&, (%)

and (ii) will be proved. Put 7,(X) = {x — x, | x € X}. Since fE b(y)dy =0
for each n,

fx [Th(x)|dx < Zn fx |Th,(x)|dx
=2 [y | Jg, k(x = y)b(y) dy| dx
=3, [y | Jo eGx = ¥) = k(x = x)1b(y) dy| dx
<Y [y Jp, k(x = ) —k(x — x)[1b(y)| dy dx
S fe [ oo G+ = y) — k()] dx]Ib()| dy
< S [ saro G+ %0 — ) — k()| dx]1b(y)| dy.

In the n'™ term on the right side, y is in £, € B}, and hence |x, — y| < 5ry;
meanwhile, |x| > Sar,. Therefore |x| > Sar, > a|x, — y|. The right side in the
display is not decreased by increasing the region of integration in the x variable,
and hence the right side is

< 3 i, [izate,—y KO+ 050 = 3) = k()| dx]1b(y)| dy
<> Jg, BIb(W)|dy = Blbll, <2BI fl,.
Therefore () is proved with C' = 2B, and the proof of (ii) is complete. ]
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PROOF FOR THEOREM 3.26 THAT T} IS OF WEAK-TYPE (1, 1). With k(x) taken
to be K (x)/|x|" for |x] > 1 and to be O for |x| < 1, Lemma 3.29 shows that it
is enough to prove that

Sz kG = ) —k(x)|dx < B )

with B independent of y. The function & is bounded, and thus the contribution
to the integral in (x) from the bounded set of x’s where |x| < 1 is bounded
independently of y. The set of x’s where |x — y| < 1 is a ball whose measure is
bounded as a function of y, and thus this set too contributes a bounded term to
the integral in (). It is therefore enough to prove that

/ Kx—-y) K

dx
lx —yI¥ x|V

|x1=2[yl,

[x=yl=1, |x|=1

is bounded as a function of y. If M is an upper bound for | K |, then this expression
is

Sf|K(X—Y)||W—ﬁ‘dx+fde

x|V
1 1 [K(x=y) =K (x)|
[x|=2]yl, [x|=2]yl,
lx|=1 |x|=1

We use the two estimates

lx — | < |xl + Iyl < x|+ 31x| = 3|x]
and lx =yl = |xl = Iyl = Glxl = [yD + 3lx| = 31x[.
The integrand in the first term of () is equal to

L — | = BT < o | bl
=y® T IV V=V | = Jx 2N

< N Lxl=lx—yl| [N Y 2 ey e x =y VD)
— ‘x|2N

< N LY e N 2 e —y =y [V < 2N(%)N [ i B i B |

|)C|2N |X|2N
= N3N |x“?\]/|+l .
Thus the integral in the first term of () is
N y] — N o lyl_ .N—1
< N3 [ max2yt) et 4% = N3VQN—1 [y iy e 7 dr

= N3¥Qy_, 7 < IN3NQN_y,

B
max{1,2|y|



5. Calderon-Zygmund Theorem 91

and this is bounded independently of y.
For the second term of (xx), we start from the estimate

z _ w lz=w]
15— il < e ()

IzI

To verify (1), we may assume that |z| > |w|. Then & 4 1 > Z®

— [z[|w]
the left side is > 2 and the right side is < 2. Multlplymg by & 'Zl — 1, we obtain

because

22 s 2zw _ 2w 2z-w A_%_w ich i
P2 Z Tl " Tl Hence 1 — Tl T 1 < P2 e + 1, which is the
square of (7).

