Semiconjugacies in Complex Dynamics with Parabolics

Tomoki Kawahira
Graduate School of Mathematical Sciences,
University of Tokyo

Abstract and Acknowledgments

In this thesis we investigate degeneration of rational maps and generation of parabolic cycles. There are two chapters as follows:

Chapter 1: Semiconjugacies between the Julia sets of geometrically finite rational maps.

A rational map f is called geometrically finite if every critical point contained in its Julia set is eventually periodic. If a perturbation of f into another geometrically finite rational map is horocyclic and preserves the critical orbit relations with respect to the Julia set of f, then we can construct a semiconjugacy or a topological conjugacy between their dynamics on the Julia sets.

I would like to thank H. Shiga, M. Shishikura, H. Sumi, M. Taniguchi and the referee for their helpful advice and encouragement. I also would like to thank M. Lyubich and S. Sutherland for their helpful comments.

Chapter 2: Regular leaf spaces of parabolic quadratic polynomials. The method of tessellation is developed. For a quadratic polynomial with a parabolic cycle, we construct pinching semiconjugacies from certain hyperbolic quadratic polynomials. These semiconjugacies describe degeneration and bifurcations of their associating regular leaf spaces.

I would like to thank C. Cabrera, M. Lyubich and Y. Tanaka for stimulating discussions. I also would like to thank people in SUNY at Stony Brook for their hospitality while this work was being prepared.

These works are supported by a grant from JSPS Research Fellowships for Young Scientists. Finally, I would like to thank my companion, and my family.

[^0]
Contents

1 Semiconjugacies between the Julia sets of geometrically finite rational maps 1
1.1 Introduction 1
1.2 Horocyclic perturbations 9
1.2.1 Planets and satellites. 9
1.2.2 Key lemma on horocyclic perturbation. 12
1.3 Construction of Ω and Ω_{ϵ} 18
1.3.1 Construction of Ω. 19
1.3.2 Construction of Ω_{ϵ} and the " 0 -th" map h_{0}. 20
1.4 Construction of h_{n} 25
1.5 Contracting property of f^{-1} 27
1.5.1 Branched covering of Ω 28
1.5.2 Lifting f^{-1} 28
1.5.3 The metric ρ 29
1.5.4 Continuous modulus 30
1.6 Convergence of h_{n} 31
1.7 Almost bijectivity and uniqueness of h_{ϵ} 33
1.8 Geometrically finite maps with the empty Fatou set 38
2 Regular leaf spaces of parabolic quadratic polynomials 43
2.1 Introduction 43
2.2 Dynamics of quadratic polynomials 44
2.2.1 Douady-Hubbard theory of quadratic polynomials 44
2.3 Internal landing lemma 45
2.4 Tessellation: Making tiles 49
2.4.1 Tiles of K_{f}° 50
2.4.2 Tiles of K_{g}° 52
2.4.3 Edge sharing 54
2.5 Pinching semiconjugacy 56
2.6 Degeneration of the regular leaf spaces 59
2.6.1 The regular leaf space 59
2.6.2 Semiconjugacy on the natural extensions 60
2.6.3 Degeneration of periodic leaves 62
2.7 Bifurcation of the regular leaf spaces 64
2.7.1 Linearizing coordinate and tessellation 65
2.7.2 Semiconjugacies 66

Chapter 1

Semiconjugacies between the Julia sets of geometrically finite rational maps

1.1 Introduction

Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$. We call such a map geometrically finite if all critical points contained in the Julia set $J(f)$ are eventually periodic. A geometrically finite rational map can have (super)attracting and parabolic basins, but no Siegel disks or Herman rings. In particular, if a rational map is (sub)hyperbolic or parabolic, then it is geometrically finite.

In this chapter, we discuss perturbations of a geometrically finite rational map f within Rat_{d}, the space of all rational maps of degree d. The topology of this space is defined by uniform convergence on the sphere with respect to the spherical distance $d_{\sigma}(\cdot, \cdot)$. Our aim is to study the dynamical stability of f on its Julia set; that is, structural stability of f restricted on the Julia set.

Perturbations of f. Let us consider a family of rational maps of degree $d \geq 2$, $\left\{f_{\epsilon} \in \operatorname{Rat}_{d}: \epsilon \in[0,1]\right\}$ with the following conditions:

- $f_{0}=f$; and
- $\sup _{x \in \hat{\mathbb{C}}} d_{\sigma}\left(f_{\epsilon}(x), f(x)\right) \rightarrow 0$ as $\epsilon \searrow 0$.

We represent this family in the convergence form, $f_{\epsilon} \rightarrow f$, and call it a perturbation of f.

For this perturbation $f_{\epsilon} \rightarrow f$, let us consider whether the dynamics on $J(f)$ is perturbed continuously to that on $J\left(f_{\epsilon}\right)$. More precisely, we consider the existence of a map $h_{\epsilon}: J\left(f_{\epsilon}\right) \rightarrow J(f)$ for each $\epsilon \in[0,1]$ such that

- h_{ϵ} is a homeomorphism with $h_{\epsilon} \circ f_{\epsilon}=f \circ h_{\epsilon}$ on $J\left(f_{\epsilon}\right)$; and
- $h_{\epsilon}^{-1}: J(f) \rightarrow J\left(f_{\epsilon}\right)$ tends to id $: J(f) \rightarrow J(f)$ as $\epsilon \rightarrow 0$.

Such an h_{ϵ} with the first condition is called a (topological) conjugacy between f_{ϵ} and f on their respective Julia sets. In addition, for the first condition, if h_{ϵ} is not a homeomorphism but merely continuous and surjective, then such on h_{ϵ} is called a semiconjugacy between f_{ϵ} and f on their respective Julia sets.

By the Mañé-Sad-Sullivan theory[15], if f has a connected neighborhood $U \subset$ Rat $_{d}$ where each $f_{\epsilon} \in U$ has the same number of attracting cycles as f, then for each $f_{\epsilon} \in U$ there exists a unique quasiconformal conjugacy $h_{\epsilon}: J\left(f_{\epsilon}\right) \rightarrow J(f)$ as above. This means any small perturbations of f have desired conjugacies. For example, hyperbolic rational maps have this property.

On the other hand, when f is geometrically finite f can have parabolic cycles: As we will describe, those parabolic cycles may change into attracting cycles under some perturbations. Thus the number of attracting cycles may change and we cannot apply the Mañé-Sad-Sullivan theory. Moreover, by a perturbation of parabolic cycles into attracting cycles, the topology of $J(f)$ may change and we cannot even hope that $J(f)$ and $J\left(f_{\epsilon}\right)$ are homeomorphic in general.

However, in our main theorem (Theorem 1.1.1), we will give a sufficient condition for perturbations $f_{\epsilon} \rightarrow f$ to be accompanied by such conjugacies as above or best possible semiconjugacies between the dynamics on their Julia sets.

Parabolic points. Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a rational map of degree $d \geq 2$, and let a be a periodic point of f with period l and multiplier $\left(f^{l}\right)^{\prime}(a)=: \lambda$. We say a is a parabolic (periodic) point if λ is a root of unity.

Now let us suppose that a is a parabolic point and λ is a primitive q-th root of unity. Taking a local coordinate near a which maps a to 0 , we obtain

$$
\begin{equation*}
f^{l q}(z)=z+A_{p+1} z^{p+1}+O\left(z^{p+2}\right) \tag{1.0}
\end{equation*}
$$

with $A_{p+1} \neq 0$ and $p \geq 1$. (Moreover, we can normalize A_{p+1} to be 1 by using a linear transformation.) It is known that p is a multiple of q which does not depend on the choice of local coordinates. We call $p=p(a)$ the petal number of a. We also say that a has p petals.

Note that a is a fixed point of $f^{l q}$ of multiplicity $p+1$. By a perturbation of f into f_{ϵ}, a splits into $p+1$ fixed points of $f_{\epsilon}^{l q}$ counting with multiplicity. This may cause drastic change of the dynamics, so we have to control the perturbation in order to change the original dynamics tamely.

Horocyclic perturbations. After C. McMullen, we say a perturbation $f_{\epsilon} \rightarrow f$ is horocyclic if each parabolic point a of f as above satisfies the following:
(a) There are fixed points a_{ϵ} of f_{ϵ}^{l} with multipliers $\left(f_{\epsilon}^{l}\right)^{\prime}\left(a_{\epsilon}\right)=\lambda_{\epsilon}$ satisfying $a_{\epsilon} \rightarrow a$ and $\lambda_{\epsilon} \rightarrow \lambda ;$
(b) There is a neighborhood D of a with local coordinates $\phi_{\epsilon}, \phi: D \rightarrow \mathbb{C}$ such that:

1. $a_{\epsilon} \in D$ and $\phi_{\epsilon}\left(a_{\epsilon}\right)=\phi(a)=0$;
2. $\phi_{\epsilon} \rightarrow \phi$ uniformly on D; and
3. If we represent the actions of $f_{\epsilon}^{l q}$ and $f^{l q}$ on D by ϕ_{ϵ} and ϕ respectively, we obtain the local representation of the perturbation as:

$$
\begin{equation*}
f_{\epsilon}^{l q}(z)=\lambda_{\epsilon}^{q} z+z^{p+1}+O\left(z^{p+2}\right) \rightarrow f^{l q}(z)=z+z^{p+1}+O\left(z^{p+2}\right) . \tag{1.1}
\end{equation*}
$$

(c) If we set $\exp \left(L_{\epsilon}+i \theta_{\epsilon}\right):=\lambda_{\epsilon}^{q}$, which tends to 1 as $\epsilon \rightarrow 0$, then $\theta_{\epsilon}^{2}=o\left(\left|L_{\epsilon}\right|\right)$ as $L_{\epsilon}, \theta_{\epsilon} \rightarrow 0$.

Form (1.1) implies that the symmetry of the local dynamics near a is preserved by the perturbation. In particular, ϕ, ϕ_{ϵ} are not necessarily conformal, can be just homeomorphisms from D to their images. By condition (c), a avoids being perturbed into an irrationally indifferent periodic point. See $\S 2$ for more details.

Horocyclic perturbation was originally defined as horocyclic convergence of rational maps, to study the continuity of the Hausdorff dimensions of the Julia sets of geometrically finite rational maps $[12, \S 7-9]$.
J-critical relations. A geometrically finite rational map may have critical points in its Julia set. Here we introduce a condition which controls the perturbations of the orbits of such critical points.

Let c_{1}, \ldots, c_{N} be all critical points of f contained in $J(f)$, where N is counted without multiplicity. A J-critical relation of f is a set of non-negative integers (i, j, m, n) such that $f^{m}\left(c_{i}\right)=f^{n}\left(c_{j}\right)$.

Let $\operatorname{deg}(f, x)$ denote the local degree of f at x. We say a perturbation $f_{\epsilon} \rightarrow f$ preserves the J-critical relations of f if:

- For all $i=1, \ldots, N$, the maps f_{ϵ} have critical points $c_{i}(\epsilon)$ (may be in the Fatou set) satisfying $c_{i}(\epsilon) \rightarrow c_{i}$ and $\operatorname{deg}\left(f_{\epsilon}, c_{i}(\epsilon)\right)=\operatorname{deg}\left(f, c_{i}\right)$ as $\epsilon \rightarrow 0$; and
- For each J-critical relation (i, j, m, n) of f, f_{ϵ} satisfies $f_{\epsilon}^{m}\left(c_{i}(\epsilon)\right)=f_{\epsilon}^{n}\left(c_{j}(\epsilon)\right)$.

If f is geometrically finite, then the maps f_{ϵ} are also geometrically finite. If f is hyperbolic or parabolic, then $C(f) \cap J(f)=\emptyset$ and any small perturbation of f automatically preserves its J-critical relations.

Our main result is:

Theorem 1.1.1 Let $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a geometrically finite rational map of degree d, and $f_{\epsilon} \rightarrow f$ a horocyclic perturbation which preserves the J-critical relations of f.

For each ϵ which is sufficiently small, there exists a unique semiconjugacy $h_{\epsilon}: J\left(f_{\epsilon}\right) \rightarrow J(f)$ with the following properties:

1. If $\operatorname{card}\left(h_{\epsilon}^{-1}(y)\right) \geq 2$ for some $y \in J(f)$, then there exists an n such that $f^{n}(y)$ is a parabolic point of f and $\operatorname{card}\left(h_{\epsilon}^{-1}(y)\right)=\operatorname{deg}\left(f^{n}, y\right) \cdot p\left(f^{n}(y)\right)$.
2. h_{ϵ} can be arbitrarily close to the identity on $J\left(f_{\epsilon}\right)$. That is, if we fix an arbitrarily small $r>0$, then for all sufficiently small ϵ, h_{ϵ} satisfies

$$
\sup \left\{d_{\sigma}\left(h_{\epsilon}(x), x\right): x \in J\left(f_{\epsilon}\right)\right\}<r .
$$

Property 1 implies that the injectivity of h_{ϵ} may break on the backward orbits of parabolic points of f. Since such points are countable, we say that h_{ϵ} is almost bijective. However, even though f has parabolic points, h_{ϵ} can give a topological conjugacy. The precise condition for this is described in Corollary 1.7.3. In addition, Property 2 implies:

Corollary 1.1.2 For $f_{\epsilon} \rightarrow f$ as above, $J\left(f_{\epsilon}\right)$ converges to $J(f)$ in the Hausdorff topology.

For a given geometrically finite rational map, the existence of such perturbations is guaranteed by [10].

Example 1. Let us consider perturbations of a geometrically finite map $f(z)=$ $z(1+z)^{m}$ with $m \geq 2$. Now -1 is a preparabolic critical point and 0 is a parabolic fixed point with one petal. Here are two typical perturbations:

- $f_{\epsilon}(z)=\lambda_{\epsilon} z(1+z)^{m}$ with real $\lambda_{\epsilon} \searrow 1$
- $f_{\epsilon}(z)=\lambda_{\epsilon} z(1+z)^{m}$ with real $\lambda_{\epsilon} \nearrow 1$

For both cases, 0 is split into a pair of attracting and repelling fixed points, 0 and $-1+1 / \sqrt[m]{\lambda_{\epsilon}}$. For the first case, 0 is the repelling one, and for the second case, the attracting one. In Figure 1.1, curves roughly show the shape of the Julia sets for $m=3$. These split fixed points and their first preimages are shown by heavy dots. Figure 1.2 shows the equipotential curves in the Fatou sets.

Both two perturbations are horocyclic and preserving the J-critical relations of f. For the first case, we obtain h_{ϵ} as a topological conjugacy. For the second case, h_{ϵ} is a semiconjugacy which pinches the backward images of $-1+1 / \sqrt[m]{\lambda_{\epsilon}}$ onto those of 0 . The injectivity is broken only at these points.

Remark on the Goldberg-Milnor conjecture. Theorem 1.1.1 gives a partial and affirmative answer to the following Goldberg-Milnor conjecture[6]: For a polynomial f which has a parabolic cycle, there exists a small perturbation of f such that

- the immediate basin of the parabolic cycle is converted to basins of some attracting cycles; and

Figure 1.1: The perturbations $f_{\epsilon}(z)=\lambda_{\epsilon} z(1+z)^{3}$ with real $\lambda_{\epsilon} \rightarrow 1$

Figure 1.2: Equipotential curves for the Fatou sets of f_{ϵ} and f.

