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The multiplicative Horn problem

Let K be a compact Lie group.

Let ∆ = K/K denote the set of all conjugacy classes.

The multiplicative Horn problem asks:
For A,B ∈ K , how do the conjugacy classes of A,B constrain that of AB?

That is, what is the image of the natural map
{(A,B,C ) ∈ K 3 |ABC = I} → ∆3?

The constraint is nontrivial: consider A = I.

There are various generalizations.
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The space of conjugacy classes

One quickly reduces to the case K simple, which we henceforth assume.
The set ∆ of conjugacy classes may then be identified with a simplex.

Indeed, let T be a maximal torus, t its Lie algebra, Λ = ker exp : t→ T
the cocharacter lattice, W = NT/T the Weyl group.

Then K/K = T/W = t/W̃ where W̃ = W n Λ is the affine Weyl group.

A fundamental domain is the so-called Weyl alcove, a simplex in t.

E.g. for K = SU3, here is the Weyl alcove shown in blue:
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Conjugacy classes in SUn

When K = SUn, ∆ parametrizes the logarithms of the eigenvalues:

∆ = {α1 ≥ α2 ≥ · · · ≥ αn ≥ α1 − 1 |
∑

i αi = 0}
where A = diag(exp 2πiαj).

Vertices correspond to central elements exp(2πij/n)I.
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Solution to the problem

The multiplicative Horn problem was solved by Belkale and Ressayre with
contributions by Agnihotri, Kumar, Woodward, and others, following the
solution of the additive problem by Klyachko and Knutson-Tao.

The image of {(A,B,C ) ∈ K 3 |ABC = I} → ∆3 is a polyhedron P ⊂ ∆3.

This polyhedron will be our main focus, the protagonist of our drama.

For K = SUn, its facets may be described as follows.

Each subset I ⊂ {1, . . . , n} of cardinality r determines a cohomology class
σI ∈ H∗(Gr(r , n)), the Poincaré dual of the corresponding Schubert cycle.

For every triple I , J,K of subsets of {1, . . . , n} of the same cardinality r , if
the Gromov-Witten invariant of Gr(r , n) satisfies 〈σI , σJ , σK 〉d = 1, then∑

i∈I
αi +

∑
j∈J

βj +
∑
k∈K

γk ≤ d

defines a facet of P.
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Example: SU2

Suppose K = SU2.

Then ∆3 is a cube, and P is a regular tetrahedron inscribed therein:
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Explicit recursion for the Horn problem

Belkale has also given an explicit recursion in n for a finite set of
inequalities defining P for K = SUn.

These are redundant: they include the facets, but also hyperplanes
touching P in higher codimension.
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A dual question

Instead of asking for the facets, we explore another question:

What are the vertices of the polyhedron P?

Can one in any sense give a complete list?

Linear programming provides algorithms determining vertices from facets,
but this leads to no general formula.

Last October, the polymake software package determined the vertices for
SU6 in a few minutes.

It has been thinking about SU7 ever since.
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Geometric interpretation

The trinion Σ has π1(Σ) =
〈a, b, c〉
〈abc = 1〉

.

So a triple ABC = I ∈ K determines a flat K -bundle on the trinion.
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Moduli spaces of flat bundles

If the conjugacy classes α, β, γ of A,B,C are fixed, the moduli space
Mα,β,γ of such flat bundles is a symplectic stratified space.
Indeed it is a complex projective variety.

Our polyhedron P is the set of conjugacy classes for which Mα,β,γ 6= ∅.

In symplectic geometry, polyhedra arise as images of moment maps of
torus actions.

Theorem (Atiyah, Guillemin-Sternberg):
If a torus T acts on compact symplectic M with moment map µ : M → t∗,
then µ(M) is the convex hull of the finite set µ(MT ).

Can we find a master space: a symplectic M with T 3-action such that
Mα,β,γ = µ−1(α, β, γ)/T 3?

Such an M is provided by the work of Hurtubise-Jeffrey-Sjamaar.

It is a quasi-Hamiltonian quotient, a stratified symplectic space.
Perhaps it is even a complex projective variety.
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Group-valued symplectic quotients

Alekseev-Malkin-Meinrenken introduced the notion of a quasi-Hamiltonian
group action of G on M, having an invariant ω ∈ Ω2(M) and a
group-valued moment map µ : M → G , satisfying certain conditions.

They defined the quasi-Hamiltonian quotient M//G to be µ−1(I)/G .

If G is a torus, then ω is symplectic and logµ is the classical moment map.

If the action of G × H on M is quasi-Hamiltonian, then so is the residual
action of H on M//G .

Hence H a torus (or 1) implies M//G symplectic.
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The universal implosion

This construction applies to the group-valued universal implosion Q.

A section s of K → ∆ ⊂ t is provided by s(A) = exp(2πiA).

The centralizer of s(A) depends only on the face F containing A.
Let KF be the semisimple part of this centralizer.

Define Q =
⊔
F⊂∆

F × K/KF .

Give it the quotient topology from the natural surjection ∆× K → Q.

It is a quasi-Hamiltonian stratified space.