Using () and the definition and monotonicity of the function 1 that is defined
in the remarks with the theorem and that captures the smoothness of K, we have

K= =KW= |[KEED K& < v (|52 -5 < v Gansmn)-

. . 21y
Since |x — y| > % |x|, min{|x — y|, [x|} > 3|x|. Thus x//(m) < w(%),
and the computation

[K(x=y)=K )| v 2lyl/1xD _ y(/lz)
o dx< [ T dx= [ T dz
[x[>2[yl, [x[>2]yl, lz|>1,
[x|>1 [x|>1 lz|>1/2]y|

=Qni frﬁjx{l,l/zm v /rr tdr
— QN—I f’omin{l,zb'“ 1//(8)871 d5
< Qyoy fy w887 ds

shows that the second term of () is bounded independently of y. l

PROOF OF REMAINDER OF THEOREM 3.26. We can now argue in the same way
that the Hilbert transform was handled in Chapter IX of Basic. Since T} has been
shown to be bounded on L? and to be of weak-type (1, 1), the Marcinkiewicz
Interpolation Theorem given in Theorem 9.20 of Basic shows that ||T7 f||, <
Apllfll, forl < p < 2with A, independent of f. Lemma 9.22 of Basic extends
this conclusion to 1 < p < oo. The argument that proves Theorem 9.23a in
Basic applies here and shows that ||T; f|, < A ||f|| forl < p < oo with A,
independent of f and ¢. This proves Theorem 3 26a.

The same argument as in Lemma 9.24 of Basic shows that if f isa C! function
of compact support on R", then

lime o fiy)e W
exists uniformly and in L? for every p > 1. This proves (b) of Theorem 3.26 for
the dense set of C! functions f of compact support.
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To prove the norm convergence when we are given a general f in L? with
1 < p < oo, we choose a sequence f, in the dense set with f, — f in L”. Then

ITef = Te fll, < W Te(f = fll, + 1 Te fu = Te full, + 1T (f = DI,
< Apllfu = fll, + T fro = T full, + Apll fa — fl-

Choose n to make the first and third terms small on the right, and then choose ¢
and ¢’ sufficiently close to O so that the second term on the right is small. The
result is that 7, f is Cauchy in L? along any sequence {g,} tending to 0. This
proves Theorem 3.26b.

For any f in L? with 1 < p < oo, we have just seen that T, f — Tf in L?.
Then (a) gives | T, = lim,}o | T; f1l, < limsup, o Al f1l, = Al f]l. This
proves Theorem 3.26c¢. (|

6. Applications of the Calderén—-Zygmund Theorem

EXAMPLE 1. Riesz transforms. These are a more immediate N-dimensional
analog of the Hilbert transform than is the operator in the Calderén—Zygmund
Theorem. In R!, the Poisson kernel and conjugate Poisson kernel are given by

1 y 1 x

P(x,y) = Py(x) = and 0(x,y) = Qy(x) = gt

x4 y?

The conjugate Poisson kernel Q may be obtained starting from the Poisson kernel
P by applying the Cauchy—Riemann equations in the form

0P 90

00 9P
ax Ay

and =——
ax ay

and by requiring that Q vanish at infinity. The differential equations lead to the

solution
) gp
@%W=/ ——dy.
00 0x

The Hilbert transform kernel may be obtained by letting y decrease toOin Q(x, y).
The resulting formal convolution formula

Hﬂ@:%/wi%lﬁm

is to be interpreted in such a way as to represent passage from the boundary values
of Py * f to the boundary values of Q, * f. We know that a valid way of arriving
at this interpretation is to take the integral for |¢| > ¢ and let ¢ decrease to O.



6. Applications of the Calderon-Zygmund Theorem 93

In N dimensions the Poisson kernel for RY ! is
Ccnlt

(Ix[? + 122N +D”

withey =7 —3(N+D (NTH) If we write x4 in place of ¢, the natural extension

of the Cauchy-Riemann equations is the system for the (N + 1)-component
function u = (uy, ..., uy41) given by

P(x,1) = Pi(x) = xeRY, >0,

divu =0 and curl u =0,
N+1
. 8u,~ 8ui auj . .
€., =0 and = when .
e ; 3)(,' axj 8x,- ! ;é /
A solution is (Q4, ..., Oy, P), where
Qi(x,1) = CNAj xeRY, t>0.

