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Abstract

This diploma thesis contributes to the understanding of dynamical systems gener-
ated by the iteration of entire functions. After the intense and successful investi-
gation of polynomial dynamics, the question arises if and how these results can be
carried over to entire transcendental functions. This thesis deals – in analogy to
the discussion of the Mandelbrot set – with the parameter space of the exponential
family {Eλ(z) := λ · exp(z) : λ ∈ C∗}.

According to the external rays for the Mandelbrot set, we construct parameter
rays for the exponential family. These are curves of escaping parameters, i.e. param-
eters for which the singular orbit {0, λ, λeλ, . . . } escapes under iteration in absolute
values to infinity. The parameter rays are the essential step towards a classification
of the escaping parameters, and they provide structure on the exponential parameter
plane. This diploma thesis builds on results by Dierk Schleicher, who constructed
parameter rays for the case of bounded combinatorics.

Deutsche Zusammenfassung

Die vorliegende Diplomarbeit leistet einen Beitrag für das Verständnis von durch
Iteration ganzer Funktionen erzeugten dynamischen Systemen. Nachdem seit den
achtziger Jahren die Dynamik von Polynomen intensiv und mit Erfolg erforscht
wurde, lenken wir nun das Augenmerk darauf, ob und wie man diese Ideen auf ganze
transzendente Funktionen übertragen kann. In dieser Arbeit geht es – analog zur
Diskussion der Mandelbrotmenge – um den Parameterraum der Exponentialfamilie
{Eλ(z) := λ · exp(z) : λ ∈ C∗}.

Entsprechend den externen Strahlen für die Mandelbrotmenge werden hier Pa-
rameterstrahlen für die Exponentialfamilie konstruiert. Das sind Kurven von ent-
kommenden Parametern, also Parameter für die der singuläre Orbit {0, λ, λeλ, . . . }
unter Iteration betragsmäßig nach ∞ entkommt. Die Parameterstrahlen stellen
einen wesentlichen Schritt zur Klassifikation der entkommenden Parameter dar und
verleihen dem Exponentialparameterraum Struktur. Die Diplomarbeit baut auf
Ergebnissen von Dierk Schleicher auf, der Parameterstrahlen für den Fall beschränk-
ter Kombinatorik konstruiert hat.



1 The Setting

1.1 Introduction

We consider discrete dynamical systems generated by the iteration of a holomorphic
function f : C→ C. This means that every z ∈ C represents a state of a dynamical
system, which changes to the state f(z) in the next step. The sequence

(z, f(z), f(f(z)), . . . , f ◦n(z), . . . )

is called the orbit of z. Every z ∈ C determines thus a certain kind of dynamical
behavior, such as being an equilibrium (the orbit is eventually fixed or periodic) or
being chaotic. In this paper we are interested in the set

{z ∈ C : lim
n→∞

|f ◦n(z)| = ∞} (1)

of so-called escaping points. The holomorphic functions discussed are the exponential
functions

Eλ(z) := λ exp(z) , λ ∈ C \ {0} .

So instead of only one function we investigate the behavior of a one-parameter-
family of holomorphic functions depending analytically on the complex parameter.
Having only one singular value, the asymptotic value 0, the exponential family can
be considered as a prototypical family for transcendental entire maps of finite type
— analogous to the unicritical standard polynomial families {zd+c : c ∈ C} (d ≥ 2)
having only the singular value c.

We distinguish between the dynamic plane, which describes the dependence of
the dynamical system on its initial value z for a fixed parameter λ, and the parameter
plane, the space of possible parameters λ ∈ C. The major goal is to understand and
to classify the various possibilities of the dynamics, which involves an investigation
of both the parameter and the dynamic planes.

This thesis helps to endow the parameter space with structure, by marking pa-
rameters which yield a certain type of dynamics. In our case, this type is determined
by the behavior of the singular orbit (zn)n≥1 := (0, λ, λeλ, . . . ). We will mark those
parameters for which the singular orbit escapes (see (1)).

The goal of understanding and classifying the dynamics has been worked on
quite successfully for polynomial dynamics, beginning with the fundamental Orsay
notes [DH] by A. Douady and J. Hubbard and continued by many others. It thus
stands to reason that these results might be useful hints for the investigation of the
exponential family.

A dynamical system generated by a holomorphic function f : C → C can be
basically described in terms of its Julia set J(f), the locus of non-normality in the
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sense of Montel. Roughly speaking, that means that the Julia set consists of those
initial points for which the dynamical system is unstable, i.e. responding sensitively
to perturbations of the initial value. The (chaotic) dynamics on the Julia set is
crucial for the understanding of the dynamical system, for the dynamics on the
Fatou set F (f) := C \J(f) is comparably easy to understand. For polynomials p of
degree d ≥ 2, there is an easy description of the Julia set, which is connected to the
question of escaping : the Julia set of polynomials is the boundary of the filled-in
Julia set K(p) := {z ∈ C : z not escaping}.

It turns out for polynomials p(z) = zd +c that the set of escaping points carries a
natural structure which helps to understand the dynamics on the Julia set. In fact,
either J(p) is a Cantor set, which is the easiest case, or K(p) is connected and simply
connected. Hence there is a biholomorphic Riemann map ϕ : C \ D → C \ K(p)
which transfers the structure of the rays (ϑ, t) 7→ te2πiϑ : S1 × (1,∞) → C to the
set C \ K(p) of escaping points. The escaping points can thus be considered as a
union of so-called dynamic (sometimes: external) rays Rϑ(t) = ϕ(te2πiϑ) or as the
set of pairs of angles and potentials

(ϑ, t) ∈ S1 × (1,∞) ,

and the dynamics acts on these pairs (if ϕ has been chosen appropriately) via

(ϑ, t) 7→ (dϑ, td) .

Now if J(p) is locally connected, which is true in many cases, then the Carathéodory
Theorem asserts that every ray lands on ∂K(p) = J(p), i.e. that the limits
limt↘1 Rϑ(t) ∈ J(p) exist. This gives us a surjective continuous map S1 → J(p),
allowing us to model (J(p), p) as the unit circle (S1, ϑ 7→ dϑ) modulo the equivalence
relation given by angles having a common landing point. The equivalence relation
is respected by the dynamics; thus one just have to understand the equivalence re-
lation in order to understand the chaotic dynamics on J(p). In other words, the
key to the understanding of polynomial dynamics is to understand which rays land
together. Symbolic dynamics is a very useful tool in this context, see for example
[BS].

Let us come back to our original question, whether it is possible to modify these
ideas so as to be applied to a class of non-polynomials such as the exponential
family. Of course, any positive answer is a great progress for the understanding of
transcendental dynamics. By no means one could have expected before that it was
possible to generalize the beautiful polynomial results to any class of transcendental
functions whatsoever. However, the research work during the last years gave a
positive answer, beginning with Bob Devaney (for example [DK], [DGH]) and his
coauthors, who mainly handled exponential maps for real parameters λ < 1/e and
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for arbitrary parameters with bounded combinatorics, and Dierk Schleicher, who was
the first one to get results for arbitrary parameters and combinatorics (for example
[SZ], [S1]).

First of all, there are parameters λ for which J(Eλ) = C (for example if 0 is
escaping under Eλ), so we cannot expect the concept of Julia sets to establish a
sufficient structure on the dynamic plane. Instead we could for example describe
attracting components (components which are attracted by a periodic orbit) or
escaping points. The latter has been done in the paper [SZ] by D. Schleicher and
J. Zimmer, from which the main results will be repeated in Chapter 2.1 and will be
used throughout the whole paper.

As a matter of fact, the escaping points of every exponential function Eλ are
organized in differentiable rays — again called dynamic rays — just as in the poly-
nomial case. (But a difference is that the union of the rays does not have Hausdorff
dimension 2 anymore.) Moreover, they have a unique encoding as pairs

(s, t) ∈ ZN × (T,∞) , with some T ≥ 0 ,

where s is a sequence of integers coming from a partition of the plane fitting to
Eλ (see Figure 2), and t arises from a suitable parametrization of the curve. The
dynamic system acts on these pairs via

((s1, s2, s3, . . .), t) 7→ ((s2, s3, . . .), e
t − 1) .

The idea is to use (R+, et − 1) as a model for escaping dynamics and to construct
the rays by conjugation similar to the polynomial case (but the conjugation is con-
structed in the other order). The conjugation ϕ discussed above for the polynomials
p(z) = zd + c is usually constructed by first pushing forward a given point n times
by the dynamics (i.e. iterating) until we are close to ∞ (where p ≈ zd), and then
taking n times appropriate d-th roots. Instead, we first iterate along the positive
real axis, starting at some given potential t, and then choose the backward images
depending on the sequence s. This works only if t is big enough so that boundaries
of the partition are not passed anymore. In this case, the image of some end of the
real axis under the limit function is a ray. These ray tails can be extended down
uniquely to a minimal potential ts independent from the parameter λ, except for
some special cases (see Theorem 2.2). The sequence s is called the external address
and t the potential.

In [SZ], it has been shown that every escaping point is either on such a dynamic
ray or a landing point of one, and there is a precise description about which pairs of
external addresses and potentials refer to escaping points. The dynamic rays are the
central tool used in this thesis. In addition to the classification of escaping points
they give an interesting dimension paradox first mentioned by B. Karpińska [K],
stating that the union of all rays has Hausdorff dimension 1, whereas the escaping
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landing points together have Hausdorff dimension 2. Günter Rottenfußer [R] has
completed the same program for the cosine family {Ea,b(z) := aez +be−z : a, b ∈ C∗}
with the difference that the escaping set even has positive two-dimensional Lebesgue
measure (using a result by C. McMullen), whereas M. Lyubich showed that for the
exponential functions the Lebesgue measure equals 0.

Beyond the dynamics of particular functions we are interested in the classifica-
tion of and bifurcation between different types of behavior, considering a family of
functions parameterized by a complex parameter. A discussion of the parameter
plane defined by such a family also helps to obtain results which can be carried back
to particular dynamics: the comprehension of the parameter plane of a holomorphic
family yields a deep understanding of the dynamics (and vice versa).

Let us briefly resume the results from the polynomial case. This leads us to the
well known Mandelbrot set M, which emerges from the discussion of the quadratic
family {pc(z) = z2 + c : c ∈ C}. Two possible ways to define a structure on
the parameter plane are to decide whether for a given parameter c the critical
orbit escapes (|p◦nc (0)| → ∞) or whether the associated Julia set is disconnected.
For polynomials these two conditions are in fact equivalent, and they define the
Mandelbrot set

M := {z ∈ C : J(pc) is connected}
(resp. the Multibrot sets for degrees d > 2). Parameters for which the critical
point 0 escapes are called escaping parameters. They have the structure of rays Rϑ,
called parameter rays, inherited by the dynamic rays. The parameter rays are an
important tool for the topological and dynamical understanding of the Mandelbrot
set in a similar spirit as dynamic rays are for the Julia sets. If the famous conjecture
MLC (M is locally connected) is true, then we get similar as for the polynomial
Julia sets discussed above a nice topological model, called the pinched disk model.
This describes M as the unit circle S1 modulo angles for which the parameter rays
Rϑ land together. Hence the parameter rays constitute an essential step towards a
description of the parameter plane.

After the marvellous and highly useful investigation of polynomial parameter
spaces we are interested in the generalization of this theory. How can the ideas be
taken advantage from for transcendental dynamics, or at least for its easiest case, the
exponential dynamics? This thesis furnishes an essential first step for the project of
carrying over ideas and results from polynomial parameter space to the exponential
parameter space.

Again, there are several ways to define a structure on the parameter space. One is
to describe the attracting components — components of parameters for which there
is an attractive orbit, which necessarily attracts the singular orbit.) D. Schleicher
and L. Rempe are currently working on this task.
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Figure 1: The exponential λ-parameter plane with some parameter rays.

Instead, we try to give a description of the escaping parameters, the parameters
for which the singular value 0 is escaping. For every such escaping parameter the
Julia set coincides with C. Remember that for the polynomial families discussed
above, these parameters form just the complement of the Mandelbrot (Multibrot)
set. For the exponential family, the escaping points will be organized similarly to
the escaping points within the dynamic planes. They form disjoint rays, called
parameter rays. To be more precise, this thesis will construct the parameter rays
consisting of escaping points. It is work in progress to show that every escaping
parameter really is contained in one of the constructed rays or is a landing point of
one.

For the construction of the parameter rays, we define a parameter κ to be on the
parameter ray for external address s at potential t if the singular orbit is escaping
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under Eκ such that the singular value 0 is on the dynamic ray for s at potential t.
Since for a given external address s we can locally find a uniform potential beyond
which the dynamic rays behave well (ray tails), we can begin with a parameter ray
tail. This is in fact a differentiable curve and can be extended down uniquely to the
minimal potential ts, which does not depend on the parameter κ.

