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Preface

Robert Langlands organized a summer school "Représentations des Groupes et des
Algebres de Lie" at the Centre de Recherches Mathématiques of the Université de Montréal for the
period July 2 to August 10, 1990. Although there have been in the past many summer schools on
advanced topics in mathematics, this one was distinctive in that it was truly for graduate students;
anyone with a Ph.D. was discouraged from enrolling. About 75 students attended, roughly in
equal numbers from Canada, the United States, and Western Europe. Four courses were offered,
and students generally attended one or two of the four:

1. R. Bédard, Groupes linéaires algébriques,
2. A.Knapp, Representations of real reductive groups,

3. P. Kutzko, Local classfield theory and the representation theory of GL(N) of a p-adic field,

‘4. Y. Saint-Aubin, Algebre de Lie de dimension infinie et leurs représentations.

:

The course on real reductive groups was a 20-hour exposition built around overhead
| transparencies. Students had paper copies of the transparencies, so that they could listen more and
 take notes less. Class discussion consisted of examples and other amplification of the
| transparencies.
| This book is largely of a copy of the transparencies from the course, with minor corrections
 made. As such, it is a record of about two thirds of the course material.

The purpose of the course was to orient students about the field. Most of the students were
writing theses in adjacent fields, not in the representation theory of Lie groups. The need was for
general understanding, not details. In fact, the course played the role of easing students into

' reading what is called the "Brown Book" on the transparencies: A.W. Knapp, Representation

) Theory of Semisimple Groups: An Overview Based on Examples, Princeton Mathematical Series,

) 1986.

' Announced prerequisites were topological groups, fundamental groups, covering spaces,
and basic measure theory (including Haar measure), as well as closed linear groups as in Chapter I
of what is called the "Yellow Book" on the transparencies: A. W. Knapp, Lie Groups, Lie

j Algebras, and Cohomology, Princeton Mathematical Notes, 1988. In other words, the only things

J initially assumed about Lie groups were the passage from closed subgroups of matrices to their Lie

) algebras and the passage from homomorphisms between such groups to homomorphisms between

) their Lie algebras. Because of the uneven background of the students in the course, it seemed

J
)
)



advisable to provide a supplementary lecture on this material; notes from this lecture appear as the
first section of Appendix B. '
Except for one aberration on page 16, no other prior knowledge of Lie theory was needed. |
Beginning with page 65, however, some deeper knowledge of basic Lie theory came into play.
Notes from a lecture on this material appear as the second section of Appendix B. Finally,
beginning with page 152, one needed to know that basic Lie theory can be redone with real analytic'
manifolds and functions replacing smooth manifolds and functions. The classic book by!
Chevalley, Theory of Lie Groups, operates in this context. |
Students were provided with exercises for the first two thirds of the course. Doing the,
exercises was important for maintaining understanding. The exercises are reproduced in Appendix '
A.
Preparation of these notes was supported in part by National Science Foundation grant{
DMS 87-23046. I am grateful to the students in the course for spotting a number of misprints on
the original transparencies and for bringing them to my attention. Some material in the notes,
including some of the exercises, is taken directly from the Brown Book and the Yellow Book and
is reproduced by permission of Princeton University Press.
A. W. Knapp
August, 1990