- the perturbed polynomial on its Julia set is topologically conjugate to the original polynomial f on $J(f)$.

Some horocyclic perturbations of a geometrically finite polynomial explicitly give such perturbations. For example, the first perturbation in Example 1 gives an affirmative answer to this conjecture for $f(z)=z(1+z)^{m}$.

In general, any geometrically finite rational map has such a perturbation. See [10]. For other partial solutions of this conjecture, see [3] and [7].

Example 2. Let us consider a Blaschke product $f(z)=\left(3 z^{2}+1\right) /\left(3+z^{2}\right)$ with a parabolic fixed point at $z=1$, which has 2 petals. The critical points of f are 0 and ∞. The Julia set is the unit circle and the Fatou set is the parabolic basin of $z=1$.

Let us consider perturbations of f of the form

$$
f_{\epsilon}(z)=\frac{\left(2+\lambda_{\epsilon}\right) z^{2}+2-\lambda_{\epsilon}}{2+\lambda_{\epsilon}+\left(2-\lambda_{\epsilon}\right) z^{2}} \text { with real } \lambda_{\epsilon} \rightarrow 1
$$

For $\epsilon \ll 1, f_{\epsilon}$ are also Blaschke products and the Julia sets are contained in the unit circle. By this perturbation, the parabolic point $z=1$ of f splits into the following three fixed points (counting with multiplicity): $z_{0}=1$ with multiplier $\lambda_{\epsilon}, z_{1}=\left(-\lambda_{\epsilon}+2 \sqrt{-1+\lambda_{\epsilon}}\right) /\left(-2+\lambda_{\epsilon}\right)$ and $z_{2}=\left(-\lambda_{\epsilon}-2 \sqrt{-1+\lambda_{\epsilon}}\right) /\left(-2+\lambda_{\epsilon}\right)$ with the same multipliers $-1+2 / \lambda_{\epsilon}$.

Now consider the case of real λ_{ϵ} with $(\mathrm{a}) \lambda_{\epsilon} \searrow 1$ or $(\mathrm{b}) \lambda_{\epsilon} \nearrow 1$ (See Figure 1.3). For each cases, one can check that $f_{\epsilon} \rightarrow f$ is a horocyclic perturbation.

When (a), $z_{0}=1$ is repelling and z_{1}, z_{2} are attracting. The Julia set of f_{ϵ} is also the unit circle. By Theorem 1.1.1, there is a conjugacy between f_{ϵ} and f on the unit circle.

When (b), $z_{0}=1$ is attracting and z_{1}, z_{2} are repelling. The Julia set of f_{ϵ} is a Cantor set contained in the unit circle. By Theorem 1.1.1, there is a semiconjugacy between f_{ϵ} and f on their respective Julia sets. Note that the semiconjugacy maps a Cantor set onto the unit circle.

Sketch of the proof of the main theorem. Let us roughly sketch the proof of Theorem 1.1.1; the construction of the semiconjugacy between f_{ϵ} and f on their respective Julia sets.

Let f be a geometrically finite rational map and let $f_{\epsilon} \rightarrow f$ be a horocyclic perturbation which preserves the J-critical relations of f. We investigate the properties of such a perturbation in $\S 2$.

In $\S 3$, we prepare the ingredients for the semiconjugacy. For f, we construct a compact set Ω such that $J(f) \subset \Omega \subset f(\Omega)$. Correspondingly, for each fixed f_{ϵ}, we construct a compact set Ω_{ϵ} such that $J\left(f_{\epsilon}\right) \subset \Omega_{\epsilon} \subset f_{\epsilon}\left(\Omega_{\epsilon}\right)$. We also construct a certain surjective map $h_{0}\left(=h_{0, \epsilon}\right): \Omega_{\epsilon} \rightarrow \Omega$ as the " 0 -th" step to the semiconjugacy.

Figure 1.3: The equipotential curves for the Fatou sets of f_{ϵ} of type (a), f, and f_{ϵ} of type (b).

Then in §4, we inductively construct a sequence of "lifts"

$$
\left\{h_{n}\left(=h_{n, \epsilon}\right): f_{\epsilon}^{-n}\left(\Omega_{\epsilon}\right) \rightarrow f^{-n}(\Omega)\right\}_{n=1}^{\infty}
$$

satisfying $f \circ h_{n+1}=h_{n} \circ f_{\epsilon}$. In $\S 5$, we investigate the expanding property of f; in other words, the contracting property of f^{-1}. By using this property, in $\S 6$, we show that $\left\{h_{n}\right\}$ converges uniformly to a surjective map h_{ϵ} on $J\left(f_{\epsilon}\right)$ if $\epsilon \ll 1$.

In $\S 7$, we check that h_{ϵ} satisfies the properties in Theorem 1.1.1. To simplify the argument, from $\S 3$ to $\S 7$, we suppose that $J(f) \neq \hat{\mathbb{C}}$. The case of $J(f)=\hat{\mathbb{C}}$ is treated in $\S 8$.

Notes.

1. For the basic properties of the Julia sets and parabolic points, refer to [1], [2] and [5], etc.
2. If f is hyperbolic, we obtain h_{ϵ} as a topological conjugacy. In particular, by uniqueness, h_{ϵ} coincides with the quasiconformal conjugacy obtained by using λ-Lemma in [15]. In general, for a perturbation $f_{\epsilon} \rightarrow f$ as Theorem 1.1.1, if each f_{ϵ} for $\epsilon \in(0,1]$ is hyperbolic, then each h_{ϵ} is characterized as a uniform limit of quasiconformal conjugacies.
3. If a rational map f has no Siegel disks or Herman rings and $f_{\epsilon} \rightarrow f$ horocyclically, it is known that $J\left(f_{\epsilon}\right) \rightarrow J(f)$ in the Hausdorff topology[8],[12, Theorem 9.1]. Corollary 1.1.2 gives another proof of this fact in a special case by using the existence of the semiconjugacy.
4. Theorem 1.1.1 is an improvement of an author's result on horocyclic perturbation of parabolic rational maps in [9] or [8].

Notation. Here we list some notation used throughout this chapter.

- $\sigma:=2|d z| /\left(1+|z|^{2}\right)$ is the spherical metric on the Riemann sphere $\hat{\mathbb{C}}$.
- $d_{\sigma}(\cdot, \cdot)$: the spherical distance measured in σ.
- $B_{\sigma}(x, r):=\left\{y \in \hat{\mathbb{C}}: d_{\sigma}(x, y)<r\right\}$
- $F(f)$: the Fatou set of f
- $C(f)$: the set of all critical points of f.
- $P(f):=\overline{\left\{f^{n}(c): c \in C(f), n=1,2, \ldots\right\}}$; the postcritical set of f.
- For any map f, f^{0} denotes the identity map on the domain of f.
- $n \gg 0$ means that $n>0$ is sufficiently large.
- $\epsilon \ll 1$ means that $\epsilon>0$ is sufficiently small.

1.2 Horocyclic perturbations

Bifurcations of parabolic periodic points have a strong effect on the local dynamics as well as the global dynamics. In this section, we describe a horocyclic perturbation $f_{\epsilon} \rightarrow f$ of a geometrically finite rational map f in further detail. In particular, we introduce the notion of planet and satellite for periodic points generated by perturbation of parabolic points. Roughly speaking, a planet is the central periodic point which determines the properties of the perturbed local dynamics. Satellites accompany a planet. Moreover, we will show a key lemma on horocyclic perturbation (Lemma 1.2.2), and see the local dynamics near parabolic points change tamely under such perturbations.

1.2.1 Planets and satellites.

First we consider condition (b)-3 of horocyclic perturbation. Let a be a parabolic point of f as in the preceding section, which has a local representation as (1.0).

As we will see afterward, condition (b)-3 is important to keep the original symmetry of the local dynamics for the petals of a. However, if we suppose only conditions (a), (b)-1 and (b)-2 for $f_{\epsilon} \rightarrow f$, we just obtain a local representation of the convergence near a as the following:

$$
\begin{align*}
f_{\epsilon}^{l q}(z) & =\lambda_{\epsilon}^{q} z+A_{\epsilon, r} z^{r}+\cdots+A_{\epsilon, p+1} z^{p+1}+O\left(z^{p+2}\right) \\
\rightarrow f^{l q}(z) & =z+A_{p+1} z^{p+1}+O\left(z^{p+2}\right) \quad(\epsilon \rightarrow 0), \tag{2.1}
\end{align*}
$$

where $2 \leq r \leq p$. In [12, §7], C. McMullen gave some conditions which insure form (2.1) becomes form (1.1) by taking suitable local coordinates. One of such conditions is:

Proposition 1.2.1 If $q=p$, then through a continuous change of coordinates near a, we obtain the normalized form of the convergence as (1.1).

Proof. For the local representation as (2.1), consider a coordinate change by

$$
\zeta=\phi_{\epsilon, r}(z)=z-B_{\epsilon, r} z^{r}, \quad B_{\epsilon, r}=\frac{A_{\epsilon, r}}{\lambda_{\epsilon}\left(\lambda_{\epsilon}^{r-1}-1\right)}
$$

Since λ is a primitive p-th root of unity and $\lambda_{\epsilon} \rightarrow \lambda$, we obtain $\lambda_{\epsilon}^{r-1} \neq 1$ for all $\epsilon \ll 1$. Thus $B_{\epsilon, r} \rightarrow 0$ as $A_{\epsilon, r} \rightarrow 0$ and $\phi_{\epsilon, r} \rightarrow$ id uniformly near the origin. For each ϵ, changing the coordinate by $\phi_{\epsilon, r}$, we obtain

$$
\phi_{\epsilon, r} \circ f_{\epsilon}^{l p} \circ \phi_{\epsilon, r}^{-1}(\zeta)=\lambda_{\epsilon}^{p} \zeta+O\left(\zeta^{r+1}\right)
$$

So we can continue the discussion by replacing r with $r+1$ until $r+1$ becomes $p+1$. Finally, take a linear coordinate change so that $A_{p+1}=A_{\epsilon, p+1}=1$.

The key point of the proof above is that $B_{\epsilon, r}$ does not diverge as $\epsilon \rightarrow 0$. Here we used the condition that λ is a primitive p-th root of unity, however, we can replace this by the condition that $B_{\epsilon, r}$ converges as $\epsilon \rightarrow 0$ for each step of $r=2, \ldots, p$. In the original definition of horocyclicity by C. McMullen, he formulated and studied this condition as dominant convergence of analytic germs[12, §7-9]. For example, by using [12, Proposition 7.1], we can improve Proposition 1.2.1 as follows: For the form (2.1) above, if $A_{\epsilon, i} /\left(\lambda_{\epsilon}^{q}-1\right)$ converges as $\epsilon \rightarrow 0$ for each $r \leq i \leq p$, then through a continuous change of coordinates near a, we obtain the normalized form of the convergence as (1.1).

Planets and satellites. Next, we consider the effect of condition (c) of horocyclic perturbation. Let $f_{\epsilon} \rightarrow f$ be a horocyclic perturbation. Now $\lambda_{\epsilon}^{q}=$ $\exp \left(L_{\epsilon}+i \theta_{\epsilon}\right)$, with the assumption that $\theta_{\epsilon}^{2}=o\left(\left|L_{\epsilon}\right|\right)$ as $L_{\epsilon}, \theta_{\epsilon} \rightarrow 0$. By this relation, $L_{\epsilon}=0$ implies $\theta_{\epsilon}=0$. In other words, if $\left|\lambda_{\epsilon}^{q}\right|=1$ then a_{ϵ} is persistently a parabolic point of f_{ϵ} with the same multiplier λ as a. This means, perturbations of a into another kind of indifferent periodic point are prohibited.

Let us look the relation $\theta_{\epsilon}^{2}=o\left(\left|L_{\epsilon}\right|\right)$ in the complex plane. If we fix a pair of arbitrarily small closed disks on the both sides of the imaginary axis, so that they are tangent to the axis at the origin, then they contain $L_{\epsilon}+i \theta_{\epsilon}$ for all $\epsilon \ll 1$. Thus $L_{\epsilon}+i \theta_{\epsilon}$ cannot converge to 0 along the imaginary axis, but can converge along a curve tangent to the imaginary axis with order <2.

From (1.1), the solutions of the equation $f_{\epsilon}^{l q}(z)=z$ near the origin are $z=0$ and $z \approx\left(1-\lambda_{\epsilon}^{q}\right)^{1 / p}$ and they correspond to the symmetrically arrayed fixed points of $f_{\epsilon}^{l q}$ generated by the perturbation of a (See Figure 2). We classify them into two types: planet and satellite.

First, we consider the case of multiple petals: That is, $p \geq 2$. Then we have the following three cases corresponding to $L_{\epsilon}=0,<0$, or >0 :

Figure 1.4: A horocyclic perturbation of a parabolic fixed point of $f^{l q}$ of 3 petals (left) into a repelling fixed point of $f_{\epsilon}^{l q}$ (right).
(1) a_{ϵ} is persistently a parabolic point with p petals and the multiplier $\lambda_{\epsilon}=\lambda$;
(2) a_{ϵ} is an attracting periodic point, and there are p symmetrically arrayed repelling periodic points near a_{ϵ}; or
(3) a_{ϵ} is a repelling periodic point, and there are p symmetrically arrayed attracting periodic points near a_{ϵ}.

For cases (2) and (3), these symmetrically arrayed periodic points have the same period $l q$ and the multipliers $\approx \lambda_{\epsilon}^{-p q}$. Moreover, they are contained in an open ball centered at a_{ϵ} with radius $O\left(\left|1-\lambda_{\epsilon}^{q}\right|^{1 / p}\right)$. We call them the satellites of a_{ϵ} and a_{ϵ} itself the planet. In particular, for case (2), we say that the parabolic point a is perturbed into an attracting planet a_{ϵ}. As we will see in the following sections, attracting planets are the cause of non-injectivity of the semiconjugacies. For case (1), we also call a_{ϵ} the planet, although it has no satellite.

Next, we consider the case of one petal. Now $p=1$, then automatically $q=1$ and $\lambda=1$. If $\lambda_{\epsilon}=\lambda(=1), a_{\epsilon}$ is persistently a parabolic point with one petal. In this case, we also call a_{ϵ} the planet. If $\lambda_{\epsilon} \neq \lambda, a$ splits into a pair of repelling and attracting periodic points. Which one is suitable for the planet? To define the planet in this case, we need to consider the J-critical relations.

Preparabolic critical orbits in $J(f)$. Let b be a preimage of a such that $a=f^{i}(b)=f^{i+l}(b)$. If $\operatorname{deg}\left(f^{i}, b\right)=m$, we can take a local coordinate near b such that $\zeta(b)=0$ and

$$
f^{-i} \circ f^{l q} \circ f^{i}(\zeta)=\zeta+\zeta^{m p+1}+O\left(\zeta^{m p+2}\right),
$$

with a suitable branch of f^{-i}. This implies that there are $m p$ petals attached to b as preimages of the petals of a.