The natural action of K × T has group-valued moment map
µ(A, kKF ) = (k exp(2πiA)k−1, exp(2πiA)) ∈ K × T .
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Construction of the master space

Let M = Q3//K with the residual action of T 3.

That Mα,β,γ = µ−1(α, β, γ)/T 3 will become clear presently.

For example, when K = SU2, we have Q = S4, the suspension of S3, and
M = (S4)3//SU2 = CP3.

The smoothness in the SU2 case is accidental.
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Modular interpretation of the universal implosion

Let S be a lollipop:

p 6
q

&%
'$

A flat K -bundle on S , framed at p, is determined by its holonomy A ∈ K .

Its structure group canonically reduces to the centralizer KA. Let
KA → TA be the quotient by the commutator subgroup.

Then Q is the moduli space of flat K -bundles on a lollipop, framed at p,
and with a (global) trivialization of the associated TA-bundle.

When K = Un, it is the moduli space of flat unitary vector bundles,
framed at p, and with a trivialization of the determinant line of every
eigenspace of holonomy.

When K = SUn, same thing, but compatible with the overall trivialization
of determinant.

Michael Thaddeus The universal implosion and the multiplicative Horn problem 14 / 1



Modular interpretation of the master space

It is now clear that M = Q3//K is the moduli space of flat K -bundles on a
trinion, with trivializations of the associated TA-bundle on each boundary
circle.

A fixed point (A,B,C ) of the T 3-action is one where there exist global
automorphisms of the flat K -bundle canceling out any reframings on the
boundary circles. That is, there is a torus in
ZK (A,B,C ) = ZK (A) ∩ ZK (B) surjecting onto TA × TB × TC .

One possibility of course is that TA = TB = TC = 1, that is,
A,B,C ∈ Z (K ). For K = SUn, these are vertices of ∆3, hence definitely
vertices of P.

In fact the finite group Γ = {(A,B,C ) ∈ Z (K ) |ABC = I} acts on ∆3

preserving P. These vertices are Γ · (I, I, I). Call them the central vertices.
Indeed, really S3 n Γ acts.
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The hunt for vertices: SU2, SU3, SU4

For K = SU2, we know that the central vertices are the only vertices.
For K = SU3 this again proves true.
For K = SU4 it is false!

A = diag(1, 1,−1,−1)
B = diag(1,−1, 1,−1)
C = diag(1,−1,−1, 1)

The torus
SA = diag(t, t, t−1, t−1)
acts nontrivially on the eigenspaces of A but trivially on those of B and C .
Similarly for B and C .

The needed surjection is then provided by SA× SB × SC → TA×TB ×TC .

The vertices of P fall into two Γ-orbits: the central orbits and this orbit.
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The hunt for vertices: SU5

For K = SU5 it is again false.

A = diag(1, 1, 1,−1,−1)
B = diag(1, 1,−1, 1,−1)
C = diag(1, 1,−1,−1, 1)

Same as with SU4 but with the first simultaneous eigenspace dilated.

Still, at least all fixed points of T 3 on M map to vertices of P,
and all parametrize commuting triples (A,B,C ).

Indeed, as with SU4, the fixed points fall into two Γ-orbits, that of (I, I, I)
and that of (A,B,C ) above.
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The hunt for vertices: SU6

When K = SU6, the vertices of P fall into 4 S3 n Γ-orbits:

A = B = C = I
the central vertices

A = diag(1, 1, 1, 1,−1,−1)
B = diag(1, 1, 1,−1, 1,−1)
C = diag(1, 1, 1,−1,−1, 1)
dilated from SU5

A = diag( 1, 1, 1, 1,−1,−1)
B = diag( i , i ,−i ,−i , i ,−i)
C = diag(−i ,−i , i , i , i ,−i)
also dilated from SU5

A = diag(ξ5, ξ1, ξ5, ξ1, ξ5, ξ1)
B = diag(ξ0, ξ0, ξ2, ξ2, ξ4, ξ4)
C = diag(ξ1, ξ5, ξ5, ξ3, ξ3, ξ1)
where ξ = e2πi/6, new.
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The abelian vertices

If a fixed point of the T 3-action on M corresponds to commuting A,B,C ,
call it an abelian fixed point.
For K = SUn, this means that it splits as a sum of flat line bundles.

If, moreover, its image in P is a vertex, call it an abelian vertex.
All of the vertices we have seen thus far are abelian.

The space of flat T -bundles on Σ is of course
{(A,B,C ) ∈ T 3 |ABC = I} ∼= T × T .

The natural map L : t× t→ T × T → P is piecewise linear.

For K = SU2 its image is the boundary of the tetrahedron we saw earlier.
For K = SU3 it plunges into the interior of P but also hits all the vertices.
For general K , the abelian vertices are the images of vertices of the
polyhedra where L is linear.

