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1 Introduction

In this diploma thesis we will study the parameter space of the unicritical poly-
nomials 2% + ¢ for an integer d > 2 and parameters ¢ € C. In particular we are
interested in Multibrot sets My, i.e., the sets of parameters ¢ for which 2% + ¢ has
a connected Julia set. Multibrot sets are the immediate generalizations of the well
known Mandelbrot set, which was first studied by Douady and Hubbard in [DH82]
and the famous Orsay-Notes ([DH85]).

We have two main purposes: the first one is that we want to give a proof of the
Structure Theorem for Multibrot sets, which gives us a combinatorial description of
Multibrot sets. For the Mandelbrot set the Structure Theorem is well known and
there exist several proofs: first the already mentioned proof in the Orsay-Notes by
Douady and Hubbard. Moreover, in [S97] can be found a significantly simpler proof
by Schleicher, which he gave first in his thesis ([S94]) and which will be published
soon. Another proof was given in [M98] by Milnor. Each of these proofs would also
prove with some modifications the Structure Theorem for Multibrot sets. However,
the second main purpose is to combine parts of the proofs of Schleicher and Milnor
with some new arguments and give by this a new proof of the Structure Theorem.

Next we state the Structure Theorem and describe below the organization of our
proof.

Theorem 1.1. (Structure Theorem for Multibrot Sets)
For the Multibrot set My and the associated parameter rays the following state-
ments hold:

(1) Ewery periodic parameter ray lands at a parabolic parameter of M,.

(2) Every non-essential parabolic parameter of M, is the landing point of ex-
actly one periodic parameter ray.

(8) Ewvery essential parabolic parameter of My is the landing point of ezactly
two periodic parameter rays.

(4) Every preperiodic parameter ray lands at a Misiurewicz point of M.

(5) Every Misiurewicz point is the landing point of at least one preperiodic
parameter ray.

(6) Every hyperbolic component of My has ezactly one root and d —2 co-roots.

For the definitions of the terms mentioned in the theorem see especially Subsec-
tions 2.3 and 3.1.

To get a first rough idea what Multibrot sets look like we show pictures of two of
them. The picture on the left hand side is the M, with its 1- and 2-periodic param-
eter rays. They are labeled by the corresponding angles. As stated in the Structure
Theorem these parameter rays land and in particular some points, namely the es-
sential parabolic parameters, are the landing points of precisely two parameter rays
each. (The ray that is labeled by 0 and 1 has a special meaning and is counted twice.)
The other landing points in the picture are non-essential parabolic parameters. On
the right hand side is the M; with the 1-periodic parameter rays. We should note
that the bounded part belongs also the the Multibrot sets.
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The crucial thing is to prove that exactly two parameter rays land at every essen-
tial parabolic parameter. As mentioned before we combine the proofs of Schleicher
and Milnor. Therefore, a few words on their proofs of this statement: roughly speak-
ing Schleicher shows that every parabolic parameter is the landing point of at most
two parameter rays—in the quadratic case all parabolic parameters are essential—
and combines this with a global counting argument, which implies that exactly two
parameter rays land at each parabolic parameter. On the contrary Milnor shows that
at least two parameter rays land at every parabolic parameter and uses then again a
global counting argument, which shows that no parameter ray is left, i.e., they land
all pairwise. Our aim is to show by Milnor’s strategy that at least and by Schleicher’s
arguments that at most two parameter rays land at every essential parabolic param-
eter and to omit by this way the global counting arguments. Some time ago Milnor
suggested this global strategy for the quadratic case. In more detail our organization
is as follows: in Section 2 we restate some well known facts about complex dynamics,
introduce Multibrot sets and show some of their basic properties.

Then in Section 3 we introduce following Milnor orbit portraits and show a few
properties in the first subsection, which will be important for most of the further
sections. In the second subsection we start the discussion of stability of portraits
under perturbation of the parameter, which is the engine for several proofs. Moreover,
as in the proofs for the quadratic case, we will use this concept to prove the first
statement of the Structure Theorem (see Theorem 3.2.3). Then due to the fact that
for d > 2 some parameter rays land in pairs and others alone, we have to start
handling certain parameters different: in particular we show in Theorem 3.2.7 that
at every non-essential parameter at least one ray lands and in Theorem 3.2.5 that
some rays land pairwise.

Again as a tribute to the fact that in general not all parameter rays land pairwise
but always a certain number of rays land at one hyperbolic component we have to
introduce these objects in Section 4. In the proofs of Schleicher and Milnor the
discussion of hyperbolic components starts after finishing the proof of the Structure
Theorem.

In Section 5 we introduce the so-called Hubbard trees and prove with their
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help two Orbit Separation Lemmas. These will be a useful tool to see in more
detail that if a parameter ray lands at a parameter, the corresponding dynamic ray
must land at the so-called characteristic point of the parameter. Furthermore, this
enables us to prove that every non-essential parabolic parameter is the landing point
of exactly one periodic parameter ray (Corollary 5.3.2) and that at every essential
parabolic parameter at least two parameter rays land (Corollary 5.3.3). Hence, in
this subsection the second statement of the Structure Theorem will be proved.

For the proof of the third statement we have to show that at most two parameter
rays land at any essential parabolic parameter. In Section 6 we have to see further
properties of hyperbolic components, especially the number of roots and co-roots a
hyperbolic component has. This will also prove the last statement of the Structure
Theorem.

In Section 7 we can finish the proof of statement (&) by excluding for any
essential parabolic parameter all rays, except for two, as candidates for landing at
the parameter. The concept of kneading sequences is the main tool which we use for
this.

By reducing the case of a preperiodic ray to the case of a periodic ray we can
prove in Section 8 the fourth and fifth statement of the Structure Theorem as in the
quadratic case.

Finally, I would like to thank Professor Konigsberger for giving me the opportu-
nity to do my diploma thesis at his chair. Furthermore, I thank Johannes Riedl for
the discussions and especially for his support in preparing the pictures. But most
grateful I am to my advisor, Dierk Schleicher. Certainly most of the new ideas in
this paper are due to him. He introduced me to the world of complex dynamics and
gave me several times the chance to join him at some of his interesting mathematical
activities as for example conferences or seminars. In particular I want to thank him
for his support to me during the work on this paper.

Miinchen — DE
April 1999



2 Elementary Definitions and Well Known Proper-
ties

In this section we want to fix our notation and repeat well known definitions and facts
of complex analysis and holomorphic dynamics. We also refer to the “Introductory
Lectures on Dynamics in One Complex Variable” of Milnor, [M90]. Moreover, we
prove some basic properties of Multibrot sets in Subsection 2.3.

Now we set up our notation: by R we denote the field of real numbers, by C
the one of the complex numbers and by P; the one dimensional projective space
over C.

The closed unit interval we denote by [ :=[0,1], the open disk with radius r
and center a by B,(a) := {2€C : |z—a| <r} and in particular the open unit
disk by D := B;(0). We denote the closure and the interior of a subset A C C with
respect to the induced topology by A and A°, respectively. A bounded set A C C is
called full if the complement P; — A is connected. By a partition of C we understand
a countable family of open subsets of C such that their closure is equal to C. The
boundary of all these open sets is the partition boundary and often we identify the
partition with its boundary.

Since we are mainly interested in unicritical polynomials, it is convenient to
define f.4(z) := 2%+¢, c € C, d > 2. In general we do not vary d and write therefore
usually f. for f.4. Sometimes it is convenient to identify f. with the parameter c.

Let f and g be complex valued functions. Then we write as usual f(z) = O(g(z))
for z € U C C if a constant C € R exists such that |f(z)| < C - |g(2)| holds for
all z € U.

In holomorphic dynamics it is common and convenient to measure angles in
the fraction of a whole turn. Therefore, our angles are elements of S' = R/Z. It is
straightforward that we can identify every angle given in radians with a corresponding
angle in S'. Moreover, S! is isomorphic to [0, 1) and hence statements like > for
an angle ¥ € S! have a well-defined meaning. Since there is an equivalence between
mapping a point in the dynamic plane by f. and multiplying angles by d, it is
convenient to denote the d-tupling map by o: St — S, 9 — dv. Furthermore, we
want to define intervals on S': for two different angles 9;,9; € S* we define (9, 9>)
as the open connected component of S* —{1;,1,} that consists of the angles we reach
if we go on S! in positive direction from ¥, to ¥,. We write 9; < ¥ < ... < ¥, for
at least three angles ¥,...,9, € S'if ¥;,1 € (9;,Y542), 1 € {1,...,5 — 2}. We like
to note that /; and ¥J, are not required to be different if s > 3. We do not use the
notation ¥; < ¥,. Moreover, we denote the length of an interval I; C S! by #(I;)
such that ¢(S?) = 1.

2.1 Tools from Analysis

There are two concepts from analysis we would like to mention here. Namely, the
term of a proper map and local connectivity of a set.

Definition. (Proper Map and Mapping Degree)

Let U be a region in C and ¢: U — C a holomorphic map. We call ¢ proper if for
any sequence (c,) in U with ¢, — 0U the image sequence (¢(c,)) leaves any compact
set in ¢(U).



If the number of inverse images ¢ ~!(z) is constant, say equal to d, for all z € ¢(U)
then ¢ has mapping degree d. O

Lemma 2.1.1. (Proper Maps Have a Mapping Degree)
Every proper holomorphic map has a well-defined mapping degree.

This is just a restatement of Lemma A.11 in [S98a]. There this lemma is proved.

Especially in Section 5 the following definition and topological consequences are
essential. See Sections 15 and 16 in [M90] for more detailed information on these
concepts.

Definition. (Arcs and Arcwise Connected Sets)
A topological embedding of / into C is an arc and a subset U of C is arcwise
connected if any two points of U can be joined by an arc in U. O

If we say an arc 7: [0,1] — C connects two points z; and z, then we mean
that 7(0) = 2 and (1) = z,. Moreover, we define y(J) := {(t) :t€ J} for J C I
as usual.

Definition. (Locally Connected and Locally Arcwise Connected Sets)

A subset U C Cis locally (arcwise) connected if every point z € U has the following
property: for every neighborhood V of z there exists a neighborhood V' C V of z
such that U N V' is (arcwise) connected. O

It is easy to see that every arcwise connected subset of the complex plane is connected
and that the opposite direction is false in general. However, a subset of C is locally
connected if and only if it is locally arcwise connected (see Lemma 16.4 in [M90]).

The proof of the following very important theorem on local connectivity can also
be found in Section 16 in [M90].

Theorem 2.1.2. (Theorem of Carathéodory)

Let U be a simply connected region in C and ¢: D — U a conformal map.
Then ¢ extends to a continuous map from D onto U if and only if OU 1s locally
connected.

2.2 The Dynamic Plane

In this section we restate some well known definitions and theorems with respect to
the dynamic plane, i.e. the space where our functions f.(z) = 2¢ + c live in. They
are the foundation on which our investigations on Multibrot sets base.

As usual we denote by f°"(z) := f(f°""Y(z)) with f°(z) := Id the n-th iterate
of an entire function f. Furthermore, for a point z € C the set {z, f(c), f°*(2),.--}
is called the orbit of z with respect to f. Points for which an integer £ > 1 exists
such that f°%(z) = z are called periodic and the integer k is called orbit period of z
with respect to f. The least orbit period of a point is the exact orbit period with
respect to f. The orbit of a periodic point is called periodic, too. Evidently for a
fixed f the exact orbit period of a point z divides every orbit period of z.

Among the points which are not periodic are some which jump at some time
onto a periodic orbit. These are the preperiodic points. In more detail we say that a
point z € C is preperiodic if there exists an integer [ > 1 such that f°!(z) is periodic.
The least integer /[ > 1 with this property is called the preperiod of »z with respect
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to f and the exact orbit period of f°(z) is the period of » with respect to f. This
means that periodic points are not preperiodic. Again the orbit of a preperiodic
point is called preperiodic.

The filled-in Julia set K(f) of a polynomial f is defined as the set of all points
that have bounded orbit with respect to f. The boundary 0K (f) is the Julia set
of f and the components of C — 0K (f) are called the Fatou components of f. For
the filled-in Julia set of f.(z) = 2% + ¢ we write in general just K, := K(f.).

Of particular interest is the derivative of the iterate fixing a periodic point z.
Let f be a polynomial map and k& be the exact orbit period of the point z with
orbit O = {z, f(z), f%(z),..., f°* V}. Then we call A\(f,0) := A(f,2) = &L f(z)
the multiplier of O with respect to f. In the case f = f. we write in general \(c, O)
and A(c, z) instead of A(f,, Q) and A(f., 2).

We call a periodic point z € C and its orbit with respect to f., ¢ € C, repelling
if [M(c, 2)| > 1, indifferent if |A(c, z)| = 1 and attracting if |A(c, 2)| < 1. If A(c, 2) =
0 they are superattracting. In general the case of an indifferent point z is more
complicated and interesting. Therefore, we divide them again in subclasses: if z is
rationally indifferent, i.e. A(c,2) = ¢*™/4 for a fraction p/q € Q, the point is called
parabolic. Otherwise, z is irrationally indifferent and it is a Cremer point or a Siegel
point according as z € 0K, or not. A parameter ¢ for which f. has a parabolic orbit
is a parabolic parameter.

For parabolic parameters we should moreover note the term of a petal: let z,
be a parabolic fixed point of f and U, U’ neighborhoods of z, such that f maps U
diffeomorphically onto U’. Then a connected open set U, is an attracting petal for f
at 20 if Uy CUyNU" and f(Uy) C UU {2} and N f"(Ug) = {20}, n > 0. A set 1} is
a repelling petal for f at z; if it is an attracting petal for f=! at 2,. The Leau-Fatou
Flower Theorem (see Theorem 7.2 in [M90]) says that every point z, of a parabolic
orbit O of f, with multiplier A(c, ©) = e?™?/7 has ¢ attracting and ¢ repelling petals,
which alternate each other, and form together with 2z, an open neighborhood of z.

For an attracting or parabolic orbit O the set of all points z with f°"(z) — O is
called the basin of attraction. It is well known that this set is open.

Let 2 be the basin of attraction of an attracting orbit O. Then (2 contains O
and for a point 2z’ € O the connected component of 2 which contains 2’ is called the
immediate basin of attraction of z'. The immediate basin of attraction of O is
the union of the immediate basins of all points of O.

In the case of a parabolic orbit O the immediate basin of attraction of a
point z' € O is the union of all Fatou components which contain an attracting petal
for z'. As in the attracting case the tmmediate basin of attraction of O is the union
of the immediate basins of all points of O.

So far we have defined these terms only for periodic points and orbits. However,
we use them also for a preperiodic point z and its orbit if they are applicable to the
periodic iterates of z.

Now we can restate some theorems on Julia sets and periodic orbits. Most of
them can be found in [M90].
The following theorem can be found in a similar form as Theorem 17.1 in [M90]:
Theorem 2.2.1.
Consider a polynomial map f. If the Julia set of f 1s connected, then the filled-in
Julia set 1s full and every bounded Fatou component of f is simply connected.



Since f. has the only critical point 0, i.e. the zero of d% fe(2), and the immediate basin
of every attracting and parabolic orbit contains a critical point (see Corollary 7.10
and Lemma 10.2 in [M90]) and the basins do not have any points in common, the
following lemma holds (see also Theorem 10.4 in [M90]):

Lemma 2.2.2. (At Most One Orbit is Not Repelling)
For a fized parameter c all periodic orbits of f. are repelling but possibly one.
In particular a map f. has at most one parabolic or attracting orbit in C.

Thus every parabolic parameter has a well-defined parabolic orbit.

A bounded Fatou component which contains a parabolic periodic point on its
boundary is called parabolic Fatou component.

Theorem 2.2.3. (At Most One Cycle of Bounded Fatou Components)
Every polynomial map f has at most one cycle of bounded Fatou components.
That 1s: if there 1s a bounded Fatou component U of f then it 1s either periodic
or preperiodic and every periodic Fatou component can be mapped onto any
other periodic Fatou component by an iterate of f.

Furthermore, for a parabolic parameter ¢ every periodic Fatou component
15 a parabolic Fatou component.