Let us suppose that a horocyclic perturbation $f_{\epsilon} \rightarrow f$ preserves the J-critical relations of f. Then there exists b_{ϵ} such that $a_{\epsilon}=f_{\epsilon}^{i}\left(b_{\epsilon}\right)=f_{\epsilon}^{i+l}\left(b_{\epsilon}\right)$ and $\operatorname{deg}\left(f_{\epsilon}^{i}, b_{\epsilon}\right)=$
m. Taking a suitable local coordinate near b_{ϵ} such that $\zeta\left(b_{\epsilon}\right)=0$, we obtain the corresponding normalized form of f_{ϵ};

$$
f_{\epsilon}^{-i} \circ f_{\epsilon}^{l q} \circ f_{\epsilon}^{i}(\zeta)=\lambda_{\epsilon}^{q} \zeta+\zeta^{m p+1}+O\left(\zeta^{m p+2}\right)
$$

If $\lambda_{\epsilon}^{q} \neq 1$ (that is, $L_{\epsilon} \neq 0$) and $p \geq 2$, there are symmetrically arrayed $m p$ "satellites" near b_{ϵ} as the preimages of the satellites of a_{ϵ}. Recall that a_{ϵ} may be attracting: this implies, b_{ϵ} may be in the Fatou set.

Now let us return to the definition of the planet when a has one petal. In the case of $\lambda_{\epsilon}=\lambda(=1)$, it has been defined by a_{ϵ}. In the case of $\lambda_{\epsilon} \neq \lambda, a$ splits into a pair of repelling and attracting fixed points of f_{ϵ}^{l}, say a_{ϵ}^{+}and a_{ϵ}^{-} respectively. If a has a critical point in its preimages, then either a_{ϵ}^{+}or a_{ϵ}^{-}has a critical point in its preimages because the J-critical relations are preserved. In this case, we define the planet as one containing a critical point in its preimages, and the satellite bas the other one. In particular, if a_{ϵ}^{-}is the planet, we also say that a is perturbed into an attracting planet a_{ϵ}^{-}. If a has no critical point in its preimages, then we formally define the planet as a_{ϵ}^{+}and the satellite as a_{ϵ}^{-}.

Example. Let us consider perturbations of $f(z)=z(1+z)^{m}$ with $m>1$ again. Recall that 0 is a parabolic fixed point with one petal.

For both perturbations in Example 1, 0 is the planet and $-1+1 / \sqrt[m]{\lambda_{\epsilon}}$ is the satellite (See Figure 1). For the second perturbation, 0 is perturbed into an attracting planet.

On the other hand, for a trivial perturbation $f_{\epsilon}(z)=z\left(1+\lambda_{\epsilon} z\right)^{m}$ with $\lambda_{\epsilon} \rightarrow 1$, where f_{ϵ} are conjugate to f by linear transformations, 0 is the planet with no satellite.

Prerepelling critical orbits in $J(f)$. By geometric finiteness of f, some critical orbits in $J(f)$ land on repelling cycles. Since the J-critical relations are preserved, such repelling cycles are perturbed into repelling cycles of f_{ϵ} for $\epsilon \ll 1$. Let us consider local representations of the perturbations near such cycles.

Let b be a repelling periodic point of f in $P(f) \cap J(f)$, with multiplier λ and period l. Then there exists a repelling periodic point b_{ϵ} of f_{ϵ} in $P\left(f_{\epsilon}\right) \cap J\left(f_{\epsilon}\right)$, with multiplier λ_{ϵ} and period l, such that $b_{\epsilon} \rightarrow b$ and $\lambda_{\epsilon} \rightarrow \lambda$. By using a fundamental fact about linearization near repelling fixed points, we can take suitable local coordinates ψ_{ϵ}, ψ on a neighborhood of b such that $\psi_{\epsilon}\left(b_{\epsilon}\right)=\psi(b)=0$ and

$$
\begin{equation*}
\psi_{\epsilon} \circ f_{\epsilon}^{l} \circ \psi_{\epsilon}^{-1}(z)=\lambda_{\epsilon} z \rightarrow \psi \circ f^{l} \circ \psi^{-1}(z)=\lambda z \tag{2.2}
\end{equation*}
$$

where ψ_{ϵ} converges to ψ uniformly near b. See [5, 8.3 Remark].

1.2.2 Key lemma on horocyclic perturbation.

Here we show a key lemma on horocyclic perturbation, which describes the perturbation of an orbit which accumulates on parabolic periodic points. We will
see how horocyclic perturbations control the parabolic bifurcations.
Let a_{0} be a periodic point of f with period l. The cycle α of a_{0} is defined by

$$
\alpha:=\left\{a_{0}, f\left(a_{0}\right), \ldots, f^{l-1}\left(a_{0}\right)\right\} .
$$

When a_{0} is parabolic (resp. attracting, etc.), we call α a parabolic (resp. attracting, etc.) cycle.

Let us fix an $x \in \hat{\mathbb{C}}$ whose orbit accumulates on a parabolic cycle α. For an arbitrarily small $\delta>0$, set $\Delta=\Delta(\delta):=\bigcup_{a \in \alpha} B_{\sigma}(a, \delta)$, and take $N_{0}=$ $N_{0}(x, \delta) \gg 0$ such that $f^{n}(x)$ are contained in Δ for all $n \geq N_{0}$. Now the key lemma is described as:

Lemma 1.2.2 If the perturbation $f_{\epsilon} \rightarrow f$ is horocyclic, then there exists an $N \geq N_{0}$ such that $f_{\epsilon}^{n}(x)$ are contained in Δ for all $n \geq N$ and all $\epsilon \ll 1$.

To simplify the proof of this lemma, we use "linearization" of parabolic bifurcations due to C. McMullen[12].

Proof. We begin the proof with constructing a simpler representation of the perturbation.

Linearizing parabolics. Let us take an integer k so that $f^{k}(a)=a$ and $\left(f^{k}\right)^{\prime}(a)=1$ for any $a \in \alpha$, and replace f by f^{k}. Then we may assume that $\alpha=\{a\}$ is a fixed point with multiplier 1 and that $\Delta=B_{\sigma}(a, \delta)$. It is sufficient to prove the statement in this case.

From the conditions of horocyclic perturbation, there exists a fixed point a_{ϵ} of f_{ϵ} converging to a. We may assume $\epsilon \ll 1$ such that a_{ϵ} is contained in Δ and sufficiently close to a. Now we set

$$
\lambda_{\epsilon}=\exp \left(L_{\epsilon}+i \theta_{\epsilon}\right):=1 / f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)
$$

which tends to 1 with $\theta_{\epsilon}^{2}=o\left(\left|L_{\epsilon}\right|\right)$.
By replacing $\Delta=\Delta(\delta)$ with smaller δ and the definition of horocyclic perturbation, we can take a normalized convergent form on Δ as (1.1);

$$
f_{\epsilon}(z)=\lambda_{\epsilon}^{-1} z+z^{p+1}+O\left(z^{p+2}\right) \rightarrow f(z)=z+z^{p+1}+O\left(z^{p+2}\right)
$$

where $z\left(a_{\epsilon}\right)=z(a)=0$ and p is the petal number of a. Moreover, we take a simpler form of the convergence as follows.

First, by using local coordinates such that $z\left(a_{\epsilon}\right)=z(a)=\infty$, we obtain

$$
\begin{equation*}
f_{\epsilon}(z)=\lambda_{\epsilon} z+z^{1-p}+O\left(z^{-p}\right) \rightarrow f(z)=z+z^{1-p}+O\left(z^{-p}\right) \tag{2.3}
\end{equation*}
$$

as a normal form of the convergence. Next, by using [12, Theorem 8.3] and additional linear conjugacies, we can show that there exist quasiconformal maps
$\phi_{\epsilon, 0}, \phi_{0}$ with $\phi_{\epsilon, 0} \rightarrow \phi_{0}$ near infinity and $\phi_{\epsilon, 0}(\infty)=\phi_{0}(\infty)=\infty$ such that

$$
\begin{align*}
T_{\epsilon}(z) & :=\phi_{\epsilon, 0} \circ f_{\epsilon} \circ \phi_{\epsilon, 0}^{-1}(z)=\left(\lambda_{\epsilon}^{p} z^{p}+1\right)^{1 / p} \\
\rightarrow T(z) & :=\phi_{0} \circ f \circ \phi_{0}^{-1}(z)=\left(z^{p}+1\right)^{1 / p} . \tag{2.4}
\end{align*}
$$

Where p-th roots are taken so that $\left(\lambda_{\epsilon}^{p} z^{p}+1\right)^{1 / p}=\lambda_{\epsilon} z+O(1)$ and $\left(z^{p}+1\right)^{1 / p}=z+$ $O_{\tilde{N}}(1)$. Note that T_{ϵ} and T are p-fold branched coverings of linear transformations $\tilde{T}_{\epsilon}(w)=\lambda_{\epsilon}^{p} w+1$ and $\tilde{T}(w)=w+1$ respectively (where $w=z^{p}$). We call this form (2.4) a linearized model of the perturbation $f_{\epsilon} \rightarrow f$ near a.

Let ϕ_{ϵ} (resp. ϕ) be the composition of local coordinates of a_{ϵ} (resp. a) as (2.3) with $\phi_{\epsilon, 0}$ (resp. ϕ_{0}) as (2.4). Then we obtain $\phi_{\epsilon} \rightarrow \phi$, a uniformly convergent family of local coordinates near a, which satisfies $\phi_{\epsilon}\left(a_{\epsilon}\right)=\phi(a)=\infty$ and conjugates $f_{\epsilon} \rightarrow f$ to $T_{\epsilon} \rightarrow T$. Finally, by replacing $\Delta=\Delta(\delta)$ with much smaller δ, we may assume that Δ is the domains of ϕ_{ϵ} and ϕ.

Now let us show the lemma by using the linearized model as (2.4). Take a constant $R \gg 0$ and a closed disk $D:=\{|z| \geq R\}$, such that D is contained in both $\phi_{\epsilon}(\Delta)$ and $\phi(\Delta)$. Then there exists an $N_{1} \geq N_{0}$ such that $\phi\left(f^{n}(x)\right) \in D$ for all $n \geq N_{1}$. Moreover, by uniform convergence of $f_{\epsilon} \rightarrow f$ and $\phi_{\epsilon} \rightarrow \phi$, we may assume that $\phi_{\epsilon}\left(f_{\epsilon}^{N_{1}}(x)\right) \in D$. To prove the lemma, it is enough to show that there exists an $N \geq N_{1}$ such that $\phi_{\epsilon}\left(f_{\epsilon}^{n}(x)\right) \in D$ for all $n \geq N$.

The proof breaks into the cases of $p=1$ and $p \geq 2$.

Case 1: $p=1$. Now $\phi_{\epsilon} \rightarrow \phi$ conjugates $f_{\epsilon} \rightarrow f$ to

$$
\begin{equation*}
T_{\epsilon}(z)=\lambda_{\epsilon} z+1 \rightarrow T(z)=z+1 \tag{2.5}
\end{equation*}
$$

on D, with $\phi_{\epsilon}\left(a_{\epsilon}\right)=\phi(a)=\infty$. (See Figure 3. The four regions are centered at infinity.)

When $\lambda_{\epsilon}=1, T_{\epsilon}$ is still parabolic and

$$
T_{\epsilon}^{k}\left(\phi_{\epsilon}\left(f_{\epsilon}^{N_{1}}(x)\right)\right)=\phi_{\epsilon}\left(f_{\epsilon}^{N_{1}}(x)\right)+k \in D
$$

for all $k \geq 0$. This implies that $f_{\epsilon}^{N_{1}+k}(x)$ never escapes from $\phi_{\epsilon}^{-1}(D) \subset \Delta$ for all $k \geq 0$. Hence we take N_{1} as N in this case.

We henceforth assume that $\left|\lambda_{\epsilon}\right| \neq 1$. By the perturbation, a splits into a pair of attracting and repelling fixed points. We may suppose that a_{ϵ} is the repelling one, and let b_{ϵ} denote the attracting one. (Here we do not consider which the planet is.) Then $\left|1 / \lambda_{\epsilon}\right|=\left|f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)\right|>1$, that is, $L_{\epsilon} \nearrow 0$. Moreover, in the linearized model (2.5), $\phi_{\epsilon}\left(b_{\epsilon}\right)$ must be the attracting fixed point of T_{ϵ}; thus $\phi_{\epsilon}\left(b_{\epsilon}\right)=\left(1-\lambda_{\epsilon}\right)^{-1}=: b_{\epsilon}^{\prime}$, and the multiplier of b_{ϵ}^{\prime} is λ_{ϵ}.

Since the real part of $T^{n}(z)$ tends to infinity, there exists an integer $N \geq N_{1}$ such that $\phi\left(f^{N}(x)\right)$ is in $D \cap\{|\arg z|<\pi / 4\}$. By uniform convergence of $f_{\epsilon} \rightarrow f$

Figure 1.5: The dynamics on a neighborhood of infinity.

Figure 1.6: The orbits of $f^{N}(x)$ and $f_{\epsilon}^{N}(x)$ in the model.
and $\phi_{\epsilon} \rightarrow \phi$, we may also assume that $y:=\phi_{\epsilon}\left(f_{\epsilon}^{N}(x)\right)$ is in $D \cap\{|\arg z|<\pi / 4\}$ for all $\epsilon \ll 1$ (Figure 4).

To see the dynamics of T_{ϵ} in detail, we take a Möbius conjugacy of T_{ϵ} by

$$
w=\psi_{\epsilon}(z)=\frac{z-b_{\epsilon}^{\prime}}{y-b_{\epsilon}^{\prime}},
$$

which maps $\infty \mapsto \infty, b_{\epsilon}^{\prime} \mapsto 0$ and $y \mapsto 1$. This conjugates the action of T_{ϵ} to $w \mapsto \lambda_{\epsilon} w$ with $\left|\lambda_{\epsilon}\right|<1$. Hence $1=\psi_{\epsilon}(y)$ is attracted to $0=\psi_{\epsilon}\left(b_{\epsilon}^{\prime}\right)$ by the iteration of $w \mapsto \lambda_{\epsilon} w$.

Now we claim: For any fixed $\epsilon \ll 1$, $f_{\epsilon}^{n}(x)$ is contained in Δ for all $n \geq N$, and converges to b_{ϵ} as $n \rightarrow \infty$. In other words, the whole orbit of $1=\psi_{\epsilon}(y)$ is contained in $\psi_{\epsilon}(D)$ where the conjugation between T_{ϵ} and $w \mapsto \lambda_{\epsilon} w$ holds.

Set $B:=\hat{\mathbb{C}}-D$ and $B^{\prime}:=\psi_{\epsilon}(B)$. Then B^{\prime} is defined by this inequality:

$$
\begin{equation*}
\left|w-\frac{b_{\epsilon}^{\prime}}{b_{\epsilon}^{\prime}-y}\right|<\frac{R}{\left|b_{\epsilon}^{\prime}-y\right|} . \tag{2.6}
\end{equation*}
$$

We will show that the orbit of 1 , that is, $\left\{1=\psi_{\epsilon}(y), \lambda_{\epsilon}, \lambda_{\epsilon}^{2}, \ldots\right\}$, never enters B^{\prime}.