The abelian vertices of P all lie on ∂∆3,
indeed on the r -skeleton of ∆3, where r = dimT .
This is more clear from the following perspective.
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Periodic chamber decompositions

Define a periodic chamber decomposition of a finite-dimensional vector
space V to be a locally finite collection of hyperplanes, periodic with
respect to some lattice Λ of full rank.
A vertex of such a thing is a vertex of one of its polyhedral chambers.
There are finitely many vertices modulo Λ.
A union of finitely many PCD’s is a PCD.
So is the inverse image of a PCD under a linear surjection.
The key example is t with the hyperplanes fixed by elements of the affine
Weyl group W̃ . Call this C . Here it is again for K = SU3:
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Now, on t⊕ t, consider the PCD π−1
1 (C ) ∪ π−1

2 (C ) ∪ A−1(C ), where
A : t⊕ t→ t is addition. How does one classify its vertices modulo Λ⊕ Λ?
I wish I knew. Does anyone here?
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Two infinite families

There are two infinite families of abelian fixed points.

In SUn2 ,
A = diag(ζ1, ζ2, . . . , ζn

2
) where ζ = e2πi/n

B = diag(ζ1In, ζ
2In, . . . , ζ

nIn)
C = (AB)−1

In SU2n,
A = diag(ξ−1, ξ, ξ−1, ξ, . . . , ξ−1, ξ) where ξ = e2πi/2n

B = diag(ξ2, ξ2, ξ4, ξ4, . . . , ξ2n, ξ2n)
C = diag(ξ−1, ξ−3, ξ−3, ξ−5, . . . , ξ−2n−1)

We have already seen them in SU4 and SU6.

They are not always vertices of P.

Are there more?
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Conjugacy classes of order 2

Suppose that ABC = I ∈ SUn all have order 2:
A2 = B2 = C 2 = I.

Then BA = B−1A−1 = (AB)−1 = AB,
so A,B,C may be simultaneously diagonalized.

Their conjugacy classes α, β, γ must then satisfy Mα,β,γ = point,

which implies (α, β, γ) ∈ ∂P.

The dimensions i , j , k of their −1-eigenspaces must satisfy the
Clebsch-Gordan rules: |i − j | ≤ k ≤ i + j , etc.

Does this generalize in any way?
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Constraints on the vertices

Continue seeking abelian vertices of P when K = SUn.

Recall that T ⊃ SA × SB × SC → TA × TB × TC is surjective.

Hence, if A, B, C have n1, n2, n3 eigenspaces respectively, then

n − 1 ≥ (n1 − 1) + (n2 − 1) + (n3 − 1).

Not too many eigenspaces!

On the other hand, if n1 = 1, then A,B,C ∈ ZSUn , so vertex is central.

If n1 = 2, must have the infinite family in SU2n or its dilations.

Also, if vertex is not a dilation, then n is number of simultaneous
eigenspaces of A,B,C , so

n ≤ min(n1n2, n1n3, n2n3).

Not too few eigenspaces!
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Combinatorial constraints

The eigenspaces of three diagonal matrices A,B,C are the coordinate
subspaces corresponding to a triple of partitions

{1, . . . , n} =
⋃
i∈I

Ui =
⋃
j∈J

Vj =
⋃
k∈K

Wk .

They must satisfy: for all i , j with Ui ∩ Vj 6= ∅, there exists k with

Ui ∩ Vj = Ui ∩Wk = Vj ∩Wk .

And similarly with i , j , k permuted.

If any Ui ⊂ Vj , then Ui = Vj ∩Wk and dividing by Ui leads to a smaller
triple with Vj ∩Wk = ∅.

So wlog we may assume that no Ui ⊂ Vj , and similarly.

This leads to a graphical calculus.

E.g. for SU7 the only remaining case is (n1, n2, n3) = (3, 3, 3).
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A nonabelian vertex

For some time I thought that all vertices were abelian. Not so!

Let σ1 =

(
0 1
−1 0

)
, σ2 =

(
−i 0

0 i

)
, σ3 =

(
0 i
i 0

)
.

Then for K = SU8,

A = diag(σ1, i ,−i , i ,−i ,−1,−1)
B = diag(σ2, i ,−i ,−1,−1, i ,−i)
C = diag(σ3,−1,−1, i ,−i , i ,−i)
is a nonabelian vertex.

Again, this lies on the r -skeleton, indeed the (r − 1)-skeleton, of ∆3.
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Broader perspectives

A more sophisticated approach to the multiplicative Horn problem would
address two broader topics:

(1) Symplectic volumes.
Duistermaat-Heckman: volume of Mα,β,γ is piecewise polynomial.
One should determine this piecewise polynomial function supported on P.
Work in this direction by Meinrenken.

(2) Parabolic bundles.
Mehta-Seshadri: flat SUn-bundles on Σ correspond to algebraic vector
bundles on CP1, semistable with respect to a parabolic structure.
Thus everything turns into algebraic geometry.
Vertices should correspond to parabolic bundles with some rigidity.
Complicated, as on the “far wall” of P the correspondence is actually with
parahoric bundles.
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In conclusion

As the meeting is now ending, one thing remains to be said:

Can anyone offer me a ride to Ronkonkoma?

But also, many thanks to the conference organizers for putting on such a
delightful event! And thank you for listening.
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