Remarks on the proof: The first statement is due to Sullivan and can be found
as Theorem 13.5 in [M90]. Moreover, his results imply the second fact: by the
classification of periodic Fatou components (see Section 13 in [M90]) we know that a
periodic Fatou component is either the immediate attractive basin of an attracting
periodic point, or contains an attracting petal of a parabolic periodic point, or a
Siegel disk, or a Herman ring (that is a doubly connected Fatou component). By
Lemma 2.2.2 we can exclude the first and the third possibility. Since every Fatou
component of a polynomial is simply connected (Theorem 2.2.1), it can not be a
Herman ring. O

We should note the following statement: let ¢ be a parabolic parameter and U, the
Fatou component containing the critical point. The other periodic Fatou compo-
nents we denoif by Ui,...,U,_1,U, = Uy with Ul_:: fg”_(Uo). For [ # 0 the restric-

tion f,: U, — U, is an one-to-one map and f.: Uy — U is a d-to-one map. Both
maps are proper and holomorphic on the interior and continuous on the boundary.

For our next aim introducing the so-called dynamic rays we need some pre-
requisites. For the proofs of the statements which we will make in the following
paragraph and for further information see Section 17 and 18 in [M90]. It is well
known that for every parameter ¢ € C a neighborhood U of oo and a holomorphic
function, the so-called Béttcher Map o.: U — U, exists such that p.o f.op, 1(z) = 2¢
for z € U and ¢.(c0) = co. Starting from this we define Green’s Function g. on U
by g.(z) :=log|¢.(2)| for z € U and note the functional equation g.(z) = g.(f(2))/d.
Now it follows easily that Green’s Function can be extended continuously to P; — K..
It tends to zero as we reach K.. Therefore, we define g.(z) := 0 for z € K.. The
value g.(z) is called the potential of z and for ¢t > 0 the set {2 € C: g.(2) =t} is
the equipotential curve of potential t.

We should note that g. has a critical point z whenever 2z is critical or precritical
with respect to f., i.e, f2!(2) = c for an integer [ > 1. If K, is connected the critical



point is inside of K. and hence g, has no critical point outside of K.. However, if K,
is not connected g. has infinitely many critical points.

For the Bottcher Map ¢. this means that we can extend . holomorphically as
long as g.(z) > ¢.(0). In other words: if K, is connected ¢, extends to a conformal
map from P; — K. onto P, — D and if K, is not connected ¢, maps P; — {z eC:
9e(2) < gc(0) } biholomorphically onto P; — { z € C : log 2| < ¢.(0) }. In any case it
has the following product expansion on its region of definition:

0u(2) = 2 ﬁ (1 + ((k_—cl)(z))d> -

k=1

For each factor we choose the branch of the d*-th root which maps 1 to 1. Since every z
in the region of definition of ¢, is in the basin of infinity, there is a neighborhood N
of 1 which does not contain 0 such that 1+ ¢/(fs*(2))? € U for almost every k.
It follows now easily that the product expansion is well-defined (see also Theorem 3.1
in [S98a)).

Moreover, ¢, is tangent to the identity at infinity, i.e. p.(2)/z — 1 as z — oc.

For a parameter ¢ with connected Julia set we define the dynamic ray with
angle ¥ as the set R = { ¢ ! (re*™™) : r > 1}. If the limit limp;'(re?™?) exists
for r \, 1 we say that R lands at the limit point. Note that due to the conformality
of the Bottcher map and the definition of dynamic rays, dynamic rays with different
angles do not have any point in common. But certainly they may land at a common
point.

If the Julia set of f. is disconnected, we can define dynamic rays only at potentials
which are greater than g¢.(0) as before. However, it is still possible to extend ¢, by
the functional equation to the whole set P; — K., if we do not require uniqueness.
Using this extended (. we again obtain dynamic rays as inverse images of radial
rays {re?™ : r > 1}. By construction of the extended ¢, these rays have branch
points at the critical points of g.. For a further discussion of this case see also
Appendix A of [GM93].

The definition of periodic and preperiodic angles is completely analogous to the
corresponding definitions with respect to orbits. Furthermore, we use these terms and
the adjectives rational and irrational for rays if their angles satisfy these properties.

Moreover, we introduce rays inside a filled-in Julia set K. if f. has a superat-
tracting orbit: let U be a Fatou component of K. Then it is well known that U is
either preperiodic or periodic (see Theorem 2.2.3) and contains exactly one point,
say zy, which maps on the critical point 0 by some iterate of f.. There is a Riemann
map ¢: U — D because U is simply connected by Theorem 2.2.1 and we may assume
that it maps 2y to 0. Furthermore, it is well known that ¢ extends homeomorphically
to U. Therefore, we can define for any angle o the set R} := { o~ '(re*”) : r € I'}
as the internal dynamic ray of U at angle ¥ with respect to . We note that for
any rotation 7' around the origin it is obvious that 7" o ¢ is again a Riemann map
of U which maps zy to 0.

There are a theorem and some lemmas we should mention before investigating
elementary properties of Multibrot sets: the following theorem is due to Sullivan,
Douady and Hubbard. For the periodic case including a proof see Theorem 18.1
in [M90]. In the preperiodic case it follows by reducing to the periodic one and
taking backward images.



Theorem 2.2.4. (Every Periodic Dynamic Ray Lands)

Consider a parameter with connected Julia set. Then every periodic and prepe-
riodic dynamic ray lands at a repelling or parabolic point which is periodic and
preperiodic, respectively.

Theorem 2.2.5. (Every Repelling and Parabolic Point is Landing Point)
For a connected Julia set K. every periodic and preperiodic repelling or parabolic
point in 0K, 1s the landing point of at least one but only finitely many periodic
or preperiodic dynamaic rays, respectively.

Moreover, 1f K. 1s in addition locally connected, the number of rays landing
at z € 0K, s equal to the number of components of K. — {z}.

Remarks on the proof: The first assertion can be found as Theorem 18.2 in [M90]
and is due to Douady and Yoccoz. For a proof of the second statement see Lemma A.8
in [S98b]. It depends mainly on the Theorem of Carathéodory and a theorem of
F. and M. Riesz. d

We should note the following, very useful lemma. For a connected K, it can be found
as Lemma 18.7 in [M90]. The proof there generalizes immediately for disconnected
Julia sets.

Lemma 2.2.6. (Landing of the Image of A Dynamic Ray)
A dynamic ray Rj lands at z € 0K, if and only if R, lands at fe(2).

The previous theorems and lemma show us that for repelling and parabolic periodic
orbits beside the orbit period another kind of periodicity is involved: consider a
repelling or parabolic periodic orbit O and let R§ be a ray landing at some point of
the orbit. It may happen that the period of the orbit and the period of the angle ¥
are different. Therefore, we define the ray period of O as the period of the angle 4.
It is well known that the angles of all rays landing at a point of the orbit have the
same period, i.e. the ray period is well-defined.

Finally, we should note the following correspondence between the multiplier of
a parabolic orbit and its ray period:

Lemma 2.2.7. (Ray Period and Multiplier)
Let c be a parabolic parameter. Then the exact ray period of the parabolic orbit O
1s n if and only if for a point z of the orbit n is the least number with d%f"”(z) =1.

2.3 Definition and Some Properties of Multibrot Sets

As mentioned before we introduce in this subsection the Multibrot sets and show
some of their basic properties. Multibrot sets are generalizations of the well known
Mandelbrot set: they are the connectedness loci of the Julia sets of the polynomi-
als f.(z) = 2% + c. The term “Multibrot set” is due to Schleicher.

The definitions, properties and proofs in this subsection are well known for the
Mandelbrot set and generalize easily.

In the following let d > 2 be an integer. We consider d fixed for the whole paper.

Definition. (Multibrot Set M,)
The Multibrot set of degree d is the set My := { ¢ € C: K, is connected. }. O



Certainly the Multibrot set M, is just the Mandelbrot set. A very essential fact is
that the polynomials f. have only one critical point. It is easy to see that every
quadratic polynomial can be written by conformal conjugation as 2% + c. However,
in the case d > 2 this is not true in general: exactly the polynomials with more than
one critical point can not be written as 2?4 c. There are equivalent definitions of My
as the following theorem shows:

Theorem 2.3.1. (Equivalent Definitions of M,)
The following statements are equivalent:

(1) c e M,.
(2) The critical orbit with respect to f. is bounded.

(8) |f"(0)| < 2 for every integer n > 1.

Proof: By Theorem 3.5 in [S98c| the Julia set of a polynomial is connected if and
only if all critical orbits, i.e. the orbits of the critical points, are bounded. Thus, the
first two statements are equivalent.

Now we show that the negation of (8) implies the negation of (2): if |¢| > 2
then we obtain by induction

2] 2 M) = el 2 [el (el = 1) — el 2 [el (e = 1)

and this means that the critical orbit is unbounded.
Now we consider a ¢ € C and an integer n > 1 such that |¢| < 2 and |f"(0)] >
2+ € for an € > 0. Thus, by induction

|fco(n+k+l) (O)| > (2 + 2k6)d —2>92+ 2k+1€,
i.e., the critical orbit escapes. The other direction, (8) = (2), is trivial. d

As in the dynamic plane we want to define rays in the parameter plane, i.e., the
complex plane regarded as the set of parameters c of f.. For this purpose we need
an analogue to the Bottcher map in the quadratic case. The following theorem
guarantees us the existence of such a map.

Theorem 2.3.2. (Properties of Multibrot Sets)
The Multibrot set M, has the following properties:

(1) My is compact and full.
(2) P, — M, is simply connected.

(8) M, is connected.

Proof: In the proof of Theorem 2.3.1 we already verified that M, is contained
in the disk By(0). Since the nested intersection of countably many compact sets
is compact, the characterization of M, by Statement (3) in Theorem 2.3.1 shows
that M, is compact.

The third assertion follows by a classical theorem of Alexandroff from (2).

In order to prove the second statement we show that there is a biholomorphic
map ®(c) from P; — M, onto P; — D. This implies that P; — M, is simply connected.
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For ¢ € P, —M, we define ®(c) := ¢.(c). The map ®(c) is well-defined, because g.(c) >
g.(0) and, if we choose the branch of the d'-th root as in Subsection 2.2, ® has the
well-defined product expansion

o(c) = Czlj (1 + (f(l_—f)(c))d) "

It is quite easy to see that ®(c) converges locally uniform on P; — M, and hence ®(c)
is there holomorphic. Moreover, we see that ®(c)/c — 1 as ¢ — oo. Since we
want to show that ® maps P, — M, onto P; — D, we should verify |®(c)|] — 1
as ¢ — OMy. For this purpose let R > 2 and define for a ¢ € Bg(0) — My the
sequence ¢; := f°!(c), | > 0. Evidently (¢;) will leave Br(0) and hence there is a well-
defined index N(c) := min{! € N: ¢, € Bg(0) }. Now we obtain for every ¢ € Bg(0)
the inequalities [cy()| < R* + R and |¢x|* > 2|¢| for almost all k (see the proof of
Theorem 2.3.1). By combining this with the functional equation of the Bottcher map
of ¢ we get for all ¢ € Bg(0) — M, and some S > 1

0 c 1/d
= CN(C)H<1+ d()+l_1>

c
=1 N

1/dN()

)‘l/dN(C) S Sl/dN(c) ‘

[®(e)] = [@e(ene

Together with N(c) — oo as ¢ — OM, this implies |®(c)| — 1 as ¢ — 0M,. Hence &
is a proper map from P; — My onto P; — D and has therefore by Lemma 2.1.1 a
well-defined mapping degree. It is 1 because ® is tangent to the identity near oo.
This means that ® is a conformal isomorphism from P; — M, onto P; — D. O

Now we can define the analogue for the dynamic rays in the parameter plane: let ®
be the biholomorphic map from P; — M, onto P; — D as in the proof just before. The
parameter ray with angle 9 is defined as the set

R :={@ 7 (re*):r>1}.

If lim ®~!(re? ) for r | 1 exists we say that R)' lands at the limit point.

If a parameter ¢ ¢ M, lies on a parameter ray with angle 9 we call ¥ the external
angle of c. Evidently the external angle is well-defined for every parameter in C—M,.

Although there is no dynamics in the parameter plane it is convenient to use the
adjectives periodic, preperiodic, rational and irrational as in the case of dynamic
rays for parameter rays if their angles have these properties.

The following lemma shows how dynamic rays depend on the corresponding
parameter.

Lemma 2.3.3. (When Rational Dynamic Rays Land)

Let c be a parameter with disconnected Julia set. Then the dynamic ray Rj lands
if and only if ¥y # 0°"(V) for every integer n > 1. Moreover, the parameter c
lies on the parameter ray Ry .

Proof: First we show that for a parameter ¢ ¢ M, with external angle ¥, the critical
value lies on Rj . Since g.(c) > g.(0) the Béttcher Map ¢, is well-defined at ¢ and
hence e*™° = @(c)/|®(c)| = ¢c(c)/lpe(c)]-

The dynamic ray Rj is well-defined at potential ¢ if and only if the dynamic
ray I, is well-defined at potential d - 7, i.e. does not contain the critical value.
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Therefore, R = { ;' (re?*™) : r > 1} is well-defined if and only if ¥y # o°" (V)
for all integers n > 1. Since the limit set of a dynamic ray is a compact subset of
the Julia set (see for example the remark after Definition 2.4 in [S98b]) and K. is

completely disconnected, a well-defined dynamic ray RS lands at a single point.
O

5/26
4/26
1/8
d'(c) 3/3?26
— 1/26
0/2

Figure 1: On the left hand side we can see the Multibrot set M3 with the periodic
parameter rays of period 3 and below. The corresponding image rays under the
map $ are shown on the other side.

When studying the landing properties of parameter rays—we will see that they can
only land at parabolic parameters—it is important to know that there are not too
many parabolic parameters:

Lemma 2.3.4. (The Number of Parabolic Parameters is Countable)
The number of parameters which have a parabolic orbit of a given period 1s
finite. In particular the number of all parabolic parameters 1s countable.

Proof: Let k > 1 be a fixed integer and define Q(c,z) := f2¥(z) — 2. Then the
number of parameters which have a parabolic orbit with ray period & is less than
the number of points (¢,z) € C* with Q(c,2) = 0 = £Q(c, 2). Since any complex
algebraic curve can be regarded as a projective curve by adding points at infinity,
we obtain that Q(c,z) = 0 = j—zQ(c, z) holds only for finitely many pairs (c, z) by
Bezout’s theorem (see for example Section 3.1 in [K92]). This proves the lemma.
d
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3 Orbit Portraits

In this section we introduce orbit portraits following Milnor in [M98], i.e., the landing
patterns of dynamic rays landing at a periodic orbit, and show some properties of
them. They help us to give a combinatorial description of Julia sets and are a tool to
investigate the landing properties of parameter rays. In particular we use them in this
section to show that every periodic parameter ray lands at a parabolic parameter (see
Theorem 3.2.3) and that some of them land in pairs (see Theorem 3.2.5). Moreover,
we prove that at each so-called primitive parabolic parameter at least one parameter
ray lands (see Theorem 3.2.7). However, we need further techniques, which we will
introduce in the following sections, to finish the proof of Theorem 1.1. The concept of
orbit portraits is essential in Milnor’s proof of the Structure Theorem in the quadratic
case in [M98|.

3.1 Definitions and Elementary Properties

The definitions and properties which we will give in this subsection are mostly well
known, at least for the case d = 2. However, for the sake of completeness we recall
them. The proofs of the quadratic case generalize easily to the case d > 2.

Definition. (Orbit Portraits)

Consider a parameter ¢ € C and let A; be the set of angles for a periodic orbit O =
{20, ..., 2 1} with respect to f. for which the dynamic rays land at z;. We call the
set P = {Ay,...,Ax 1} the orbit portrait of O with respect to f.. We denote the set
of all angles that land at the orbit O by Ay = AgU ... U Ag_;1.

A portrait P = {Ay,...,Ax_1} is called essential if each A; contains at least
two angles and otherwise non-essential. However, there is one exceptional case: the
portrait P = {{0}} is also essential.

It is convenient to call a parameter ¢ with essential parabolic portrait an essential
parabolic parameter. The definition of a non-essential parabolic parameter is
analogous.

If the period of all angles in Aq U ... U A,_; is equal to k, i.e., ray and orbit
period are equal, then the portrait is called primitive and otherwise non-primitive.