For all $\epsilon \ll 1$, the center $b_{\epsilon}^{\prime} /\left(b_{\epsilon}^{\prime}-y\right)$ of B^{\prime} is approximately $1-y\left(L_{\epsilon}+i \theta_{\epsilon}\right)$. On the other hand, for any k such that $\left|k\left(L_{\epsilon}+i \theta_{\epsilon}\right)\right| \ll 1, \lambda_{\epsilon}^{k}$ is approximately $1+k\left(L_{\epsilon}+i \theta_{\epsilon}\right)$. Since $|\arg y|<\pi / 4$, the direction of first several points of the orbit $\left\{1, \lambda_{\epsilon}, \lambda_{\epsilon}^{2}, \ldots\right\}$ is opposite to the center of B^{\prime} with respect to 1 . This means, at least, the orbit does not go to B^{\prime} immediately (Figure 5).

Figure 1.7: The orbit of $1=\psi_{\epsilon}(y)$ near 1
Suppose that $\theta_{\epsilon}=0$. Then the orbit of 1 accumulates on 0 along the real axis, and it is disjoint from B^{\prime}.

Suppose that $\theta_{\epsilon} \neq 0$. We may assume that $\theta_{\epsilon}>0$ because the signature of θ_{ϵ} determines only the direction of the rotation by the action of $w \mapsto \lambda_{\epsilon} w$. Then the orbit of 1 returns near the positive real axis by nearly $2 \pi / \theta_{\epsilon}$ times iterations of $w \mapsto \lambda_{\epsilon} w$. Now we have to handle the case where the order of $\theta_{\epsilon} \searrow 0$ is lower

Figure 1.8: The orbit of 1
than that of $L_{\epsilon} \nearrow 0$: Then the orbit might touch B^{\prime}. However, we will show that it cannot occur if $\epsilon \ll 1$.

Now note that the following two facts: when the orbit of 1 returns near the positive real axis, the distance between 0 and the orbit is nearly $l_{\epsilon}:=\exp \left(2 \pi L_{\epsilon} / \theta_{\epsilon}\right)$; on the other hand, by (2.6), B^{\prime} is contained in a ball centered at 1 with radius $O\left(\left|L_{\epsilon}+i \theta_{\epsilon}\right|\right)$, that is, every point in B^{\prime} tends to 1 as $\epsilon \rightarrow 0$.

By these facts, if $\lim \inf \left|L_{\epsilon} / \theta_{\epsilon}\right| \neq 0, l_{\epsilon}$ does not tend to 1 and the orbit of 1 never touches B^{\prime} (Figure 6).

Otherwise we can take a decreasing sequence $\epsilon_{n} \searrow 0$ such that $L_{\epsilon_{n}} / \theta_{\epsilon_{n}} \rightarrow 0$. Now $l_{\epsilon_{n}} \rightarrow 1$ as $n \rightarrow \infty$. In this case, $\left|1-l_{\epsilon_{n}}\right| \approx 2 \pi\left|L_{\epsilon_{n}}\right| / \theta_{\epsilon_{n}}$ for $n \gg 0$ thus

$$
\begin{equation*}
\frac{O\left(\left|L_{\epsilon_{n}}+i \theta_{\epsilon_{n}}\right|\right)}{\left|1-l_{\epsilon_{n}}\right|}=O\left(\left|\theta_{\epsilon_{n}}+i \theta_{\epsilon_{n}}^{2} /\left|L_{\epsilon_{n}}\right|\right|\right) \rightarrow 0 \quad\left(\epsilon_{n} \rightarrow 0\right) \tag{2.7}
\end{equation*}
$$

This means, for any choice of $\left\{\epsilon_{n}\right\}$, every point in B^{\prime} tends to 1 faster than $l_{\epsilon_{n}}$ does. Note that the order of convergence in (2.7) depends only on the order of $L_{\epsilon}, \theta_{\epsilon} \rightarrow 0$ (not on the choice of $\left\{\epsilon_{n}\right\}$). Hence for $\epsilon \ll 1$, the orbit of 1 is attracted to 0 without entering B^{\prime}.

Case 2: $p \geq 2$. Now $\phi_{\epsilon} \rightarrow \phi$ with $\phi_{\epsilon}\left(a_{\epsilon}\right)=\phi(a)=\infty$ conjugates $f_{\epsilon} \rightarrow f$ to

$$
\begin{equation*}
T_{\epsilon}(z)=\left(\lambda_{\epsilon}^{p} z^{p}+1\right)^{1 / p} \rightarrow T(z)=\left(z^{p}+1\right)^{1 / p} \tag{2.8}
\end{equation*}
$$

on D. As in the case of $p=1$, we may assume that

$$
\phi\left(f^{N}(x)\right) \in \bigcup_{j=0}^{p-1}\left\{\left|\arg z-\frac{2 \pi j}{p}\right|<\frac{\pi}{4 p}\right\}
$$

for an $N \geq N_{1}$, and

$$
y=\phi_{\epsilon}\left(f_{\epsilon}^{N}(x)\right) \in \bigcup_{j=0}^{p-1}\left\{\left|\arg z-\frac{2 \pi j}{p}\right|<\frac{\pi}{4 p}\right\}
$$

for all $\epsilon \ll 1$.

Let us consider a semiconjugation of T_{ϵ} by a branched covering $w=\pi(z)=z^{p}$. Then the dynamics of T_{ϵ} on D is reduced to the dynamics of $\tilde{T}_{\epsilon}(w)=\lambda_{\epsilon}^{p} w+1$ on $\pi(D)=\left\{|w| \geq R^{p}\right\}$ (Figure 7). Similarly, $\pi(z)$ gives a semiconjugacy from $T(z)$ on D to $\tilde{T}(w)=w+1$ on $\pi(D)$.

Figure 1.9: $w=\pi(z)=z^{p}$
By the same argument as the case of $p=1$, when $\lambda_{\epsilon}=1$, the orbit of $\pi(y)$ tends to $w=\infty$ and never escapes from $\pi(D)$. Similarly, if $\left|\lambda_{\epsilon}\right| \neq 1$, the orbit of $\pi(y)$ tends to an attracting fixed point, which is either $w=\infty$ or $w=1 /\left(1-\lambda_{\epsilon}^{p}\right)$, and never escapes from $\pi(D)$. Thus the original orbit of $\phi_{\epsilon}\left(f_{\epsilon}^{N}(x)\right)$ by T_{ϵ} never escapes from D.

Remark. One can easily check that the same result holds if we replace x with a compact set in the parabolic basin of a. We will use this in the proof of Proposition 1.3.2.

1.3 Construction of Ω and Ω_{ϵ}

In this section, we prepare the ingredients for the construction of the semiconjugacy; $\Omega, \Omega_{\epsilon}$ and $h_{0}: \Omega_{\epsilon} \rightarrow \Omega$.

To simplify the arguments, from this section to $\S 7$, we assume that $J(f) \neq \widehat{\mathbb{C}}$. The case of $J(f)=\widehat{\mathbb{C}}$ is treated in $\S 8$.

Let us introduce some notation. Let A denote the finite set of all parabolic points of f. We define the sets of all preperiodic critical orbits in the Julia sets by

$$
Z:=\bigcup_{n=1}^{\infty} f^{n}(C(f) \cap J(f)), \quad Z_{\epsilon}:=\bigcup_{n=1}^{\infty} f_{\epsilon}^{n}\left(C\left(f_{\epsilon}\right) \cap J\left(f_{\epsilon}\right)\right) .
$$

In addition, we set $Z^{1}:=f^{-1}(Z)$ and $Z_{\epsilon}^{1}:=f_{\epsilon}^{-1}\left(Z_{\epsilon}\right)$. Since $f_{\epsilon} \rightarrow f$ preserves the J-critical relations of $f, \operatorname{card}\left(Z_{\epsilon}\right) \leq \operatorname{card}(Z)<\infty$ in general. The equality holds precisely if none of the parabolic points of f is perturbed into an attracting planet.

1.3.1 Construction of Ω.

Here we construct a compact set Ω for f.
Proposition 1.3.1 There exists a finitely connected compact set $\Omega \subset \widehat{\mathbb{C}}$ with the following properties:

1. $\Omega \cap(P(f) \cup C(f))=J(f) \cap(P(f) \cup C(f))$. This set is the union of A and all critical orbits in $J(f)$.
2. $J(f) \subset \Omega$ and $f^{-1}(\Omega) \subset \operatorname{Int}(\Omega) \cup A$.

Proof. To define the compact set Ω, we will construct two open sets F and V which consist of finitely many simply connected components.

Let a be an attracting or parabolic periodic point of f and α the cycle of a. First, we construct F : If α is attracting, we take a small disk neighborhood F_{a} for each $a \in \alpha$ such that $f\left(\overline{F_{a}}\right) \subset F_{f(a)}$. Here we can take $\left\{F_{a}\right\}$ to be pairwise disjoint. If α is parabolic, we take F_{a} for each point $a \in \alpha$ to be a small "flower" (that is, a union of attracting petals for each attracting directions of a) such that $f\left(\overline{F_{a}}-\{a\}\right) \subset F_{f(a)}$. Here we can also take $\left\{F_{a}\right\}$ to be pairwise disjoint, and each ∂F_{a} to be tangent to the repelling directions.

Now we set

$$
F:=\bigcup_{\alpha} \bigcup_{a \in \alpha} F_{a}
$$

where α ranges over all attracting and parabolic cycles. Note that $f(\bar{F}-A) \subset F$.
Next, we construct V : Let $C(f, \alpha)$ denote the set of all critical points of f whose orbits accumulate on α but never land on it. Now let us set $F_{\alpha}:=\bigcup_{a \in \alpha} F_{a}$. For each $c \in C(f, \alpha)$, there exists a natural number $N=N(c)$ such that $f^{n}(c) \in$ F_{α} for all $n \geq N$. Then we can take a family of open disks $\left\{V_{c}^{i}\right\}_{i=0}^{N}$ satisfying the following conditions (See Figure 1.10):

- V_{c}^{i} is a small disk-neighborhood of $f^{i}(c)$;
- $V_{c}^{i} \cap V_{c}^{j}=\emptyset$ for $i \neq j$;
- $V_{c}^{N} \subset F_{\alpha}$; and
- $f\left(\overline{V_{c}^{i}}\right) \subset V_{c}^{i+1}$ for all $i<N$.

Now we set

$$
V:=\bigcup_{\alpha} \bigcup_{c \in C(f, \alpha)} \bigcup_{i=0}^{N(c)} V_{c}^{i}
$$

where α ranges over all attracting and parabolic cycles. Note that $f(\bar{V}) \subset V \cup F$.
Using F and V, we define Ω as $\widehat{\mathbb{C}}-(F \cup V)$. Then we can easily check that Ω satisfies the conditions in the statement.

Figure 1.10: The orbit of c and $\left\{V_{c}^{i}\right\}$

1.3.2 Construction of Ω_{ϵ} and the " 0 -th" map h_{0}.

Next we consider a horocyclic perturbation $f_{\epsilon} \rightarrow f$ preserving the J-critical relations of f. For each f_{ϵ}, we construct a compact set Ω_{ϵ} corresponding to $\Omega=\widehat{\mathbb{C}}-(F \cup V)$, and the correspondence is represented by the map $h_{0}\left(=h_{0, \epsilon}\right)$: $\Omega_{\epsilon} \rightarrow \Omega$.

Proposition 1.3.2 For each $\epsilon \ll 1$, there exists a compact set $\Omega_{\epsilon} \subset \hat{\mathbb{C}}$ and a continuous map $h_{0}\left(=h_{0, \epsilon}\right): \Omega_{\epsilon} \rightarrow \Omega$ with the following properties:

1. $\Omega_{\epsilon} \cap\left(P\left(f_{\epsilon}\right) \cup C\left(f_{\epsilon}\right)\right)=J\left(f_{\epsilon}\right) \cap\left(P\left(f_{\epsilon}\right) \cup C\left(f_{\epsilon}\right)\right)$, and this set is the union of all parabolic points of f_{ϵ} and all critical orbits in $J\left(f_{\epsilon}\right)$.
2. $J\left(f_{\epsilon}\right) \subset \Omega_{\epsilon}$ and $f_{\epsilon}^{-1}\left(\Omega_{\epsilon}\right) \subsetneq \Omega_{\epsilon}$.
3. $h_{0}: \Omega_{\epsilon} \rightarrow \Omega$ is surjective.
4. If there exists $y \in \Omega$ such that $\operatorname{card}\left(h_{0}^{-1}(y)\right) \geq 2$ then y is a parabolic point and $\operatorname{card}\left(h_{0}^{-1}(y)\right)=p(y)$. Moreover, y is perturbed into an attracting planet and $h_{0}^{-1}(y)$ is the set of $p(y)$ repelling satellites of the attracting planet.
5. For each $b_{\epsilon} \in Z_{\epsilon}^{1}$, there exists a unique $b \in Z^{1}$ such that $b_{\epsilon} \rightarrow b$, and

$$
h_{0}\left(b_{\epsilon}\right)=b .
$$

Moreover, for any fixed $r>0$, we can make h_{0} satisfy

$$
\sup \left\{d_{\sigma}\left(h_{0}(x), x\right): x \in \Omega_{\epsilon}\right\} \leq r
$$

for all $\epsilon \ll 1$.
For example, suppose that f is hyperbolic; that is, both A and $J(f) \cap C(f)$ are empty. For $\epsilon \ll 1, f_{\epsilon}$ is a very small perturbation of f, thus every attracting cycle of f is perturbed into an attracting cycle of f_{ϵ}. By uniform convergence of $f_{\epsilon} \rightarrow f$, we obtain $f_{\epsilon}(\bar{F}) \subset F$ for all $\epsilon \ll 1$. Similarly, if $\epsilon \ll 1, V$ satisfies $f_{\epsilon}(\bar{V}) \subset V \cup F$. Hence we can set $\Omega_{\epsilon}:=\Omega=\hat{\mathbb{C}}-(F \cup V)$ and $h_{0}:=$ id.

For general geometrically finite rational maps, to construct Ω_{ϵ} for $f_{\epsilon} \rightarrow f$, we need to modify F; in particular, certain parts of the flowers $\left\{F_{a}\right\}_{a \in A}$. We also need additional modification near the critical orbits in the Julia set.

Let us fix an $r>0$ and set $B_{x}:=B_{\sigma}(x, r / 2)$ for each $x \in A \cup Z^{1}$. We suppose that r is sufficiently small so that $B_{x} \cap B_{x^{\prime}}=\emptyset$ for different $x, x^{\prime} \in A \cup Z^{1}$ and that $B_{x} \subset \operatorname{Int}(\Omega)$ for $x \in Z^{1}-A$.

Modification of Ω near the parabolics. Fix a parabolic point of f, say $a \in A$. Set $E_{a}:=\Omega \cap \overline{B_{a}}$. We may assume that E_{a} is a union of $p(a)$ narrow cusps near the repelling directions.