Theorem 3.9 will show that for every possible combinatorics s there is a param-
eter ray Gs : (ts,∞) → C defined on the maximal interval of potentials such that
there is a 1-to-1 correspondence between the parameters κ satisfying the formal
definition given above and Gs(t). Hence we describe all escaping parameters for
which 0 is contained in some dynamic ray, rather than being landing point of one.
So it only remains to handle the latter case. The next step in this direction will be
to classify landing points of parameter rays, distinguishing between fast and slow
external addresses as done in [SZ].

In 2000, Günter Rottenfußer has written an intelligent program drawing expo-
nential parameter rays. Older, pointwise drawn pictures of the exponential param-
eter space were not very accurate since the exponentially fast growing orbits led
quickly to overflows in the computer calculations. Günter’s picture (see Figure 1)
reveals the true structure of the parameter plane. Actually it shows boundaries of
attracting components, which is conjectured to form the closure of the parameter
rays. This picture gives us an insight into the parameter plane. We see hyperbolic
components such as the left half-plane and the main cardioid. But we get also a
picture of how the parameter rays look like, being bundled in vertical distances of
2π. In fact, the parameter rays satisfy the asymptotics Gs(t) = t + 2πis1 + O(e−t)
with s1 ∈ Z.

I also want to mention the research work of Lasse Rempe in Kiel, who has been
working on exponential dynamics over the last years and answered a number of
questions in both the dynamic and the parameter plane. A new idea by him is to
slightly change the conjugation between the dynamic rays and the model dynamics
on R+

0 by taking into account the imaginary parts. (Before and also in this paper,
the conjugation uses only the real parts of the points on the ray.) In particular, this
yields a faster convergence of the approximated conjugations and thus simplifies a
number of proofs.

Some words about the structure of this paper: Chapter 1 briefly introduces the
setting, while Chapter 2 contains old and new results about dynamic rays needed
in Chapter 3, including derivatives and winding numbers of dynamic rays. The
construction of the parameter rays will be done in Chapter 3.
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1.2 Basic Definitions

We are investigating the family

{Eλ : z 7→ λ exp(z) | λ ∈ C∗} ,

where C∗ := C \ {0}. Often we switch to the parametrization Eκ(z) = exp(z + κ),
which can be obtained by choosing a branch of the logarithm and setting κ :=
log(λ). Usually we take the standard branch of the logarithm, so that |Im(κ)| ≤ π.
Depending on the situation, one parametrization is sometimes more convenient than
the other one and vice versa.

Throughout the following discussion (Chapters 1 and 2), we will always fix a
parameter λ = eκ ∈ C∗ and investigate the dynamical system generated by the iter-
ation of the function Eλ : C→ C. The goal is an understanding and a classification
of the behavior depending on the initial value. In the third chapter we are going to
discuss how the global behavior of the dynamics of Eλ depends on the parameter
λ. This global behavior is determined by the singular orbit for our purposes. It will
turn out that both discussions are surprisingly similar.

Let us now collect some notation and conventions. As usual, the iteration of a
function is abbreviated by f ◦(n+1)(z) := f ◦ f ◦n(z) = f ◦ · · · ◦ f(z), with f ◦0 := id.
By f−1 we mean the relation mapping a point or a set to its preimage, which is
usually not a single point.

Definition 1.1 (Basic Notation)
Let S be the space of integer sequences s = (s1, s2, . . . ) with s1, s2, . . . ∈ Z. Define
the shift map σ : S → S by σ(s1, s2, s3, . . . ) := (s2, s3, . . . ). Furthermore, let

F : R+
0 → R+

0 , F (t) := et − 1 .

The function F will be used as a parametrization function. The reason for
preferring this one over the obvious candidate exp is that F can be pulled back
arbitrarily often, as opposed to the Logarithm, which runs out of its domain after
finitely many steps.

Our goal is to understand the set of escaping points of Eλ. (Later in Chapter 3
we are going to investigate also escaping parameters). What is an escaping point?

Definition 1.2 (Escaping Points)

A point z ∈ C with orbit (zk)k≥1 := (E
◦(k−1)
λ (z))k is called an escaping point if

|zk| → ∞ as k →∞.
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Exponential functions have several characteristic properties. One of them is that
the factor of expansion, i.e. the absolute value of the derivative, depends only on the
real part. Two close points having large positive real parts can be mapped far apart
from each other, whereas the whole left half plane is mapped into the unit disc. This
is expressed by the formula |E ′

λ(z)| = |Eλ(z)| = exp(Re(z)). On the other hand, the
imaginary parts determine the angle: arg(Eλ(z)) = 2πIm(z). For points with large
real parts, this yields a very sensitive dependence of Eλ on the imaginary parts.

So how easy it for a point z to escape to ∞? First of all we record the following
Lemma.

Lemma 1.3 (Characterization of Escaping Points)

Consider a point z ∈ C with its orbit (zk)k≥1 := (E
◦(k−1)
λ (z))k. The point z is

escaping if and only if Re(zk) → +∞ as k →∞.

Proof. This follows directly from |zk+1| = |λ| exp(Re(zk)). ¤
We observe that we cannot expect a thick set of escaping points, since nearby points
with different imaginary part may be mapped far to the left and thus are close to 0
after two iterations. For example, consider some y ∈ R and R > 0 and let us find
points in the box {z ∈ C : Re(z) > R, Im(z) ∈ [y−π, y+π]} which stay in the right
half plane HR := {z ∈ C : Re(z) > R}. Then more than half of the points have
to be removed after just one iteration, since the imaginary parts provide an angle
which throws them out of HR. The same will happen in the next step and so on.
One could guess from this idea that the escaping points meet in horizontal rays of
distance 2πi. This intuitive thought has been confirmed by the work of B. Devaney,
D. Schleicher, and others.

The above discussion of the dynamical properties of the exponential functions
gave rise to the following construction. First of all, we need some structure of
dynamical meaning on the plane, so as to obtain itineraries and thus symbolic
dynamics. These are sequences of symbols assigned to each z ∈ C telling which
parts of a partition are visited along the orbit {z, Eκ(z), E◦2

κ (z), . . . }. In our case
they are called external addresses, and they are the key to get a grip on the escaping
points.

Since Eκ is 2πi-periodic it makes sense to have a partition of width 2πi such
that each region of the partition is the image of a branch of the logarithm. On
the slit plane C′ := C \ R−0 we can define a biholomorphic branch log : C′ → {z ∈
C : |Im(z)| < π} of the logarithm, which we will refer to as the standard branch,
denoted by Log. Therefore, we consider for Eκ the partition having E−1

κ (R−) as
boundary. We code the regions by integers: The one containing −κ will be called

9
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Figure 2: The (static) partition and Lκ,j.

R0. (Since |Im(κ)| ≤ π, the singular value 0 is contained in the closure of R0.) In
general, for every j ∈ Z define

Rj := {z ∈ C : −Im(κ)− π + 2πj < Im(z) < −Im(κ) + π + 2πj} .

(See Figure 2.)
Hence, every restriction Eκ|Rj

has an inverse function, called Lκ,j : C′ → Rj,
defined by

Lκ,j(z) = Logz − κ + 2πji .

Definition 1.4 (External Addresses)
Let z = z1 ∈ C be a number such that zn+1 := E◦n

κ (z) 6∈ R− for all n ≥ 1. Then
define the external address s(z) = (s1, s2, . . . ) ∈ S of z to be the sequence of labels
such that zn ∈ Rsn for all n ≥ 1.

Remark. If (zn)n≥1 is the orbit from Definition 1.4 and (s1, s2, . . .) = s(z1), then

2π|sn| ≤ |Im(zn + κ)|+ π and (2)

|Im(zn)| ≤ 2π|sn|+ |Im(κ)|+ π . (3)

This follows from the triangle inequality, applied on |Im(zn + κ)− 2πsn| ≤ π.

Definition 1.5 (Exponential Boundedness)
A sequence s ∈ S is said to be exponentially bounded if there are constants A ≥ 1,
x > 0 such that |sk| ≤ AF ◦(k−1)(x) for all k ≥ 1. The constants will be called growth
parameters.
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Remark. Note that we could drop the constant A, for if s ∈ S is exponentially
bounded then there is an x > 0 such that |sk| ≤ F ◦(k−1)(x) for all k ≥ 1. But
using A has the big advantage that x can be chosen small so as to contain more
information about the sequence, i.e. providing much more useful estimates. For
example, if s is constant, then x > 0 can be chosen arbitrarily small.

Lemma 1.6 (External Addresses are Exponentially Bounded)

Consider an arbitrary number z = z1 ∈ C and its orbit (zk)k≥1 = (E
◦(k−1)
λ (z)). Let

δ ≥ log |λ|+ 5. Then |zk| ≤ F ◦(k−1)(|z|+ δ) for all k ≥ 1.
Now assume in addition that (zk) has a well-defined external address s(z) =:

(s1, s2, . . . ) and let δ′ ≥ max{δ, 2π}. Then for all k ≥ 1

|sk| ≤ 1

2π
F ◦(k−1)(|z|+ δ′) .

Thus all possible external addresses are exponentially bounded.

Proof. We will prove by induction that for all k ≥ 1

|zk|+ δ ≤ F ◦(k−1)(|z|+ δ) .

The induction seed for k = 1 is immediate. For the induction step we can estimate

|zk+1|+ δ = |λ| exp(Re(zk)) + δ ≤ |λ| exp |zk|+ δ ≤
(∗)
≤ exp(|zk|+ δ)− (δ + 1) exp |zk|+ δ ≤ exp(|zk|+ δ)− 1 =

= F (|zk|+ δ) ≤ F (F ◦(k−1)(|z|+ δ)) = F ◦(k)(|z|+ δ) ,

where (*) follows from |λ| ≤ eδ − (δ + 1), which is true for every δ ≥ log |λ|+ 5.
Now if the orbit (zk)k≥1 does not contain negative real numbers and δ′ ≥

max{δ, 2π}, then we have by Formula (2)

2π|sk| ≤ |Im(zk)|+ |Im(κ)|+ π ≤ |zk|+ 2π ≤ |zk|+ δ′ ≤ F ◦(k−1)(|z1|+ δ′) .

¤
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2 Dynamic Rays

2.1 Definition of Dynamic Rays

This section 2.1 summarizes results from [SZ], which we are going to use later
on. In that paper it has been shown that the converse to Lemma 1.6 is true in
the sense that for every exponentially bounded sequence s ∈ S there are points
with sufficiently large real part having the external address s. It turns out that
escaping points sharing an external address s are organized in a differentiable curve
gκ,s. These dynamic rays can be maximally extended so as to contain all escaping
points: In fact every escaping point is either on a unique dynamic ray at a unique
position, or it is a limit of a dynamic ray. This provides a nice classification and
a useful combinatorial structure on the set of escaping points, revealing interesting
paradoxes concerning the Hausdorff dimension of the escaping sets and positively
answering A. Eremenko’s question, whether every escaping point can be connected
within the escaping set to ∞.

The construction of these rays has some similarity to the construction of the
Böttcher coordinates for polynomial dynamics. There, the task is to find a conju-
gation ϕ : C \K → C \ D from the polynomial dynamics outside the filled-in Julia
set (i.e. on the immediate basin of ∞) to the model dynamics z 7→ zd outside the
unit disc. This is usually done by pushing forward the dynamics to a neighborhood
of ∞ (where the model is very precise) by iteration and pulling back by taking ap-
propriate branches of the d-th root (the inverse function of the model map). In our
case instead, we first push forward along the model dynamics (R+

0 , F (t) = et − 1)
and then pull back using an appropriate branch Lκ,j(z) = Logz − κ + 2πji of the
Logarithm.

Given an exponentially bounded sequence s = (s1, s2, s3, . . . ) ∈ S, we define for
every n ∈ N the functions

gn
κ,s(t) := Lκ,s1 ◦ · · · ◦ Lκ,sn(F ◦n(t)) . (4)

If t is sufficiently large such that the logarithms can be applied, these functions
are well-defined and they converge uniformly. The limit will be the end of the
dynamic ray gκ,s, called ray tail. These are curves consisting of escaping points
having external address s. We will refer to the variable t as the potential according
to the polynomial case. By construction of the gn, the dynamical system acts on the
ray tail by shifting the external address and applying the function F (t) = et − 1 on
the potential: Eλ(gκ,s(t)) = gκ,σs(F (t)). The idea behind is that the potentials model
the real part respectively the escaping rate of the escaping points, and the external
address is a coding of the imaginary part such that there is a 1-to-1 relationship
between external addresses and rays.
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After defining these rays for large potentials we can pull back so as to extend
the ray to its maximal possible interval of potentials. This gave rise to the following
definition of the minimal potential ts, which is clearly a lower bound for possible
potentials, and which is independent of the parameter κ.