(x[? 4 122D
Imitating the procedure summarized above for the Hilbert transform, we let ¢

decrease to 0 here and arrive at the kernel
CNXj
| x|N+1 :

Accordingly, we define the j® Riesz transform for 1 < j < N by

. Yj
R;f(x) =cylim fG&x—y)dy.
! el0 Jiyze [yIVH

The Calderén—Zygmund Theorem (Theorem 3.26) shows that R; is a bounded
operator on L”(RY) for 1 < p < co. The multiplier on the Fourier transform
side can be obtained routinely from the formula for the Fourier transform of
P, (x), namely P;(y) = e~2"IY by using the differential equations and letting ¢
decrease to 0. The result is

Rif(y) = —% )

A sample application of the Riesz transforms is to an inequality asserting
that the Laplacian controls all mixed second derivatives for smooth functions of
compact support:

H a 0

ga” < ApllAell, for 1 < p <oo and ¢ € C2° (RM).
3)6]‘ axk 14

com

The argument works as well for all Schwartz functions ¢: the partial derivatives
satisfy the identity % % ¢ = —R; R Ag because the equality
J
~ 1yj [Yk ~
4ty 0) = (= 5 (= ) AP e0)
shows that the Fourier transforms are equal.
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EXAMPLE 2. Beltrami equation. This will be an application in which the L?
theory of the Calderén—Zygmund Theorem is essential for some p # 2. We deal
with functions on R?. Define

d 1,0 .0 a 1,0 0
K A N R A (A
0z 2 \ox ay az  2\0x ay
We shall use the abbreviations f, = % and f; = % The Cauchy—Riemann
equations, testing whether a complex—valued function on R? is analytic, become
the single equation f; = 0.
We shall use weak derivatives on R? in the sense of Section 2. Let u be in
L>®(R?) with ||| « = k < 1. In the sense of weak derivatives, the Beltrami
equation is

fz=nfz.

This equation is fundamental in dealing with Riemann surfaces, since solutions
to it provide “quasiconformal mappings” with certain properties. For simplicity
we assume that o has compact support. We seek a solution f such that f(0) =0
and f, — 1 is in some L7 class.

The equation is solved by first putting it in another form. Let

Ph(§)=—l/( ! —l)h(z)dxdy.
T Jr2 \2—¢ Z

The factor in parentheses is in L9(R?) for I < ¢ < 2, and Holder’s inequality

shows that Ph is therefore well defined for 4 in L?(R?) if p > 2. In fact, one

can show that |Ph(&)) — Ph($)] < C||h||p|;1 — §2|17%, and therefore Ph is
continuous for such 2. Observe that PA(0) = O for all 4. Also, one can show
that

(Ph); = h in the sense of weak derivatives. ()

However, the definition of P falls apart for p = 2. Now define

1 h)
Th = lim —— dxdy.
© =1 n/k_m oY

The operator T is bounded on L” (R?) for 1 < p < oo by the Calderén—Zygmund
Theorem, and we shall be interested in / as above, thus interested in p > 2. One
can show that

(Ph), =Th in the sense of weak derivatives if & € L? with p > 2. (%)

Now we can transform the Beltrami equation. Suppose that f is a weak solution
of the Beltrami equation with f(0) = 0 and f, — 1 in L? for some p with p > 2.
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Since w is in L, uf, — p is in L?, and since u has compact support, i f; is in
L?. Then f; = uf, isin L?, and P(f;) is defined. The function f — P(f) is
analytic because () shows that (%( f— P(f?) = f: — fz = 0. One can easily
show that this analytic function has to be z, i.e., that

f=P(f)+z

Differentiating with respect to z and using (*%), we obtain f, = T(f;) + 1 =
T (uf;) + 1. The equation
fo=T(uf) +1 ()

is the transformed equation.

Assuming that f is a solution of the Beltrami equation and therefore of (),
we shall manipulate (7) a little and arrive at a formula for f. Multiply (1) by
and apply T to get T (uf,) = TuTuf, + T . Adding 1 and substituting from
(1) gives

fe=TpTpf;+Tp+1.