Lemma 1.3.3 For each $\epsilon \ll 1$, there exists a compact set E_{a}^{\prime} and a map h_{a} : $E_{a}^{\prime} \rightarrow E_{a}$ with the following conditions:

- $\partial E_{a} \cap \partial B_{a}=\partial E_{a}^{\prime} \cap \partial B_{a}$, and h_{a} is the identity on this set.
- $f_{\epsilon}^{-1}\left(E_{f(a)}^{\prime}\right) \cap B_{a} \subset E_{a}^{\prime}$.
- $B_{a}-E_{a}^{\prime} \subset F\left(f_{\epsilon}\right)$.
- $h_{a}: E_{a}^{\prime} \rightarrow E_{a}$ is continuous and surjective.
- If $y \in E_{a}$ and $\operatorname{card}\left(h_{a}^{-1}(y)\right) \geq 2$, then $y=a$. In this case, a is perturbed into an attracting planet a_{ϵ} and $h_{a}^{-1}(y)$ is the set of all repelling satellites of a_{ϵ}.
- $d_{\sigma}\left(h_{a}(x), x\right) \leq r$ for any $x \in E_{a}^{\prime}$.

Proof. For simplicity, here we only treat the case where a is a fixed point with multiplier 1. The case of a with multiplier $\neq 1$ or period $\neq 1$ is similar.

As $f_{\epsilon} \rightarrow f$ horocyclically, suppose that a is perturbed into the planet a_{ϵ}, a fixed point of f_{ϵ}.

Let us consider the local dynamics by f^{-1} and f_{ϵ}^{-1} restricted near B_{a}. We denote by g (resp. g_{ϵ}) the branch of f^{-1} (resp. f_{ϵ}^{-1}) near B_{a} which fixes a (resp. $\left.a_{\epsilon}\right)$. Then a is still a parabolic fixed point of g and a_{ϵ} is a fixed point of g_{ϵ} with multiplier $1 / f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)$. Note that $g_{\epsilon} \rightarrow g$ is a locally defined horocyclic perturbation, thus we can apply Lemma 1.2.2.

Set $p:=p(a)$, the petal number of a. The construction of E_{a}^{\prime} and h_{a} breaks into the cases of $p=1$ and $p \geq 2$.

Case 1: $p=1$. In this case, we may assume that a_{ϵ} is an attracting or parabolic fixed point of g_{ϵ}. (Here we need not distinguish planet from satellite.)

Now $\partial E_{a} \cap \partial B_{a}$ is an arc. Let e_{1} and e_{2} be its end points. Since r is sufficiently small, we may assume that e_{1} and e_{2} are enough close to the attracting direction for g, and that their orbits by g accumulate on a within E_{a}. Then we may apply
the argument in Lemma 1.2.2 to the orbits of e_{1} and e_{2} by g_{ϵ}. For $\epsilon \ll 1$, joining the orbits of $e_{i}(i=1,2)$ by g_{ϵ} contained in B_{a}, we obtain a piecewise smooth Jordan arcs η_{i} with the following properties:

- Joining from e_{i} to a_{ϵ}.
- $g_{\epsilon}\left(\eta_{i}\right) \subset \eta_{i} \subset B_{a} \cup\left\{e_{i}\right\}$ and $f_{\epsilon}\left(\eta_{i}\right)-B_{a} \subset F_{a}$
- $\eta_{1} \cap \eta_{2}=\left\{a_{\epsilon}\right\}$.

In fact, joining e_{i} and $g_{\epsilon}\left(e_{i}\right)$ by nearly straight curve and taking the union of their forward images by g_{ϵ}, we obtain such a curve η_{i}. We define E_{a}^{\prime} as the closure of the region in B_{a} enclosed by η_{1}, η_{2} and $\partial E_{a} \cap \partial B_{a}$. Then we see that $f_{\epsilon}^{-1}\left(E_{a}^{\prime}\right) \cap B_{a} \subset E_{a}^{\prime}$.

Figure 1.11: Construction of E_{a}^{\prime}
We claim that $B_{a}-E_{a}^{\prime} \subset F\left(f_{\epsilon}\right)$ for $\epsilon \ll 1$. Let us take an arbitrary $x \in B_{a}-E_{a}^{\prime}$.
If the orbit of x never escapes from B_{a} and is attracted to the parabolic or attracting point of f_{ϵ} in B_{a}, then $x \in F\left(f_{\epsilon}\right)$. So we consider the case where the orbit of x escapes from B_{a}. Then for some $i>0, f_{\epsilon}^{i}(x)$ is contained in the compact set $\overline{F_{a}-B_{a}} \subset F(f)$.

By the local dynamics in F_{a}, there exists $N \gg 0$ such that $f^{N}\left(\overline{F_{a}-B_{a}}\right)$ is contained in B_{a} and is sufficiently near the attracting direction of a. By uniform convergence of $f_{\epsilon} \rightarrow f$, we may suppose the same holds for $f_{\epsilon}^{N}\left(\overline{F_{a}-B_{a}}\right)$. Furthermore, since $f^{n}\left(\overline{F_{a}-B_{a}}\right)$ converges uniformly to a within B_{a} as n tends to infinity, we may apply the argument in Lemma 1.2.2 to the forward images of $f_{\epsilon}^{N}\left(\overline{F_{a}-B_{a}}\right)$ by f_{ϵ}; thus $f_{\epsilon}^{n}\left(\overline{F_{a}-B_{a}}\right)$ converges uniformly to the parabolic or attracting point of f_{ϵ} within B_{a}. This implies $x \in F\left(f_{\epsilon}\right)$.

Finally we define the map $h_{a}: E_{a}^{\prime} \rightarrow E_{a}$: Let us take a Riemann map R_{ϵ} : $\operatorname{Int}\left(E_{a}^{\prime}\right) \rightarrow \mathbb{D}$, here \mathbb{D} is the unit disk. Since the boundary of E_{a}^{\prime} is a Jordan curve, R_{ϵ} is extended to a homeomorphism $R_{\epsilon}: E_{a}^{\prime} \rightarrow \overline{\mathbb{D}}$. Similarly, we take an extended Riemann map $R: E_{a} \rightarrow \bar{D}$. By choosing a suitable topological map $H_{\epsilon}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$, we obtain $h_{a}:=R^{-1} \circ H_{\epsilon} \circ R_{\epsilon}$ such that:

- $h_{a}: E_{a}^{\prime} \rightarrow E_{a}$ is a homeomorphism;
- $h_{a} \mid\left(\partial E_{a}^{\prime} \cap \partial B_{a}\right)=\mathrm{id}$; and
- $h_{a}\left(a_{\epsilon}\right)=a$.

Furthermore, since the radius of B_{a} is $r / 2$, we obtain $d_{\sigma}\left(h_{a}(x), x\right) \leq r$ for any $x \in E_{a}^{\prime}$.

Case 2:p 2 . Now E_{a} is the union of p narrow cusps which intersect only at a. We distinguish these p cusps as $\left\{E_{1}, \ldots, E_{p}\right\}$; that is, each E_{j} is a union of $\{a\}$ and one of the p connected components of $E_{a}-\{a\}$. Let $e_{1 j}$ and $e_{2 j}$ be the end points of $\partial E_{j} \cap \partial B_{a}$ for $j=1, \ldots, p$.

As in the case of $p=1$, let us apply the argument in Lemma 1.2.2. Then we can take g_{ϵ}-invariant path $\eta_{i j}$ which joins $e_{i j}$ and a parabolic or attracting point of g_{ϵ} generated in B_{a} by the perturbation of a. We define E_{j}^{\prime} as the compact set in $\overline{B_{a}}$ enclosed by $\eta_{1 j}, \eta_{2 j}$, and $\partial E_{j} \cap \partial B_{a}$. Note that we obtain the following three cases:

1. The planet a_{ϵ} is a parabolic fixed point of f_{ϵ}, that is, the multiplier $f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)$ satisfies $f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)=1$. In this case, each E_{j}^{\prime} joins $E_{j} \cap \partial B_{a}$ to a_{ϵ} and $\bigcap_{j=1}^{p} E_{j}^{\prime}=$ $\left\{a_{\epsilon}\right\}$.
2. The planet a_{ϵ} is a repelling fixed point of f_{ϵ}, that is, the multiplier $f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)$ satisfies $\left|f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)\right|>1$. In this case, each E_{j}^{\prime} joins $E_{j} \cap \partial B_{a}$ to a_{ϵ} and $\bigcap_{j=1}^{p} E_{j}^{\prime}=$ $\left\{a_{\epsilon}\right\}$ (Figure 1.12).
3. The planet a_{ϵ} is an attracting fixed point of f_{ϵ}, that is, the multiplier $f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)$ satisfies $\left|f_{\epsilon}^{\prime}\left(a_{\epsilon}\right)\right|<1$. In this case, each E_{j}^{\prime} joins $E_{j} \cap \partial B_{a}$ to one of the symmetrically arrayed repelling satellites of a_{ϵ} and $\bigcap_{j=1}^{p} E_{j}^{\prime}=\emptyset$ (Figure 1.12).

Figure 1.12: Cases 2 and 3 of E_{a}^{\prime}
Now we set $E_{a}^{\prime}:=\bigcup_{j=0}^{p-1} E_{j}^{\prime}$. We can show $B_{a}-E_{a}^{\prime} \subset F\left(f_{\epsilon}\right)$ for $\epsilon \ll 1$ by the same argument as the case of $p=1$.

For each E_{j}^{\prime}, let us take a homeomorphism $h_{a, j}: E_{j}^{\prime} \rightarrow E_{j}$ in the same way as h_{a} for $p=1$, and define a continuous map $h_{a}: E_{a}^{\prime} \rightarrow E_{a}$ by $h_{a} \mid E_{j}^{\prime}=h_{a, j}$. Then h_{a} has the following properties:

- $h_{a} \mid\left(\partial E_{a}^{\prime} \cap \partial B_{a}\right)=\mathrm{id} ;$
- $h_{a}: E_{a}^{\prime} \rightarrow E_{a}$ is surjective; and
- if $y \in E_{a}$ and $\operatorname{card}\left(h_{a}^{-1}(y)\right) \geq 2$, then $y=a$. Moreover, a is perturbed into the attracting planet a_{ϵ}, and $h_{a}^{-1}(y)$ consist of p repelling satellites of a_{ϵ}.
In particular, we also obtain $d_{\sigma}\left(h_{a}(x), x\right) \leq r$ for any $x \in E_{a}^{\prime}$.
Finally let us show the existence of Ω_{ϵ}.
Proof(Proposition 1.3.2). For each fixed $\epsilon \ll 1$, set

$$
\Omega_{\epsilon}:=\left(\Omega-\bigcup_{a \in A} B_{a}\right) \cup \bigcup_{a \in A} E_{a}^{\prime}
$$

By the construction of E_{a}^{\prime}, one can easily check that $J\left(f_{\epsilon}\right) \subset \Omega_{\epsilon}$ and $f_{\epsilon}^{-1}\left(\Omega_{\epsilon}\right) \subsetneq \Omega_{\epsilon}$.
To check that $\Omega_{\epsilon} \cap\left(P\left(f_{\epsilon}\right) \cup C\left(f_{\epsilon}\right)\right)=J\left(f_{\epsilon}\right) \cap\left(P\left(f_{\epsilon}\right) \cup C\left(f_{\epsilon}\right)\right)$, it is sufficient to show that the critical orbits in the Fatou set never land on Ω_{ϵ}.

Let us take $c_{\epsilon} \in C\left(f_{\epsilon}\right) \cap F\left(f_{\epsilon}\right)$. Then there exists $c \in C(f)$ such that $c_{\epsilon} \rightarrow$ $c(\epsilon \rightarrow 0)$.

If $c \in J(f)$, by geometric finiteness of f, the orbit of c lands on a parabolic or repelling cycle, say α. Since the J-critical relations of f are preserved, c_{ϵ} also lands on a cycle. By our assumption that $c_{\epsilon} \in F\left(f_{\epsilon}\right), \alpha$ must be parabolic and the orbit of c_{ϵ} must land on an attracting cycle which is generated by the perturbation of α. Thus the orbit of c_{ϵ} never lands on Ω_{ϵ} by the definition of $\bigcup_{a \in A} E_{a}^{\prime}$.

If $c \in F(f)$, the orbit of c accumulates on a parabolic or attracting cycle. By the construction of Ω, c is not contained in Ω. Similarly, by the definition of Ω_{ϵ}, we may assume that $c_{\epsilon} \notin \Omega_{\epsilon}$. Let us suppose that $f_{\epsilon}^{n}\left(c_{\epsilon}\right) \in \Omega_{\epsilon}$ for some n. Then $c_{\epsilon} \in f_{\epsilon}^{-n}\left(\Omega_{\epsilon}\right) \subsetneq \Omega_{\epsilon}$ and it is a contradiction. Thus $f_{\epsilon}^{n}\left(c_{\epsilon}\right) \notin \Omega_{\epsilon}$ for all n.

Finally we define $h_{0}: \Omega_{\epsilon} \rightarrow \Omega$. Since $f_{\epsilon} \rightarrow f$ preserves the J-critical relations of f, we may assume that for any $b \in Z^{1}-A, B_{b}$ contains only one point of Z_{ϵ}^{1}, say b_{ϵ}, such that $b_{\epsilon} \rightarrow b$. Recall that $B_{b} \subset \operatorname{Int}(\Omega)$, by the assumption for r. Let $h_{b}: B_{b} \rightarrow B_{b}$ be an arbitrary topological map which satisfies $h_{b}\left(b_{\epsilon}\right)=b$ and $h_{b} \mid \partial B_{b}=\mathrm{id}$. Then we obtain $d_{\sigma}\left(h_{b}(x), x\right) \leq r$ for $x \in B_{b}$.