Definition 2.1 (Minimal Potential)
Let s ∈ S be an external address. Define the minimal potential by

ts := inf

{
t > 0 : lim sup

n→∞

|sn|
F ◦(n−1)(t)

= 0

}
.

Remark. A sequence s ∈ S is exponentially bounded if and only if ts < ∞.
The minimal potential of a shifted sequence is tσ(s) = F (ts). Moreover, if s ∈ S

has the minimal potential ts, then for every ε > 0 there is an A ≥ 1 such that
|sk| ≤ AF ◦(k−1)(ts + ε), i.e. the growth parameter x can be chosen arbitrarily close
to the minimal potential.

Unfortunately, it is not always possible to define the dynamic rays on their entire
natural domain (ts,∞), since the singular value may be passed during the process
of pull-backs. The fact that this happens only if 0 escapes does not help us, since
we will deal only with exactly those escaping parameters.

The following Theorem and Lemma summarize the results we will need concern-
ing dynamic rays.

Theorem 2.2 (Dynamic Ray Tails and Dynamic Rays)
Let κ ∈ C be an arbitrary parameter and s ∈ S be an exponentially bounded sequence
with growth parameters A and x. Then there is a constant t′|κ|,s := x+2 log(|κ|+3) >

ts and a curve gκ,s : (t′|κ|,s,∞) → C, called dynamic ray tail, with the following
properties:

1. For every t > t′|κ|,s, the point gκ,s(t) is escaping under Eκ and has external
address s.

2. The ray tail conjugates the dynamics to (R, F : t 7→ et − 1): For all t > t′|κ|,s

Eκ ◦ gκ,s(t) = gκ,σ(s) ◦ F (t) .

3. The map κ 7→ gκ,s(t) depends analytically on κ for fixed t > t′|κ|,s.

13



4. The ray tail satisfies the asymptotics Re(gκ,s(t))
t→∞−→ + ∞ along bounded

imaginary parts, or more precisely,

gκ,s(t) = t− κ + s12πi + rκ,s(t) ,

where |rκ,s(t)| < 2e−t(|κ|+2+2π|s2|+2πAC) = O(e−t). (C :=
∑∞

n=2

∏n−2
k=1 e−k ≈

1.42 is a constant.)

If t ≥ t′|κ|,s + log(4A), then |rκ,s(t)| < 0.82 < 1.

5. The ray tail can be extended uniquely onto a maximal interval (t̃κ,s,∞) ⊂
(ts,∞). The resulting curve gκ,s : (t̃κ,s,∞) → C, called the dynamic ray for
the external address s, consists only of escaping points. The variable t will be
referred to as the potential of the escaping point z = gκ,s(t).

If the singular orbit (0, eκ, eκeeκ
, . . .) does not escape then t̃κ,s = ts. If the

singular orbit does escape then we still have t̃κ,s = ts, except if the singular
value 0 has been passed during the process of pull-backs. This happens if and
only if there is an n ≥ 1 and a t0 > F ◦n(ts) such that 0 = gκ,σn(s)(t0). In
this case, t̃s be the largest number for there is a k ≥ 1 with F ◦k(t̃s) = t0 and
0 = gκ,σk(s)(t0).

6. The dynamic rays gκ,s : (t̃κ,s,∞) → C satisfy the above items 2 and 3. In
addition, they satisfy for every t > t̃κ,s the asymptotic bound

E◦n
κ (gκ,s(t)) = F ◦n(t)− κ + 2πisn+1 + O

(
e−F ◦n(t)

)
for n →∞ . (5)

Proof. Everything can be found in [SZ] (Proposition 3.2, Theorem 4.2, and
Proposition 4.4), except for the last statement of the fourth item. Define K := |κ|
and consider some t ≥ x + 2 log(K + 3) + log(4A). Then we have

|rκ,s(t)| ≤ 2e−t(K + 2 + 2π|s2|+ 2πAC) ≤ 2e−t(K + 2 + 2πA(F (x) + C))

≤ 2
K + 2 + 2πA(ex + C)

ex4A(K + 3)2
≤ 2K + 4 + 4π2.43

4(6K + 9)
≤ 1

12
+

6.57

9
< 0.82 < 1 .

¤

Remark. The escaping points on the dynamic ray gκ,s do not need to have the
external address s. (They do not have one at all if their orbit hits R−.)

Remark. In fact Dierk Schleicher and Johannes Zimmer have shown in [SZ] that
every escaping point z is either on a unique dynamic ray at a unique potential or
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is the landing point of one or more dynamic rays: z = limt↘ts gκ,s(t). In particular,
dynamic rays cannot cross each other.

The following inequalities are taken from the proof of Proposition 3.4 of [SZ].

Lemma 2.3 (More Properties of Dynamic Rays)
Let κ be a parameter with |κ| ≤ K. On the interval (2 log(K +3),∞), the curve gκ,s

is the uniform limit of the functions gn
κ,s : (2 log(K +3),∞) → C defined in Formula

(4). They satisfy for all t > 2 log(K + 3) the following inequalities:

Re
(
gn

κ,s(t)
) ≥ t− (K + 2) ; (6)∣∣g2

κ,s(t)− g1
κ,s(t)

∣∣ < 2e−t (K + 1 + 2π|s2|) ; (7)

if n ≥ 3 :
∣∣gn

κ,s(t)− gn−1
κ,s (t)

∣∣ ≤ 4πAe−t

n−2∏

k=1

e−k (8)

and for every n ∈ N:
∣∣Log(F ◦(n+1)(t))− κ + 2πisn+1 − F ◦n(t)

∣∣ ≤ K + 1 + 2πAF ◦n(x) . (9)

2.2 Derivatives of Dynamic Rays

The dynamic rays constructed in [SZ] completely describe the set of escaping points
for every dynamical system generated by the iteration of an exponential function Eλ.
We will need some more properties of them, such as a certain degree of smoothness
and estimates for low potentials. The following discussion is unfortunately a bit
technical.

The differentiability of dynamic rays has already been proven in 1988 by M. Viana
da Silva in [Vi], as well as for bounded combinatorics by D. Schleicher in [S1]. We will
prove it once more so as to obtain good estimates on the first and second derivative
at large potentials.

Theorem 2.4 (The Derivative of Dynamic Rays)
For every exponentially bounded sequence s ∈ S and every parameter κ, the dynamic
ray gκ,s(t) is differentiable with respect to the potential t with derivative

g′κ,s(t) =
∞∏

k=1

F ◦k(t) + 1

gκ,σks(F ◦k(t))
. (10)
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Moreover, for every T > ts there is an Mt ≥ 0 such that

∀t ≥ T : |g′κ,s(t)− 1| < MT e−t . (11)

If A and x are growth parameters for s and K ≥ |κ|, then for t′′K,s := 2x+2 log(2K+
3 + 9πA) > t′K,s we can choose

Mt′′K,s
:= MK(A, x) := 6πA + 2K + 3 + πAex/2 .

Proof. We start with potentials t > t′′K,s > t′K,s. Recall from Lemma 2.3
the differentiable functions gn

κ,s defined by g1
κ,s(t) = Log(F (t)) − κ + s12πi and

gn+1
κ,s (t) = Lκ,s1 ◦ gn

κ,σs(F (t)), which are defined for all t > t′′K,s > 2 log(K + 3). Since
the functions gn

κ,s converge uniformly to gκ,s as n →∞, all we have to show by the
Weierstraß Theorem is that (gn

κ,s)
′
n∈N converges uniformly as well. Observe that for

all t > t′′K,s, we have F (t) > K + 2. By Inequality (6) in Lemma 2.3 it follows for
all k, n ≥ 1, t > t′′K,s and s′ ∈ S

Re(gn
κ,s′(F

◦k(t)) > F ◦k(t)− (K + 2) > 0 . (12)

Since F ′(t) = F (t) + 1 and (g1)′(t) = 1 + 1
F (t)

, we obtain, applying the chain rule
repeatedly:

(gn
κ,s)

′(t) =
F ′(t)

gn−1
κ,σs(F (t))

· (gn−1
κ,σs)

′(F (t)) = · · · =

=

(
n−1∏

k=1

F ′(F ◦(k−1)(t))

gn−k
κ,σks

(F ◦k(t))

)
· (g1

κ,σn−1s)
′(F ◦(n−1)(t)) =

=

(
n−1∏

k=1

F ◦k(t) + 1

gn−k
κ,σks

(F ◦k(t))

)
·
(

1 +
1

F ◦n(t)

)
. (13)

(Note that by (12), the denominators are non-zero.) We will show that this converges

uniformly to
∏∞

k=1
F ◦k(t)+1

g
κ,σks

(F ◦k(t))
as n →∞.

By Formula (12), every factor of the expression in (13) is contained in the right
half plane. Therefore the principal branch Log of the logarithm can be applied,
which yields

Log((gn
κ,s)

′(t)) = −
n−1∑

k=1

Log

(
gn−k

κ,σks
(F ◦k(t))

F ◦k(t) + 1

)
+ Log

(
1 +

1

F ◦n(t)

)
. (14)

The last summand converges uniformly as n →∞, so it is left to show that the sum
in Formula (14) converges uniformly as well. For all N, n,m ∈ N with n > 2N we
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have
∣∣∣∣∣
n−1∑

k=1

Log

(
gn−k

κ,σks
(F ◦k(t))

F ◦k(t) + 1

)
−

n−1+m∑

k=1

Log

(
gn+m−k

κ,σks
(F ◦k(t))

F ◦k(t) + 1

)∣∣∣∣∣ ≤

≤
N∑

k=1

∣∣∣Log
(
gn−k

κ,σks
(F ◦k(t))

)
− Log

(
gn+m−k

κ,σks
(F ◦k(t))

)∣∣∣ +

+
n−1∑

k=N+1

∣∣∣Log
(
gn−k

κ,σks
(F ◦k(t))

)
− Log

(
gn+m−k

κ,σks
(F ◦k(t))

)∣∣∣ +

+
n−1+m∑

k=n

∣∣∣∣∣Log

(
gn+m−k

κ,σks
(F ◦k(t))

F ◦k(t) + 1

)∣∣∣∣∣ . (15)

Fix ε > 0. We have to find an N∗ ∈ N such that these three sums together become
smaller than ε for all t > t′′K,s, n > 2N∗ and m ≥ 0. Let us start with the first sum.
By Lemma (2.3) and the triangle inequality we know that the uniform convergence
of (gn)n∈N is exponentially fast:

∣∣gn
κ,s(t)− gκ,s(t)

∣∣ ≤
∞∑

m=n+1

(
4πAe−t

m−2∏

l=1

e−k

)
≤ 4πAe−te−(n−1) .

So for all δ > 0 there is a number Nδ such that for all n ≥ Nδ and m ≥ 0 we have
‖gn− gn+m‖∞ ≤ δ/Nδ. Observe that since n > 2N , the upper indices p of the gp all
satisfy p > N . Thus there is an N1 ∈ N making the first sum smaller than ε/3 for
all n ≥ N1.

The existence of an N2 ∈ N such that for all n ≥ N2 the second sum becomes
smaller than ε/3 follows immediately by the exponentially fast uniform convergence
of (gn)n∈N.

Estimating the last sum is a little bit more involved. An estimate on the Taylor
series using the geometric series shows for all z ∈ C with |z| < 1:

|Log(1− z)| =
∣∣z + z2/2 + z3/3 + . . .

∣∣ <
|z|

1− |z| and (16)

|1− ez| =
∣∣z + z2/2 + z3/6 + . . .

∣∣ ≤ |z|
1− |z| , (17)

and so for all t > log 2

| log(F (t))− t| = | log(1− e−t)| < 2e−t . (18)
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Now the Formulas (7), (8), (9), and (18) give for all t ≥ t′′K,s, p ≥ 2 and k ≥ 0:

∣∣∣gp
κ,σks

(F ◦k(t))− g1
κ,σks(F

◦k(t))
∣∣∣ ≤

≤
∣∣∣gp

κ,σks
(F ◦k(t))− gp−1

κ,σks
(F ◦k(t))

∣∣∣ + · · ·+
∣∣∣g2

κ,σks(F
◦k(t))− g1

κ,σks(F
◦k(t))

∣∣∣ ≤

≤ 4πAe−F ◦k(t)

(
p−1∑
n=2

n−2∏

l=1

e−l

)
+ 2e−F ◦k(t)(K + 1 + 2π|sk+2|) <

< (2πAC + K + 1 + 2πAF ◦(k+1)(x))2e−F ◦k(t)
(∗)
≤ 2πAC + K + 1 + 4πA <

< 7πA + K + 1 , (19)

where C =
∑∞

n=2

∏∞
k=1 e−k ≈ 1.42 is the same constant as in Theorem 2.2. In (*)

we used that e−F ◦k(t) < e−2 < 1
2

and F ◦(k+1)(x)e−F ◦k(t) < F ◦(k+1)(x)e−F ◦k(x) < 1 for
all t > t′′K,s.