Iteration of this procedure yields
=W f,+1+Tpu+---+ (Tﬂ)n_l]-

We want to arrange that the first term on the right side tends to O in the limit
on n. The operations of P and T have together made sense only on L? for
p > 2. The linear operator g — pg on L? has norm |jull, =k < 1,and T
has norm A, say. It can be shown that T is unitary on L2, sothat A, = 1. The
Marcinkiewicz Interpolation Theorem does not reveal good limiting behavior for
the bounds of operators at the endpoints of an interval of p’s where it is applied,
but the Riesz Convexity Theorem'? does. Consequently we can conclude that
limsup, , A, = 1. Therefore the operator g — T' g, with norm < kA, on L”?
for p > 2, has norm < 1 if p is sufficiently close to 2 (but is greater than 2). Fix
such a p. Then we have

T £, < ITul" T wfll, — O,

and
fo=limll 4+ Tp+ -+ (T,

The function f, —1 = 1lim, [T ju+- - -+ (T )"~ ']is certainly in L”. As a solution
of the Beltrami equation, f has f: = uf, = u + wlim, [T +--- + (Tw)"'1.

13The Riesz Convexity Theorem uses complex analysis. It was stated in Chapter IX of Basic,
but the proof was omitted.
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We saw above that any solution f of the Beltrami equation with f(0) and with
f: — 1in L? has to satisfy f = P(f;) + z. Thus our formula for f is

f=P(u+plimTp -+ + (Tw"']) +2.

Finally we can turn things around and check that this process actually gives a
solution. Define g = u+pulim, [T+ - -+ (Tw)"~'1in L?, andput f = Pg+z.
Application of (x) and (xx) gives f; = g and f, = Tg + 1. Substitution of the
formula for g into these yields

fo=pAplimlTp 4+ (T = (U +HmTp+ -+ (T)" ')

= pu(+Timp+pTp+---+ w(Tw)" 1) = u(l + Tg) = ufs,

as required. The equality f, = T'g + 1 shows that f, — 1 is in L?, and the fact
that P (0) = O for all 4 shows that f(0) = (Pg + z)(0) = 0.

7. Multiple Fourier Series

Fourier series in several variables are a handy tool for local problems with linear
differential equations. One isolates a problem in a bounded subset of R" and
then reproduces it periodically in each variable, using a large period. Multiple
Fourier series for potentially rough functions is a complicated subject, but we have
no need for it. What is required is information about Fourier series of smooth
functions. The relevant theory is presented in this section, using 27 for the period
in each variable, and a relatively simple application is given in the next section.
A more decisive application appears in Chapter VII, where we establish local
solvability of linear partial differential equations with constant coefficients.

If f is alocally integrable function on RY that is periodic of period 27 in each
variable, its multiple Fourier series is given by

[~ e,
k
the sum being over all integer N-tuples and the coefficients c¢; being given by

= Qm)™N /ﬂ | fx)e ¥ dx.

- -7

Let us write Z" for the set of all integer N-tuples and [—, ]V for the region of
integration. Such series have the following properties.
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Proposition 3.30. If f is a locally integrable function on R¥ that is periodic
of period 27 in each variable, then
(@) lcxl < |l fIl, relative to L' ([—m, ]V, 7)™V dx),
(b) |cx| < Cprlk|™™ for every positive integer M if f is smooth,
(©) Y pegn cke™™ is smooth and periodic if |cx| < Cpylk|™™ for every
positive integer M,
(d) {e"**}czv is an orthonormal basis of L2([—m, 7]V, 2m)~" dx),
() f(x) =Y ey cke’®™ if f is smooth.
PROOF. Conclusion (a) is evident by inspection of the definition. For (b),
integration by parts shows that any C! periodic function f has the property that

(lkj) f[—]‘[,i‘[]N f(x)e_ik-x dx = f[—n,n]N Djf(x)e—ik.x dx.

Apart from the factor of (277)~", the right side is a Fourier coefficient, and its
size is controlled by (a). Iterating this formula, we see, in the case that f is
smooth, that the Fourier coefficients c; of f have the property that { P (k)c }rezy
is bounded for every polynomial P. Then (b) follows.