Let us define $h_{0}: \Omega_{\epsilon} \rightarrow \Omega$ by

$$
\begin{array}{ll}
h_{0}=h_{a} & \text { on } E_{a}^{\prime} \text { for } a \in A, \\
h_{0}=h_{b} & \text { on } B_{b} \text { for } b \in Z^{1}-A, \text { and } \\
h_{0}=\text { id } & \text { otherwise } .
\end{array}
$$

1.4 Construction of h_{n}

For Ω_{ϵ} and Ω constructed in $\S 3$, we set

$$
\Omega_{\epsilon}^{n}:=f_{\epsilon}^{-n}\left(\Omega_{\epsilon}\right) \text { and } \Omega^{n}:=f^{-n}(\Omega) \quad(n=0,1,2, \ldots) .
$$

In addition, we set $U_{\epsilon}^{n}:=\operatorname{Int}\left(\Omega_{\epsilon}^{n}\right)$ and $U^{n}:=\operatorname{Int}\left(\Omega^{n}\right)$. By the construction of these sets, $f_{\epsilon}: \Omega_{\epsilon}^{n+1} \rightarrow \Omega_{\epsilon}^{n}$ and $f: \Omega^{n+1} \rightarrow \Omega^{n}$ are branched covering maps, where the critical values are contained in Z_{ϵ} and Z respectively. Note that $\left\{\Omega_{\epsilon}^{n}\right\}$ and $\left\{\Omega^{n}\right\}$ form the decreasing sequences as below:

$$
\begin{gathered}
\Omega_{\epsilon}=\Omega_{\epsilon}^{0} \supsetneq \Omega_{\epsilon}^{1} \supsetneq \cdots \supsetneq \Omega_{\epsilon}^{n} \supsetneq \Omega_{\epsilon}^{n+1} \supsetneq \cdots \supsetneq J\left(f_{\epsilon}\right), \\
\Omega=\Omega^{0} \supsetneq \Omega^{1} \supsetneq \cdots \supsetneq \Omega^{n} \supsetneq \Omega^{n+1} \supsetneq \cdots \supsetneq J(f) .
\end{gathered}
$$

In this section, we inductively construct a sequence of lifts of $h_{0}: \Omega_{\epsilon}^{0} \rightarrow \Omega^{0}$,

$$
\left\{h_{n}\left(=h_{n, \epsilon}\right): \Omega_{\epsilon}^{n} \rightarrow \Omega^{n}\right\}_{n=1}^{\infty}
$$

satisfying $f \circ h_{n+1}=h_{n} \circ f_{\epsilon}$.
Proposition 1.4.1 For an $n \geq 0$, assume that there exists $h_{n}\left(=h_{n, \epsilon}\right): \Omega_{\epsilon}^{n} \rightarrow \Omega^{n}$ satisfying the following properties:
$(1, n) h_{n}$ is continuous and surjective.
$(2, n) h_{n}$ maps U_{ϵ}^{n} onto U^{n} homeomorphically. Moreover, if there exists $y \in \Omega^{n}$ such that $\operatorname{card}\left(h_{n}^{-1}(y)\right) \geq 2$ then $f^{n}(y)$ is a parabolic point of f perturbed into an attracting planet and $\operatorname{card}\left(h_{n}^{-1}(y)\right)=\operatorname{deg}\left(f^{n}, y\right) \cdot p\left(f^{n}(y)\right)$.
$(3, n)$ For any $b_{\epsilon} \in Z_{\epsilon}^{1}$, there exists a unique $b \in Z^{1}$ such that

$$
h_{n}\left(b_{\epsilon}\right)=b .
$$

Under these assumptions, there exists $h_{n+1}\left(=h_{n+1, \epsilon}\right): \Omega_{\epsilon}^{n+1} \rightarrow \Omega^{n+1}$ satisfying

$$
f \circ h_{n+1}=h_{n} \circ f_{\epsilon}
$$

and properties $(1, n+1),(2, n+1)$ and $(3, n+1)$.
Recall that the map $h_{0}: \Omega_{\epsilon}^{0} \rightarrow \Omega^{0}$ has properties $(1,0),(2,0)$, and $(3,0)$. Thus this proposition gives us desired $\left\{h_{n}: \Omega_{\epsilon}^{n} \rightarrow \Omega^{n}\right\}_{n=1}^{\infty}$.

Proof. The proof breaks into 3 steps.

Step 1: Interior correspondence. The first step is to try to construct a homeomorphism between U_{ϵ}^{n+1} and U^{n+1}. To begin with, we construct h_{n+1} such that the following diagram commutes:

Here $f \mid\left(U^{n+1}-Z^{1}\right)$ and $f_{\epsilon} \mid\left(U_{\epsilon}^{n+1}-Z_{\epsilon}^{1}\right)$ are d-sheeted covering maps. Moreover, by properties $(2, n)$ and $(3, n), h_{n} \mid\left(U_{\epsilon}^{n}-Z_{\epsilon}\right)$ is a homeomorphism. We will construct prospective h_{n+1} in the diagram by lifting this $h_{n} \mid\left(U_{\epsilon}^{n}-Z_{\epsilon}\right)$. Note that U_{ϵ}^{n} and U^{n} for $n \geq 1$ are either connected or finitely many connected components. (For example, suppose that $J(f)$ is a Cantor set.) Hence we construct h_{n+1} on each connected component of $U_{\epsilon}^{n+1}-Z_{\epsilon}^{1}$.

Let Q_{ϵ}^{1} be a connected component of $U_{\epsilon}^{n+1}-Z_{\epsilon}^{1}$, and take a base point $x_{0}^{1} \in Q_{\epsilon}^{1}$. Set $Q_{\epsilon}:=f_{\epsilon}\left(Q_{\epsilon}^{1}\right)$, a connected component of U_{ϵ}^{n}, and set $x_{0}:=f_{\epsilon}\left(x_{0}^{1}\right) \in Q_{\epsilon}$. Moreover, set $Q:=h_{n}\left(Q_{\epsilon}\right)$ and $y_{0}:=h_{n}\left(x_{0}\right) \in Q$.

Let $y_{0}^{1} \in U^{n+1}$ be the closest point to x_{0}^{1} in $f^{-1}\left(y_{0}\right)$. Such y_{0}^{1} is uniquely determined, since critical values in the Fatou sets stay a bounded distance away from Q_{ϵ} and Q. Let Q^{1} denote a connected component of $f^{-1}(Q)$ containing y_{0}^{1}. We will lift h_{n} to h_{n+1} such that the following diagram commutes:

Take a point $x^{1} \in Q_{\epsilon}^{1}$ and a curve $\eta_{\epsilon}:[0,1] \rightarrow Q_{\epsilon}^{1}$ such that $\eta_{\epsilon}(0)=x_{0}^{1}$ and $\eta_{\epsilon}(1)=x^{1}$. Then the curve $h_{n}\left(f_{\epsilon}\left(\eta_{\epsilon}\right)\right)$ has the initial point y_{0}. We lift this curve to $\eta:[0,1] \rightarrow Q^{1}$ with the initial point y_{0}^{1}, and define $h_{n+1}\left(x^{1}\right)$ as its end point $\eta(1)$.

Since $h_{n} \mid Q_{\epsilon}$ is a homeomorphism and the J-critical relations of f are preserved, for the fundamental groups $\pi_{1}\left(Q_{\epsilon}^{1}, x_{0}^{1}\right)$ and $\pi_{1}\left(Q^{1}, y_{0}^{1}\right)$,

$$
\left(h_{n}\right)_{*}:\left(f_{\epsilon}\right)_{*} \pi_{1}\left(Q_{\epsilon}^{1}, x_{0}^{1}\right) \rightarrow f_{*} \pi_{1}\left(Q^{1}, y_{0}^{1}\right)
$$

is a group isomorphism. Hence the above definition of $h_{n+1}\left(x^{1}\right)$ gives the homeomorphism $h_{n+1}:\left(Q_{\epsilon}^{1}, x_{0}^{1}\right) \rightarrow\left(Q^{1}, y_{0}^{1}\right)$ as a lift of $h_{n}:\left(Q_{\epsilon}, x_{0}\right) \rightarrow\left(Q, y_{0}\right)$ (See [11, Ch.III]).

Now we have a homeomorphism $h_{n+1}: U_{\epsilon}^{n+1}-Z_{\epsilon}^{1} \rightarrow U^{n+1}-Z^{1}$. For $x \in$ $U_{\epsilon} \cap Z_{\epsilon}^{1}$, let us set $h_{n+1}(x):=h_{n}(x)$. Then we obtain a homeomorphism h_{n+1} : $U_{\epsilon}^{n+1} \rightarrow U^{n+1}$ as a natural lift of $h_{n}: U_{\epsilon}^{n} \rightarrow U^{n}$.

Step 2: Boundary correspondence. The second step is to extend h_{n+1} defined on U_{ϵ}^{n+1} to the boundary $\partial U_{\epsilon}^{n+1}=\partial \Omega_{\epsilon}^{n+1}$, in a natural way. Here we should be careful about the boundary correspondence near the preimages of a parabolic point which is perturbed into an attracting planet. Note that the injectivity of h_{n} has already been broken at some of these points.

To construct $h_{n+1} \mid \partial \Omega_{\epsilon}^{n+1}$, it suffices to construct $h_{n+1} \mid \partial Q_{\epsilon}^{1}$ for each Q_{ϵ}^{1} in Step 1. For $x_{0}^{1} \in Q_{\epsilon}^{1}$ and $x^{1} \in \partial Q_{\epsilon}^{1}$, take a curve $\eta_{\epsilon}:[0,1] \rightarrow Q_{\epsilon}^{1} \cup\left\{x^{1}\right\}$ with $\eta_{\epsilon}(0)=x_{0}^{1}$ and $\eta_{\epsilon}(1)=x^{1}$. Now the value of h_{n+1} at x^{1} is defined by

$$
h_{n+1}\left(x^{1}\right):=\lim _{t \rightarrow 1} h_{n+1}\left(\eta_{\epsilon}(t)\right) \in \partial Q^{1} .
$$

One can easily check that this value does not depend on the choice of η_{ϵ}.
By this definition, if $a \in \partial Q^{1}$ is a parabolic point with $p \geq 2$ petals and is perturbed into an attracting planet, then $h_{n+1}^{-1}(a)$ is p distinct points in $\partial Q_{\epsilon}^{1}$ corresponding to p distinct accesses to a in E_{a}. The case of k-th preimages of a with $k \leq n+1$ is similar. Moreover, note that $h_{n+1}\left(x^{1}\right)=h_{n}\left(x^{1}\right)$ if $x^{1} \in \partial Q_{\epsilon}^{1} \cap Z_{\epsilon}^{1}$.

Step 3: Checking the properties. Now we have already defined a continuous $\operatorname{map} h_{n+1}: \Omega_{\epsilon} \rightarrow \Omega$. For the last step, we check that h_{n+1} has properties $(1, n+1)$, $(2, n+1)$ and $(3, n+1)$.

Note that $h_{n+1} \mid Q_{\epsilon}^{1}$ is a homeomorphism and $h_{n+1} \mid \overline{Q_{\epsilon}^{1}}$ is continuous. Thus bijectivity of h_{n+1} may break only at the boundary points. For a boundary point y^{1} of Q^{1}, take a curve $\eta:[0,1] \rightarrow Q^{1} \cup\left\{y^{1}\right\}$ such that $\eta(0)=y_{0}^{1}$ and $\eta(1)=y^{1}$. Then the limit of $h_{n+1}^{-1}(\eta(t))$ as $t \rightarrow 1$ determines an element of $h_{n+1}^{-1}\left(y^{1}\right)$ which is contained in the boundary of Q_{ϵ}^{1}. Hence $h_{n+1} \mid \partial Q_{\epsilon}^{1}$ is surjective and we obtain property $(1, n+1)$.

Next, suppose that $q:=\operatorname{card}\left(h_{n+1}^{-1}\left(y^{1}\right)\right) \geq 2$. Note that η determines an access to y^{1} within Q^{1} and an element of $h_{n+1}^{-1}\left(y^{1}\right)$. Thus $q \geq 2$ means that there are two or more distinct accesses to y^{1} (more precisely, there are two or more distinct prime ends of Q^{1} at $\left.y^{1}\right)$. By the definition of $\Omega^{n+1}, f^{n+1}\left(y^{1}\right)$ must be a parabolic point with $p \geq 1$ petals such that $q=p \cdot \operatorname{deg}\left(f^{n+1}, y^{1}\right) \geq 2$. By the definition of Ω_{ϵ}^{n+1}, such a must be perturbed into an attracting planet, since otherwise all possible η determines the same element of $h_{n+1}^{-1}\left(y^{1}\right)$. Thus we obtain property ($2, n+1$).

Finally, we obtain property $(3, n+1)$ by the fact that $h_{n+1}\left(x^{1}\right)=h_{n}\left(x^{1}\right)$ if $x^{1} \in Z_{\epsilon}^{1}$.

1.5 Contracting property of f^{-1}

By the construction above, h_{n} is one of the branches of $f^{-n} \circ h_{0} \circ f_{\epsilon}^{n}$. This implies, to obtain the convergence of $\left\{h_{n}\right\}$ on $J(f)$, it is necessary to use some kind of contracting property of the branches of f^{-1} (in other words, some kind of expanding property of f) near the Julia set. In this section, to obtain such a
property of f, we follow [16, Step 2-5] with brief sketches of the proofs. The idea is originally due to A. Douady and J. H. Hubbard[1, Exposé No.X].

1.5.1 Branched covering of Ω

There exists a function $v: \Omega \rightarrow \mathbb{N}$ such that $v(x)$ is the multiple of $v(y) \cdot \operatorname{deg}(f, y)$ for each $y \in f^{-1}(x)$. For example,

$$
v(x)=\prod_{f^{n}(y)=x} \operatorname{deg}(f, y)
$$

satisfies this condition. Here we take v as the function which takes minimal possible values. Note that $Z=\{x \in \Omega: v(x) \geq 2\}$.

Let O be an open δ-neighborhood of Ω with $\delta \ll 1$. Then O contains a neighborhood of each $a \in A$. For $x \in O-\Omega$, set $v(x)=1$. Let us take an N-sheeted branched covering $q: O^{*} \rightarrow O$ such that:

- O^{*} is connected;
- there are $N / v(x)$ points over $x \in O$; and
- for any $y \in q^{-1}(x), \operatorname{deg}(q, y)=v(x)$.

Now set $U:=\operatorname{Int}(\Omega), U^{*}:=q^{-1}(U)$ and $\Omega^{*}:=q^{-1}(\Omega)$. For U^{*} let us take the universal covering $\pi: \mathbb{D} \rightarrow U^{*}$, where \mathbb{D} is the unit disk. Then we obtain a branched covering $p:=q \circ \pi: \mathbb{D} \rightarrow U$.

Let Γ be the fundamental group of U^{*} and $\Lambda(\Gamma)$ the limit set of Γ. By lifting paths in Ω^{*} terminating at boundary points, we can continuously extend π to the ideal boundary, $\pi \mid(\partial \mathbb{D}-\Lambda(\Gamma)) \rightarrow \partial \Omega^{*}$. Thus we obtain a branched covering $p: \overline{\mathbb{D}}-\Lambda(\Gamma) \rightarrow \Omega$.

Remark. For a parabolic point a of f with multiple petals, every component of $E_{a}-\{a\}$ defines a different access to a. For such accesses, corresponding ideal boundary points of $\partial \mathbb{D}-\Lambda(\Gamma)$ over a are distinct.

1.5.2 Lifting f^{-1}

Next, we lift f^{-1} to the branched covering $\overline{\mathbb{D}}-\Lambda(\Gamma)$ of Ω.

Proposition 1.5.1 There is a holomorphic map $g: \mathbb{D} \rightarrow \mathbb{D}$ such that $f \circ p \circ g=p$. Moreover, g can be extended to $g: \overline{\mathbb{D}}-\Lambda(\Gamma) \rightarrow \overline{\mathbb{D}}-\Lambda(\Gamma)$ continuously.

Sketch of the proof. For $x \in \Omega$, we take a small disk neighborhood B_{x}. Let G be one of the components of $q^{-1}\left(B_{x}\right)$, and H that of $(f \circ q)^{-1}\left(B_{x}\right)$. Then there exists a unique y such that $\{y\}=f^{-1}(x) \cap q(H)$. By taking suitable local coordinates, $q \mid G \rightarrow B_{x}$ and $(f \circ q) \mid H \rightarrow B_{x}$ are represented as $z \mapsto z^{v(x)}$ and $z \mapsto z^{v(y) \operatorname{deg}(f, y)}$ respectively. Thus we can define the unique map $g_{G H}: G \rightarrow H$ which has the form

$$
z \mapsto z^{v(x) /(v(y) \operatorname{deg}(f, y))}
$$

as a branch of $(f \circ q)^{-1} \circ q$.
Let us fix $x_{0} \in \Omega-Z$ and $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$. Let η be a curve $\eta:[0,1] \rightarrow \Omega^{*}$ with $\eta(0)=\pi\left(\tilde{x}_{0}\right)$ and $\eta((0,1)) \subset U^{*}$, and η^{\prime} be the unique lifting of η by π with $\tilde{\eta}(0)=\tilde{x}_{0}$. Now we consider analytic continuation of the function elements $\left\{g_{G H}\right\}$ along $\tilde{\eta}$. Let $g_{G_{0} H_{0}}$ be a function element at $\pi\left(\tilde{x}_{0}\right)$. Since $\overline{\mathbb{D}}-\Lambda(\Gamma)$ is simply connected, the analytic continuation of $g_{G_{0} H_{0}}$ along $\tilde{\eta}$ determines a unique function element at $\tilde{\eta}(1)$. Next, by ranging over all possible η, we obtain $g: \overline{\mathbb{D}}-\Lambda(\Gamma) \rightarrow \overline{\mathbb{D}}-\Lambda(\Gamma)$. It is clear that $g \mid \mathbb{D}$ is holomorphic.