Define for all p ≥ 1 and k ≥ 1

αp(k) := 1−
gp

κ,σks
(F ◦k(t))

F ◦k(t) + 1
.

We can estimate this quantity independently of p, so we are going to drop the index
later on. Indeed, the triangle inequality and e−F ◦k(t) < 1

2
yield

|αp(k)| ≤
∣∣∣∣∣
gp

κ,σks
(F ◦k(t))− g1

κ,σks
(F ◦k(t))

F ◦k(t) + 1

∣∣∣∣∣ +

∣∣∣∣∣
g1

κ,σks
(F ◦k(t))− F ◦k(t)− 1

F ◦k(t) + 1

∣∣∣∣∣
(19), (18)

≤

≤ 7πA + K + 1

F ◦k(t) + 1
+

2e−F ◦k(t) + 1 + K + 2πAF ◦k(x)

F ◦k(t) + 1
≤

<
2K + 3 + 7πA + 2πAF ◦k(x)

F ◦k(t) + 1
=: α(k) . (20)

Since t > x, α(k) converges exponentially fast to 0 as k → ∞. In particular, there
is an N ′ such that for all k ≥ N ′ we have α(k) ∈ (0, 1), and Formula (16) implies
for every p ≥ 0

|Log(1− αp(k))| < |αp(k)|
1− |αp(k)| ≤

α(k)

1− α(k)
. (21)

This converges to 0 exponentially fast as well, and there is an N3 with the property
that the whole third sum in Formula (15) becomes smaller than ε/3 for all t > t′K,s

if n > N3.
The dynamic ray tail is thus continuously differentiable, and g′κ,s is the uniform

limit of (gn
κ,s)

′. Moreover, the analyticity of the pullback makes the whole dynamic
ray differentiable, but we lose the above estimates.
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To get Formula (11), we consider potentials t ≥ t′′K,s = 2x + 2 log(K + 3 + 9πA),
so in particular t > t′K,s and t > 2x + 2 log(3 + 9π) > 2x + 5. Note that

t > 2x + 5 =⇒ et/2 − t ≥ ex , (22)

for if ex ≥ t then ex + t ≤ 2ex < ex+1 < et/2, and otherwise ex + t < 2t, which is less
than et/2 for all t ≥ 5.

For every p and k and every t ≥ t′′K,s we have |αp(k)| < 1
2
, because

|αp(k)| ≤ α(1) =
2K + 3 + 7πA + 2πAF (x)

F (t) + 1
<

(2K + 3 + 9πA)ex

et′′K,s

=

≤ 1

exp(x + log(2K + 3 + 9πA))
<

1

2
.

Therefore, using (14) and (21) we estimate

∣∣Log(g′κ,s(t))
∣∣ =

∣∣∣∣∣
∞∑

k=1

Log

(
gκ,σks(F

◦k(t))

F ◦k(t) + 1

)∣∣∣∣∣ ≤
∞∑

k=1

α(k)

1− α(k)
< 2

∞∑

k=1

α(k) .

Furthermore, we will show separately in Lemma 2.5 that for each k ≥ 1,

∞∑

k=1

α(k) =
D

F ◦k(t) + 1
+ D′ F ◦k(x)

F ◦k(t) + 1
< M ′e−t

for some constants D, D′ and M ′ := 3D+D′(ex +1) involving only A and K. Hence∣∣Log(g′κ,s(t))
∣∣ ≤ 2M ′e−t. By et > (ex + t)2 we have 2M ′e−t < 1/2. Therefore using

(17) and M := M ′/4, we arrive at the inequality

|1− gκ,s(t)
′| ≤ 2M ′e−t

1− 2M ′e−t
< 4M ′e−t = Me−t .

Finally, MK(A, x) = 6πA+2K +3+πAex/2 > 1
4
(3(2K +3+7πA)+2πA(ex +1) =

M ′/4 completes the proof of the explicit estimate.
The existence of the constants MT follows immediately from this, because the

continuous function g′κ,s(t) is bounded on the compact interval [T, t′′K,s]. ¤

Lemma 2.5 (An Estimate on the Function F )
If x ≥ 0 and t ≥ 5 are real numbers such that t ≥ 2x + 5 then

∞∑

k=1

1

F ◦k(t) + 1
< 3e−t and

∞∑

k=1

F ◦k(x)

F ◦k(t) + 1
< (ex + 1)e−t .
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Proof. Define Mk(x) := exp(−F ◦(k−1)(x)). We claim that for every k ≥ 2

F ◦k(x)

F ◦k(t)
≤ Mk(x)e−t , and thus

∞∑

k=1

F ◦k(x)

F ◦k(t) + 1
≤

(
ex +

∞∑

k=2

Mk(x)

)
e−t .

In order to show this, we first prove by induction that for every k ≥ 2

F ◦(k−1)(t/2)− t ≥ F ◦(k−1)(x) and F ◦(k−1)(t)− F ◦(k−1)(t/2) ≥ F ◦(k−1)(x) .

For k = 2, the first claim follows from Formula (22), since t ≥ 2x + 5. Furthermore,
0 ≤ (et−t)2 ≤ e2t−2et+t2 and thus e2t+2et+t2 ≥ 4et, so taking square roots yields
et+t ≥ 2et/2 or et−et/2 ≥ et/2−t. Hence F (t)−F (t/2) = et−et/2 ≥ et/2−t ≥ F (x).

Now assume that the above estimates are true for some k. Then F ◦k(t/2) −
F ◦k(x) ≥ F ◦(k−1)(t/2) − F ◦(k−1)(x) ≥ t, because F is expansive on R+ due to
F ′(s) = es > 1 for all s > 0.

For the second claim we use that ea + eb < ea+b if a, b ≥ 0, and so if c =
a + b also ec−b < ec − eb. Thus it follows from exp

(
F ◦(k−1)(t)− F ◦(k−1)(x)

) ≥
exp

(
F ◦(k−1)(t/2)

)
that

exp
(
F ◦(k−1)(t)

)− exp
(
F ◦(k−1)(x)

) ≥ exp
(
F ◦(k−1)(t/2)

)
,

which completes the claim after replacing the exponentials by the F -function.
Therefore we get for every k ≥ 2

F ◦k(x)

F ◦k(t) + 1
≤ F ◦k(x)

F ◦k(t)
≤ exp

(
F ◦(k−1)(x)− F ◦(k−1)(t) + t

)
e−t ≤

≤ exp
(
t− F ◦(k−1)(t/2)

)
e−t ≤ exp

(−F ◦(k−1)(x)
)
e−t = Mk(x)e−t .

We will show now that
∑∞

k=2 Mk(x) < 1. The sum is monotone increasing in x,
so suppose w.l.o.g. x ≥ 1. This implies F ◦(k−1)(x) > (k − 1)x for every k ≥ 2 (for
F ◦1(1) = e− 1 > 1, and thus

∞∑

k=2

Mk(x) =
∞∑

k=2

e−F ◦(k−1)(x) <

∞∑

k=2

e−(k−1)x <

∞∑

k=1

2−k = 1 . (23)

So
∑∞

k=1
F ◦k(x)
F ◦k(t)

< (ex + 1) e−t, which shows the second claim. Finally, (23) yields

∞∑

k=1

1

F ◦k(t) + 1
= e−t +

∞∑

k=2

Mk(t) ≤ e−t

(
1 +

∞∑

k=2

e−(k−2)t

)
< e−t

(
1 +

∞∑

k=0

2−k

)

= 3e−t .

¤
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Proposition 2.6 (The Second Derivative of Dynamic Rays)
Every dynamic ray gs : (ts,∞) → C is twice continuously differentiable. Moreover,

given growth parameters A and x for s, there is a constant C ′ := et′′K,s/2 + 3 such
that for all t > t′′K,s = 2x + 2 log(2K + 3 + 9πA)

|g′′κ,s(t)| < 2C ′e−t and

∣∣∣∣∣
g′′κ,s(t)

g′κ,s(t)

∣∣∣∣∣ < C ′e−t .

Proof. At first let us formally differentiate equation (10) from Theorem 2.4:

d

dt
Log

(
g′κ,s(t)

)
=

∞∑

k=1

(
d

dt
Log(F ◦k(t) + 1)− d

dt
Log

(
gκ,σks(F

◦k(t))
))

=

=
∞∑

k=1

(
(d/dt)F ◦k(t)
F ◦k(t) + 1

−
(
(d/dt)F ◦k(t)

) · g′
κ,σks

(F ◦k(t))

gκ,σks(F ◦k(t))

)
=

=
∞∑

k=1

(d/dt)F ◦k(t)
F ◦k(t) + 1

(
1− g′κ,σks

(
F ◦k(t)

) F ◦k(t) + 1

gκ,σks(F ◦k(t))

)
=

(∗)
=

∞∑

k=1

∏k
m=1(F

◦m(t) + 1)

F ◦k(t) + 1

(
1− g′κ,σks(F

◦k(t))
F ◦k(t) + 1

gκ,σks(F ◦k(t))

)
, (24)

where the equality (*) follows from the chain rule:

d

dt
F ◦k(t) =

d

dt

(
F (F ◦(k−1)(t))

)
=

(
d

dt
F ◦(k−1)(t)

)
exp

(
F ◦(k−1)(t)

)
=

=

(
d

dt
F ◦(k−1)(t)

) (
F ◦k(t) + 1

)
= · · · =

k∏
m=1

(F ◦m(t) + 1) .

Assume t > t′′K,s ≥ t′K,s. Recall that by (20), we have for such t

∣∣∣∣
gκ,σks(F

◦k(t))

F ◦k(t) + 1
− 1

∣∣∣∣ = |α1(k)| ≤ α(k) =
2K + 3 + 7πA + 2πAF ◦n(x)

F ◦k(t) + 1
.

Remember that if x and A are growth parameters of s, then F ◦k(x) and A are valid
growth parameters for σks. Since t > t′′K,s yields F ◦k(t) > t′′

K,σks
for all k ∈ N,

Estimation (11) in Theorem 2.4 shows

∣∣∣g′κ,σks(F
◦k(t))− 1

∣∣∣ < MK

(
A,F ◦k(x)

) · exp(−F ◦k(t)) ,
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with MK(A,F ◦k(x)) = πA
2

exp
(
F ◦k(x)

)
+ 6πA + 2K + 3. This allows us to estimate

the k-th summand of the sum in (24), using that |1 − wz| = |z| · |z−1 − w| ≤
|z|(|w − 1|+ |z−1 − 1|) for all z, w ∈ C∗, as follows:

|k-th summand| <
(

k−1∏
m=1

(1 + F ◦m(t))

)
·
∣∣∣∣

F ◦k(t) + 1

gκ,σks(F ◦k(t))

∣∣∣∣ ·

·
(

πA exp
(
F ◦k(x)/2 + 6πA + 2K + 3

)

exp (F ◦k(t))
+

2K + 3 + 7πA + 2πAF ◦k(x)

F ◦k(t) + 1

)
.(25)

The factor in the middle is irrelevant because it almost 1 on the ray tail by Theorem
2.2. Thus if we show that

(
k−1∏
m=1

(1 + F ◦m(t))

)
·
(

πA
2

F ◦(k+1)(x)

F ◦(k+1)(t)
+

2πAF ◦k(x)

F ◦k(t)

)
≤

≤
(

k−1∏
m=1

(1 + F ◦m(t))

)
· 5πA

2
· F ◦k(x)

F ◦k(t)
−→ 0 (26)

exponentially fast, then we have proven that the sum in Equation (24) really exists.
To do so, let us decompose the denominator F ◦k(t) of (26) into its three third

roots: We will show that one of them bounds F ◦k(x), while another one handles the
factor within the parentheses. The remaining denominator of 3

√
F ◦k(t) suffices to

let the whole product converge to 0 exponentially fast. Clearly we have F ◦(k−1)(t) >
3F ◦(k−1)(x) for every k ≥ 2, since t > 2x. Applying the exponential function yields
3
√

F ◦k(t) > F ◦k(x), which shows the first claim. Similarly, every k ≥ 2 satisfies
(k − 1) · F ◦(k−2)(t) < F ◦(k−1)(t)/3. This implies

∑
1≤m<k F ◦(m−1)(t) < F ◦(k−1)(t)/3.