Again it is convenient to refer to a parabolic parameter with primitive parabolic
portrait as primaitive parabolic parameter and to define a non-primitive parabolic
parameter analogous.

We say that an orbit portrait P = {Ay,..., Ax_1} is patrwise unlinked if for
every i # j the set A; is contained in a connected component of S' — A;.

For an element A = {¥y,... , 95 1} € P, s > 2 with Jy < ¥ < ... < ;1 <
Yy (see the beginning of Section 2 for the definition of this notation) we call the
intervals (g, %1), ..., (9s_1,%) the complementary intervals of A. O

We should note one major difference between d = 2 and d > 2: in the quadratic case
all parabolic parameters have a parabolic orbit with essential portrait (see Corol-
lary 4.8 in [M98]). But for d > 2 this is not true.

Next we state some basic properties for portraits. Actually they are characteris-
tic for portraits and below we will use them to define so-called formal orbit portraits.
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Lemma 3.1.1. (Elementary Properties of Orbit Portraits)
Let P = {Ay,..., A 1}, A := Ay, be the portrait of the orbit of a periodic point z
with respect to f., c € C. Then:

(1) Every A; is mapped by the d-tupling map o biyjectively onto A;, the cyclic
order preserving.

(2) All angles in Ay have the same ezact period.
(8) The A; are pairwise unlinked.

(4) If the portrait is essential we have: for any A; every complementary in-
terval but one, say Iy, 1s mapped by o homeomorphically onto a comple-
mentary interval of A; ;.

This 1mplies that for I, exists a complementary interval Ij of A;11 such
that o(ly) covers I exactly d times, i.e., for every ¥ € I are d different
angles in Iy which map to ¥ by o. Moreover, all complementary intervals
of A; except for Iy together have length less than 1/d and the length of I,
1s greater than 1 —1/d.

Remark: Note that Properties (1) and (2) imply that every A; is finite and all A;
contain the same number of angles. Moreover, it is easy to show by the second
property that every angle in Ay is rational, i.e. is in Q/Z: since any angle ¥ € Ay is
periodic, say with period n, ¥ = ¢°"(9) = d™J holds and hence ¥ = a/(d" — 1) + Z
for an integer a.

Proof: 'The proofs of Properties (1) to (8) are well known, easily supplied and
exactly the same as in the quadratic case. Therefore, we omit them here and refer
to Lemma 2.3 in [M98].

In the case d = 2 Property (4) follows from the previous properties, since there
is no quadratic polynomial with more than one critical point. However, we give the
proof of Property (4) for d > 2: let z; be the landing point of the dynamic rays
at angles in A;. For a fixed m the partition 2, U|JRj, ¥ € A,, has exactly one
open component which contains the only critical point 0. Thus, every component,
except for the component containing the critical point, is mapped homeomorphically
by f.. This means that all the complementary intervals of A,,, except for one,
are also mapped homeomorphically by ¢. The complementary intervals which are
mapped homeomorphically have necessarily length less than 1/d. Using Property (1)
it follows that the images are complementary intervals of A, ;.

Now we show how this implies the rest: let I;,...,I;_; be the complementary
intervals of an A; which are mapped homeomorphically onto a complementary interval
of A1 and have therefore each length ¢(c(l;)) = d¢(I;) < 1. Since for any two
different I;,I; with 4,5 € {1,...,s — 1} the images are disjoint by the previous
properties, it follows that ¢(o(I1)) + -+ €(o(L,—1)) < 1, i.e. €(L) + -+ £(I,—1) <
1/d. However, the length of the images of all complementary intervals is d. This
means that the only complementary interval of A;, say I,, which is not mapped
homeomorphically must have length greater than 1 —1/d. It follows that ¢(o (1)) >
d — 1 and therefore a complementary interval of A;,, exists such that every point of
this interval has d preimages in I, and all other complementary intervals of A;,; are
covered d — 1 times by . a
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For an essential orbit portrait P = {A,,..., Ax—1} we call the shortest of all com-
plementary intervals of all A;, say (¢_,9.), characteristic interval of P and the
angles 9,9, are the characteristic angles of . If P = {{0}} the characteristic in-
terval is the open component of S! — {0} and the characteristic angles are 0 and 1.
In this special case we distinct between 0 and 1 although they are equal as elements
in S'. We consider also for such portraits the dynamic and parameter rays at angles 0
and 1 as two different angles.

There are two ways to define portraits: the first one, introduced just before,
starts from an orbit and the set of angles landing at this orbit. The other one starts
from a set P = {Ao, ..., Ax_1} satisfying the properties of Lemma 3.1.1. This leads
to the following definition:

Definition. (Formal Orbit Portrait)
A set P = {Ag,...,Ar_1} of subsets A, C S? is called a formal orbit portrait if P
satisfies the properties of Lemma 3.1.1.

The terms essential, primitive, non-essential, non-primitive, characteristic
interval, characteristic angles and complementary interval are defined for formal
orbit portraits analogous to the above definitions. O

Non-essential formal orbit portraits are trivially realized by orbits of fy(z) = 2¢
and by Theorem 3.1.4 we will see that for every essential formal orbit portrait P
there exists a parameter ¢ with orbit which realizes P, i.e. has portrait . The other
direction, i.e., that every orbit portrait is a formal orbit portrait, is certainly obvious.

Lemma 3.1.2. (The Characteristic Interval of a Portrait is Well-Defined)

Let P = {Ao,...,Ax 1} be an essential formal orbit portrait. Then among the
union of complementary intervals of each A; for 0 < i < k—1 there 1s exactly one
with shortest length, i.e., the characteristic interval of a portrait is well-defined.

Proof: First we note that the set of lengths of the complementary intervals of sets
in P has a minimum, say /. Hence, we assume without loss of generality that a
complementary interval of some A;, 1, say Ip, has length /. Since ¢ is minimal and all
intervals with length less than 1/d are mapped homeomorphically by ¢ and become d-
times larger, there is no complementary interval which is mapped homeomorphically
onto Iy, i.e., Iy must be the interval which is covered d times by a complementary
interval of A;, say I, with length greater than 1 —1/d. Denote the d preimages of 75
by I},...,I¢ C I.. Certainly the length of each of these intervals is equal to ¢/d
and they are not complementary intervals of A;. Due to the minimality of /5 and
the unlinking property I» and hence also I!,... , ¢ do not contain any point of Agp.
The unlinking property implies that any A; must be completely contained in S' — I,
or in I, — (JI7") for m = 1,...,d. In both cases the union of the images of all
complementary intervals of any A; with length less than 1/d is contained in S' — I5.
Now we consider an arbitrary j € {0,...,k—1} and denote by I} the complementary
interval of A;,, which is covered d-times by the complementary interval of A; with
length greater than 1—1/d: it follows that I, is not contained in S* — I, i.e. I}, D I.
If ¢(I},) = ¢ then we obtain by applying the above argument to I}, that Ip DO I},
i.e. Iy = If,, and therefore Iy is uniquely determined. O

Now we introduce some more objects which help us to describe parabolic parameters.
Especially in Sections 5, 6 and 7 we will use them.

15



Definition. (Characteristics of Parabolic Parameters)

Consider a parameter ¢ with parabolic orbit of portrait P. The Fatou component U;
containing the critical value c is called characteristic Fatou component of c. It
is well known that there is exactly one parabolic point on the boundary of the
characteristic Fatou component. It is called the characteristic point of the parabolic
orbit of c. O

Let P be a portrait. Then we call the minimum number of angles J,... ,9,_1 € Ap
which we need to represent any other angle ¥ € Ay by 9 = 0°(¥;) the number of
cycles of Ap or P.

An important difference between primitive and non-primitive parabolic portraits
shows the following lemma. Due to this fact the results and proofs for both kinds of
portraits and corresponding parameters are often quite different.

Lemma 3.1.3. (Primitive and Non-Primitive Portraits)
Let P ={Ay,...,Ax_1} be a formal orbit portrait. If P is primitive then each A;
contains at most two angles and P has one cycle in the non-essential case and
two in the essential.

Otherwise, if P 1s non-primitive, each A; contains at least two angles and P
has ezxactly one cycle.

Proof: Obviously non-essential portraits are primitive and have exactly one cycle.
Hence, we consider for the rest of the proof only essential portraits. Let n be the ray
period of the angles in Ap and v the number of angles that each A; contains. Then
the number of angles in Ay is k£ - v and the integer k - v/n is the number of different
cycles in Asp.

Now we make two assumptions: the first one is that v > 3 and the second one
is that there are at least two distinct cycles. As before we denote the characteristic
interval of P by I = (J_-,9,) and assume without loss of generality that it is a
complementary interval of A;. Since v > 3 there are two not necessarily distinct
angles 9;, 9y € Ay such that ¥, < 9_ <9, < ¥y <9, and we denote the correspond-
ing intervals by I_ = (¢1,9_) and I, = (¥,,9;). Without restriction we assume
that ¢(1_) < ¢(I;). Since I_ has not minimal length we obtain as in the proof of
Lemma 3.1.3, that there is a complementary interval /; O Ip of some A; which maps
homeomorphically onto /_ by ¢°™ for an integer m. This implies that ¢(1;) < ¢(1_).
Using the second assumption, i.e. that there are two different cycles, it follows that v _
and 9, belong to different cycles of Ap. Otherwise, there would be an integer [ > 1
such that o°(9_) = 9,. Every interval (c°Y(J_), 0% (9,)) = (0°9(9_), 00+ ()
would be a complementary interval of Ay. Since Ap N Ip = ff and o is order preserv-
ing, this would imply that there is only one cycle. Therefore, o°/(¥,) # 9 for all
integer | > 1, i.e. Ip can not map on /. This shows that I; 2 I» and that I; is not
a complementary interval of A,. We write I; = (¥ ,?',) and it follows that ¥ € I_
because /(I;) < £(I_). We obtain by the unlinking property that /; must be in a con-
nected component of S'—{«);,_} and hence, ¢, € I_, too. This implies that /. C I,
which is a contradiction to ¢(1;) < ¢(I_) < ¢(I;). Thus, we have proved the follow-
ing: if v > 3 then there is only one cycle in Ay and if there are two cycles in Ay
then v < 2. This finishes the proof of the lemma. Ol
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Of particular interest is the following theorem: it shows that for every essential
formal orbit portrait a parameter c exists which has an orbit realizing the portrait.
The proof generalizes easily from the quadratic case to d > 2 (see Lemmas 2.9 and 2.8
in [M98]). This statement will be important for the proof of Theorem 3.2.5.

Theorem 3.1.4. (Orbits Realizing a Given Portrait)

Let P be an essential formal orbit portrait with characteristic interval (9,9, ).
For a parameter c € C— My the map f. has an orbit with portrait P if and only
if the external angle of ¢ is in (9_,9).

Proof: Let 9, be the external angle of c. First we should note a criterion for the
landing of dynamic rays at a common point: since c lies on the dynamic ray at
angle 9, the d dynamic rays at the angles mapping to 9. by o, say 9., ... 94, meet
at the critical point 0 and we obtain a partition of the dynamic plane with d open
components. We label these components such that every component has a unique
label and with every angle ¥ we associate the sequence of labels of ¥, o(¥9), 0°?(¥), . ..
It is well known that two dynamic rays land at a common point of 0K, if and only
if their sequences of labels are equal. (In fact the sequence of labels is just the ¥,.-
itinerary of ¥.)

If Y. € (9_,9,) then the angles 9!, ...  9¥¢ lie in the components I, ... , I¢ of the
preimage of (¥_, 9, ). By the unlinking property this means for P = {Ao,..., Ax_1}
that every A; lies in a connected component of S' — |J, I!. Now using the above
criterion it follows for every fixed j that the dynamic rays at the angles in A; land at
a common point. Denoting by P' = {Aj, ..., A}, ,} the portrait that the angles form
this means that £’ < k and we may assume without loss of generality that A; C A}
for 0 < i < k'. Let n be the common ray period of the angles in Ap. We assume
that £ > k'. If P is a primitive portrait it follows by Lemma 3.1.3 that P has two
different cycles because it is essential. However, since k' < k every A; € P’ consists
of at least three angles and has therefore again by Lemma 3.1.3 only one cycle. This
is a contradiction to Ap = Ap. If P is non-primitive, £ > k' implies that Ay C Aj.
Since Ay and A, are unlinked and o is order preserving, this would mean that o°*
fixes each ray in AgU Ay, i.e. K = n. This is a contradiction to the assumption that P
is non-primitive.

It remains to show the other direction of the theorem: if ¥, = 9 or 9. = 9,
then the dynamic rays at the characteristic angles pass a precritical point and do not
land therefore. Finally, if ¢, is not one of the characteristic angles and 9. ¢ (9,9, )
then it is easy to see that ¥ € (J_,9,), i.e. both characteristic angles have different
sequences of labels and do not land in a common point. O

Definition. (Combinatorial Rotation Number)

Let P = {Ay,..., A 1} be a portrait of an orbit with s rays landing at each point of
the orbit. Moreover, let some A; = {Jy,... ,¥s 1} € Pwithdy < ... <51 <y and
let r be the integer in {0,...,s — 1} such that o°*(9;) = 9,,;. (We read subscripts
of angles modulo s.) Then we call the number r/s combinatorial rotation number
of P. O

It is well known and easy to see that the combinatorial rotation number of a portrait P
is independent of the subset A; C P used to define it.

We should note that if 2™/ is the multiplier of a parabolic parameter then the
combinatorial rotation number of the associated parabolic orbit portrait is p/q.
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3.2 Stability of Orbit Portraits

Now we can use the just before defined objects. In particular we will obtain some
results about the perturbation of parameters and the consequences for certain orbits
and their portraits. These results will then lead to the theorems on parameter rays
which we mentioned at the beginning of this section.

We start with a statement about the stability of periodic points under pertur-
bation of the parameter. It will be of interest in later sections, too. Obviously the
proof does not depend on the degree d.

Lemma 3.2.1. (Continuous Dependence of Periodic Points on the Param-
eter)

Let cy be a parameter and z, a periodic point of f., with exact period k and mul-
tiplier A\(cy, 20) # 1. Then there exists a neighborhood U of ¢y and a holomorphic
function z: U — C such that z(c) is a periodic point of f. with ezact period k
for every c € U and z(cy) = zp-

Proof: The assertion follows easily by the Implicit Function Theorem: let Q(c, z) :=
f2%(2) — z. This function is clearly holomorphic in ¢ and z, has the zero (co, z9)
and %Q(co,zo) # 0 since A(cp,20) # 1. Hence, we get by the Implicit Function
Theorem that there are neighborhoods U and V of ¢y and z,, respectively, and a
holomorphic function z: U — V such that Q(c, z(c)) = 0 or in other words z(c) is a

point of exact period k for every c € U. O

The following theorem is a slight generalization of Lemma B.1 in [GM93] and guar-
antees local stability of the portrait of a repelling orbit under perturbation of the
parameter.

Theorem 3.2.2. (Stability of Portraits)

Let ¢y be a parameter with repelling periodic point z, and portrait P. Then there
exists a nerghborhood U of ¢y such that there s a holomorphic function z: U — C
with z(cy) = zp and z(c) is a repelling periodic point with associated portrait P
for every c € U.