1.5.3 The metric ρ

Proposition 1.5.2 There exists a piecewise continuous metric ρ with the following properties:

- ρ is defined on $U-Z$ and small disk neighborhoods for each parabolic point of f.
- For every C^{1} curve $\eta \subset f^{-1}(\Omega)=\Omega^{1}$,

$$
\operatorname{length}_{\rho}(f \circ \eta)>\operatorname{length}_{\rho}(\eta) .
$$

So f is expanding for ρ in the sense of this inequality.

Sketch of the proof. Let $\rho_{0}=u_{0}(z)|d z|$ be a metric of $U-Z$ induced from the Poincaré metric of \mathbb{D} by the branched covering $p: \mathbb{D} \rightarrow U$. Note that $u_{0}(z) \asymp|z-b|^{-1+1 / v(b)}$ near $b \in Z$. Thus any rectifiable curve $\eta:[0,1] \rightarrow U$ passing through Z has finite length with respect to ρ_{0}.

However, any curve in $f^{-1}(\Omega)$ terminating at A has infinite length with respect to ρ_{0}. So we try to modify ρ_{0} so that such a curve has finite length.

For a sufficiently small $\delta>0$ and for each $a \in A$, set $\mathcal{D}_{a}:=B_{\sigma}(a, \delta)$ and $\mathcal{D}:=\bigcup_{a \in A} \mathcal{D}_{a}$. Note that $\Omega \cap \mathcal{D}$ is a finite union of narrow cusps near the repelling directions. Thus on each \mathcal{D}_{a}, we can take a suitable local coordinate ζ_{a} such that f is strictly expanding from the metric $\left|d \zeta_{a}\right|$ to the metric $\left|d \zeta_{f(a)}\right|$ on any compact subset of $f^{-1}\left(\Omega \cap \mathcal{D}_{f(a)}\right) \cap \mathcal{D}_{a}-\{a\}$. Furthermore, we take a sufficiently large $M>0$ so that for any $a \in A, f$ is expanding from ρ_{0} to $M\left|d \zeta_{a}\right|$ on a relatively compact set $f^{-1}\left(\Omega \cap \mathcal{D}_{a}-Z\right)-\mathcal{D}$. Set $u_{a}(z)|d z|:=\left|d \zeta_{a}\right|$. Then
we define the metric $\rho=u(z)|d z|$ on $U \cup \mathcal{D}-Z$ by $u(z):=\min \left\{u_{0}(z), M u_{a}(z)\right\}$ for $z \in \mathcal{D}_{a}$, and by $u(z):=u_{0}(z)$ otherwise.

By construction, it is not difficult to show

$$
u(f(z))\left|f^{\prime}(z)\right|>u(z)
$$

for $z \in f^{-1}(\Omega-Z)-A$. This implies

$$
\operatorname{length}_{\rho}(f \circ \eta)>\operatorname{length}_{\rho}(\eta)
$$

for every C^{1} curve $\eta \subset f^{-1}(\Omega)$.

1.5.4 Continuous modulus

Let $\tilde{\rho}$ be the lifting of ρ on $p^{-1}(U-Z)$. Since $f^{-1}(\Omega)=\Omega^{1}$ has one or more connected components, $p^{-1}\left(\Omega^{1}\right)$ is either connected or has countably many connected components. Take one of the components of $p^{-1}\left(\Omega^{1}\right)$, say Q, and take $x, y \in Q$. We define the distance by

$$
d_{\tilde{\rho}}(x, y):=\inf _{\tilde{\eta}} \operatorname{length}_{\tilde{\rho}}(\tilde{\eta})
$$

where $\tilde{\eta}$ ranges over all rectifiable curves such that

$$
\tilde{\eta}:[0,1] \rightarrow p^{-1}\left(\Omega^{1}\right), \tilde{\eta}(0)=x, \text { and } \tilde{\eta}(1)=y
$$

Note that such $\tilde{\eta}$ has finite length with respect to $\tilde{\rho}$. Now $\left(Q, d_{\tilde{\rho}}\right)$ is a complete metric space. For different components Q and Q^{\prime} of $p^{-1}\left(\Omega^{1}\right)$, we formally define $d_{\tilde{\rho}}(x, y):=\infty$ if $x \in Q$ and $y \in Q^{\prime}$.

For g, a lifting of f^{-1}, we define a function $\tau_{g}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
\tau_{g}(s):=\sup \left\{d_{\tilde{\rho}}(g(x), g(y)): x, y \in p^{-1}\left(\Omega^{1}\right), d_{\tilde{\rho}}(x, y) \leq s\right\}
$$

Furthermore, we define $\tau: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
\tau(s):=\sup \left\{\tau_{g}(s): g \text { a lifting of } f^{-1}\right\} .
$$

Then we obtain:
Proposition 1.5.3 τ has the following properties:
(i) τ is an increasing and right-continuous function;
(ii) $s>\tau(s)$ for any s;
(iii) the function $s \mapsto s-\tau(s)$ is also increasing; and
(iv) For any $x, y \in p^{-1}\left(\Omega^{1}\right)$ and any lifting g of f^{-1},

$$
d_{\tilde{\rho}}(g(x), g(y)) \leq \tau\left(d_{\tilde{\rho}}(x, y)\right)
$$

Sketch of the proof. If we replace τ by τ_{g}, then (i), (ii) and (iv) are almost clear by definition. (iii) follows from the fact that $\tau_{g}\left(s_{1}+s_{2}\right) \leq \tau_{g}\left(s_{1}\right)+\tau_{g}\left(s_{2}\right)$. A calculation shows that there exist d distinct liftings of f^{-1}, say g_{1}, \ldots, g_{d}, such that any τ_{g} coincide with one of $\tau_{g_{1}}, \ldots, \tau_{g_{d}}$. Thus

$$
\tau(s)=\sup \left\{\tau_{g_{i}}(s): 1 \leq i \leq d\right\}
$$

and satisfies properties (i)-(iv).

1.6 Convergence of h_{n}

In this section, we give the proof of the convergence of the sequence $\left\{h_{n}: \Omega_{\epsilon}^{n} \rightarrow \Omega^{n}\right\}_{n=0}^{\infty}$. Here the expanding property of f with respect to ρ plays an important role. For instance, we can easily show the convergence when f is hyperbolic:

Proposition 1.6.1 Suppose that f is hyperbolic. For $\epsilon \ll 1$, the sequence h_{n} converges uniformly to the limit h_{ϵ} on $J\left(f_{\epsilon}\right)$ which satisfies $f \circ h_{\epsilon}=h_{\epsilon} \circ f_{\epsilon}$.

Proof. Since f has no parabolic point nor critical point in $J(f)$, the metric ρ in Proposition 1.5.2 is the Poincaré metric on U. Now $\Omega^{1} \subset U$ thus there is a constant C such that $f^{*} \rho / \rho \geq C>1$ on Ω^{1}.

Note that the constant

$$
M:=\sup \left\{d_{\rho}\left(h_{0}(x), h_{1}(x)\right): x \in \Omega_{\epsilon}^{1}\right\}
$$

is finite since $h_{0}\left(\Omega_{\epsilon}^{1}\right) \subset U$. For any $x \in \Omega_{\epsilon}^{2}$, we obtain

$$
\begin{aligned}
& C d_{\rho}\left(h_{1}(x), h_{2}(x)\right) \\
\leq & d_{\rho}\left(f\left(h_{1}(x)\right), f\left(h_{2}(x)\right)\right)=d_{\rho}\left(h_{0}\left(f_{\epsilon}(x)\right), h_{1}\left(f_{\epsilon}(x)\right)\right) \\
\leq & M
\end{aligned}
$$

thus $d_{\rho}\left(h_{1}(x), h_{2}(x)\right) \leq M / C$. Similarly, for any $x \in J\left(f_{\epsilon}\right)$, we obtain

$$
d_{\rho}\left(h_{n}(x), h_{n+1}(x)\right) \leq M / C^{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

(Recall that $J\left(f_{\epsilon}\right) \subset \Omega_{\epsilon}^{n}$ and thus $h_{n} \mid J\left(f_{\epsilon}\right)$ are defined for any $n \geq 0$.) Hence h_{n} converges uniformly and rapidly to the limit h_{ϵ} on $J\left(f_{\epsilon}\right)$. The relation $f \circ h_{\epsilon}=$ $h_{\epsilon} \circ f_{\epsilon}$ follows from $f \circ h_{n+1}=h_{n} \circ f_{\epsilon}$.

Let us consider the general case. When f has parabolic points, it is not uniformly expanding on Ω^{1}. However, since it is uniformly expanding on each compact subset of Ω^{1} with respect to the metric ρ, h_{n} converges slowly to the limit:

Proposition 1.6.2 For $\epsilon \ll 1$, the sequence h_{n} converges uniformly to the limit h_{ϵ} on $J\left(f_{\epsilon}\right)$ which satisfies $f \circ h_{\epsilon}=h_{\epsilon} \circ f_{\epsilon}$. Moreover, h_{ϵ} can be arbitrarily close to the identity map: That is, for arbitrarily small $r>0$, if $\epsilon \ll 1, h_{\epsilon}$ satisfies

$$
\sup \left\{d_{\sigma}\left(h_{\epsilon}(x), x\right): x \in J\left(f_{\epsilon}\right)\right\}<r
$$

Proof. Let us fix an arbitrary $L>0$. Then we may assume that

$$
d_{\rho}\left(h_{0}(x), h_{1}(x)\right)<L-\tau(L)
$$

for any $x \in J\left(f_{\epsilon}\right)$. In fact, by the construction of h_{0} and h_{1}, if $\epsilon \ll 1, d_{\rho}\left(h_{0}(x), h_{1}(x)\right)$ can be arbitrarily small for any $x \in J\left(f_{\epsilon}\right)$.

We claim that $d_{\rho}\left(h_{0}(x), h_{n}(x)\right)<L$ for any $n \geq 1$ and any $x \in J\left(f_{\epsilon}\right)$. If $n=1$, $d_{\rho}\left(h_{0}(x), h_{1}(x)\right)<L-\tau(L)<L$. For $n=k$, let us assume that $d_{\rho}\left(h_{0}(x), h_{k}(x)\right)<$ L for any $x \in J\left(f_{\epsilon}\right)$. We first show that

$$
d_{\rho}\left(h_{1}(x), h_{k+1}(x)\right)<\tau(L)
$$

By assumption, we can take a rectifiable curve $\eta:[0,1] \rightarrow \Omega^{1}$ such that

- $\eta(0)=h_{0}\left(f_{\epsilon}(x)\right)$ and $\eta(1)=h_{k}\left(f_{\epsilon}(x)\right)$;
- $\eta \cap Z=\emptyset$; and
- $L>$ length $_{\rho}(\eta)$.

Fix $z_{0} \in p^{-1}\left(h_{0}\left(f_{\epsilon}(x)\right)\right)$, and let $\tilde{\eta}$ be the lifting of η by p whose initial point is z_{0}. Then the end point over $h_{k}\left(f_{\epsilon}(x)\right)$ is uniquely determined, say z_{1}, and

$$
\begin{aligned}
L & >\operatorname{length}_{\rho}(\eta)=\operatorname{length}_{\tilde{\rho}}(\tilde{\eta}) \\
& >d_{\tilde{\rho}}\left(z_{0}, z_{1}\right)
\end{aligned}
$$

By using the function τ,

$$
\tau(L)>\tau\left(d_{\tilde{\rho}}\left(z_{0}, z_{1}\right)\right) \geq d_{\tilde{\rho}}\left(g\left(z_{0}\right), g\left(z_{1}\right)\right)
$$

where g is a lifting of f^{-1} such that $p \circ g\left(z_{0}\right)=h_{1}(x)$. Then we can take a curve $\tilde{\eta}^{\prime}:[0,1] \rightarrow \overline{\mathbb{D}}-\Lambda(\Gamma)$ such that

- $\tilde{\eta}^{\prime}(0)=g\left(z_{0}\right)$ and $\tilde{\eta}^{\prime}(1)=g\left(z_{1}\right) ;$
- $\tilde{\eta}^{\prime} \cap p^{-1}(Z)=\emptyset$; and
- $\tau(L)>\operatorname{length}_{\tilde{\rho}}\left(\tilde{\eta}^{\prime}\right)$.

Hence

$$
\begin{aligned}
\tau(L) & >\operatorname{length}_{\tilde{\rho}}\left(\tilde{\eta}^{\prime}\right)=\operatorname{length}_{\rho}\left(p \circ \tilde{\eta}^{\prime}\right) \\
& >d_{\rho}\left(p\left(g\left(z_{0}\right)\right), p\left(g\left(z_{1}\right)\right)\right)=d_{\rho}\left(h_{1}(x), h_{k+1}(x)\right)
\end{aligned}
$$

Then for $n=k+1$ and for any $x \in J\left(f_{\epsilon}\right)$,

$$
\begin{aligned}
d_{\rho}\left(h_{0}(x), h_{k+1}(x)\right) & \leq d_{\rho}\left(h_{0}(x), h_{1}(x)\right)+d_{\rho}\left(h_{1}(x), h_{k+1}(x)\right) \\
& <L-\tau(L)+\tau(L)=L
\end{aligned}
$$

Thus we have shown the claim by induction on n.
Let us show the convergence. By the same argument as above, for sufficiently large integer l, m,

$$
\begin{aligned}
d_{\rho}\left(h_{l}(x), h_{m+l}(x)\right) & <\tau^{l}\left(d_{\rho}\left(h_{0}\left(f_{\epsilon}^{l}(x)\right), h_{m}\left(f_{\epsilon}^{l}(x)\right)\right)\right) \\
& <\tau^{l}(L) \rightarrow 0 \quad(l \rightarrow \infty)
\end{aligned}
$$

Because we can take arbitrary $x \in J\left(f_{\epsilon}\right)$, h_{n} converges uniformly on $J\left(f_{\epsilon}\right)$ with respect to the distance d_{ρ}. Since the topology of Ω^{n} defined by d_{ρ} is equivalent to the topology defined by the spherical distance d_{σ}, h_{n} also converges uniformly on $J\left(f_{\epsilon}\right)$ with respect to d_{σ}. By continuity of each h_{n}, the limit h_{ϵ} is also continuous. The relation $f \circ h_{\epsilon}=h_{\epsilon} \circ f_{\epsilon}$ follows from $f \circ h_{n+1}=h_{n} \circ f_{\epsilon}$.