Taking the exponential function gives the desired second estimate. Summarizing,
we have

∣∣∣∣
d

dt
Log

(
g′κ,s(t)

)∣∣∣∣ ≤ |1-st summand|+ 5πA

2

∞∑

k=2

1
3
√

F ◦k(t)
< ∞ . (27)

Hence we obtain convergence of the partial sums to d
dt

Log(g′). In fact, the conver-
gence is uniform on [t′′K,s,∞], since the rate of convergence is bounded below by the
convergence of the lowest potential considered. Every partial sum is continuous in t,
so the limit is continuous. Moreover, the partial sums are derivatives of a sequence
which converges to Log(g′). Therefore g′ is also continuously differentiable, having
the logarithmic derivative as claimed in Equation (24). Some end of the dynamic
ray is thus twice continuously differentiable, and the analytic pullback extends this
property to the whole dynamic ray.
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In order to prove the estimates for potentials t > t′′K,s = 2x+2 log(2K+3+9πA),

we recall the estimate (27). For every k ≥ 2 and t > t′′K,s, we have 3
√

F ◦k(t) >

F ◦(k−1)(t) + 1, as already showed above. Furthermore, we can estimate the first
summand, following (25):

|1-st summand| < O(exp(e−t)) +
2K + 3 + 7πA + 2πAex

et
< et′′K,s/2e−t ,

since et′′K,s/2 = ex(2K + 3 + 9πA). Therefore, Lemma 2.5 yields
∣∣∣∣
g′′(t)
g′(t)

∣∣∣∣ =

∣∣∣∣
d

dt
Log

(
g′κ,s(t)

)∣∣∣∣ ≤ et′′K,s/2−t +
5πA

2

∞∑

k=2

1

F ◦(k−1)(t) + 1
<

<
(
et′′K,s/2 + 3

)
e−t = C ′e−t .

To get the first estimate, we use that |g′κ,s(t) − 1| < MK(A, x)e−t implies |g′(t)| ≤
1 + MK(A, x)e−t < 2 for t > t′′K,s > log(MK(A, x)). So the above estimate yields
|g′′(t)| < C ′|g′(t)|e−t < 2C ′e−t. ¤

2.3 Winding Numbers of Dynamic Rays

The estimates on the derivatives of dynamic rays will be used as a tool for pro-
viding an estimate on the winding number of dynamic rays. Since the logarithm
unwraps angles to imaginary parts, this helps us controlling the dynamic rays for
small potentials. We will need that to show the important Proposition 3.4.

Some ideas of the following discussion, which is in most parts taken from [S1],
were originally a contribution by Niklas Beisert.

Remember the definition of winding numbers for closed curves: Consider a closed
C1-curve ϕ : [t0, t1] → C, i.e. ϕ(t0) = ϕ(t1). Let a ∈ C \ ϕ([t0, t1]) be an arbitrary
point outside the graph. Then we define the winding number of ϕ around a by

η(ϕ, a) :=
1

2π

∫ t1

t0

Im
ϕ̇(t)

ϕ(t)− a
dt =

1

2π

∫ t1

t0

Im
∂

∂t
(Log(ϕ(t)− a)) dt =

=
1

2π

∫ t1

t0

d arg(ϕ(t)− a) . (28)

It turns out in this case that η is always an integer number which counts the number
of turns of ϕ around a. We will now carry over this concept to a certain kind of
curves which are not closed, so that we will be able to apply the results on dynamic
rays.
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Definition 2.7 (Winding Numbers)
Let γ : (t0,∞) → C be a C1-curve and a 6∈ γ(t0,∞). If the integral

∫∞
t0
|d arg(γ(t)−

a)| exists (i.e. is finite), define the winding number of γ around a by

η(γ, a) :=
1

2π

∫ ∞

t0

Im
γ̇(t)

γ(t)− a
dt =

1

2π

∫ ∞

t0

d arg(γ(t)− a) .

Definition 2.8 (Admissible Curves)
By an admissible curve we mean a C2-curve γ : (t0,∞) → C with t0 ≥ −∞, having
the following properties:

• limt→∞ Re(γ(t)) = +∞
• γ̇(t) 6= 0 everywhere

• γ̇(t) −→ 1 as t →∞
• Im(γ̈(t)) −→ 0 as t →∞

Lemma 2.9 (Admissible Curves Have Winding Numbers)
If γ : (t0,∞) → C is an admissible curve, then

1. If a ∈ C \ γ(t0,∞) and

|γ̇(t)| 6−→ ∞ as t ↘ t0 ,

then the winding number η(γ, a) is defined.

2. For every t1 > t0, η(γ̇|(t1,∞), 0) is defined.

3. If a = γ(t1) for some t1 > t0, then η(γ|(t1,∞), a) is defined.

Proof. In all the statements we have integrands that are locally Riemann inte-
grable. Therefore we only have to show that the integrals are finite. For this in turn
it is sufficient to show that | ϕ̇

ϕ−ã
| is bounded (where ϕ is the respective curve and

ã = 0 for the second case and ã = a otherwise).
For a 6∈ γ(t0,∞) we can clearly bound the denominator γ − a below by some

ε > 0 and the numerator ϕ̇ above, using the conditions on admissible curves and
|γ̇(t)| 6→ ∞ as t ↘ t0.

In the second case, there is a T such that |γ̇(t)| > 1/2 for all t > T , and on
the compact interval [t1, T ], the continuous function |γ̇(t)| is bounded below by
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some ε > 0. We thus have 0 6∈ γ̇(t1,∞). Since, Im(γ̈(t)) converges to 0, the same
reasoning as for the first item can be applied.

In the last case we might get into trouble as t ↘ t1, since the denominator tends
to 0. Let t > t0. By the Taylor Theorem applied on γ ∈ C2 there is a ξ ∈ [t0, t] with

γ(t1) = γ(t) + γ̇(t)(t1 − t) + γ̈(t)(ξ − t)2/2 .

Therefore
∣∣∣∣Im

γ̇(t)

γ(t)− γ(t1)

∣∣∣∣ =

∣∣∣∣Im
γ(t1)− γ(t)− γ̈(t)(ξ − t)2/2

(γ(t)− γ(t1))(t1 − t)

∣∣∣∣ =

=

∣∣∣∣Im
γ̈(t)(ξ − t)2/2

(γ(t1)− γ(t))(t1 − t)

∣∣∣∣ ≤
∣∣∣∣Im

γ̈(t)(t1 − t)

2(γ(t1)− γ(t))

∣∣∣∣ .

So limt↘t1

∣∣∣Im γ̇(t)
γ(t)−γ(t1)

∣∣∣ ≤ limt↘t1

∣∣∣Im γ̈(t)
2γ̇(t)

∣∣∣ =
∣∣∣Im γ̈(t1)

2γ̇(t1)

∣∣∣. Up to the sign this is half

the integrand for the winding number of γ̇, which we have shown already to exist.
¤

Lemma 2.10 (The Winding Number of a Curve and of its Derivative)

1. For every closed C2-curve ϕ : [t0, t1] → C with ϕ̇ 6= 0 and every a 6∈ ϕ[t1,∞)

η(ϕ, a) = η(ϕ̇, 0) .

2. Let γ̃ : (t0,∞) → C be an admissible curve, and γ := γ̃|(t1,∞) its restriction
for some t1 > t0. Then for every a 6∈ γ[t1,∞)

|η(γ, a)| ≤ |η(γ̇, 0)|+ 2 .

Proof. Recall the definition of the winding number for a closed curve in (28),
which is an integer number. If there is a homotopy H between some closed C1-
curves ϕ1 and ϕ2 : [t0, t1] → C on C \ {a} then η(ϕ1, a) = η(ϕ2, a). (A homotopy
is a continuous mapping H : [t0, t1] × [0, 1] → C \ {a} such that H(t, 0) = ϕ1(t)
and H(t, 1) = ϕ2(t).) This follows from the fact that t 7→ η(H(•, t), a) is continuous
with values in Z. Moreover, if ϕ1 and ϕ2 are C2-curves and H is continuously
differentiable with Ḣ([t0, t1]× [0, 1]) ⊂ C \ {0}, then also η(ϕ̇1, 0) = η(ϕ̇2, 0).

Now consider the curve ϕ from the first claim and let n := η(ϕ, a) ∈ Z. There is a
C1-homotopy with Ḣ(•, t) 6= 0 for all t ∈ [0, 1] between ϕ and an n-fold loop around
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Figure 3: For the Proof of Lemma 2.10.

a. Parameterizing this loop by arc-length we get the curve ϕ̃ : [0, 2πn] → C \ {a},
ϕ̃(t) := a+esgn(n)it, having the same winding numbers. (In particular, if n = 0, then
ϕ̃ ≡ a + 1.) We calculate

η(ϕ̇, 0) = η( ˙̃ϕ, 0) =

∫ 2πn

0

d arg ˙̃ϕ =

∫ 2πn

0

d arg(sgn(n)iesgn(n)it) =

=

∫ 2πn

0

d arg(sgn(n)i) + d arg(esgn(n)it) =

∫ 2πn

0

0 + d arg(ϕ̃− a) =

= η(ϕ̃, a) = η(ϕ, a) .

This shows the first claim.
If γ : (t1,∞) → C is an admissible curve, then Re(γ) converges to ∞, while

Im(γ) converges to some fixed number. Hence for every ε > 0 there is a T > t1 such
that

∣∣η(γ, a)− η(γ|(t1,T ), a)
∣∣ < ε/2 and∣∣η(γ̇, 0)− η(γ̇|(t1,T ), 0)
∣∣ < ε/2 .

It follows that |η(γ, a)− η(γ̇, 0)| <
∣∣η(γ|(t1,T ), 0), a)− η(γ̇|(t1,T ), 0), 0)

∣∣ + ε.
Now according to Figure 3, find an arc γ1 : (T − δ, T + 1 + δ) → C \ {a} with

dkγ1

dtk
(T ) =

dkγ

dtk
(T ) ,

dkγ1

dtk
(T + 1) =

dkγ

dtk
(T + 1) and

γ̇1(t) 6= 0 for all t ∈ [T, T + 1] and k = 0, 1, 2 .

We can clearly find such an arc satisfying |η(γ1, a)| ≤ 1 and |η(γ̇1, 0)| ≤ 1. By
applying the first part of the Lemma on the concatenated curve ϕ := γ|[t1,T ] ∨ γ1 :
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[t1, T + 1] → C \ {a} we get

|η(γ, a)− η(γ̇, 0)| <
∣∣η(γ|(t1,T ), 0), a)− η(γ̇|(t1,T ), 0), 0)

∣∣ + ε

≤ |η(ϕ, a)− η(ϕ̇, 0)|+ 2 + ε = 2 + ε .

Since ε > 0 can be chosen arbitrary small, the second claim is proven. ¤

Proposition 2.11 (Winding Numbers and Pullback)
Let γ0 : (t0,∞) → C be an admissible curve such that |η(γ̇0, 0)| ≤ 2. For every
n ∈ N choose an ∈ C \ γn(t0,∞) and define γn+1 := log(γn − an) : (t0,∞) → C.
Then

∀t1 > t0, ∀a 6∈ γn(t0,∞) : |η(γn|(t1,∞), b)| ≤ 2n+2 .

Proof. Note that since γn − an 6= 0, a branch of the logarithm can be applied.
The choice of branch is inessential, because we are dealing only with d log.

We will show by induction that |η(γ̇n, 0)| ≤ 2n+2−2 for all n ∈ N. This estimate
will also justify that all the winding numbers are defined. The induction seed n = 0
follows by the assumption |η(γ̇0, 0)| ≤ 2.

For the induction step, let a, γ, γ̃ denote an, γn, γn+1 = log(γn− a) respectively.
We estimate

|η( ˙̃γ, 0)| =

∣∣∣∣η
(

γ̇

γ − a
, 0

)∣∣∣∣ =
1

2π

∣∣∣∣
∫

d

(
Im log

(
γ̇

γ − a

))∣∣∣∣ =

=
1

2π

∣∣∣∣
∫

d(Im log γ̇ − Im log(γ − a))

∣∣∣∣ =

=
1

2π

∣∣∣∣
∫

Im

(
γ̈

γ̇

)
− Im

(
γ̇

γ − a

)
dt

∣∣∣∣ ≤

≤ 1

2π

∣∣∣∣
∫

Im

(
γ̈

γ̇

)
dt

∣∣∣∣ +
1

2π

∣∣∣∣
∫

Im

(
γ̇

γ − a

)
dt

∣∣∣∣ =

= |η(γ̇, 0)|+ |η(γ, a)| Lemma 2.10≤ 2|η(γ̇, 0)|+ 2 ≤
≤ 2(2n+2 − 2) + 2 = 2n+3 − 2 .

