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Quartic Symmetroids

A quartic symmetroid is a surface V(f ) ⊂ P3(C) given by

f = det(A(x)) = det(x0A0 + x1A1 + x2A2 + x3A3)

where A0,A1,A2,A3 are 4× 4 symmetric matrices.

Fun facts:

I V(f ) has 10 nodes (of rank 2)

I co-dimension 10 in
P(C[x0, x1, x2, x3]4)

I studied by Cayley in a set of
memoirs 1869 - 1871
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Real Spectrahedral Symmetroids

Here I’ll talk about in surfaces V(det(A(x))) where
I the matrices A0,A1,A2,A3 are real and
I their span contains a positive definite matrix.

Motivation 1: The convex sets {x ∈ R4 : A(x) � 0} appear as
feasible sets (spectrahedra) in semidefinite programming.

Motivation 2: Having a positive definite matrix puts interesting
constraints on the surface VR(f ).

For example . . .

Friedland et. al. (1984) showed that in
this case V(det(A(x))) has a real node.
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Linear spaces of matrices and spectrahedra

Let A0,A1, . . . ,An be real symmetric d × d matrices and

A(x) = x0A0 + x1A1 + . . .+ xnAn.

Spectrahedron: {x ∈ Rn+1 : A(x) is positive semidefinite}

projectivize → {x ∈ Pn(R) : A(x) is semidefinite}
(bounded by the hypersurface V(det(A(x)))

Example:

A(x) =

(
x0 + x1 x2

x2 x0 − x1

)

Goal: Understand the algebraic and topological properties of
spectrahedra and their bounding polynomials.
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Polynomials bounding spectrahedra

Spectrahedra are bounded by hyperbolic polynomials, det(A(x)).

A polynomial f is hyperbolic
with respect to a point p if
every real line through p meets
V(f ) in only real points.

Theorem (Helton-Vinnikov 2007). A polynomial f ∈ R[x0, x1, x2]d
bounds a spectrahedron if and only if f is hyperbolic.
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Spectrahedra and interlacers

The diagonal (d − 1)× (d − 1)
minors of A(x) interlace the
determinant det(A(x)).

Theorem (Plaumann-V. 2013). The matrix A(x) is definite at
some point if and only if its minors interlace the determinant.
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Determinantal surfaces and 3-dim’l spectrahedra (n = 3)

The variety of rank-(d − 2) matrices in Cd×d
sym has

codimension 3 and degree
(d+1

3

)
.

Generically, the spanC{A0,A1,A2,A3} meets this variety
transversely and contains

(d+1
3

)
matrices of rank d − 2.

The complex surface V(det(A(x))
bounding a three-dimensional
spectrahedron has

(d+1
3

)
nodes.
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Three-dimensional spectrahedra bounded by cubics

Over C there are (generically) 4 nodes of rank one.

Either 2 or 4 of them are real and lie on the spectrahedron.
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Three-dimensional spectrahedra bounded by quartics

Over C there are generically 10 nodes of rank two.

There are two flavors of real node (on or off the spectrahedron).
What configurations are possible?
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Theorem (Degtyarev-Itenberg, 2011)

There is a (transversal) quartic spectrahedron with α nodes on its
boundary and β nodes on its real surface if and only if

α, β are even and 2 ≤ α + β ≤ 10.

Out[528]=

α = 8 α = 0 α = 2
β = 2 β = 10 β = 0
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Back to the classics (Cayley’s Symmetroids)

Idea of Cayley: Look at the projection of V(f ) from a node p.

This projection πp : V(f )→ P2 from a node p is a double cover
of P2 whose branch locus is a sextic curve.

Why? If p = [1 : 0 : 0 : 0] then

f = a · x20 + b · x0 + c where a, b, c ∈ R[x1, x2, x3].

The branch locus of πp is V(b2 − 4ac).
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Projection from a node

Theorem (Cayley 1869-71)

A quartic f ∈ C[x0, x1, x2, x3]4 with node p is a symmetroid if and
only if the branch locus of πp is the product of two cubics, b1 · b2.

Moreover the images of the other 9 nodes are V(b1) ∩ V(b2).

πp−→
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The view from a node on or off the spectrahedron

For p ∈ Spec, b1 = b2.
The image πp(Spec) is the conic {a ≥ 0}.

For p /∈ Spec, b1, b2 are real and hyperbolic.
The image πp(Spec) is the intersection of cubic ovals.
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The view from a node: interlacing branch locus

If p = [1 : 0 : 0 : 0] and A(x) = x0

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

+

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

then the branch cubics b1, b2 are diagonal minors of A(0, x1, x2, x3).