Proof: Let k be the orbit and n be the ray period of the parabolic orbit of ¢;. By
Lemma 3.2.1 the existence of a neighborhood U of ¢y, and a holomorphic function z
on U with the asserted properties is guaranteed except for the statements that z(c)
is repelling and the portrait remains stable. We will show that a restriction of z
satisfies the remaining properties. We state four requirements which U must satisfy:
by possibly shrinking U we may assume that z(c) is repelling for all ¢ € U, since the
multiplier A(c, z(c)) depends holomorphically on ¢. Moreover, by the Kcenigs Lin-
earization Theorem (see Theorem 6.1 and Remark 6.2 in [M90]) there exists again
for a possibly shrunken U a holomorphic map ®.: z(U) — C depending also holo-
morphically on ¢ € U such that ®.(zp) = 0 and @ o f*(2(c)) = A(c, 2(c)) - D¢ 0 2(c)
for all c € U. Now let Ry’ be a dynamic ray that lands at z,. Again by shrink-
ing U, if necessary, we can assume that a point of Rj with some sufficiently small
potential ¢ > 0 is contained in z(U) for every ¢ € U. The last requirement on U is
according to whether ¢y € M, or not: if ¢y & My we know by Lemma 2.3.3 that the
external angle of ¢, is different from the finitely many angles o(?9),0°%(9),... and
we can hence assume that the external angles of the parameters in U are different
from o(9),0°%(¢9),... In the case ¢y € My we assume that U is small enough such
that all points in z(U) have a potential less than /2.
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Now the neighborhood U of ¢, has the properties we need to finish the proof: by
construction of U, by Theorem 2.2.4 and Lemma 2.3.3 the dynamic rays Rj land for
all c € U. For every ¢ € U a branch of the inverse map of fo* exists. Let ¢. be the
branch that fixes z(c) and the dynamic ray Rj. Since |A(fe,z(c))| > 1 every point
in z(U) converges to z(c) by iterating ¢., especially the point on R§ with potential ¢.
Hence, R§ lands at z(c) for every c € U. This shows that the portrait remains stable
inU. 0

Now we are ready to make our first statement about the landing properties of periodic
parameter rays. It shows that periodic parameter rays land. Hence, it proves the
first assertion of the Structure Theorem 1.1 and tells us that it could make sense to
study the landing properties of parameter rays further. The proof is due to Goldberg,
Milnor, Douady and Hubbard (see Theorem C.7 in [GM93]). Although they state
the theorem only for the quadratic case, their proof also holds for d > 2. Milnor
and Schleicher use this theorem also for their proofs of the Structure Theorem in the
quadratic case (see the proof of Theorem 3.1 in [M98| and Proposition 3.1 in [S97]).

Theorem 3.2.3. (Periodic Parameter Rays Land)

Let ¥ be an angle of eract period n. Then the parameter ray R)' lands at a
parabolic parameter cy with parabolic orbit of exact ray period n and the dynamaic
ray Ry lands at a point of the parabolic orbit.

Remark: In fact we will see in Theorem 5.3.1 that the dynamic ray R; lands at a
special point of the parabolic orbit, the so-called characteristic point.

Proof: Let ¢y be an accumulation point of the parameter ray R)'. Then the dynamic
ray Ry lands at a parabolic or repelling point z of period n by Theorem 2.2.4.
Assume that z is repelling with respect to ¢y. Then by Theorem 3.2.2 there is a
neighborhood U of ¢, such that for every ¢ € U the dynamic ray Rj lands at a
repelling point. But by Lemma 2.3.3 we see that every neighborhood of ¢y contains
parameters ¢ such that Rj does not land and hence ¢, is parabolic. Since the limit
set of the ray is connected (see for example the remark after Definition 2.4 in [S98Db])
and by Lemma 2.3.4 there are only finitely many parameters having parabolic orbits
of period n, ¢y is the unique limit point of the parameter ray. O

By analytic continuation of the function z(c) in Theorem 3.2.2 we obtain now a global
version as the following corollary:

Corollary 3.2.4. (Stability of Portraits)

Let ¢y be a parameter with repelling periodic point zy and associated portrait P
of ray period n. Furthermore, let U be a simply connected neighborhood of c
such that every c € U satisfies the following two properties:

(1) ¢ has no parabolic orbit of ray period n and
(2) c does not lie on any parameter ray of period n.

Then there exists a holomorphic function z: U — C such that z(cy) = 2o and z(c)
15 a repelling periodic point with associated portrait P for every c € U.

Remark: Hence, the portrait of a repelling orbit can be destroyed only at parabolic
points or at a parameter ray of equal period. Indeed, we will see in Theorem 4.2
that the portrait of a repelling orbit is destroyed in some cases while perturbing
into a parabolic parameter. If an angle ¥ is contained in a subset of the portrait
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of a repelling orbit with respect to a parameter c,, the portrait will be destroyed
by Lemma 2.3.3 if we perturb into a parameter ray with angle which is equal to a
forward image of 9.

Now, having the global version of the statement on stability of repelling orbit
portraits, we can give a slightly weaker version of Milnor’s Theorem 3.1 in [M98|
following his proof, which does not really depend on the degree. In this paper we use
it to show that at every essential parabolic parameter at least two parameter rays
land. In the quadratic case this shows that all parameter rays land in pairs because
all parabolic orbit portraits are essential. However, in the case d > 2 this is not true.

Theorem 3.2.5. (Parameter Rays Landing at a Common Point)

Let P be an essential portrait with characteristic angles Y_ and v,.. Then the
parameter rays R)' and Rﬁwi land at a common parabolic parameter cy. More-
over, every parameter which is in the component of C — (R)' UR)' U {%}) that
does not contain 0 has an orbit with portrait P.

Proof: We denote the common period of the angles in Ay by n and let F,, be the
set of all parabolic parameters with parabolic orbit of ray period n. Now consider
the connected components U; of the partition F, U Jye Ap RﬁM. Since Ap and F,
are finite (Lemmas 3.1.1 and 2.3.4) there are only finitely many components and by
Theorem 3.2.3 they are open. Furthermore, using Corollary 3.2.4 we obtain that the
portrait the angles Ay form remains stable in every U;, i.e. given any U; the portrait
of the angles Ay is the same for all parameters in U;. Since by Lemma 3.1.2 there
is no angle in A within the interval (¥_, 4, ) and parameter rays at different angles
have no common point in C—M,, there is exactly one component, say U, containing
parameters in C— M, having external angles in (¥_, 9, ). By Theorem 3.1.4 these are
the only parameters in C— M, having an orbit with portrait P. Combining this with
the just described result of Corollary 3.2.4 we see that U, can not contain any other
parameters in C — M, and this means that Up is bounded by R}', R}' and exactly
one point of F;,, say cy. This proves the first assertion. Now for a parameter ¢ € My
the second assertion follows by Theorem 3.1.4. Combining this with Corollary 3.2.4
we see that the assertion holds also for ¢ € My. Since all periodic orbits of fy(z) = 2%
have a non-essential portrait, it is evident that 0 & Uj. O

3/26

1/26

Figure 3: The Julia set of z — 2% + ¢
Figure 2: The P-wake of M; for the for a parameter c inside the P-wake
portrait P with the characteristic inter-  but outside of M3 (¢ is near 0.65 +
val (1/26,3/26). 0.591).
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For two parameter rays I?y_, Iy, which land at a common point z, the component
of C — (R)' UR) U{%}) which does not contain 0 is called the P-wake of M. See
also Section 3 of [M98].

We will combine the following lemma in Theorem 3.2.7 with a new argument,
which is due to Schleicher, in order to prove that every primitive parameter is the
landing point of at least two or one parameter rays according to whether it is essential
or not.

Lemma 3.2.6. (In the Neighborhood of a Primitive Parabolic Point)

Let ¢y be a primitive parabolic parameter and zy a point of the parabolic orbit with
ezact period k. Then there are two possibilities: either there are neighborhoods U
and V' of ¢y and zy, respectively, and holomorphic functions z1,z9: U — V such
that z1(c) and z(c) are points of exzact period k and z1(cy) = 22(cy) = 2o-

Or there 1s a two-sheeted cover w: U — U of a neighborhood U of ¢y with the
only ramification point m(cy) = ¢y, a neighborhood V of zy and a holomorphic
function z: U' — V such that z(c') s a point of exact period k for ¢ = ()
and z(cy) = zp.

Remark: We can say that the parabolic orbit of ¢, splits into two orbits with exact
period k. Later we will be able to see that in the primitive case always the second
possibility occurs. This means that the two orbits the parabolic orbit of ¢, splits into
will be interchanged if we go along a sufficiently small closed arc around cy.

Proof: Let Q(c,z) := f¥(z) — 2. We first prove that there are neighborhoods U
and V of ¢y and z, respectively, such that Q(c, z) has for a fixed ¢ € U exactly
two zeroes in V. Let U be a neighborhood of ¢, such that no other parameters
with k-periodic parabolic orbit are in U. Since the multiplier is A(c, 20) = 1 by
Lemma 2.2.7, the Taylor expansion for a fixed ¢ € U near 2, with respect to z
is Q(c,2) = a(z — 29)"™ + O((z — 20)"™%). Here are ¢ > 1, a € C. By the Leau-Fatou
Flower Theorem (see the beginning of Subsection 2.2 and Theorem 7.2 in [M90]) we
know that ¢ is the exact number of attracting petals. Since f. has an unique critical
point and by Corollary 7.10 in [M90] the immediate basin of each attracting petal
contains at least one critical point, f°* has only one critical point in the immediate
basin of the orbit of z; and hence there is exactly one attracting petal with respect
to fc"ok, i.e., ¢ = 1. This means that z, is a double zero of z — Q(co, z) and using the
Argument Principle it follows easily for a possibly shrunken U that for every c € U
there exists an € > 0 such that there are exactly two simple zeros z;(c), z2(c) € V :=
B(2p). Now we will see that which possibility takes place depends on whether the
two orbits are interchanged or not while the parameter goes around cy,. Since U
does not contain any parameter with k-periodic parabolic orbit by assumption, the
multiplier A(c, 2) is for every ¢ € U —{cy} and periodic point z in V' of exact period &
always different from 1. This means, if we choose a parameter ¢* € U — {¢y} with
zeroes 27, z3 € V of Q(c*, z) then there are by Lemma 3.2.1 analytic germs z; and z.
in ¢* with z;(¢*) = 2} and z2(c¢*) = z; and we can continue them analytically along any
arc in U—{co}. If we consider an arc y: I — U—{cy} around ¢y with v(0) = (1) = ¢*
then there are two situations for the analytic continuations of z; and z, along ~:
either the continuation of z; leads again to z{ and hence the one of z, to z; or they
are interchanged.

Using the Monodromy Theorem we obtain in the first case that we can continue
the germs z;,z» to bounded holomorphic functions on U — {¢y} and then continue
further to holomorphic functions z;,ze: U — V with 21(cy) = 22(co) = 2o such
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that 21 (c) and z;(c) are for every ¢ € U both points with exact period £ with respect
to f..

In the second case we have just seen that there is no holomorphic function with
the required properties on U. However, on a two-sheeted cover n: U’ — V with
the only ramification point ¢, the z;,z, lead to a holomorphic function z: U’ — V
with z(c) = 20, 7 *(co) = {ch}, such that z(¢) is a point of period & for every ¢’ € U’
with respect to fr(c). O

As announced before we can now show the following theorem on primitive parabolic
parameters:

Theorem 3.2.7. (Primitive Parabolic Parameters)

Let ¢y be a primitive parabolic parameter. Then at least two parameter rays
land at ¢y if cy 15 essential and at least one parameter ray lands at cy if it 1s
non-essential.

The idea of the following proof is: if we wind once around a primitive parabolic pa-
rameter, then there is a necessarily repelling orbit portrait which must be destroyed,
since the repelling orbit becomes attracting at some time while winding around the
primitive parameter. If the curve along we go is small enough this can only happen at
a parameter ray. Hence, a parameter ray lands at the primitive parabolic parameter.
Proof: Let k be the exact orbit period of the parabolic orbit. Again we have to
discuss the two possibilities of the previous lemma: if the first possibility occurs,
then there is a neighborhood U of ¢; such that no other parabolic points of period &
are in U and the multipliers A (¢) := A(c, 21(c)), Aa2(c) := A2(c, 22(c)) are holomorphic
on U and hence by the Open Mapping Principle they map any neighborhood in U of ¢
onto a neighborhood of 1. Let v be a closed arc in U winding around ¢, with (0) =
¢* = 7(1). Then there is a ty € I such that |A;(7e(to))| > 1 and |A2(7e(t0))| < 1.
By Theorem 2.2.5 the point z (7(fy)) is the landing point of a dynamic ray and
its orbit has therefore a portrait P # . Now we assume without loss of generality
that there is a ¢; with ¢, < ¢; such that |A;(y.(t1))| < 1. Since an attracting point
is never the landing point of a dynamic ray and the portrait of repelling points is
stable under perturbation (see Corollary 3.2.4), there must be a t* € (to,¢;) such
that ~.(¢*) is on a parameter ray with angle of period k. This parameter ray lands
at ¢y by Theorem 3.2.3, since by assumption no other parameters with parabolic
orbit of period k£ are in U. The angle of this parameter ray landing at ¢, must be
equal to the angle of a dynamic ray landing at the parabolic orbit of ¢y. Since in
the essential case the parabolic orbit portrait has two cycles, we can apply the above
discussion for both cycles and obtain that at least two parameter rays land at c.
In the second case there is a two-sheeted cover 7: U’ — U of a neighborhood U
of ¢y with the only ramification point ¢y = 7(c}) and a holomorphic function z: U’ —
C such that z(¢') is a point of period £ and z(cj) is a parabolic point. Hence, the
multiplier A(¢') := A(w(¢), z(¢')) is holomorphic and A(cj) = 1. Now, let ¢, ¢, € U’
such that 7(c}) = n(c,) but ¢ # ¢, and consider an arc v in U’ such that v(0) =
¢,v(1) = ¢, and 7(y([)) is a closed arc in U. We may assume by the Open Mapping
Principle that |A(¢})| < 1 and this implies that |A(c,)| > 1. Hence, there is a t* € I°
such that z(v(¢*)) lies on a parameter ray of period k. This ray can only land at .
As in the first case it follows that for an essential portrait a second parameter ray
lands at ¢y and the proof is finished. O
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4 Hyperbolic Components

In this section we introduce the so-called hyperbolic components of M,;. These are
the connected components of parameters which have attracting orbits.

Comparing this proof of the Structure Theorem with the proofs of Milnor and
Schleicher in [M98] and [S97] we notice that they do not use hyperbolic components
for their proofs. In contrary their discussion of hyperbolic components bases on the
Structure Theorem. This has two reasons: the first one is that we develop in Section 5
the tool of orbit separation starting from parameters with superattracting orbits
which we have to perturb through hyperbolic components to parabolic parameters.
The second and more important reason is that we have to see for our proof that
periodic parameter rays land in groups. In the quadratic case this is easier because
there all periodic parameter rays land pairwise. However, for d > 2 this is not true
and they land in groups of d rays at hyperbolic components.

We start with the definition of hyperbolic components and related objects. More-
over, we will associate these objects in Theorems 4.2 and 6.1 with parabolic param-
eters and stability of the landing points of dynamic rays under perturbation of the
parameter.

Definition. (Hyperbolicity)
For a parameter ¢ € C we call f. a hyperbolic map if it has an attracting orbit. A
parameter c is hyperbolic if f. is a hyperbolic map. O

These terms are due to Douady and Hubbard (see [DH85]). However, we should note
that the definition of hyperbolicity given by them is more general (but equivalent for
our maps) than the one we use here. See also Section 14 in [M90] for the discussion
of hyperbolic maps.

Definition. (Hyperbolic Component)
A hyperbolic component with period n of M, is a connected component of the set
of parameters which have an attracting orbit with exact period n. O

Lemma 4.1. (Elementary Properties of Hyperbolic Components)

Let H be a hyperbolic component with period n. Then H 1is an open subset
of My and there is a holomorphic map z: H — C such that z(c) is attracting for
all c € H and has ezxact orbit period n.

Proof: Since H has period n there is per definitionem a ¢y € H with attracting orbit
of exact period n. By Lemma 2.2.2 f,, has a well-defined attracting orbit. Attracting
means that the absolute value of the corresponding multiplier is less than 1 and hence
by Lemma 3.2.1 there is a map z: H — D with the required properties. By the same
lemma it follows that every ¢ € H has a neighborhood U such that all ¢ € U are
hyperbolic, i.e. H is open. Moreover, if f. has an attracting orbit, then the critical
point is in the immediate basin of this orbit (see the remark before Lemma 2.2.2)
and thus the critical orbit is bounded, i.e. ¢ € M, and this means H C M,. O

Definition. (Roots, Co-Roots and Centers)

Let H be a hyperbolic component of period n. Then a parameter on 0H with essential
parabolic orbit of exact ray period n is called a root of H. Similarly a parameter
on OH with non-essential parabolic orbit of exact ray period n is called a co-root
of H{. Moreover, a parameter in J{ which has a superattracting orbit of exact period n
is called a center of H. O
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Theorems 6.5 and 6.4 will show that
every hyperbolic component has ex-
actly one root and one center. More-
over, we will see in Corollary 6.6 that
the number of co-roots of a hyperbolic
component is exactly d — 2. In partic-
ular in the quadratic case there are no
co-roots.