So we have by Lemma 2.10 |η(γn, a)| ≤ |η(γ̇n, 0)|+ 2 ≤ 2n+2 for all n ∈ N. ¤
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Lemma 2.12 (Winding Number of Dynamic Rays)
Consider an arbitrary parameter κ and an exponentially bounded sequence s ∈ S.
Let z = gκ,s(t0) be any point on the dynamic ray of address s with potential t0 > ts.
Choose the growth parameters A and x of s such that ts < x < t0. If n ∈ N is big
enough such that

F ◦n(t0) > t?n := 2F ◦n(x) + 2 log(2|κ|+ 3 + 9πA) ,

then
|η(gκ,s(t0,∞), z)| ≤ 2n + 2 .

Proof. Let K := |κ|. Since t?n = t′′K,σns, we can apply Theorem 2.4 and Proposition
2.6 on gκ,σns(t) for potentials t > t?n. The curve γ : (0,∞) → C, γ(t) := gκ,σns(t+ t?n)
is thus admissible. (0 6∈ γ̇ follows from Formula (11).) We estimate

|η(γ̇, 0)| ≤ 1

2π

∫ ∞

0

∣∣∣∣Im
(

γ̈

γ̇

)∣∣∣∣ dt ≤ 1

2π

∫ ∞

0

∣∣∣∣
g′′κ,σns(t + t?n)

g′κ,σns(t + t?n)

∣∣∣∣ dt
(∗)
<

<
1

2π

∫ ∞

0

(
et?n/2 + 3

)
e−t−t?ndt =

(
et?n/2 + 3

) e−t?n

2π
<

2

2π
< 2 ,

where (*) follows from Proposition 2.6. The absolute value of the winding number of
the end of g′κ,σn−1s to the right of E◦n

λ (z) is thus less than 2. If we define γ0 := γ and

γk+1 := Lκ,sn−k
(γk) then γn is the initial dynamic ray starting at t0, and applying

Proposition 2.11 settles the claim. ¤

The following Proposition generalizes Lemma II.7.2 from [S1].

Proposition 2.13 (The Behavior of the Singular Orbit)
Let λ be a parameter such that Re(λ) > 3. Suppose there is an n ≥ 3 with
the property that the first n points of the singular orbit (zk)k≥1 := (0, λ, . . . ) =

(E
◦(k−1)
λ (0))k≥1 are contained in {z ∈ C : |Im(z)| ≤ |Re(z)|}, and suppose zn is the

first orbit point with Re(zn) < 0. Then Eλ has an attracting periodic orbit of exact
period n. The same is true for n = 2 if Re(λ) < −9.

Proof. We start the proof by claiming that if n ≥ 2 is defined as in the statement
above, then

e|λ| exp(Re(zn)) < (|zn|+ 1)−2 . (29)

We estimate for all 1 ≤ k < n

(|zk|+ 1)2 ≤ (
√

2Re(zk) + 1)2 < 3 exp(Re(zk)) <

< |λ| · | exp(zk)| = |zk+1| < |zk+1|+ 1 . (30)
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Figure 4: The setting of Proposition 2.13.

For the first inequality we used that |z| ≤ √
2|Re(z)| for all z ∈ {|Im(z)| ≤ |Re(z)|},

and for the second inequality we used that (
√

2x + 1)2 < 3ex for every x ≥ 0. In
particular, we see that for all 1 ≤ k < n we have |zk| < |zk+1|.

If n = 2, then Re(λ) < −9. Since ξ 7→ eξ − e
√

2ξ(
√

2ξ + 1)2 is positive on the
interval [9,∞], we thus get

e|λ|(|λ|+ 1)2 ≤ e
√

2|Re(λ)|(
√

2|Re(λ)|+ 1)2 < exp(|Re(λ)|) .

This shows (29) for n = 2, using |λ| = |zn| and |Re(λ)| = −Re(zn).
Therefore assume n ≥ 3, so that

|zn| ≥ |z3| = |λeλ| > 3e3 > 60 and thus |Re(zn)| > (
√

2)−160 > 40 .

Furthermore, we get

(|Re(zn)|+ 1)2 < 2|Re(zn)|2 and 4e(Re(zn))3 < exp(Re(zn)) ,

since the functions ξ 7→ 2ξ2 − (ξ + 1)2 and ξ 7→ 4ex3 < ex are positive on [9,∞].
Putting all this together we arrive at

e|λ|(|zn|+ 1)2 ≤ 2e|λ||zn|2 ≤ 2e · 2|λ||Re(zn)|2 < 4e|Re(zn)|3 <

< exp(|Re(zn)|) .

This shows estimate (29) for n ≥ 3, using |Re(zn)| = −Re(zn).
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Define Dn := B1(zn) and let Dn−1 be the component of E−1
λ (Dn) containing

zn−1. For all w1 6= w2 ∈ Dn−1 we deduce from the intermediate value theorem

|Eλ(w1)− Eλ(w2)|
|w1 − w2| ∈

(
inf

Dn−1

|E ′
λ(z)|, sup

Dn−1

|E ′
λ(z)|

)
=

(
inf

Dn−1

|Eλ(z)|, sup
Dn−1

|Eλ(z)|
)

=

=

(
inf
Dn

|z|, sup
Dn

|z|
)

=
(
|zn| − 1, |zn|+ 1

)
. (31)

This yields the inequalities

|w − zn−1| ≤ 1

|zn| − 1
and |Eλ(w)− zn| ≤ |w − zn−1|

(|zn|+ 1)−1
.

for all w ∈ Dn−1. It follows from the first equation that Dn−1 does not contain 0 (so
that we can define a logarithm on Dn−1), and from the second one that Bρn−1(zn−1) ⊂
Dn−1 for ρn−1 := (|zn|+ 1). (Check that w ∈ Bρn−1(zn−1) implies Eλ(w) ∈ Dn.)

By doing this step n− 1 times we obtain open sets D1 3 0, D2 3 λ, . . . , Dn with
the property that every Dk contains the ball Bρk

(zk) of radius ρk :=
∏n

l=k+1(|zl| +
1)−1. (See Figure 4.) Note that in (31), we have to replace (|zn| − 1, |zn| + 1) by
(|zk+1| − 1, |zk+1|+ ρk+1) in the k-th step.

In particular, we have an open set D1 around 0 containing the disc Bρ1(0) with

E
◦(n−1)
λ (D1) = Dn. By induction, estimate (30) yields for all 1 ≤ k < n

k∏

l=2

(|zl|+ 1) < (|zk|+ 1)2 < |zk+1|+ 1 . (32)

The induction seed k = 1 is immediate, and
∏k+1

l=2 (|zl|+1) < (|zk+1|+1)(|zk|+1)2 <
(|zk+1|+1)2 shows the induction step. So we have ρ2 ≥ (|zn|+1)−2. But since every
w ∈ Dn satisfies Re(w) ≤ Re(zn) + 1, we get by formula (29) for every z ∈ D1

|E◦n
λ (z)| =

∣∣∣Eλ

(
E
◦(n−1)
λ (z) ∈ Dn

)∣∣∣ ≤ |λ| exp(Re(zn) + 1) =

= e|λ| exp(Re(zn)) < (|zn|+ 1)−2 .

Therefore E◦n
λ (D1) ⊂ Bρ1(0) ⊂ D1, which yields an attractive cycle of exact period

n. ¤
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3 Construction of Parameter Rays

3.1 Definition and Parameter Ray Tails

We want to turn our attention now to the parameter space by varying the parameter
κ within the strip {z ∈ C : |Im(z)| ≤ π}. For a better understanding of the
bifurcation locus of the Exponential Family it would be nice to establish a structure
like by the successful treatment of the dynamic plane in [SZ]. Surprisingly, there
is indeed a lot of similarity between the discussion of the parameter space and the
dynamic spaces.

We are interested in the escaping parameters, which are those parameters for
which the singular value is an escaping point. To handle them we will construct
rays again, called parameter rays, which distinguish the escaping parameters by the
external address and the potential of the singular value 0.

The construction is closely related to the construction of dynamic rays. We first
start the construction for large potentials, where it is comparably easy. Then we
will extend this parameter ray tail on the full domain of potentials (ts,∞). Every
escaping parameter for which 0 is on a ray (rather than being landing point of a
ray) is contained in exactly one parameter ray. This will be proven in Theorem 3.9.
We believe that actually every escaping parameter is either on a parameter ray or a
landing point of some parameter ray. (Work in progress.)

Definition 3.1 (Parameter Rays)
Suppose that, for some parameter κ ∈ C, the dynamic ray for external address s ∈ S

contains the singular value 0 at some potential t > ts:

gκ,s(t) = 0 . (33)

Then we say, “The parameter κ is on the parameter ray of external address s at
potential t.”

Remark. At this point, the term ‘parameter ray’ is not yet justified as it is defined
pointwise. But the notion of ray will make sense, as we will show that for every
given exponentially bounded external address s and for every potential t > ts there is
exactly one parameter κ with gκ,s(t) = 0, and this parameter depends continuously
on t.

In order to construct the parameter ray for a given external address s, we begin
with assigning a parameter to every sufficiently large potential. After this we show
that the choice is unique and varies continuously with the potential, and that we
can extend this ray tail continuously and uniquely to the full domain of potentials
t > ts.
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Figure 5: The setting in the Proof of Proposition 3.2.

Proposition 3.2 (Existence of Parameter Ray Tails)
Let s ∈ S be exponentially bounded with growth parameters A and x. Then there is
a constant t′s := 18 + 2x + 2 log(4A) > ts and a unique map Gs : [t′s,∞) → C such
that for every t ≥ t′s, the parameter κ = Gs(t) is on the parameter ray for external
address s at potential t and such that |Gs(t)| < 2πt for all t. The parameter κ is a
simple root of Equation (33), and the parameter ray tail carries the asymptotics

Gs(t) = t + s12πi + Rs(t) with |Rs(t)| < 2e−t(2π(t + |s2|+ AC) + 2) < 1 .

Proof. Consider an arbitrary fixed potential t ≥ t′s and define K := 2πt. We
want to find a zero κ0 of the map κ 7→ gκ,s(t) within the disk BK(0).

Since t ≥ t′s ≥ 18 + 2 log 4 > 20 implies t/2 > 2 log(2πt + 3), we estimate

t = t/2 + t/2 > 2 log(2πt + 3) + x + log(4A) = x + 2 log(K + 3) + log(4A) .

Therefore t is on the dynamic ray tail of any gκ,s with |κ| < K. More precisely,
t > t′K,s + log(4A), and Theorem 2.2 thus provides for all κ ∈ BK(0):

gκ,s(t) = t− κ + 2πs1i + rκ,s(t) with |rκ,s(t)| < 0.82 < 1 .

Now for given κ, define z0 := t + s12πi, so that gκ,s(t) = z0 − κ + rκ,s(t). Since
|rκ,s| < 0.82, we have gκ,s(t) 6= 0 for |z0 − κ| ≥ 0.82. Within the disk BK(0), the
only parameters κ with gκ,s(t) = 0 are thus contained in the disk B0.82(z0).

Let g : BK(0) → C be defined by g(κ) := gκ,s(t) and consider the curve κ̃(τ) :=
z0 + e2πiτ with τ ∈ [0, 2π]. Note that every κ in the range of κ̃ satisfies |κ| ≤ |t| +
|s12π|+1 ≤ t+πt+1 < 2πt = K. The curve g◦κ̃(τ) = −e2πiτ +rκ̃(τ),s(t) turns exactly
once around the origin because it stays within the annulus {z : 0.18 < |z| < 1.82}.
By Theorem 2.2, g is holomorphic in κ within any open set of parameters where
gκ,s(t) is defined. We thus obtain a holomorphic map g̃(z) := g(z− z0) : B1(0) → C
with the property that the winding number of 0 with respect to the curve g̃(S1) is
1. By Rouché’s Theorem, g̃ has exactly on root within B1(0), and there is exactly
one κ0 with |κ0| < K for which gκ0,s(t) = 0, being a simple root of κ 7→ gκ,s(t).
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It follows that Gs has the asymptotic form t+2πs1i+Rs(t), where Rs(t) satisfies
the same bounds as rK,s(t) in Theorem 2.2, substituting K by 2πt. ¤

Lemma 3.3 (A Bound on the Singular Orbit)
Let s ∈ S be exponentially bounded and let κ be a parameter such that gκ,s(t) = 0 for
some potential t > ts. Choose the growth parameters x and A such that ts < x < t.
Let n ∈ N be chosen large enough so that

F ◦n(t) > t?n := 2F ◦n(x) + 2 log(2K + 3 + 9πA) .