Conclusion (c) is immediate from the standard theorem about interchanging
sums and derivatives. The result (d) is known in the 1-dimensional case, and the
N-dimensional case then follows from Proposition 12.9 of Basic. In (e), the series
converges to f in L? as a consequence of (d), and hence a subsequence converges
almost everywhere to f. On the other hand, the series converges uniformly to
something smooth by (c). The smooth limit must be almost everywhere equal to
f,and it must equal f since f is smooth. U

8. Application to Traces of Integral Operators

We return to the topic of traces of linear operators on Hilbert spaces, which was
introduced in Section II.5. That section defined trace-class operators as a subset
of the compact operators, and the trace of such an operator L is then given by
> ;(Lu;i, u;), where {u;} is an orthonormal basis. The defining condition for
trace class was hard to check, but Proposition 2.9 gave a sufficient condition: if
L : V — V is bounded and if Zi,j [(Lu;, vj)| < oo for some orthonormal bases
{u;} and {v;}, then L is of trace class.

In this section we use multiple Fourier series to show how traces can be
computed for simple integral operators in a Euclidean setting. The setting for
realistic applications is to be a compact smooth manifold. Such manifolds are
introduced in Chapter VIII, and the present result is to be regarded as the main
step toward a theorem about traces of integral operators on smooth manifolds.'*

14Traces of integral operators play a role in the representation theory of noncompact locally com-
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Proposition 3.31. Let K(-, -) be a complex-valued smooth function on
RN x R¥ that is periodic of period 27 in each of the 2N variables, and suppose
that the subset of [—7, 7]V x [—m, w]¥ where K is nonzero is contained in

ZZW T Z1N. Define a bounded linear operator L on the Hilbert space

AR L s A8

L*([—m, 7]V, 2m)~" dx) by
1
Lf(x)= @ f[_mﬂ]N K(x, y)f(y)dy.

Then L is of trace class, and its trace is given by

5 )
= K(x,x)dx.
(27T)N [—m,x N

PROOF. For each k in ZV, the effect of L on the function x > ¢/*** is

Tr L

L ) (x) = (Zn)N/[ . K (x,y)e" dy.

Taking the inner product in L2([—m, 71", 27)~N dx) with x > €/ gives

' ' 1 ikey —ilx
(L"), ") = 20N /f N K (x, y)e'*Ye " dy dx. (%)
[-7,7]

The right side is a multiple-Fourier-series coefficient of the function K, and it is
estimated by Proposition 3.30b. Proposition 3.30c shows that the corresponding
trigonometric series converges absolutely. The functions ¢/*** are an orthonormal
basis of L>([—m, m]V, 2m)~" dx) as a consequence of Proposition 3.30d, and
therefore the sufficient condition of Proposition 2.9 is met for L to be of trace
class.

To compute the trace, we start from (x) with k = [. We change variables,
letting u = y — x and v = y + x, and the right side of () becomes

—1 —N 1 1 ik-u
(2m)2N f/[—n T2V 2 K(E(U —u), ;v + u))e dudv

because of the small support of K. We sum on k in Z", moving the sum
under the integration with respect to v and recognizing the sum inside as the
sum of the multiple-Fourier-series coefficients in the u variable, i.e., the sum

pact groups and in index theory. Both these topics are beyond the scope of this book. Consequently
Chapter VIII does not carry out the easy argument to extend the Euclidean result to compact smooth
manifolds.
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of the series at the origin. Since the functions ¢/** are an orthonormal basis of
L*([—m, w1V, 2m)~" dx), the sum of the uniformly convergent multiple Fourier
series has to be the function itself. Thus we find that

Tr L K( v,%v)dv.

_ 1
(47[)N [—m,m]N 2

Replacing %v by v and again taking into account the small support of K, we
obtain the formula asserted. (]

9. Problems

1. Check that (1 4+ 472|y|>)~!g is in the Schwartz space S if g is in S, so that
(1 — A)u = fissolvablein Sif f isin S.

2. Show that the Schwartz space S is closed under pointwise product and convolu-
tion, and show that these operations are continuous from S x S into S.

3. If Qis the open disk in R? with x> + y? < 1, prove the following:
(a) The function (x, y) > log ((x*> + y?)™!) isin L (Q) for 1 < p < 2 butis
not in L}().

(b) The unbounded function (x, y) — loglog ((x2 + y2)_1) is in L%(Q).