The following theorem gives us again
information about parabolic parame-
ters. In particular it shows that the
parabolic orbit splits into several or-
bits if we perturb the parameter. The
proof of this theorem in the quadratic
case generalizes immediately to d > 2
(see Lemmas 6.1 and 6.2 in [M98] and
Lemma 5.1 in [S97]).

ke

Figure 4: Here we can see hyper-
bolic components of M3. Among them
is one with period 3, which has two
neighboring components of period 6.

Theorem 4.2. (In the Neighborhood of Parabolic Parameters)
Let ¢y be a parabolic parameter with exact parabolic orbit period k, exact ray
period n and zy a point of the parabolic orbit of cy. Then the following holds:

(1) If the parabolic orbit portrait is non-primitive then c, lies on the boundary
of hyperbolic components with period k and n. Moreover, a neighborhood U
of co and a holomorphic function z: U — C exist such that z(c) is a
point of exact period k and z(cy) = z. Furthermore, there exists for
every ¢ € U — {cy} an orbit O(c) with ezact period n that merges into the
parabolic orbit O(cy) as ¢ — ¢y and for that ¢ — X(c,0(c)) is holomorphic
onU.

(2) If the parabolic orbit portrait is primitive then cy is a root or co-root
of a hyperbolic component with period n. Furthermore, a two-sheeted
cover w: U' — U of a neighborhood U of ¢y with the only ramification
point m(cy) = co and a holomorphic function z: U' — C ezxist such that z(c)
1 a point of ezact period n and z(cy) = zp.

Proof: First we consider the case of a non-primitive parabolic orbit portrait. It
follows by Lemma 2.2.7 and Lemma 3.2.1 that there are a neighborhood U of ¢y and
a holomorphic function z;: U — C such that z(c) is a point with exact orbit pe-
riod k and z(co) = 2. Moreover, the multiplier A(c, 21(c)) is a holomorphic function
in ¢ on U because z(c) is. By the Open Mapping Principle and |A(c, 21(co))| = 1
it follows that every neighborhood of ¢, contains parameters ¢ such that z;(c) is
attracting. Thus, ¢, lies on the boundary of a hyperbolic component with period k.

In order to show that it lies also on the boundary of a hyperbolic component
with period n, we have to prove that an attracting orbit with exact period n exists.
Since A(f",z0) = 1, we obtain f"(z) = z + a(z — )™ + O((z — 20)?*?) for an
integer ¢ > 1, a € C as the Taylor expansion of f;* near z,. This means by the
Leau-Fatou Flower Theorem that 2z, has ¢ attracting petals and that f°" is the first
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iterate of f which fixes them and the ¢ dynamic rays landing at z,. These rays are
permuted transitively by the first return map f°¢ because f, has only one critical
point. Moreover, A(f,, 20) = 1 implies by Lemma 2.2.7 that A(f2¥, z) is an exact n/k-
th root of 1. Finally this shows ¢ = n/k. As in the proof of Lemma 3.2.6 it follows
by the Argument Principle that there are neighborhoods U of ¢y and V' of 2z, such
that fo"(z) has for every ¢ € U exactly n/k + 1 fixed points in V, counted with
multiplicities. We are interested in the exact periods of these points with respect
to f. for ¢ € U — {c¢o}. By the above discussion exactly one of them has exact
period k£ and no one has a lower period. Since A(fo'*,z)) #1for i =2,... ,n/k—1,
we get that the iterates f'* have for ¢ € U exactly one fixed point in V or in other
words: for every c € U and [ € {2,...,n/k — 1} the map f. has exactly one point of
period [ -k in V. But we already know that there is a point with exact period k£ with
respect to f. in V. Hence, all the [ - k-periodic points are just the point with exact
period £ in V. This shows that n/k points in V have exact period n. Therefore,
we have for every ¢ € U — {co} an orbit O(c) with exact period n and well-defined
multiplier such that n/k points of O(c) each coalesce at a point of the parabolic
orbit O(co) if ¢ — ¢o. The multiplier ¢ — A(c,O(c)) defines a holomorphic function
on every simply connected region in U — {¢y}. Since the multiplier is bounded on U,
we can continue it to a holomorphic function on U. Again by the Open Mapping
Principle it follows with |A(co,O(cy))| = 1 that every neighborhood of ¢, contains
parameters ¢ such that O(c) is an attracting orbit, i.e. ¢y lies on the boundary of a
hyperbolic component with period n. This proves the theorem in the non-primitive
case.

In the primitive case the second assertion, i.e. the existence of the holomorphic
function, follows directly by Lemma 3.2.6. This implies again by using the Open
Mapping Principle the first assertion. ]

As a consequence we should note the correspondence between parabolic parameters
and roots. For a further discussion of hyperbolic components the so-called multiplier
map of a hyperbolic component is very important.

Definition. (Multiplier Map of a Hyperbolic Component)
Let H be a hyperbolic component and for ¢ € H let A(c, Q) be the multiplier of the
attracting orbit of f.. Then we call A\yc: H — D,c — A(c, Q) the multiplier map

of I. O

It is immediate that Ay is well-defined: for hyperbolic parameters there is an unique
attracting orbit and the absolute value of the multiplier of an attracting orbit is
less than one. Next we want to show some interesting properties of the multiplier
map Ag¢:

Lemma 4.3. (Properties of the Multiplier Map of a Hyperbolic Component)
The multiplier map \s¢ of a hyperbolic component H 1s a proper holomorphic
map and has a continuous extension As; from H onto D.

Proof: Let k be the period of H. By Lemma 4.1 there is a holomorphic map z on H
such that z(c) is an attracting point with exact period k. This implies that A\g¢ is
holomorphic on H. For parameters ¢ € 0 which do not have a parabolic point with
ray period k we can continue z(c) analytically in a neighborhood of ¢ by Lemma 3.2.1.
In the other parameters on OH we can still continue z(c) by Theorem 4.2. Moreover,
for two sequences (¢;) and (¢;) in H which converge to a parameter ¢ € 90X the
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limits lim Ag¢(c;) and lim Ag¢(c;) are equal, because every ¢ € 0H has an unique
indifferent orbit. This shows that Ay has a continuous extension \g: H — D.

Now consider a sequence (c,)y in H with ¢, — ¢ € 0H and assume that there
exists a compact set X C D such that A\sc(c,) € K foralln € N. Then thereisa A <1
with [Asc(cn)] < A < 1 for all n € N, i.e., all accumulation points of (Asc(c,)) have
absolute value less than one. But this is a contradiction to lim |Ag¢(c,)| = [Age(c)| =1
by continuity of [Ag. O
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5 Orbit Separation

Our aim is now to get more information on the landing properties of periodic param-
eter rays. In particular we want to show that if a periodic parameter ray lands at a
parameter then the dynamic ray at the same angle lands at the characteristic point of
the parabolic orbit. The main tool we use for this is the concept of orbit separation,
which is due to Schleicher. We will prove certain orbit separation lemmas (or orbit
separation properties). Per se they only concern the dynamic plane and guarantee
the existence of dynamic rays separating certain points. Two points z and 2’ are
separated by dynamic rays in K, if angles ¢ and ¢’ exist such that Rj, R, land at a
common point, say 2o, and z and 2’ are in different components of C— (R§ U RS U zp).
Following Schleicher we call two such rays together with their landing point a ray
pair at angles (¥,79'). In the concluding Subsection 5.3 these techniques lead to
the statement mentioned just before. Furthermore, combining this with the results
of Section 3 we are able to show that at every primitive parameter exactly two or
one parameter rays land according to whether it is essential or not (Corollary 5.3.2).
As an analogue to Theorem 3.2.7 for non-primitive parameters we show that ev-
ery essential parabolic parameter is the landing point of the parameter rays at the
characteristic angles of its parabolic portrait (Corollary 5.3.3).

For a discussion of orbit separation in the quadratic case see Sections 3 and 5
in [S97]. The following approach is based on this and the ideas are the same.

5.1 Hubbard Trees

In order to prove the orbit separation properties we start from parameters with super-
attracting orbits and so-called Hubbard trees connecting them. This is possible since
Julia sets of hyperbolic maps are locally connected and hence arcwise connected.
We will show that in the superattracting case a ray pair exists which separates the
critical value from any other point of the critical orbit. Then we verify that this
separation remains stable under perturbation of the parameter to a parabolic param-
eter through a hyperbolic component. This will show us that any two points of the
parabolic orbit can be separated.

As suggested by Schleicher we use now standard Hubbard trees and not parabolic
Hubbard trees as in [S97] because some arguments are easier to see for standard
Hubbard trees and the local connectivity of hyperbolic Julia sets is much easier to
prove than the one of parabolic ones.

During the whole subsection we assume that all superattracting orbits have at
least exact period 2 (for the case of a superattracting fixed point we do not need
Hubbard trees). First we give the definition of a tree and some properties:

Definition. (Hubbard Tree)
Let ¢ be a parameter with superattracting orbit O. Then a compact and connected
subset I'. of K. is called Hubbard tree for c if

(1) every end point of I, is a point of the superattracting orbit and

(2) for every Fatou component U of K, the intersection I'. N U is either empty or
is the union of finitely many internal rays of U.

¢
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For the definition of an internal ray see Subsection 2.2. In particular note that the
“landing point”, i.e. the point in 0K, is part of the ray.

An end point of a tree I' is a point z € T" for which I' — {2} is connected.

By an arc connecting a point z with some arcwise connected set S # f in K, we
mean an arc vy such that v connects z with a point of S and () ¢ S for all ¢t € [0, 1).
Evidently such an arc always exists.

This definition raises some questions. In particular we should say a few words
about existence and uniqueness. Before that we note that the superattracting orbit
of a map f. is precisely the critical orbit. We have the following lemma:

Lemma 5.1.1. (Existence and Uniqueness of Hubbard Trees)
For every parameter ¢ with superattracting orbit O there exists a Hubbard tree
and it 1s unique, t.e. if I'y and I'y are Hubbard trees for c then I'y =T'5.

Proof: We give a strategy how to construct a Hubbard tree for c: since hyperbolic
filled-in Julia sets are compact, connected and locally connected (see Theorem 17.5
in [M90]), they are by Lemma 16.4 and Lemma 16.3 in [M90] arcwise connected.
Therefore, we can start the construction of a Hubbard tree by connecting the critical
point with another point of the critical orbit by an arc in K. After that we iteratively
connect any point of O (which is not already part of the tree) by an arc in K, with
the tree constructed so far. Since O is finite this process terminates after finitely
many steps. During the whole process we require that for every Fatou component U
of K, the intersection of U and the so far constructed tree is either empty or is the
union of finitely many internal rays of U. This is possible because for every Fatou
component U the Riemann map ¢: U — D extends to a homeomorphism on U. By
construction the tree is compact, connected (even arcwise connected) and every end
point is a point of O, i.e. the tree is a Hubbard tree for c.

We prove the second assertion by contradiction: we assume that there are Hub-
bard trees I'y and I's for ¢ such that there is a point 2* € I'y but 2* ¢ I's. Let 2* € 0K..
Then it lies by the definition of a Hubbard tree on an internal ray, say RY, of a Fatou
component U. Since any two internal rays of a Fatou component have a common
point in 0K, if and only if they are identically, we may assume that z* € 0K..
Then 2* is not an end point of I'; and hence there are points 2,2’ € O and an arc v,
connecting z with 2’ in I'; such that z* € 7;(I°). Moreover, there is an arc v, con-
necting z and 2’ in I'y. Since z* € K, this means that (/) and ~,(/) bound a subset
of 0K, in contradiction to the fact that K, is full. O

Moreover, we should note that the definition using internal rays implies that the
Hubbard tree for a parameter c is invariant under forward mapping by f..

The next lemma shows us in particular that the critical value is an end point
of every Hubbard tree. This will be important in the proof of the Orbit Separation
Lemmas.

Lemma 5.1.2. (Intersection Properties of Hubbard Trees)

Let ¢ be a parameter with superattracting orbit O and ' a Hubbard tree of c. Then
the intersection of I' and the boundary of the Fatou component containing the
critical value consists of exactly one periodic point. However, the intersection
of I' and the boundary of any other bounded Fatou component consists of at
most d points which are periodic or preperiodic points of O.

Proof: Let Uy be the Fatou component containing the critical point and Uy, ... ,U,_;
the other bounded periodic components with U; := f/(U,). It is convenient to

C
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define U,, := U,. Moreover, we denote by a; the number of points that the intersection
of I' with U, has. Now consider two different points z, 2’ € O and an arc v connecting
these two points in I' and let z* € 9U;N~(I) for an /. Since I' is unique and invariant,
we see that f.(z*) € OU;;; NT. This means that intersection points of I with the
boundary of periodic Fatou components are mapped onto such intersection points.
Since f,: U; — U,y is an one-to-one map for [ € {1,2,... ,n — 1} and a d-to-one
map for [ = 0, we have ag/d < a1 < as < ... < ap_ 1<a0.

We want to show that there is an /; € {0,1,2,...,n — 1} with a;, = 1. Note
that if U, does not disconnect the tree, i.e., [ — U, is connected then a; = 1 because
only points of the critical orbit—which are inside a bounded and periodic Fatou
component—can be end points of the tree. We assume that every U, disconnects I'
and consider one of the components of K, — U, and denote it by K. Moreover, we
denote the part of T' which lies in K ” by ['©. Due to the fact that I connects the
critical orbit I'® contains at least one point of the critical orbit lying in a periodic
Fatou component. Let U;, be one of those Fatou components such that no point of the
critical orbit lies on the part of the tree connecting the point of the critical orblt in Uy
and U,,. Since U;, disconnects I', there is again at least one component of K9 -T I
such that it contains a point of the critical orbit. By iterating we get a contradic-
tion because the critical orbit is finite. Hence, there is an /; € {0,1,2,... ,n — 1}
with a;, = 1 and I' — U,, is connected. Using this together with the above inequality
we obtain ag/d < a; <aq, =1land a; <ay <...<a, 1 < ap <d. This proves the
lemma. (|

It is well known (Theorem 2.2.5) that a point z in a locally connected filled-in Julia
set K which disconnects K is the landing point of as many rays as K — {z} has
components. Necessarily z is contained in 0K. As mentioned before we want to
prove the existence of dynamic ray pairs separating certain points. This is the reason
for our interest in branch points of a Hubbard tree:

Definition. (Branch and Branch Point)
Let ¢ be a parameter with superattracting orbit and let I' be the Hubbard tree of c.
Then for z € T' the components of I' — {z} are called branches of ' at z.

If the number of branches with respect to z is greater or equal to three then z
is called branch point of I. O

Lemma 5.1.3. (Properties of Branch Points)
Let ¢ be a parameter with superattracting orbit and I' the Hubbard tree for c.
Consider a z € I' such that I' has m branches at z. Then:

(1) If z does not lie in the closure of the critical Fatou component, i.e. the
Fatou component that contains the critical point, then the image f.(z) has
at least m branches.

(2) Howewver, if z does lie in the closure of the critical Fatou component then
the image f.(z) has at least m — 1 branches.

(8) If z s a branch point then it is periodic or preperiodic and lies on a
repelling or the superattracting orbit.
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Proof: The first statement can be verified by Lemma 5.1.1: since z has m branches,
there is a subset ', C I' connecting a subset M of the critical orbit with m points
such that ', — {2z} has m components. Then for any two points 2/, z” € M there is an
arc « connecting 2z’ with z” in I', and hence f. oy connects f.(z') with f.(z"”) which
lies on the critical orbit of f.. Since the Hubbard tree is invariant and z is not on the
boundary of the critical Fatou component, the restriction of f. to a neighborhood
of z is one-to-one and the assertion follows.

If z lies on the critical Fatou component all branches of z but possibly the
branches which are in the critical Fatou component are mapped homeomorphically
by f.. Therefore, we can at most lose the branch of z which is in the critical Fatou
component, i.e., the number of branches of f.(z) is possibly by one smaller than the
one of z. This shows (2).