Then the singular orbit (zk)k∈N = (E
◦(k−1)
λ (0))k∈N satisfies for all k ∈ N

|Im(zk)| ≤ 2π(2n+2 + 1 + |sk − s1|) . (34)

Proof. Using Lemma 2.12, we have |η(gκ,s(t,∞), 0)| ≤ 2n+2. Therefore, the
preimages of this ray provide a partition of the dynamic plane such that the region
containing 0 is contained in {z ∈ C : |Im(z)| ≤ (2n + 1)2π}. Since the vertical
distance of this strip to the one containing zk is 2π|sk−s1| and dynamic rays cannot
cross the boundary of the above partition, we get Formula (34). ¤

Proposition 3.4 (A Bound on the Growth of Parameter Rays)
For every exponentially bounded external address s ∈ S there is a continuous function
ξs : (ts,∞) → R such that for every κ and every t > ts

gκ,s(t) = 0 =⇒ |Re(κ)| ≤ ξs(t) .

Moreover, there is a constant Ts > t′s such that for t > Ts, ξ(t) := t + 1 is a valid
bound.

Proof. Suppose κ is a parameter with |Im(κ)| ≤ π and gκ,s(t) = 0. Choose
the growth parameters A, x of s such that ts < x < t. Clearly, Re(κ) is bounded
below by −1, since parameters κ with Re(κ) < −1 (λ = eκ is contained in the main
cardioid) yield attractive dynamics. Thus we only have to find an upper bound for
Re(κ).

Let n ∈ N be chosen big enough so that both n ≥ 3 and

F ◦(n−1)(t) > t?n−1 = 2F ◦(n−1)(x) + 2 log(2|κ|+ 3 + 9πA) . (35)
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Therefore we can apply Lemma 3.3 on zk := E
◦(k−1)
λ (0) and we get for all 1 ≤

k ≤ n the estimate |Im(zk)| ≤ 2π(2n+2 + max1≤l≤n{|sl − s1|} + 1) ≤ 2π + 2n+3π +
2πA(F ◦(n−1)(x) + x).

We claim that

h := max{et, 2πA(F ◦(n−1)(x) + x) + 2n+3π + 2 log(2|κ|+ 3 + 9πA)} (36)

is an (implicit) upper bound for |Re(λ)| = |Re(eκ)|. Note that h ≥ t?n−1 and h ≥
|Im(zk)| for all 1 ≤ k ≤ n.

Suppose |Re(λ)| ≥ h. If Re(λ) ≥ h then we either have (zk)1≤k≤n = (0, λ, λeλ, . . . ) ⊂
{z ∈ C : Re(z) > 0} or there will be an attractive orbit due to Proposition 2.13,
since the points z1, . . . , zn satisfy |Im(zk)| ≤ h ≤ |Re(zk)|. But there cannot be an
attractive orbit for an escaping parameter such as κ. So the singular orbit must
grow along the first n orbit elements: for all k < n

|Re(zk+1)| ≥ |zk+1|/
√

2 = |λ| exp(Re(zk))/
√

2 > 4 exp(Re(zk))

(using |λ| ≥ h ≥ 2π > 4
√

2). So in particular we have Re(zn) > 4 exp◦(n−2)(h).
On the other hand, the potential tn of zn satisfies tn = F ◦(n−1)(t) < exp◦(n−2)(et) <
exp◦(n−2)(h), and since zn is on the ray tail, Theorem 2.2 provides the estimate

3 ≤ 3 exp◦(n−2)(h) < |Re(zn)− tn| ≤ |κ|+ 2e−tn(|κ|+ 2 + 2π|sn|+ 2πAC) < 1 .

This is a contradiction.
If Re(λ) ≤ −h, we get Re(λ) ≤ −h ≤ −26π < −9 and we still have |Im(λ)| <

h < |Re(λ)|. So we can apply Proposition 2.13 again to get a contradiction.
Hence

Re(κ) = log(|λ|) ≤ log(|Re(λ)|+ |Im(λ)|) ≤ log(2h) =

= max{t + log 2, log 4 + log(πA(F ◦(n−1)(x) + x)) + log(2n+2π) +

+ log log(2|κ|+ 3 + 9πA)} ≤
(1)

≤ max{t + 1, log 4 + log(πA) + log(F ◦(n−1)(x) + x) + log π +

+(n + 2) log 2 + log log 2 + log log |κ|+ log log(3 + 9πA)} ≤
(2)

≤ max{t + 1, 5 + 2 log(πA) + 2 log(F ◦(n−1)(x) + x) + 2(n + 2) +

+2 log log(3 + 9πA)} =: max{t + 1, h̃′(n)} =: h̃(t, n) .

In (1) and (2), the relation log(a + b) ≤ log a + log b (true for every a > 1 and
b ≥ 1 + 1/(a − 1), for example a, b ≥ 2) has been used several times. In the step
marked by (2), we applied the estimations log 4 + log π + log log 2 ≤ 5/2 and

log log(|κ|) ≤ log log(Re(κ) + π)
(3)

≤ Re(κ)− log log(Re(κ) + π) ≤ α− log log(|κ|) ,
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where the inequality (3) follows from the positivity of ϕ(a) := a−2 log log(a+π) on
[1,∞), and α is any upper bound for Re(κ). (In our case α is the second argument
of the maximum in the line on which (2) has been applied.)

Let us first show the existence of a continuous function ξs : (ts,∞) → R bounding

|Re(κ)| for given s. The problem with h̃(t, n) is that we do not know anything about
n, which can be arbitrary big as soon as the potential gets closer to ts. But for every
t0 > ts there is an N(t0) which suffices as n for every κ with potential t ≥ t0: We
either have Re(κ) < t + 1, or we find a minimal n = n(κ) satisfying (35), which is
equivalent to

2|κ|+ 3 + 9πA < exp
(
F ◦(n−1)(t)/2− F ◦(n−1)(x)

)
. (37)

Using |κ| ≤ π + h̃′(n(κ)), we can sharpen this condition on n(κ) for all t ≥ t0 to

2|κ|+ 3 + 9πA ≤ 4 log
(
F ◦(n(κ)−1)(x) + x

)
+ 4n(κ) + const(A, x)

!
<

< exp
(
F ◦(n(κ)−1)(t0)/2− F ◦(n(κ)−1)(x)

)
.

Obviously, there is an N(t0) ∈ N independent of t ≥ t0 and κ, such that the condition
“!” is true for all n ≥ N(t0). Therefore the desired function ξs exists, which can be

chosen to be any continuous dominant of h̃(t, N(t)).
It is left to show that there is a Ts such that every parameter κ with potential

t ≥ Ts satisfies Re(κ) ≤ t + 1. First of all, set

T ′
s := h̃′(3) + 7 ≥ t′s = 18 + 2x + log(4A) .

For every parameter κ there is a minimal n ≥ 3 such that (37) holds. We have seen
that this leads to the estimate Re(κ) < h̃(t, n). As pointed out above, there is an
N := N(T ′

s) such that n ≤ N .
If κ is a parameter for which n = 3 suffices, then the we obviously have Re(κ) <

h̃(t, 3) = t + 1, since h̃′(3) < t + 1.
Now assume n > 3 and Re(κ) ∈ [t + 1, h̃′(n)]. We will show that then Formula

(37) is also true for n − 1 instead of n, which is a contradiction. We can choose
x ∈ (ts, t) satisfying x ≥ 1, which implies F ◦(n−1)(x) > 4F ◦(n−2)(x) for all n > 3.

Since t > F (x) and |κ| ≤ h̃′(n) + π, we get

F ◦(n−2)(t)/2− F ◦(n−2)(x) > F ◦(n−1)(x)/2− F ◦(n−2)(x) > F ◦(n−2)(x) ≥
≥ log F ◦(n−1)(x) > log F ◦(n−1)(x) + (|κ| − π − h̃′(n))/2 =

= |κ|/2− π/2− 5/2− log(πA)− log x− (n + 2)− log log(3 + 9πA) ≥
≥ |κ|/2−N + const(A, x) .

By possible enlarging T ′
s to some Ts ≥ T ′

s we may assume that for every α ≥ Ts we
have α/2−N+const(A, x) ≥ log(2α+3+9πA). For all t > Ts we get |κ| ≥ t+1 > Ts,
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and thus
F ◦(n−2)(t)/2− F ◦(n−2)(x) > log(2|κ|+ 3 + 9πA) .

Hence (37) holds for n− 1 as well. ¤

Corollary 3.5 (Parameter Ray Tails Are Unique)
Let s ∈ S be an exponentially bounded sequence. Then for every t > Ts there is
one and only one parameter κ on the parameter ray at address s and potential t,
where Ts > t′s is the constant from Proposition 3.4. The multiplicity of κ as a root
of κ 7→ gκ,s(t) is 1, and thus (∂/∂κ)gκ,s(t) 6= 0.

Proof. On the one hand, Proposition 3.2 provides existence and uniqueness under
the condition that |κ| < 2πt. On the other hand, the bound in Proposition 3.4 gives
|κ| ≤ |Re(κ)|+ |Im(κ)| < t + 1 + π < 2πt. ¤

3.2 Parameter Rays at Their Full Length

Lemma 3.6 (The Domain of Definition of κ 7→ gκ,s(t))
Fix an exponentially bounded sequence s ∈ S.

• For every open ball B := Bε(κ0) of parameters (with κ0 ∈ C and ε > 0
arbitrary) and every compact interval I ⊂ (ts,∞) of potentials there is an
N ∈ N such that gκ,σns(F

◦n(t)) is defined for all n ≥ N , κ ∈ B, and t ∈ I;

• For each potential t0 > ts, the set Dt0,s := {κ ∈ C : gκ,s(t0) is defined} ⊂ C is
open;

• For every κ0 ∈ Dt0,s there are neighborhoods I ⊂ R and Λ ⊂ C of t0 and κ0

respectively such that gκ,s(t) is defined for all t ∈ I and κ ∈ Λ.

Proof. Recall that if t > ts, the only possible reason for gκ,s(t) not to be defined
is the existence of an n ≥ 1 such that gκ,σns(t0) = 0 with t0 ≥ F ◦n(t) (following
Theorem 2.2).

For the first claim, let K := |κ0| + ε, so that |κ| < K for all κ ∈ B. Define the
growth parameters x and A of s such that ts < x < inf I. Now just take N big
enough so that both F ◦N(t) > F ◦N(x)+2 log(K +3)+ log(4A) and F ◦N(t) > K +1
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for all t ∈ I. This implies by Theorem 2.2 that for all κ ∈ B, F ◦N(t) is on the
dynamic ray tail of gκ,σNs with |rκ,σN (F ◦N(t))| < 1, so that

Re
(
gκ,σNs(F

◦N(t′))
) ≥ F ◦N(t′)−K − |rK,σNs(F

◦N(t′))| >
> F ◦N(t)−K − 1 > 0 (38)

for all t′ ≥ t. This shows the first statement.
The third claim implies the second claim, so that it is only left to show the third

item. Assume that (t0, κ0) is a pair of a potential t0 > ts and a parameter κ0 ∈ C
such that κ0 ∈ Dt0,s. If the statement was wrong then there would be sequences
(tn)n≥1 and (κn)n≥1 with |tn− t0| ≤ 1/n and |κn−κ0| ≤ 1/n for all n ≥ 1, such that

∀n ≥ 1 ∃Nn ≥ 1 , ∃t′n ≥ F ◦Nn(tn) : gκn,σNns(t
′
n) = 0 .

By the first step above, we may assume by passing to a subsequence that all the
Nn are equal to some N0. Furthermore, the sequence (t′n)n≥1 is contained in some
compact interval [F ◦N0(t∗), t∗], where t∗ = infn t′n and t∗ is some potential on the
ray tail, beyond which we have good control, compare (38). So by passing to a
subsequence once more we may assume that (t′n)n converges to some t′0 ≥ F ◦N0(t0).
Since the map (t, κ) 7→ gκ,σN0s(t) is sequential continuous wherever it is defined, it
follows from gκn,σN0s(t

′
n) = 0 for all n ≥ 1 that

lim
n→∞

gκn,σN0s(t
′
n) = 0 , and so gκ0,σN0s(t

′
0) = 0 .

(Note that we do not leave the set of pairs (t, κ) for which gκ,σN0s(t) is defined.) This
contradicts the assumption κ0 ∈ Dt0,s. ¤

The following Lemma will be needed several times in the following discussion.

Lemma 3.7 (Discreteness of Zeros of Dynamic Rays)
Let s ∈ S be exponentially bounded and t > ts be any potential.

• The set Zt,s := {κ : gκ,s(t) is defined and gκ,s(t) = 0} is discrete in C.