Out[409]=
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The view from a node: interlacing branch locus

The image of the spectrahedron is the intersection of cubic ovals.

→ There are an even number of spectrahedral nodes.

To understand the other direction of the Degtyarev-Itenberg Theorem . . .

Out[409]=
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(A0 A1 A2 A3) giving different types of spectrahedra

(2, 2) :

 3 4 1 −4
4 14 −6 −10
1 −6 9 2

−4 −10 2 8


11 0 2 2

0 6 −1 4
2 −1 6 2
2 4 2 4


 17 −3 2 9
−3 6 −4 1
2 −4 13 10
9 1 10 17


 9 −3 9 3
−3 10 6 −7
9 6 18 −3
3 −7 −3 5



(4, 4) :

18 3 9 6
3 5 −1 −3
9 −1 13 7
6 −3 7 6


 17 −10 4 3
−10 14 −1 −3
4 −1 5 −4
3 −3 −4 6


 8 6 10 10

6 18 6 15
10 6 14 9
10 15 9 22


 8 −4 8 0
−4 10 −4 0
8 −4 8 0
0 0 0 0



(6, 6) :

10 8 2 6
8 14 0 2
2 0 5 7
6 2 7 11


 11 −6 10 9
−6 10 −5 −5
10 −5 14 11
9 −5 11 9


 6 2 6 −5

2 9 2 0
6 2 6 −5

−5 0 −5 5


 8 6 2 −2

6 9 9 6
2 9 13 12

−2 6 12 13



(8, 8) :

 5 3 −3 −4
3 6 −3 −2

−3 −3 6 4
−4 −2 4 4


19 10 12 17
10 14 10 7
12 10 10 11
17 7 11 17


 5 1 3 −3

1 5 −7 −1
3 −7 22 7

−3 −1 7 10


1 1 0 2
1 1 0 2
0 0 4 4
2 2 4 8



(10, 10) :

 18 6 6 −6
6 2 2 −2
6 2 2 −2

−6 −2 −2 4


 4 −6 6 4
−6 13 −9 −8
6 −9 9 6
4 −8 6 5


 1 0 −3 0

0 4 0 6
−3 0 9 0
0 6 0 9


 9 −3 0 0
−3 10 9 −6
0 9 9 −6
0 −6 −6 4



(2, 0) :

 20 6 −14 −4
6 18 3 −12

−14 3 17 −2
−4 −12 −2 8


 54 −27 16 12
−27 18 −2 −15
16 −2 20 −10
12 −15 −10 21


 42 −8 9 −3
−8 10 5 −11
9 5 29 7

−3 −11 7 29


 0 9 3 −3

9 −9 −6 6
3 −6 −3 3

−3 6 3 −3



(4, 2) :

 9 −4 1 1
−4 5 −3 −2
1 −3 3 1
1 −2 1 1


6 1 3 4
1 5 5 2
3 5 6 2
4 2 2 8


 8 2 −6 4

2 5 1 3
−6 1 6 −2
4 3 −2 3


−4 4 −2 2

4 0 0 −2
−2 0 0 1
2 −2 1 −1



(6, 4) :

 6 −1 5 5
−1 2 1 −3
5 1 6 2
5 −3 2 9


 5 −5 5 −3
−5 6 −5 5
5 −5 5 −3

−3 5 −3 9


 6 −3 5 2
−3 5 −3 2
5 −3 9 −4
2 2 −4 9


 0 −2 −2 0
−2 1 2 1
−2 2 3 1
0 1 1 0



(8, 6) :

 4 0 4 −2
0 5 −2 5
4 −2 8 −4

−2 5 −4 6


 2 3 −1 −1

3 6 −1 −4
−1 −1 6 −3
−1 −4 −3 6


6 2 0 1
2 8 4 −2
0 4 8 −2
1 −2 −2 1


 2 −3 0 1
−3 5 0 0
0 0 0 0
1 0 0 5



(10, 8) :

 5 −1 −1 4
−1 6 −3 5
−1 −3 2 −4
4 5 −4 9


 8 0 0 −4

0 1 0 −1
0 0 2 0

−4 −1 0 3


 6 5 1 −2

5 9 −3 −4
1 −3 6 4

−2 −4 4 4


 8 0 0 −4

0 8 4 4
0 4 2 2

−4 4 2 4
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Combinatorial types of quartic spectrahedra (11-20)

(4, 0) :