Now Statement (3) is obvious because the Hubbard tree has only finitely many
branches and by Lemma 2.2.2 all periodic orbits, except for the superattracting orbit,
are repelling. O
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Figure 5: The Julia set of a map z — Figure 6: The Hubbard tree for the
Ztc Wl.th 6-periodic superattracting Julia set on the left hand side. As we
orbit (c is near 0.279484 + 1.251401). can see it is unbranched in this case.
The Fatou components which contain Note that ¢; = c is an end point of the

the points ¢; = f2'(0) of the critical or- tree.
bit are inside the corresponding disks.

5.2 Two Orbit Separation Lemmas

Now we have sufficient techniques to prove the following two orbit separation lemmas.
The first one shows that parabolic points can be separated from each other (see also
Lemma 3.7 in [S97]). Similarly the second one shows that parabolic and repelling
periodic points can be separated in the case of a primitive parabolic portrait. In
Section 5 in [S97] it is called Orbit Separation Property.

Lemma 5.2.1. (Orbit Separation Lemma For Two Parabolic Points)
Let ¢y be a parabolic parameter and z,z associated different parabolic points.
Then there is a ray pair separating z from 2.

Proof: Let c; be a center of a hyperbolic component H with period n for which ¢
is a root or co-root and let I be the Hubbard tree of ¢;. (By Theorem 4.2 we know

30



that ¢, is a root or co-root of a hyperbolic component.) First we show that for every
point z; of the critical orbit of f,,, except for ¢, itself, there is a ray pair separating z;
from c;. Let v be an arc connecting z; with ¢; in I'. Without loss of generality we
assume that no point of the critical orbit lies on ~(/°). If there is a branch point
of T on «(I°), there is a ray pair separating z; from ¢; by Theorem 2.2.5. Otherwise
let m > 1 be the least integer such that f™(z1) = ¢;. Then f™ oy connects c;
with fo™(ci) and by the uniqueness of the Hubbard tree f™ o y(/) C I'. Since no
point of y(7°) is a branch point or a point of the critical orbit and ¢; is by Lemma 5.1.2
an end point, there is a t* € I° such that v(¢t*) = f2™ o y(¢*). This point z* := v(t*)
must be repelling, since it is periodic and not a point of the critical orbit, which is
the only non-repelling periodic orbit (see Lemma 2.2.2). It follows that 2* € 0K, and
thus that 0K, — {2*} is disconnected. Therefore, it is by Theorem 2.2.5 the landing
point of a dynamic ray pair, say at angles ¥/ and . These rays separate ¢; from z;
because [' has at z* only two branches and ¢; and z; are on different branches.

Next we want to show that we can perturb c¢; to ¢y through the hyperbolic
component H such that ¢; and z; become the characteristic point and some other
point of the parabolic orbit of ¢, respectively, and the ray pair at angles ¢ and ¢
separates the two points. Using Lemma 4.1 and Corollary 3.2.4 it is easy to see
that there are continuous continuations z,,, z., and z,- of 21, ¢c; and z*, respectively,
to H U {¢o} such that z. (co) is the characteristic point and z,,(cy) another point of
the parabolic orbit of ¢y and z,-(c) is the landing point of the ray pair at angles o
and ¢’ for all ¢ € H U {cy}. Hence, this ray pair separates the characteristic point
from =z, (cy). Every point of the critical orbit has such a continuation to H U {¢},
which leads to a point of the parabolic orbit of ¢y. Moreover, every point of the
parabolic orbit of ¢, splits into an attracting and repelling point if the parameter
is perturbed into JH by Theorem 4.2. Therefore, every parabolic point of ¢y can be
separated from the characteristic point.

If z and 2’ are parabolic points different from the characteristic point z; let m
be the least natural number with z = f2™(2,). Without loss of generality we assume
that fo™ (21) # 2’ for 0 < m’ < m. Using the above result we obtain that there are
two rays landing at a common periodic or preperiodic point z* of a repelling orbit
and separating z from the periodic point fo{ ™ (2'), defined by the pull-back along
the parabolic orbit. Hence, the m-th forward image of 2* together with the rays
landing there separate z and z'. O

Lemma 5.2.2. (Orbit Separation Lemma for One Parabolic and One Re-
pelling Point)

Let ¢y be a primitive parabolic parameter and k the exact period of the parabolic
orbit with the characteristic point z;. Moreover, let 2’ be any repelling point with
orbit period k which does not lie on the boundary of the characteristic Fatou
component. Then there is a ray pair separating z; from z'.

Proof: As in the proof before let ¢; be a center of a hyperbolic component JH for
which ¢, is a root or co-root. (Theorem 4.2 shows us that ¢, is a root or co-root of
a hyperbolic component.) By Theorem 4.2 and Corollary 3.2.4 there are continuous
functions z;(c) and 2'(c) on HU{cy} such that z1(co) = 2z; and 2'(¢y) = 2’ and 21(c;) =
c; and Z/(c) is for all ¢ € H U {¢y} a repelling point of the same period as 2. Since 2’
does not lie on the boundary of the characteristic Fatou component, 2’'(c;) does not
lie in the closure of the Fatou component which contains the critical value. Let I' be
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the Hubbard tree for ¢; and v be an arc in I' which connects ¢; with 2'(¢;). Since
every bounded Fatou component is periodic or preperiodic, the number

m:=min{n € Ny : f" o y(I°) N U # # for a periodic Fatou component U }
is well-defined. By construction f.™ o~ connects a boundary point of a periodic
Fatou component containing a point of the critical orbit, say ¢*, with f™(ci). By
construction any ray pair separating c* and f7"(c;) separates also 2'(c;) and ¢;. Such
a ray pair exists by the previous Orbit Separation Lemma because two periodic
Fatou components do not have any common boundary point in the primitive case.
As before we can see that the landing point of the ray pair remains repelling if we
perturb from c; to c. O

5.3 Parameter Space and Orbit Separation

In this subsection we use the just developed tools to obtain more information about
the landing properties of periodic parameter rays. If we consider a periodic parameter
ray at a given angle, we are now able to say more about the landing point of the
dynamic rays at the same angle. This enables us to show that at least certain rays
land pairwise and give even a complete description of the periodic rays landing at
primitive parabolic parameters.

The following theorem can be found as Proposition 3.2 in [S97] for the quadratic
case and the proof is the same for d > 2.

Theorem 5.3.1. (A Necessary Condition)
If a periodic parameter ray Rf}[ lands at a parameter ¢, then the dynamic ray Ry’
lands at the characteristic point of the parabolic orbit of cy.

Proof: Consider a periodic parameter ray R})' landing at a parameter c;, which is
necessarily parabolic by Theorem 3.2.3. Then again by Theorem 3.2.3 the dynamic
ray Ry lands at a point of the parabolic orbit of c¢. For a parabolic fixed point this
proves the theorem. Therefore, we assume now that the exact parabolic orbit period
is at least 2. The Orbit Separation Lemma 5.2.1 tells us that for the characteristic
point z; and any other point z; of the parabolic orbit there is a ray pair at angles ¥;, ¥}
separating both parabolic points. Hence, there is a finite number of ray pairs landing
at repelling points and dividing the complex plane in several components such that in
the component containing the characteristic point z; is no other point of the parabolic
orbit. By Theorem 3.2.2 there is a neighborhood U of ¢y, such that the landing
points of the rays at angles ¥J;, ), depend holomorphically on ¢ for all ¢ € U, i.e., the
continuation of the characteristic point is still separated from the continuations of
the other parabolic points. Combining this with the fact that for all parameters c on
the parameter ray R)' the critical value c lies on the dynamic ray RS (Lemma 2.3.3)
we obtain that R must land in the partition containing the critical value. Therefore,
again by Theorem 3.2.3 it lands at the characteristic point of the parabolic orbit of ¢;.

O

There are some immediate consequences. We should note that the following corollary
is only of partial interest in the quadratic case, because there are no non-essential
parameter rays, i.e. no parameter ray lands for d = 2 alone. However, it gives us a
complete description of the periodic parameter rays landing at primitive parameters.
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Corollary 5.3.2. (Parameter Rays Landing at Primitive Parameters)
Every primative parabolic parameter c is the landing point of exactly two periodic
parameter rays if c 1s essential and exactly one periodic parameter ray lands at c
if 1t 1s non-essential. Moreover, the dynamic rays at the same angles lands in
the dynamic plane of ¢ at the characteristic point of the parabolic orbit of c.

Proof: Choose an arbitrary primitive parabolic parameter c. We obtain by Theo-
rem 3.2.7 that at least two periodic parameter rays land at c if ¢ is essential and at
least one periodic parameter ray lands at c if it is non-essential.

On the other hand, because ¢ has a primitive parabolic portrait, we see by
Theorem 5.3.1 immediately that at most two or one parameter rays can land at ¢
according to whether c is essential or not. This finishes the proof. O

This proves Statement (2) of the Structure Theorem 1.1. However, the proof of a
corresponding statement for non-primitive parameters is not as easy. We will work
on this during the following two sections.

There is another corollary, which uses Milnor’s Theorem 3.2.5 and Schleicher’s
orbit separation. Somehow it is an analogue in the non-primitive case to Theo-
rem 3.2.7 and a sharpened form of Theorem 3.2.5. It is the same statement as Corol-
lary 4.3 in [M98]|. However, Milnor does the work which we do by orbit separation
by a “deformation preserving the portrait” using certain “convenient coordinates”.
See Section 4 in [M98] for his discussion on this topic.

Corollary 5.3.3. (At Least the Characteristic Rays Land at a Parameter)
At every essential parabolic parameter land the parameter rays with the char-
acteristic angles of the parabolic orbit portrait.

Proof: In the primitive case we have already a stronger statement by Corollary 5.3.2.
Therefore let ¢ be a non-primitive parabolic parameter and denote the characteristic
angles of the corresponding parabolic portrait P by ¥_ and ¥,. Then, by Theo-
rem 3.2.5 the rays R)' and Rf;”fr land at a common parabolic parameter ¢’. Using

Theorem 5.3.1 we see that the dynamic rays RS and R§'+ land at the characteris-
tic point of f.. This means that the angles ©)_ and ¥/, are contained in the same
element of the parabolic orbit portrait P of ¢’. The sets Ay and Ay are iden-
tical because ¥_,9¥, € Ay and P’ is non-primitive and has hence only one cycle
(Lemma 3.1.3). Since ¥_ and ¥, are the characteristic angles of P, there is by
Lemma 3.1.2 no angle within (J_,9,) in Ap = Ap. This implies that the parabolic
orbit period of ¢’ is less or equal than the one of c. As in the proof of Theorem 3.1.4 it
follows that they are equal and therefore (¢, ) is the characteristic interval of J',
too. This finishes the proof. O
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6 Hyperbolic Components and Portraits

In this section we will continue our investigations on hyperbolic components, which
we introduced in Section 4. In particular we will show that every hyperbolic compo-
nent has exactly one center, exactly one root and exactly d — 2 co-roots. To do the
proofs we need more information on the stability of portraits in the closure of a hy-
perbolic component. Obviously a necessary condition for the stability of a portrait
is that the landing point of a dynamic ray at some angle in the portrait depends
continuously on the parameter. This gives us the motivation to prove the following
theorem. It is due to Schleicher (see Proposition 5.2 in [S97]) and his proof of the
quadratic case generalizes easily to the case d > 2. It bases on the Orbit Separation
Lemmas of the previous section.

Theorem 6.1. (Continuous Dependence of Landing Points on Parameters)
Let z, be a repelling or parabolic periodic point of f,,. For a dynamic ray R
landing at z, we define the set Q(Y) := {ce€ C: RS lands}. Then there is a
continuous function z: Q(Y¥) — C such that z(c) is the landing point of RS.

Remark: In the non-primitive case two rays Rj and Ry, land at the same k-periodic
point z if and only if ¥ = ¢°*(¢') for an | € N, (see Lemma 3.1.3). This means that
the definition of Q(¥) does not depend on a particular ray in this case. However,
in the primitive essential case there are two different cycles of rays and Q(¢) may
depend on the angle for which we defined it.

Although the landing point of the dynamic ray depends continuously on the
parameter c (if the ray lands), the portrait may be destroyed. This is certainly always
the case whenever the orbits that we consider have different periods. For example
it may occur that z(c) splits while perturbing away from a parabolic parameter into
several periodic points, among which the rays of the parabolic point are distributed.
Then the portrait of z(c) is disturbed.

Proof: For the subset of Q(¥) which contains parameters such that R§ lands at a
repelling point we have proved an even stronger statement in Corollary 3.2.4. Hence,
we assume that ¢, is a parabolic parameter and z; is a point of the parabolic orbit O,
of ¢y and denote the exact parabolic orbit period by k£ and the corresponding exact
ray period by n. We discuss two cases: the first one is that the portrait of the
parabolic orbit is non-primitive, i.e. £ < n. Now we consider a neighborhood U
of ¢y and a holomorphic function z;: U — C as in Theorem 4.2 with z;(cy) = zo.
The multiplier \;(c) := A(c, z1(c)) of the k-periodic point z;(c) is holomorphic on U
because z;(c) is. If O(c) is the n-periodic orbit that merges into the parabolic orbit
then the multiplier A\(c) := A(c, O(c)) is holomorphic on U, too (see Theorem 4.2).
For a dynamic ray at some angle which lands at z, we have to show that the dynamic
ray at the same angle lands at z;(c) or at a point of O(c), if we go away from ¢, along
a small arc in U on which c lies. Therefore, we consider an arc v: I — U ending in ¢y,
i.e. (1) = co, such that 2 (y(t)) is repelling for all y(¢), t € [0,1). By Theorem 2.2.5
at least one dynamic ray, say R, lands at z (7(0)) and because the z (y(t)) are
repelling for ¢ € [0,1) we know by Corollary 3.2.4 that R}\” lands at z (7(t)) for
all t € [0,1). Since the parameter v(1) = ¢, is in M, and is parabolic, the dynamic
ray Rg,(l) will still land at a n-periodic parabolic or repelling point of K,.,. We can
exclude ad hoc that the landing point is repelling because otherwise the ray would
land at a point different from z; ((¢)) in the dynamic plane of y(t), t € [0,1). To
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prove that this dynamic ray Ry will land at z,, we use orbit separation: by the Orbit
Separation Lemma 5.2.1 for any z € O, —{%} exists a ray pair in the dynamic plane
of ¢y separating z from z,. We denote this ray pair by S(z) and let P(cq) := |JS(%)
for all z € O, — {20}. By construction of P(c,) there is a component V(¢;) such
that z, is the only parabolic point of ¢y in V(cg). Since the landing points of the
ray pairs are repelling, we can continue them by Theorem 3.2.2 in the, if necessary
shrunken, neighborhood U of ¢ and get for every ¢ € U a new partition P(c). This
partition P(c) consists of the dynamic ray pairs at the same angles as the one of P(cp).
By construction a dynamic ray is contained in a component of P(c) if and only if it
is contained in the component of P(cy) bounded by the ray pair at the same angles.
Let V(c) be the component of P(c) which is bounded by the dynamic ray pair at the
same angles as V(). Since z (v(t)) € V(y(t)) for ¢ € I, the dynamic rays R} are
also subsets of V' (7(t)) for all ¢ € I. Since z; is the only parabolic point in V/(co),
the dynamic ray R;; lands at z,. Moreover, if we consider any other dynamic ray,
say RS, landing at z, then the dynamic ray R} will land at z, (v(t)) for all t € I:
since ¢ 1s a non-primitive parabolic parameter, all dynamic rays landing at z, are
in the same cycle (see Lemma 3.1.3). This means that for some integer m > 1
we have o°™*(¢') = ¢ and hence R} lands at z (v(t)), too. If we consider an
arc v: I — U ending in ¢ such that |A;(y(2))] < 1, ie. |[A2(7(¢))| > 1, then we can
apply for parameters c € U, U possibly shrunken, the same arguments as above to a
point z5(c) that merges into the characteristic point of the parabolic orbit as ¢ — ¢.
We obtain that if a dynamic ray, say Rg(t), lands at z»(c) then R; lands at the
characteristic point of the parabolic orbit. The other dynamic rays which land at
the parabolic orbit are distributed among the other points of the orbit of z,(c). This
finishes the proof in the non-primitive case.