4. Let Q2 be a nonempty bounded open set in R", and suppose that there exists a
real-valued C' function i on R” such that & is positive on Q, 4 is negative on
()¢, and the first partial derivatives of & do not simultaneously vanish at any

point of the boundary Q¢! — Q. Prove that  satisfies the cone condition of
Section 2.

Problems 5—7 compute explicitly the Fourier transforms of the members of a family
of tempered distributions.

5. Show that the function |x| =™~ on R¥ is a tempered distributionif 0 < oo < N.
For what values of « is it the sum of an L' function and an L? function?

6. Verify theidentity f;~ th=le=mxPt gy — I t=B=le=mkP/t gy =T (B) (| x|?) ~P.

7. Let ¢ be in S(RY). Taking the formula F(e~ ™) = t=N/2¢=7 ¥/t a5 known
and applying the multiplication formula, obtain the identity

Jrv e TIPS (x) dx = +N/2 Sy e (x) dx.

Multiply both sides by 12 (N=)=1 apd integrate in . Dropping dx from the
notation for tempered distributions that are given by functions, conclude from
the resulting formula that
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as tempered distributions if 0 < @ < N.

Problems 8—12 introduce a family H* = H*(R") of Hilbert spaces for s real that
are known as spaces of Bessel potentials. Because of Problem 8 below, these spaces
are sometimes called “Sobolev spaces.” The space H*® consists of all tempered dis-
tributions 7' € S’(RY) whose Fourier transforms F(7') are locally square integrable
functions such that [y |7(T)[*(1 + |£|*)* d& is finite, the norm [T ,;, being the
square root of this expression. The spaces H* get larger as s decreases.

8. Lets > 0 be an integer, and let 7 be a tempered distribution.

(a) Prove that if 7 is in H*, then all distributions DT with |a| < s are L2
functions. In this situation, if 7' is the L> function f, conclude that f is in
L2(RM).

(b) Prove conversely that if D*T is given by an L? function whenever || < s,
then 7T is in H*.

(c) Asaconsequence of (a) and (b), H*® can be identified with L%(RN )ifs >0
is an integer. Prove that the respective norms are bounded above and below
by constant multiples of each other.

9. (a) Prove for each s that the operator As(T) = f‘l((l + |E|2)‘Y/2.7-"(T)) is a
linear isometry of H® onto H° = L2, and conclude that the inner-product
space H*® is a Hilbert space.

(b) Prove that AS_1 carries the subspace S(RNY of Schwartz functions, i.e.,
tempered distributions of the form T, with ¢ € S(RN), onto itself.

(c) Prove that S(RV) is dense in H* for all s.

10. Suppose that T is in H~* and ¢ is in S(RY) € H®. Prove that |(T, ¢)| <
IT N s Nl s -

11. Conversely suppose that s is real and that 7 is a tempered distribution such that
KT, p)| < Cllgllys forallp € S(RY). Show that F(T') defines a bounded linear
functional on the Hilbert space L>(RY, (1 + |£]?)° d&), and deduce that T is in
H™ with |T|_, <C.

12. Lets > N/2.

(a) Prove that if the tempered distribution 7' given by the function ¢ € S(RV)
is regarded as a member T, of H?, then [lo|l,, < IF(@);, < CllTyll s,

sup —
where C is the constant ( [y (1 + [£%)7* a’é)l/2 independent of ¢.

(b) (Sobolev’s Theorem) Deduce from (a) that any member T of H® with
s > N /2 is given by a bounded continuous function.

(c) Extend the above argument to show for each integer m > 0 that any member
T of H® with s > N /2 + m is given by a function of class C"™.



9. Problems 101

Problems 13-20 concern the Hardy spaces H” (R?) for the upper half plane R% =

{z € C | Imz > 0}. These problems use complex analysis in one variable, and some

familiarity with the Poisson and conjugate Poisson kernels as in Chapters VIII and IX

of Basic will be helpful. The space H” (Ri) is defined to be the vector subspace of

analytic functions in the space H” (R%r). Let f* be the Hardy-Littlewood maximal
func