 21 10 1 −6
10 10 0 −1
1 0 2 −3

−6 −1 −3 6


 0 6 −6 2

6 3 0 −4
−6 0 −3 5
2 −4 5 −3


0 0 0 2
0 0 0 −1
0 0 0 −1
2 −1 −1 5


 0 3 −1 1

3 −3 8 −5
−1 8 −5 4
1 −5 4 −3



(6, 2) :

 7 −1 5 2
−1 5 −1 5
5 −1 4 1
2 5 1 7


−1 −2 1 −2
−2 −3 2 −6
1 2 −1 2

−2 −6 2 0


 4 4 2 −2

4 0 4 −2
2 4 0 −1

−2 −2 −1 1


−1 1 2 1

1 −1 −2 −1
2 −2 −3 −1
1 −1 −1 0



(8, 4) :

 16 −4 −16 10
−4 18 0 −13
−16 0 20 −9
10 −13 −9 19


 0 1 −1 0

1 −5 6 1
−1 6 −7 −1
0 1 −1 0


 0 −16 0 −8
−16 0 16 −16
0 16 0 8

−8 −16 8 −16


 7 9 16 3

9 −9 −12 9
16 −12 −15 15
3 9 15 0



(10, 6) :

 18 −13 15 1
−13 22 2 −16
15 2 30 −20
1 −16 −20 30


−15 7 8 5

7 −3 −4 −3
8 −4 −4 −2
5 −3 −2 0


 1 0 1 −3

0 0 0 0
1 0 −8 −15

−3 0 −15 −7


−15 0 −6 2

0 15 6 8
−6 6 0 4
2 8 4 4



(6, 0) :

 3 6 −4 −4
6 13 −5 −5

−4 −5 19 20
−4 −5 20 23


 0 −1 −3 0
−1 3 6 0
−3 6 9 0
0 0 0 0


 8 2 −2 2

2 −4 −2 2
−2 −2 0 0
2 2 0 0


 1 −2 1 3
−2 −5 −11 −15
1 −11 −8 −6
3 −15 −6 0



(8, 2) :

 3 −3 3 −1
−3 4 −3 2
3 −3 5 0

−1 2 0 2


−1 1 −1 −2

1 0 0 0
−1 0 0 0
−2 0 0 0


 0 0 −1 −2

0 0 0 0
−1 0 1 0
−2 0 0 −4


−1 1 1 0

1 3 −1 2
1 −1 −1 0
0 2 0 1



(10, 4) :

 5 −1 −3 1
−1 2 2 0
−3 2 4 −1
1 0 −1 3


0 0 0 0
0 −4 −4 −2
0 −4 −4 −2
0 −2 −2 0


 0 4 −4 −6

4 0 2 1
−4 2 −4 −4
−6 1 −4 −3


−3 0 −1 −2

0 0 0 0
−1 0 0 −1
−2 0 −1 −1



(8, 0) :

 9 0 −7 −10
0 5 0 2

−7 0 15 5
−10 2 5 13


8 6 5 8
6 −8 −5 −4
5 −5 −3 −2
8 −4 −2 0


 8 4 11 4

4 0 10 0
11 10 5 10
4 0 10 0


−4 −4 2 4
−4 −4 2 4
2 2 0 0
4 4 0 0



(10, 2) :

 29 −22 4 −4
−22 26 −7 5
4 −7 25 −6

−4 5 −6 5


−1 −4 −1 −4
−4 −12 −4 −14
−1 −4 −1 −4
−4 −14 −4 −15


−5 9 6 7

9 8 −2 5
6 −2 −4 −2
7 5 −2 3


 −5 16 −1 −10

16 −12 20 4
−1 20 7 −14
−10 4 −14 0



(10, 0) :

 51 −34 5 60
−34 147 30 −37
5 30 99 40
60 −37 40 135


15 97 64 36
97 −13 −50 76
64 −50 −63 40
36 76 40 48


−27 45 −27 51

45 0 −30 10
−27 −30 48 −44
51 10 −44 24


−60 30 10 −52

30 45 −55 −2
10 −55 40 32

−52 −2 32 −32
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Many flavors of quartic spectrahedra

Out[528]=
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Special Quartic Spectrahedra

Non-generically, the span of A0,A1,A2,A3 might contain a curve
of rank-two matrices.


x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3




x0 + x1 x2 0 0
x2 x0 − x1 0 0
0 0 x0 + x3 0
0 0 0 x0 − x3



x0 x1 x2 x3
x1 x0 x1 x2
x2 x1 x0 x1
x3 x2 x1 x0
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Conclusions

Spectrahedra can be understood
using beautiful and classical
algebraic geometry.

There is still lots to understand.
What are the combinatorial
types of spectrahedra of higher
dimensions and degrees?

Thanks for your attention!
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