• For every κ ∈ Zt,s there are neighborhoods Λ ⊂ C and I ⊂ R containing κ and
t respectively, such that for every t′ ∈ I, the number of elements of Zt′,s ∩ Λ
(counting multiplicities) equals the finite multiplicity of κ as a root of the map
κ 7→ gκ,s(t).
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Proof. Assume that Zt,s is not discrete. By Lemma 3.6 there is an open ball
B of parameters κ containing a limit point of Zt,s on which gκ,s(t) is holomorphic.
Due to the identity theorem we have B ⊂ Zt,s. In [Ye] (Theorem 3 and Corollary
4), Zhuan Ye has shown that if κ is an escaping parameter then Eκ is not J-stable.
But on B we would have J-stability: for every κ ∈ B the Julia set equals C. (This
can for example also be found in [Ye], Theorem A.) This is a contradiction.

For the second claim, consider a small loop γ around κ, bounding an open
neighborhood Λ ⊂ Dt,s(κ) of κ, such that κ is the only root of the map κ′ 7→ gκ′,s(t)
within Λ. This is possible since Dt,s is open and Zt,s is discrete. The multiplicity of
κ as a zero equals |η(gγ,s(t), 0)|. (The winding number η has been defined in Formula
(28) of section 2.3.) But by Rouché’s Theorem and continuity of (κ, t) 7→ gκ,s(t),
we have |η(gγ,s(t

′), 0)| = |η(gγ,s(t), 0)| for potentials t′ sufficiently close to t. This
completes the proof. ¤

Theorem 3.8 (Continuous Local Extension of Parameter Rays)
Suppose κ0 is on a parameter ray for some external address s ∈ S at potential
t0 > ts. Then there is an open interval I containing t0 and a map Gs : I → C with
Gs(t0) = κ0 such that for all t ∈ I, the parameter Gs(t) is on the parameter ray for
external address s at potential t. The map Gs may be chosen to be continuous at t0.

Proof. At least we know by Lemma 3.6 that there are neighborhoods I and Λ
of t0 and κ0 respectively on which gκ,s(t) is defined for all t ∈ I and κ ∈ Λ. By
Lemma 3.7 it follows that if we choose Λ and I sufficiently small around κ0 and
t0, then for every t ∈ I there is a parameter κ ∈ Λ on the parameter ray for s at
potential t. This defines a map Gs(t) := κ, possibly involving a choice. This map
Gs is continuous at t0, since we can find such an interval I as above for arbitrary
small neighborhoods Λ around κ0. ¤

We are now ready to state and to prove the main result of this paper.

Theorem 3.9 (Parameter Rays at Their Full Length)
For every exponentially bounded sequence s ∈ S there is a unique curve Gs : (ts,∞) →
C such that every parameter κ = Gs(t) is an escaping parameter with external ad-
dress s and potential t. Conversely, every parameter κ for which there are s ∈ S

and t > ts such that gκ,s(t) = 0 satisfies Gs(t) = κ. The curve Gs thus realizes the
notion of parameter ray from definition 3.1 uniquely.
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Proof. Corollary 3.5 provides for large potentials t > Ts a unique choice for
Gs(t), which depends continuously on t. Let

I := {t∗ > ts : Gs exists for all t > t∗} 3 Ts

be the maximal interval of potentials onto which the parameter ray tail can be
extended. The set I is non-empty, and it follows from Theorem 3.8 that I is open.
We will now show that I is also closed in (ts,∞). Let t∗ := inf I and suppose
t∗ > ts. Then by Proposition 3.4 and |Im(κ)| ≤ π, the set {Gs(t) : t ∈ (t∗, t∗+1)} is
contained in a compact set. Thus the set L of all limits limt↘t∗ Gs(t) is a nonempty
compact subset of C.

We first have to be sure that for every κ0 ∈ L the dynamic ray gκ0,s is defined for
the potential t∗. Otherwise there would be an n ≥ 1 such that the potential t of 0 (i.e.
gκ0,s(t) = 0) satisfies t ≥ F ◦n(t∗). By Formula (5) of Theorem 2.2, we know for large
k that Re(E◦k

κ0
(0)) ≥ F ◦(k+n)(t)−Re(κ0)−1. But Re(E◦k

κ (0)) = F ◦k(t)−Re(κ)+O(1)
for κ = Gs(t) and t > t∗, which contradicts the continuity of the map κ 7→ E◦k

κ (0).
We want to prove now that every κ0 ∈ L satisfies gκ0,s(t∗) = 0. But if this was

wrong, then by continuity of the map (κ, t) 7→ gκ,s(t) there were nearby potentials
t > t∗ with gGs(t),s(t) 6= 0, which is a contradiction. It follows that I is closed in
(ts,∞), so I = (ts,∞). Hence Gs(t) can be defined for all potentials greater than
the the minimal potential.

Roots κ of the equation gκ,s(t) = 0 are isolated by Lemma 3.7, so L is a non-
empty finite set. We know that for sufficiently large potentials, there is a unique
Gs(t). And if there was a potential t0 > ts with more than one choice for Gs(t0),
then we could perturb all these branches for potentials t sufficiently close to t0 and
run a similar proof as above, but for increasing instead of decreasing potentials: let
t∗ be the finite supremum of all potentials for which there is more than one choice
for Gs(t). Then for the maximal potential itself, Gs(t

∗) must be unique by Theorem
3.8 (or we could further extend the different choices). Therefore, several branches of
Gs for ts < t < t∗ must converge to the same point Gs(t

∗). But this is ruled out by
Lemma 3.7 again: κ∗ := Gs(t

∗) must be a simple root of κ 7→ gκ,s(t
∗), since Gs(t)

is unique for all t > t∗. This yields uniqueness for all t in a neighborhood of t∗,
which is a contradiction to the choice of t∗ as the supremum of potentials without
uniqueness.

It follows that Gs is defined and unique for all potentials greater than the minimal
potential, and continuity is now guaranteed by Theorem 3.8. Finally, injectivity of
Gs and disjointness of the rays for different combinatorics follow from the fact that
the singular value can be at most on one dynamic ray, having at most one potential.
¤

39



3.3 Derivative of Parameter Rays

After the Lemmas concerning the domain of definition of the maps κ 7→ gκ,s(t),
we are ready to discuss analogously to the results in Chapter 2.2 the derivative
of dynamic rays with respect to the parameter. At first glance, the following
Proposition may look immediate, since we have the asymptotic form gκ,s(t) =
t− κ + 2πis1 + O(e−t). However, there is no direct way to handle (∂/∂κ)O(e−t).

Proposition 3.10 (The Derivative of Dynamic Rays w.r.t. the Parameter)

Let s ∈ S be an exponentially bounded sequence, and κ0 ∈ C be a parameter. Then
there is a neighborhood U ⊂ C of κ0 such that for all t > ts, κ 7→ (∂/∂κ)gκ,s(t) :
U → C is a holomorphic function, satisfying the asymptotics

lim
t→∞

∂

∂κ
gκ,s(t)

∣∣∣∣
κ=κ0

= −1 .

Furthermore, for every t > ts

lim
n→∞

∂

∂κ
E◦n

κ (gκ,s(t))

∣∣∣∣
κ=κ0

= −1 .

Proof. We know by Lemma 3.6 that there is a neighborhood U of κ0, say
contained in the ball BK(0) of some radius K > 0, such that gκ,s(t) is defined for
all κ ∈ U . Recall from Lemma 2.3 that the ray ends gκ,s(2 log(K + 3),∞) are the
uniform limits of the holomorphic functions gn

κ,s : (2 log(K + 3),∞) → C defined by

gn
κ,s(t) := Lκ,s1 ◦ · · · ◦ Lκ,sn(F ◦n(t))

with Lκ,m(z) := Log(z) − κ + 2πim. As already pointed out in [SZ] (Proposition
3.4), the Weierstraß Theorem asserts that κ 7→ (∂/∂κ)gκ,s(t) is holomorphic and
satisfies

∂

∂κ
gκ,s(t) = lim

n→∞
∂

∂κ
gn

κ,s(t)

if the limit exists. Assume t > max{K +2, 2 log(K +3)}. We calculate (∂/∂κ)gn
κ,s(t)

for arbitrary n > 0 as follows. Define for all n,m ≥ 1 the numbers an,m ∈ C and
am ∈ C by

an,m = an,m(t, s) := gn−m+1
κ,σms (F ◦m(t)) , am := lim

n→∞
an,m = gκ,σms(F

◦m(t)) .

By Formula (6) in Lemma 2.3 there is a TK = max{K + 3, 2 log(K + 3)} such that
Re(gn

κ,s̃(t)) > 1 for all t > TK and all s̃ ∈ S. Therefore all the an,m and an are non-
zero if we restrict to potentials t > TK . We show by induction that for all n ∈ N
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and t > TK

∂

∂κ
gn+1

κ,s (t) = −1 +
n∑

m=1

m∏

l=1

1

an,l

. (39)

The induction seed follows from (∂/∂κ)g1
κ,s(t) = (∂/∂κ)(Log(F (t))−κ+2πis1) = −1.

Assume that the formula is right for some n− 1 ∈ N. Then

∂

∂κ
gn+1

κ,s (t) =
∂

∂κ

(
Log gn

κ,σs(F (t))− κ + 2πis1

)
= −1 +

(∂/∂κ)gn
κ,σs(F (t))

gn
κ,σs(F (t))

=

= −1 +
1

an,1(t, s)

(
−1 +

n−1∑
m=1

m∏

l=1

1

an−1,l(F (t), σs)

)
=

(∗)
= −1− 1

an,1

+
n−1∑
m=1

m+1∏

l=1

1

an,l(t, s)
= −1 +

n∑
m=1

m∏

l=1

1

an,l

,

where (*) follows from the relationship an−1,l(F (t), σs) = an,l+1(t, s).
We claim that for all t > TK

∂

∂κ
gκ,s(t) = −1 +

∞∑
m=1

m∏

l=1

1

al

. (40)

Firstly, this sum exists by the ratio test, since |∏m+1
l=1

1
al

/
∏m

l=1
1
al
| = |1/am+1| <

1/2 < 1 for large m. It is left to show that the expression in (39) converges to the
expression in (40). But

∣∣∣∣∣

(
−1 +

∞∑
m=1

m∏

l=1

1

al

)
−

(
−1 +

n∑
m=1

m∏

l=1

1

an,l

)∣∣∣∣∣ ≤

≤
∞∑

m=n+1

m∏

l=1

1

|al| +
n∑

m=1

∣∣∣∣∣
m∏

l=1

1

al

−
m∏

l=1

1

an,l

∣∣∣∣∣ −→ 0 + 0 = 0 :

This is clear for the first limit, and for the second one it is by

n∑
m=1

∣∣∣∣∣
m∏

l=1

1

al

−
m∏

l=1

1

an,l

∣∣∣∣∣ ≤ n ·
∣∣∣∣
1

a1

− 1

an,1

∣∣∣∣ ≤ n · |an,1 − a1|
|a1||an,1|

enough to show that an,1 → a1 exponentially fast. But this follows from Formula
(8) in Lemma 2.3 and the triangle inequality:

∣∣gn
κ,s(t)− gκ,s(t)

∣∣ ≤
∞∑

m=n+1

(
4πAe−t

m−2∏

l=1

e−l

)
≤ 4πAe−te−(n−1) .
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This shows Formula (40). Since

∣∣∣∣∣
∞∑

m=1

m∏

l=1

1

al(t, s)

∣∣∣∣∣ ≤
∞∑

m=1

a1(t, s)
−m =

a1(t, s)

1− a1(t, s)

t→∞−→ 0 ,

it follows that

lim
t→∞

∂

∂κ
gκ,s(t)

∣∣∣∣
κ=κ0

= lim
t→∞

(
−1 +

∞∑
m=1

m∏

l=1

1

al(t, s)

)
= −1 .

The second statement follows from the functional equation

E◦n
κ (gκ,s(t)) = gκ,σns(F

◦n(t))

and the fact that the rate of convergence of |am(t, s)| → ∞ has been estimated
above independently of s. ¤

Corollary 3.11 (Parameter Rays are Differentiable)
For every exponentially bounded external address s ∈ S, the parameter ray Gs :
(ts,∞) → C∗ is a continuously differentiable curve with

G′
s(t) = − (∂/∂t) gκ,s(t)

(∂/∂κ) gκ,s(t)
,

satisfying the asymptotics limt→∞ Re(Gs(t)) = ∞ and limt→∞ G′
s(t) = 1.

Proof. By the implicit function theorem, all we need to show is that (∂/∂κ)gκ,s(t) 6=
0 for all (κ, t) for which gκ,s(t) = 0. If (∂/∂κ)gκ,s(t) 6= 0 would be true for some
t > ts, then gκ,s(t) would have a multiple root κ0. But this contradicts Theorem 3.9.

The first limit follows from Proposition 3.2, the second one follows from

∂

∂t
gκ,s(t) −→ 1 and

∂

∂κ
gκ,s(t) −→ −1

by Theorem 2.2 and Lemma 3.10. ¤
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