In the primitive case we could prove the assertion analogous for one ray landing
at z,. However, by this way we would not be able to handle in the essential case
the other ray landing at z;, since it is not in the same cycle. We can overcome
this difficulty by using also the Orbit Separation Lemma 5.2.2 for a parabolic and
repelling point, which holds only in the primitive case. We denote by O, the set of
all repelling points of f., with orbit period n which do not lie on the boundary of the
characteristic Fatou component. Now we start separating: by the Orbit Separation
Lemmas 5.2.1 and 5.2.2 we know that for any z € O, U O, — {2} there is a ray
pair, say S(z), separating z from z,. Therefore, the partition P(cy) := (JS(z) for
all z € 0, U, — {2} of C has the property that the points on the boundary of the
characteristic Fatou component are the only parabolic and repelling points of period n
in the component V'(¢y) containing z,. Let R’ be a dynamic ray landing at z, and if ¢
is essential let Ry be the second dynamic ray landing at z,. By construction of P(cy)
these rays are completely contained in V(cg). Since P(cy) consists of dynamic ray
pairs landing at repelling points, there is by Theorem 3.2.2 a neighborhood U of ¢
such that for every z € 0,U0, — {2} the ray pair separating z from z, in the dynamic
plane of ¢, still has a repelling landing point for ¢ € U. This separation in the dynamic
plane of ¢ defines a partition P(c) with component V' (¢) which is bounded by the ray
pair at the same angles as V' (¢y). Moreover, for all ¢ € U — {¢y} the component V (c)
does not contain the continuations of the n-periodic repelling and parabolic points
of ¢y other than z, and the repelling points on the boundary of the characteristic Fatou
component. As before we use the results of Theorem 4.2: there is a two-sheeted
cover m: U’ — U with the only ramification point 7(c¢{;) = ¢, of the, if necessary
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shrunken, neighborhood U of ¢, and a holomorphic function z: U’ — C such that z(c')
is a point of period n with respect to fr() and z(cj) = 2. It follows again that the
multiplier A(¢) := A(m(c), 2(¢')) is holomorphic on U’, since z is, and hence by the
Open Mapping Principle A maps a neighborhood of ¢ onto a neighborhood of 1.
This implies that if v: I — U’ is an arc ending in ¢, i.e. 7(1) = ¢}, and which is not
closed, then there are branches z1, zo: moy(I) — C of z. In particular for every ¢t € I
the only repelling or parabolic points in V (7 o y(t)) with period n are z; (7 o (¢))
and 2,(m o y(t)) and the continuations of the n-periodic points on the boundary

of the characteristic Fatou component. We have to show that ng(t) and if ¢ is

essential Ry, "™ do not land at the continuations of the n-periodic repelling points
on the boundary of the Fatou component containing the critical value: since these
rays land at repelling or parabolic periodic points and are contained in V(vroy(t)), it
follows then that they land at z; (mo7(t)) or zo(mov(t)) and finishes the proof. In the

. . . oy e t
non-essential case we can see as in the proof of the non-primitive case that RZ;W( ) can

not land at a point that is different from z (ro~(¢)) and 25 (7o7(t)). However, in the

essential case we know by Theorem 3.2.5 that R} and R} land at a common

point for ¢ € [0,1). Since one of them must land at z; (7 o y(t)) or z2(m o (), the
theorem follows. O

As mentioned before the proof of the continuous dependence of the landing points
does not necessarily imply the stability of portraits. However, we have the following
corollary:

Corollary 6.2. (Stability of Portraits in a Hyperbolic Component and its
Roots and Co-Roots)

Let H be a hyperbolic component and E be the set of all roots and co-roots
of H. Then for every parameter co € HUE and associated repelling or parabolic
periodic point zy there is a continuous map z: HU E — C such that z(cy) = 2
and the portrait of the orbit of z(c) is the same for allce HUE.

Proof: First we note, that for all ¢ € H{ U E all periodic dynamic rays land in
the dynamic plane of ¢. Hence, their landing points z(c) depend continuously on
the parameter by Theorem 6.1. It remains to show that the essential portraits are
preserved: if for ¢p € H U E the dynamic rays, say R;’ and R}, land at z, then z(c)
is the landing point of R} and Ry, for all c € HU E. Let k be the orbit and n be the
ray period of zy. If z; and z(c) are repelling the statement follows by Corollary 3.2.4.
However, if z; is parabolic then by Theorem 4.2 at z; coalesce points of a k-periodic
and an n-periodic orbit. Since one of them is attracting, namely the n-periodic
orbit in the non-primitive case, z(c) has period k. It follows by the previous theorem
that z(c) is the landing point of the dynamic rays at angles ¥ and ¢’ for all ¢ € HUE.
O

The next lemma and theorems lead us to statements on roots, co-roots and centers
of hyperbolic components:

Lemma 6.3. (On the Boundary of the Characteristic Fatou Component)

Let ¢y be a parameter with superattracting orbit of exact period n and H be
the hyperbolic component for which cy 1s a center. Then the Fatou component
of fe, containing the critical value ¢y has ezactly d — 1 points of period n on its

boundary, say zél), e ,z(()d_l). At one of them, say z(()l), land two dynamaic rays.
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Moreover, let E be the set of roots and co-roots of H. Then there are continuous
functions 2V ... 29D 2* on HUE such that 2 (cy) = z(()i) for1<i<d-1
and 2*(cy) = cy. Furthermore, for every ¢ € E, 2*(c) and one of the 2V (c) are
equal to the characteristic point of the parabolic orbit of c.

Proof: First we prove that the Fatou component U; of f,, containing the critical
value has precisely d—1 points of exact period »n on its boundary: since ¢, is a point of
the superattracting orbit, there is a Bottcher map ¢ on U; such that ¢~'o forop(z) =
2%. It follows that on AU, are d — 1 fixed points of Je'- Since they are not on the
only non-repelling periodic orbit of ¢y, they are repelling.

Moreover, as in the proof of Lemma 5.2.1 we see if n # 1 that one of these
points, say z(()l), lies on the Hubbard tree I of c, and it is the only point in ' N U, by
Lemma 5.1.2. If n = 1 then there is clearly only one parameter with superattracting
orbit and the dynamic rays at angles 0 and 1, which we consider as two different rays
in this case, land trivially at a common point.

Therefore, z(()l) disconnects 0K, and this means by Theorem 2.2.5 that at least
two dynamic rays land at z(()l). By Lemma 4.1 there is a continuous function z*: H —
C such that 2*(cy) = ¢o and as in the proof of Lemma 4.3 it can be extended
to a continuous function on H U E. Since the multiplier map A5; is continuous
on K, z*(c) is the characteristic point of the parabolic orbit for every ¢ € E. Since
the z(()i) are repelling, there are by Corollary 3.2.4 continuous functions z() on 3 such
that 2®(ce) = 23 for 1 < i < d — 1 and all 2)(c) are repelling for ¢ € H. Again
the functions 2(!) can be extended continuously to 3 U E. Moreover, since z*(c) is
the characteristic point of the parabolic orbit of ¢ for ¢ € E and lies therefore on the
boundary of the characteristic Fatou component and has exact period n, it must be

equal to one of the points 2 (c). O

Next we will show that the mapping degree of \5; is d — 1 and by doing this we
will see that every hyperbolic component has an unique center and at least one root.
We note that it is not possible to apply the same proof in the case d > 2 as it is
given for Corollary 5.4 in [S97| for d = 2. The reason is: in the quadratic case it is
sufficient to see that there is at least one root, which is clear because there are no
co-roots and A4 is a proper holomorphic map. Then it is possible to show that the
root is unique and it follows that A\s¢ has mapping degree 1 and moreover that it is
a conformal isomorphism from H onto D. Milnor shows in [M98] also that A4 is a
conformal isomorphism by using some global counting arguments. However, there
are other possibilities and we follow a suggestion of Schleicher.

Theorem 6.4. (Mapping Degree of \y()
The multiplier map of a hyperbolic component has mapping degree d—1. More-
over, every hyperbolic component has an unique center and at least one root.

Proof: Let H be a hyperbolic component with period n. In order to show that the
mapping degree of \; is at least d — 1 we consider a parameter ¢, € )\%(0). The
critical point is on the superattracting orbit and its exact period is n. By Lemma 4.1
there is a holomorphic function z(c) such that z(cy) = ¢o. Since we can locally
write Age(c) = dnfe" (z(c))d_1 o fe (z(c))d_lz(c)d‘1 and z(c) has the only zero ¢,
it follows that Agz(c) = d"(c — ¢p)* *g(c)? ! for some holomorphic function g near c.
Hence, A\j; has at least mapping degree d — 1. Moreover, it follows that ¢, is the only
parameter with Ag¢(co) = 0, i.e. the center is unique. If ¢; would be an another center
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of H, one of the points z(c1), ... , fo" ' (2(c1)) would be 0 in contradiction to the fact
that the exact orbit period is n and z(c) = 0 if and only if ¢ = ¢.

Now we show that the mapping degree is at most d — 1: by Theorem 5.3.1 we
know that if a parameter ray lands at a parameter ¢, the dynamic ray at the same
angle lands at the characteristic point of the parabolic orbit of c. But by the previous
Lemma 6.3 we know that there are only d — 1 candidates for characteristic points
of parabolic parameters with ray period n, i.e., there are at most d — 1 roots and
co-roots of }{. This means that the mapping degree of \3; is at most d —1 and hence
precisely d — 1.

Moreover, this shows that all candidates for characteristic points are realized.
Since portraits are stable for all parameters in H and all of its roots and co-roots by
Corollary 6.2 we obtain by Lemma 6.3 that at least one parameter has a parabolic
orbit with characteristic point at which at least two rays land. Hence, there is at
least one root. O

The uniqueness proof for roots of hyperbolic components can be done as in the
quadratic case (see again Corollary 5.4 in [S97]).

Theorem 6.5. (Roots Exist and Are Unique)
Every hyperbolic component has exactly one root.

Proof: Let H be a hyperbolic component of period n. By the previous theorem
there is at least one root. Now assume that there are two roots ¢y and ¢; of H. Then
the sets of the portraits of all repelling and parabolic periodic orbits are equal for ¢
and c¢; by Corollary 6.2. This means that for any orbit of ¢y with some portrait P an
orbit of ¢, exists with portrait P and vice versa. Hence, they have the same angles,
say v_ and ,, with the property that the critical point and the critical value are
separated by the ray pair at these angles and that all other ray pairs separating 0 and
the critical value lie in the component containing 0. It follows that the characteristic
angles of the parabolic orbit portraits are equal.

Since by Corollary 5.3.3 every essential parabolic parameter is the landing point
of the parameter rays at the characteristic angles of the parabolic orbit portraits,
this proves the theorem. O

Now it is quite easy to determine the number of co-roots of a hyperbolic component:

Corollary 6.6. (Number of Co-Roots)
Every hyperbolic component has ezxactly d — 2 co-roots.

Proof: Let H be a hyperbolic component with period n. It follows from the definition
of A\j; and Theorem 4.2 that precisely the parameters which have a parabolic orbit
with exact ray period n are mapped on 1 by Ay;. The number of these parameters
is exactly d — 1, because by Theorem 6.4 the mapping degree of A\5; is d — 1. By
Theorem 6.5 every hyperbolic component has exactly one root, so the other d — 2
parameters must be co-roots. Il

The previous two statements, Theorem 6.5 and Corollary 6.6, are restatements of
the last assertion of the Structure Theorem.

So far we know that at every hyperbolic component at least d parameter rays
land. Our next aim is to show that at most d parameter rays land at every hyperbolic
component. Then the proof of the Structure Theorem for periodic rays is finished. In
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the following section we will use the so-called internal rays of a hyperbolic component
to join the landing points of the parameter rays landing there. Here is the definition:

Definition. (Internal Rays and Angles of a Hyperbolic Component)
Let 7 be a hyperbolic component and v: I — J{ an arc starting at the center of I
such that there is an angle o with Ay (7(¢)) =t €*™ for all ¢ € I. Then we call y([)
an internal ray of H with angle ¢ and write R} for y(I).

For a parameter ¢ € H different from the center of H{ which lies on an internal
ray with angle ¥ of H we call ¥ the internal angle of ¢ with respect to J. O

Remark: Since Ay is a (d — 1)-to-one map an internal ray of H with a given angle
is not uniquely defined. On the contrary for every angle ¥ a hyperbolic component
has d — 1 internal rays with this angle ¥.
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7 Kneading Sequences

In this section we will finish as mentioned before the proof of the Structure Theorem
by showing that at every hyperbolic component at most d parameter rays land. We
will do this by proving a necessary condition for the landing of parameter rays at a
common point (see Theorem 7.2 and 7.4). For this purpose we introduce kneading
sequences of angles. The proofs in this section are more or less the same as the one
of Schleicher in Section 3 in [S97] (see in particular Lemmas 3.9 and 3.10). However,
to use these methods, namely the partition in Theorem 7.2, for d > 2 we need some
knowledge on hyperbolic components. We accumulated this in the previous sections
and can use it now.

Definition. (Itineries and Kneading Sequences)
For an angle ¥ € S* we divide S! by the inverse of the d-tupling map o and label the
components in the following manner:

m ifne (*’Hm_l) 79+—m>

l = e
o) m2if = dHmal) _ demy

d d

The infinite sequence Iy(n) := ly(n), ls(dn), ly(d®n), . .. is called the J-itinerary of n
with respect to the d-tupling map. For the special itinerary Iy(¥) we write K (9) :=
Iy(9) = 1y(9),ls(dV),l9(d*9),... and call K () the kneading sequence of ¥ with
respect to the d-tupling map.

The symbols 5,%, e ,fii:%,d% are named boundary symbols and if it does not
matter which of the boundary symbols we mean, we replace them sometimes by an
asterisk (x). O

Remark: We can consider the kneading sequence as a mapping K : S' — K S with

KS = {(as)n : a, is one of the symbols 0,1,... ,d — 1,0,7,... ,2:%,(191. }.

It is convenient to write K ();) = K(1J;) for angles ¢J;, 7, if both angles have
boundary symbols at the same entries and all other symbols coincide.
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We should note the following statement:

Lemma 7.1. (Changing of the Entries of a Kneading Sequence)
Consider the kneading sequence as mapping K: S' — KS. Then the k-th entry
of K(9) changes if and only if ly(d* '9) is a boundary symbol. In more detail
we can say: if ¥ goes in positive direction, it 1s incremented as indicated by the
boundary symbol ™', i.e., it changes from m to m + 1 (again d =0).

Proof: The assertion follows immediately by the definition: the k-th entry of K ()
is defined as ly(d* 149). O

In the following theorem we define a partition of initial kneading sequences and do
most of the proof of the induction step of Theorem 7.4.

Theorem 7.2. (A Partition of Initial Kneading Sequences)

Let n > 2 be an winteger. If at the root of every hyperbolic component with
period n — 1 or lower exactly two periodic parameter rays land then any two
parameter rays with angles 9,9, of exact ray period n can land at the same
parameter only if K(91) = K(,).

Proof: 'To verify the statement we construct a partition P, ; of C such that every
parameter ray with exact ray period n together with its landing point is completely
contained in an open component of P, ;. Furthermore, we require that for any two
parameter rays R}, R}’ which are both in the same open component of P, ; the
kneading sequences of ¥J; and ¥y coincide in the first n — 1 entries. This proves the
theorem, because any parameter ray with angle of exact period n has a kneading
sequence of period n and the n-th entry of the kneading sequence is (). It remains
to prove that there is such a partition.

Let © be the set of all angles with exact period £ and A, the set of multiplier
maps of the k-periodic hyperbolic components. We define

P, ::U(U Rru (J A;(I))

k=1 “J€0Oy )\ﬁEAk

and assert that P, _; is a partition with the required properties. By construction P,_;
is a partition of C. Due to Theorem 3.2.3 all rays with exact ray period % land at a
parameter which has a parabolic orbit with exact ray period k, too. Moreover, for
a hyperbolic component H the inverse image A;}(I ) is exactly the set of all internal
rays with angle 0. Each of these d — 1 internal rays lands at a root or co-root of J{
and conversely the root and every co-root of JH is a landing point of one of these
internal rays. Since parameter rays do not cross we get by using these considerations
that every parameter ray of period n together with its landing point is completely
contained in one of the open components of P,_;.

Now assume that two parameter rays RﬁMI, Rf}g are both contained in the same
open component of P,_;. Since every hyperbolic component has d — 2 co-roots and
exactly one root (Corollary 6.6 and Theorem 6.5) and by assumption at every root
exactly two parameter rays land, we see that at the boundary of every hyperbolic
component of period k exactly d parameter rays of period £ land for k& € {1,... ,n—1}.
Thus, for every k£ € {1,... ,n—1} the number of angles which are in O, and in (9, 9Js)
is m-d for an m € Ny. Using Lemma 7.1 this yields that, again for every k €
{1,...,n — 1}, the k-th entry of K () is incremented m - d times as 1) goes from 1,
to 1, i.e., it is the same for ¥, and 1. O
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The next step is to see that given a root the kneading sequences of all angles, except
for possibly the characteristic angles, of the dynamic rays landing at the characteristic
point of the parabolic orbit of the root are different.

Theorem 7.3. (Different Kneading Sequences)

Let ¢y be a root. Then the angles of the dynamic rays landing at the associ-
ated characteristic point, except for possibly the two characteristic angles, have
pairwise different kneading sequences.

Proof: First we introduce some notation: let z; be the characteristic point of the

parabolic orbit and R, ... , Ry all the dynamic rays landing at z;. For s = 2 there
is nothing to prove, so we assume s > 3. If the exact period of the angles ¥,,... , 9,
is n, then by Lemma 3.1.1 the orbit period of the parabolic orbit is k¥ := n/s. We
assume that n > 2 because the statement is trivial for n = 1. For i € {1,...,s}

we denote the d inverse images of J; with respect to the d-tupling map by 195” =
(9 +1)/d € S' (I € {0,...,d — 1}) and the landing point of 195” by z(()l) for I €
{0,...,d —1}. Obviously z(()l) is the landing point of 191(” if and only if it is the one
of a 195-1), i.e., the z(()o), e ,z(()d*l) do not depend on the choice of a specific angle ;
(i,j € {1,...,s}). Let 3 be the hyperbolic component for which ¢, is the root and
let ¢; be the corresponding center. By Corollary 6.2 and Lemma 6.3 we see that
there are continuous functions 2%, ..., 2(¢) on HU{co} such that 2@ (cy) = 23 for
all 7 and at 2 (c) land the dynamic rays at the same angles as at z(()i) forall7 and c €
H U {co}. The points 2()(c,) lie on the boundary of the Fatou component U, of f.,
containing the critical point. Let I' be the Hubbard tree of ¢;, U; the characteristic
Fatou component and v: I — I' be the arc which connects the unique intersection
point ['NU, with the critical value ¢;. Then ~(I) has d inverse images. Each of them
lies in U, and connects the critical point with one of the points 2(¥ (c,). Therefore, the
partition Py, := f'(v(I)) U R\, has precisely d open components. Now we label

the boundary Py, by (*) and the cé)mponent which contains the critical value ¢; by 1.
We label the subsequent components by subsequent numbers in positive direction.
By construction the branch of I'—U on which the critical value lies has always label 1.
Since f., is orientation preserving this implies that every branch of I' — U, has the
same label with respect to every partition Pj,. Since the Hubbard tree connects the
critical orbit and every z((c;) lies on the boundary of a component which contains a
point of the critical orbit, the dynamic rays landing at a 2((c;) have the same label
for all partitions. Hence, the v; -itinerary of ¥;, is equal to the ¥;, itinerary of ¥;, for
all 41,19, j1,72 € {0,...,d — 1} except for possibly the positions mk — 1, m € N. This
means that the kneading sequences of all ¥J; can only differ in the position mk — 1,
m € N. Next we verify that the kneading sequences of all ©J; except for two angles
are pairwise different at an (mk — 1)-th position. The (mk — 1)-th entry of the
kneading sequence of ¥J; is just the label of o°(™¥~1)(¢;) with respect to Py,. Thus,
two angles ¥; and 1J; can have the same kneading sequence only if the number of
dynamic rays among the Rf;(,) which have a certain label is equal with respect to Py,
0

and Py,. However, if at least two of the rays R;l(,) have a different label with respect
0

to Py,, the number of rays which have the smaller label is different with respect to Py,

and P, for 9; # ¥;. Therefore, all these dynamic rays must have the same label.

This is only possibly if none of them lies in the component of R i) U R ) U 29 (¢y)
0 0

which contains Uy, i.e. if ¥; and ¥); are the characteristic angles. O
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Figure 8: The Julia set of a polynomial z — 2% + ¢ which has a 6-periodic super-
attracting orbit (¢ is near 0.225345 + 0.9414064). With the notation of the previous
proof the dynamic rays landing at z; have the angles ¥, = 92/728, ¥, = 100/728
and 193 = 172/728 The orbit of 191 is 191 — 0'(191) — 192 — 0'(’!92) — ?93 — 0'(793) — ’191.

Finally we combine the previous results and finish the proof of the third assertion of
the Structure Theorem by showing the following statement.

Theorem 7.4. (Every Root is the Landing Point of Precisely Two Parameter
Rays)

Every root ¢y 1s the landing point of exactly two parameter rays. Moreover, the
angles of the parameter rays landing at cy are the characteristic angles of the
parabolic orbit portrait of cg.

Proof: We prove the theorem by induction: let n be the ray period of ¢5. Forn =1
the only root is the landing point of the parameter rays at angles 0 and 1 that we
consider as two rays in this case. We assume that the roots of all hyperbolic compo-
nents with period n—1 or lower are the landing points of exactly two parameter rays.
Then we obtain by Theorem 7.2 that at the root ¢y of any hyperbolic component with
period n only parameter rays with n-periodic angles which have the same kneading
sequences can land. Note that a parameter ray with a given angle can only land at ¢
if the dynamic ray with the same angle lands at the characteristic point z, of the
parabolic orbit of ¢y (Theorem 5.3.1) and that all angles of the dynamic ray landing
at zp, except for possibly the characteristic angles ¥ ,?,, have different kneading
sequences. This shows us that at most the parameter rays with the angles ¥ v,
can land at ¢y. By Corollary 5.3.3 we know that they land indeed. This finishes the
induction. O
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8 Preperiodic Parameter Rays

To complete the discussion of rational parameter rays we have to study the landing
points of preperiodic parameter rays. Since any preperiodic angle is mapped by some
iterate onto a periodic orbit we can use our results for periodic parameter rays. The
ideas are the same as in the quadratic case. We follow Schleicher’s proofs of Section 4
in [S97].

Definition. (Misiurewicz Point)

A parameter ¢ for which the critical orbit is preperiodic but not periodic is called
Misiurewicz point. O

Theorem 8.1. (Preperiodic Parameter Rays Land)
Every parameter ray at preperiodic angle ¥ lands at a Misiurewicz point cy. The
dynamic ray Ry lands at the critical value co.

Before the proof we should note that by taking backward images we obtain by The-
orem 3.2.2 that also for every parameter ¢ with preperiodic repelling point 2z, which
is the landing point of a dynamic ray R;’ a neighborhood U of ¢ and a holomorphic
function z: U — C exist such that z(cy) = 2, and every z(c) is the landing point
of Rj.

Proof: Let ¢ € My be a parameter in the limit set of R)'. Using the results
about kneading sequences it is easy to see that ¢y can not be a parabolic parameter:
by Theorems 7.4 and 7.2 we know that two parameter rays can land at the same
parameter only if the kneading sequences of their angles are equal. Since every
parabolic parameter is the landing point of at least one periodic parameter ray and
the kneading sequence of periodic angles is periodic again, only parameter rays at
angles with a periodic kneading sequence can land at a parabolic parameter. But
the kneading sequence of a preperiodic angle does not contain any boundary symbol
and hence ¢y can not be a parabolic parameter.

We want to show that the dynamic ray R’ lands at the critical value ¢;. Then
it follows by Lemma 2.2.6 that the critical orbit is preperiodic and hence, ¢, is
a Misiurewicz point. Since limit sets are connected (see for example the remark
after Definition 2.4 in [S98b]) and the set of Misiurewicz points of M, is countable
(note, that every Misiurewicz point ¢ must satisfy the equation f(c) = fe )
for integers p,k > 1), the theorem then follows.

Now to the proof that R; lands at cy: since ¢, is not a parabolic parameter, R,
lands at a preperiodic repelling point 2, by Theorem 2.2.4. If z; is not mapped
by any iterate of f., to the critical point 0, then there is a neighborhood U of ¢,
and a holomorphic function z on U such that z(cy) = %, and z(c) is the landing
point of R by Theorem 3.2.2 for all ¢ € U. Furthermore, by Lemma 2.3.3 for every
parameter ¢ € U N R)! the critical value c lies on the dynamic ray RS. Since RS
lands and z is continuous this implies z(cy) = c.

However, if 2z, lies on the backward orbit of the critical value ¢, then there
is an integer I > 1 such that f°(z)) = ¢y and again by Theorem 3.2.2 there is
a neighborhood U of ¢y and a holomorphic function z on U such that z(cy) = ¢
and z(c) is the landing point of R (5)- Now we can not go back uniquely because

the critical point lies on the orbit. But the d branches of f; D z(c) are then the

landing points of the branches of R§ in which Riol( 9) splits into. These landing points
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again depend holomorphically on ¢ and as above it follows that a branch of R;? lands
at cg. O

We should note that the last case in the previous proof can never occur: it would
follow that ¢, is periodic and this would be a contradiction to the preperiodiness of 7
and to the assumption that R}’ lands at the backward orbit of ¢;.

Now we have also finished the proof of the fourth assertion of the Structure
Theorem and will now show the fifth:

Theorem 8.2. (Every Misiurewicz Point is Landing Point)
At every Misiurewicz point a preperiodic parameter ray lands.

Proof: Let ¢y be a Misiurewicz point. In the proof of the previous theorem we
have already seen that ¢y is not parabolic. By Theorem 2.2.5 the critical value ¢
is the landing point of a dynamic ray, say R,>. Moreover, by Theorem 3.2.2 there
is a neighborhood U of ¢y and a holomorphic function z on U such that z(cs) = ¢
and z(c) is the landing point of R§ for all ¢ € U. Since the number of Misiurewicz
points with a given preperiod and period is finite, we may assume that U does not
contain any other Misiurewicz point. For ¢ € U let now ¢, be the Bottcher map which
maps the complement of the filled-in Julia set K. onto the complement of D and
let z(c,t) := @, 1(te?™). Since RS lands, z(c,t) is well-defined for all ¢t € [1,00]. We
define the winding number of Rj around c as the total change of arg(z(c,t) —c)/(2m)
while decreasing ¢ from oo to 1. If Rj does not contain the critical value ¢ and does
not land there, the winding number is well-defined, finite and depends continuously
on the parameter. Under this assumption the change of the winding number if we go
along any small closed arc around cy, is by the Argument Principle the multiplicity
of the zero ¢y with respect to z(c) — c¢. But the value of the winding number is the
same at the start and end point of the closed arc. Hence, there is a discontinuity
on any closed arc around ¢y and there are parameters ¢ for which the critical value
lies on RS. This implies that ¢, is a limit point of R)' and therefore by the previous
theorem R)' lands at co. O

Different to the periodic case we are in general not able to say how many parameter
rays land at a given Misiurewicz point. However, we can still make some statement
in Theorem 8.4. Its proof depends on the following lemma:

Lemma 8.3. (The Kneading Sequence of Preperiodic Angles)

For a parameter cy let Ry’ be a preperiodic ray landing at z, with preperiod |
and period n. Then K(¥) has preperiod [, too, and its period is equal to the
orbit period of zp.

Proof: Clearly the preperiod of K (9J) can not be larger than /. Similarly to the
proof of Theorem 7.3 we construct a partition to handle the kneading sequence of
a given angle. By Theorem 8.1 the dynamic ray Rj’ lands at the critical value c
and hence the d dynamic rays with the preimages of ¥ as angles land at the critical
point 0. If we label the components of this partition, consisting of the critical value
and this dynamic rays landing there, the labels of R, RZ(E 9 reflect again the
kneading sequence of ). If the preperiod of K () would be smaller than /, then the
dynamic rays at angles 0°¢~1(¥9) and 0°¢~'*™ would have the same label. But this
can not be the case because their landing points fol' (co) and ffo(l_H”)(cO) are in
different components of the partition.
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Next we show that the orbit period of fc"(f(c) is exactly the period of the knead-
ing sequence of /(1)) clearly the period of the kneading sequence divides the orbit
period. If the labels of o° (9)) and o°(+*) (1Y) are always equal, i.e., k' is the period of
the kneading sequence, the dynamic rays at these angles land always in the same par-
tition. We can then connect their landing points by an arc within every component.
By iteratively taking inverse images of these dynamic rays, the landing points and
the arc we see that the landing points converge to a single point, i.e., the dynamic
rays at angles 0°'(9) and o°(**)(¥9) land at the same points. O

Theorem 8.4. (Number of Rays at a Misiurewicz Point)

Let 9 be a preperiodic angle with preperiod | and period n. Furthermore, let k
be the period of K(¥) and denote the Misiurewicz point at which the parameter
ray at angle ¥ lands by co. If n/k > 1 then ezactly n/k parameter rays land at cg
and if n/k =1 then 1 or 2 parameter rays land at co.

Proof: Using Lemmas 8.3 and 3.1.3 we already know that n/k dynamic rays land at
each point of the orbit of f(co) if n/k > 1 and at most two dynamic rays land at each
point if n/k = 1. Moreover, since f., is a local homeomorphism in a neighborhood
of ¢co, feo(Co)y--- s é’o(lfl)(co) at these points the same number of dynamic rays land
as at the periodic orbit. By Theorems 8.1 and 8.2 the number of parameter rays
landing at ¢, is precisely the number of dynamic rays landing at each point of the
orbit of ¢y. This finishes the proof. O

46



References

[DH82]

[DHS85]

[GM93]

[K92]

[M90]

[M98]

594]

S97]

[S98a]

[S98b]

[S98c]

Adrien Douady and John H. Hubbard, [tération des polynémes
quadratigues complezes, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982),
123-126.

Adrien Douady and John H. Hubbard, Etude dynamique des polyndémes
complezes I, II, Publication mathematiques d’orsay, 1984 - 1985.

Lisa R. Goldberg and John Milnor, Fized points of polynomial maps II:
Fized point portraits., Ann. Scient. Ecole Norm. Sup., 4¢ série 26 (1993),
51-98.

Frances Kirwan, Compler Algebraic Curves, Cambridge University Press,
Cambridge, 1992.

John Milnor, Dynamaics in One Complex Variable: Introductory
Lectures, Stony Brook IMS Preprint 5, Institute for Mathematical
Sciences, SUNY, Stony Brook NY, 1990,

URL: http://www.math.sunysb.edu/preprints/.

John Milnor, Periodic Orbits, External Rays and the Mandelbrot Set,
URL: http://wuw.math.sunysb.edu/~jack/, Institute for Mathematical
Sciences, SUNY, Stony Brook NY, March 1998.

Dierk Schleicher, Internal Addresses in the Mandelbrot Set and
Irreducibility of Polynomaals, Ph.D. thesis, Cornell University, 1994.

Dierk Schleicher, Rational Parameter Rays of the Mandelbrot Set, Stony
Brook IMS Preprint 13, Institute for Mathematical Sciences, SUNY, Stony
Brook NY and Zentrum Mathematik, Technische Universitat Miinchen,
1997, to appear in Asterisque,

URL: http://pckoenigl.mathematik.tu-muenchen.de/~dierk/.

Dierk Schleicher, The Dynamics of Iterated Polynomazals, in preparation,
1998.

Dierk Schleicher, On Fibers and Local Connectivity of Compact Sets
in C, Stony Brook IMS Preprint 12, Zentrum Mathematik, Technische
Universitat Miinchen, 1998,

URL: http://www.math.sunysb.edu/preprints/.

Dierk Schleicher, On Fibers and Local Connectivity of Mandelbrot and
Multibrot Sets, Stony Brook IMS Preprint 13a, Zentrum Mathematik,
Technische Universitat Miinchen, 1998,

URL: http://www.math.sunysb.edu/preprints/.

47