Finally we show the last part of the statement. Let us fix any $r>0$ and suppose that $\epsilon \ll 1$. Then we can take h_{0} such that $d_{\sigma}\left(x, h_{0}(x)\right)<r / 2$ for any $x \in J\left(f_{\epsilon}\right)$. On the other hand, by the claim above, we obtain $d_{\rho}\left(h_{0}(x), h_{\epsilon}(x)\right) \leq L$ for arbitrarily small L. Since we may also suppose that L is sufficiently small such that $d_{\sigma}\left(h_{0}(x), h_{\epsilon}(x)\right)<r / 2$ for any $x \in J\left(f_{\epsilon}\right)$, we obtain

$$
d_{\sigma}\left(x, h_{\epsilon}(x)\right) \leq d_{\sigma}\left(x, h_{0}(x)\right)+d_{\sigma}\left(h_{0}(x), h_{\epsilon}(x)\right)<r .
$$

1.7 Almost bijectivity and uniqueness of h_{ϵ}

In this section, we prove that the continuous map h_{ϵ} in Proposition 1.6.2 maps $J\left(f_{\epsilon}\right)$ onto $J(f)$ "almost bijectively"; that is, there are at most countably many points in $J(f)$ where h_{ϵ} is not one-to-one. Furthermore we prove the uniqueness of such an h_{ϵ}.

First we show:
Proposition 1.7.1 h_{ϵ} maps $J\left(f_{\epsilon}\right)$ to $J(f)$.
Proof. Let X denote the set of all repelling periodic points of f_{ϵ}. Since $h_{\epsilon} \circ f_{\epsilon}^{n}=$ $f^{n} \circ h_{\epsilon}$ for any n, h_{ϵ} maps X to a set of periodic points of f in Ω, which must be a subset of $J(f)$. Since h_{ϵ} is continuous and $J\left(f_{\epsilon}\right)=\bar{X}, h_{\epsilon}$ maps $J\left(f_{\epsilon}\right)$ into $J(f)$.

Next, we complete the proof of Theorem 1.1.1 under the assumption that $J(f) \neq \hat{\mathbb{C}}$. For fixed ϵ, let $A_{-}=A_{-, \epsilon} \subset A$ be the set of all parabolic points of f which are perturbed into attracting planets of f_{ϵ}.

Proposition 1.7.2 If $\epsilon \ll 1, h_{\epsilon}: J\left(f_{\epsilon}\right) \rightarrow J(f)$ has the following properties:

- (Surjectivity) h_{ϵ} is surjective.
- (Almost injectivity) If $h_{\epsilon}(x)=h_{\epsilon}\left(x^{\prime}\right)$ for distinct $x, x^{\prime} \in J\left(f_{\epsilon}\right)$, then there exists an integer N such that $f_{\epsilon}^{N}(x)$ and $f_{\epsilon}^{N}\left(x^{\prime}\right)$ are repelling satellites of an attracting planet a_{ϵ} generated by the perturbation of a point in A_{-}.
- (Uniqueness) h_{ϵ} is the unique semiconjugacy between f_{ϵ} and f on their respective Julia sets which satisfies properties 1 and 2 in Theorem 1.1.1.

By the almost injectivity above, we obtain the precise condition for h_{ϵ} to be a topological conjugacy.

Corollary 1.7.3 h_{ϵ} is a topological conjugacy if and only if $A_{-}=\emptyset$; that is, none of the parabolic points of f is perturbed into an attracting planet.

Proof of Proposition 1.7.2: Surjectivity. Fix any $y \in J(f)$. By surjectivity of h_{n}, there is a sequence $x_{n} \in \Omega_{\epsilon}^{n} \subset \Omega_{\epsilon}$ such that $h_{n}\left(x_{n}\right)=y$. Since Ω_{ϵ} is compact, $\left\{x_{n}\right\}$ has an accumulation point $x \in \Omega_{\epsilon}$ and we can choose a subsequence $x_{n_{k}}$ so that $x_{n_{k}} \rightarrow x(k \rightarrow \infty)$. Now we claim that $x \in J\left(f_{\epsilon}\right)$. If $x \in F\left(f_{\epsilon}\right), f_{\epsilon}^{n}(x)$ is attracted to an attracting or parabolic cycle as $n \rightarrow \infty$. Thus there exists an N and a small disk neighborhood D such that $f_{\epsilon}^{n}(D)$ is outside of Ω_{ϵ} for all $n \geq N$. On the other hand, for all $k \gg 0$, we have $n_{k} \geq N, x_{n_{k}} \in D$, and $f_{\epsilon}^{n_{k}}\left(x_{n_{k}}\right) \in \Omega_{\epsilon}$. This is a contradiction.

Since $h_{n} \rightarrow h_{\epsilon}$ uniformly and the family $\left\{h_{n}\right\}$ is clearly equicontinuous, the inequality

$$
d_{\rho}\left(y, h_{\epsilon}(x)\right) \leq d_{\rho}\left(h_{n_{k}}\left(x_{n_{k}}\right), h_{n_{k}}(x)\right)+d_{\rho}\left(h_{n_{k}}(x), h_{\epsilon}(x)\right)
$$

implies $y=h_{\epsilon}(x)$. Thus h_{ϵ} is surjective.
Preliminary to the almost injectivity and uniqueness. Since f is geometrically finite and the assumption that $J(f) \neq \hat{\mathbb{C}}, f$ has at least one critical point in the Fatou set, and so does f_{ϵ}. Now we take suitable conjugations of $f_{\epsilon} \rightarrow f_{0}=f$ by rotations of $\widehat{\mathbb{C}}$ so that $\infty \in C\left(f_{\epsilon}\right) \cap F\left(f_{\epsilon}\right)$. By the construction of Ω_{ϵ}, there exist $R \gg 0$ such that $D(R):=\widehat{\mathbb{C}}-\{|z| \leq R\}$ is a disk neighborhood of ∞ which is not contained in Ω_{ϵ} for all $0 \leq \epsilon \ll 1$. Then Ω_{ϵ} and $J\left(f_{\epsilon}\right)$ are bounded sets in the complex plane.

For $\delta>0$ and $x \in \mathbb{C}$, we set

$$
B(x, \delta):=\{z \in \mathbb{C}:|z-x|<\delta\}
$$

which is an open Euclidean ball. Now we fix δ to be sufficiently small so that the set

$$
\mathcal{B}:=\bigcup_{x \in A \cup Z^{1}} B(x, \delta)
$$

is a disjoint union of balls satisfying the following conditions:

- if an $x \in A \cup Z^{1}$ is periodic, then there exists a local chart on $B(x, \delta)$ as (2.2) or (2.4); and
- for $x \in Z^{1}-A, P(f) \cap B(x, \delta)=\{x\}$.

Set $\tilde{s}:=d(P(f), J(f)-\mathcal{B})$, where $d(\cdot, \cdot)$ is the distance between sets measured by Euclidean distance. Since f is geometrically finite, every critical orbit either accumulates on an attracting or parabolic cycle, or is already contained in Z^{1}. Hence we obtain $0<\tilde{s} \leq \delta$.

Now we claim that $d\left(P\left(f_{\epsilon}\right), J\left(f_{\epsilon}\right)-\mathcal{B}\right)>\tilde{s} / 2$ for all $\epsilon \ll 1$. It suffices to restrict our attention to the perturbation of the critical orbits accumulating on A or Z^{1}. First, take a parabolic cycle $\alpha \subset A$ and a critical orbit accumulating to α. By horocyclicity of $f_{\epsilon} \rightarrow f$, we may apply Lemma 1.2.2. That is, for $\epsilon \ll 1$, the corresponding perturbed critical orbit of f_{ϵ} is contained in $\cup_{a \in \alpha} B(a, \delta) \subset \mathcal{B}$ except finitely many points in the orbit. Since $f_{\epsilon} \rightarrow f$ uniformly, such finitely many points are very close to the original ones. On the other hand, $J\left(f_{\epsilon}\right)$ is very close to $J(f)$ with respect to the Hausdorff topology, since h_{ϵ} maps $J\left(f_{\epsilon}\right)$ onto $J(f)$ and r-neighborhood of $J(f)$ with respect to the spherical distance contains $h_{\epsilon}^{-1}(J(f))=J\left(f_{\epsilon}\right)$. (Recall that r is fixed and arbitrarily small for $\epsilon \ll 1$.) Thus such finitely many points stay away from $J\left(f_{\epsilon}\right)-\mathcal{B}$ for $\epsilon \ll 1$, and the distance can be at least $\tilde{s} / 2$. Next, take $b \in Z^{1}$. Since $f_{\epsilon} \rightarrow f$ preserves the J-critical relations of f, for all $\epsilon \ll 1$, we may suppose that there exists a unique $b_{\epsilon} \in f_{\epsilon}^{-1}\left(P\left(f_{\epsilon}\right)\right)$ such that $\left|b-b_{\epsilon}\right|<\delta / 2$. For such $b_{\epsilon}, d\left(b_{\epsilon}, J\left(f_{\epsilon}\right)-\mathcal{B}\right) \geq \delta / 2 \geq \tilde{s} / 2$. Thus we conclude the claim.

Replacing f_{ϵ} (resp. f) by its suitable iteration, we may consider the extreme case where every point in $h_{0}^{-1}(A) \cup Z_{\epsilon}$ (resp. $A \cup Z$) is a fixed point of f_{ϵ} (resp. f), and the multipliers of all parabolic points are 1 . Then Z_{ϵ} and Z are the sets of all critical values of f_{ϵ} and f on their respective Julia sets.

Set $\Gamma_{-}=\Gamma_{-, \epsilon}:=h_{0}^{-1}\left(A_{-}\right)$, the set of all repelling satellites generated by the perturbation of parabolic points in A_{-}. Note that now every element in A_{-}or Γ_{-}is a fixed point of f or f_{ϵ} respectively. Also, note that Γ_{-}and Z_{ϵ} are disjoint.

Almost injectivity. Now let us start the discussion on the almost injectivity of h_{ϵ}. We suppose that $h_{\epsilon}(x)=h_{\epsilon}\left(x^{\prime}\right)$ for distinct $x, x^{\prime} \in J\left(f_{\epsilon}\right)$. Set $x_{n}:=f_{\epsilon}^{n}(x)$ and $x_{n}^{\prime}:=f_{\epsilon}^{n}\left(x^{\prime}\right)$. Then $h_{\epsilon}\left(x_{n}\right)=h_{\epsilon}\left(x_{n}^{\prime}\right)$ because $f^{n} \circ h_{\epsilon}=h_{\epsilon} \circ f_{\epsilon}^{n}$. Recall that $d_{\sigma}\left(x, h_{\epsilon}(x)\right)<r$ for any $x \in J\left(f_{\epsilon}\right)$. Thus we obtain

$$
d_{\sigma}\left(x_{n}, x_{n}^{\prime}\right) \leq d_{\sigma}\left(x_{n}, h_{\epsilon}\left(x_{n}\right)\right)+d_{\sigma}\left(h_{\epsilon}\left(x_{n}^{\prime}\right), x_{n}^{\prime}\right)<2 r
$$

and it implies $\left|x_{n}-x_{n}^{\prime}\right|=O(r)$. Indeed, since the Julia set is contained in $\hat{\mathbb{C}}-D(R)$, there exists a constant $M \approx 1+R^{2}$ such that $\left|x_{n}-x_{n}^{\prime}\right| \leq M r$ for sufficiently small r. Now we set

$$
\tilde{r}:=\sup _{n}\left|x_{n}-x_{n}^{\prime}\right| \quad(\leq M r) .
$$

Then we may suppose that r is sufficiently small such that $\tilde{r} \leq M r<\tilde{s} / 2$ for $\epsilon \ll 1$. Note that $\tilde{r} \leq M r<\delta / 2$ also holds.

For the orbit of the x and x^{\prime}, we consider the following three cases:

1. Both x_{n} and x_{n}^{\prime} land on Γ_{-}.
2. x_{n} lands on Γ_{-}but x_{n}^{\prime} never lands on Γ_{-}.
3. Both x_{n} and x_{n}^{\prime} never land on Γ_{-}.

Case 1: Suppose that x_{n} lands on $h_{\epsilon}^{-1}(a)$ for some $a \in A_{-}$when $n=N$. Here $h_{\epsilon}^{-1}(a) \subset \Gamma_{-}$is a set of repelling fixed points contained in $B_{\sigma}(a, r)$. By the facts that

$$
B_{\sigma}(a, r) \subset B(a, M r) \subset B(a, \delta / 2)
$$

and $\tilde{r}<\delta / 2, x_{n}^{\prime}$ must be contained in $B(a, \delta)$ for all $n \geq N$. If $x_{N}^{\prime} \notin h_{\epsilon}^{-1}(a)$, by the local dynamics of f_{ϵ} on $B(a, \delta)$ in the form (2.4), x_{n}^{\prime} goes out of $B(a, \delta)$. Thus $x_{N}^{\prime} \in h_{\epsilon}^{-1}(a)$; that is, x_{n} and x_{n}^{\prime} simultaneously land on repelling satellites in $h_{\epsilon}^{-1}(a)$, when $n=N$.

Hence we need to show that the other cases cannot occur.

Case 2: We suppose again that x_{n} lands on $h_{\epsilon}^{-1}(a)$ for some $a \in A_{-}$when $n=N$. By the same argument as Case $1, x_{n}^{\prime}$ must be contained in $B(a, \delta)$ for all $n \geq N$. However, $x_{n}^{\prime} \notin h_{\epsilon}^{-1}(a) \subset \Gamma_{-}$, and thus by the local dynamics of f_{ϵ} on $B(a, \delta)$ in the form (2.4), x_{n}^{\prime} goes out of $B(a, \delta)$. This is a contradiction.

Case 3: Furthermore we need to consider the following three cases:
I. x_{n} lands on Z_{ϵ} but x_{n}^{\prime} never lands on Z_{ϵ}.
II. Both x_{n} and x_{n}^{\prime} land on Z_{ϵ}.
III. Both x_{n} and x_{n}^{\prime} never land on Z_{ϵ}.

Case 3-I: Suppose that x_{n} lands on $h_{\epsilon}^{-1}(b)$ for some $b \in Z$ when $n=N$. Here $h_{\epsilon}^{-1}(b) \subset Z_{\epsilon}$ is a repelling or parabolic fixed point of f_{ϵ} contained in $B_{\sigma}(b, r)$. By the same argument as above, x_{n}^{\prime} must be contained in $B(b, \delta)$ for $n \geq N$. Now x_{n}^{\prime} never lands on Z_{ϵ}. This implies, by the local dynamics of f_{ϵ} on $B(b, \delta)$ in the form (2.2) or (2.4), x_{n}^{\prime} goes out of $B(b, \delta)$. This is also a contradiction.

Case 3-II: Since $\tilde{r}<\delta / 2$ and all elements of Z_{ϵ}^{1} remain at leaset δ apart, the orbits of x and x^{\prime} have merged before landing on Z_{ϵ} : That is, there exist two integers N_{1} and N_{2} with $N_{1}<N_{2}$ such that

- $x_{N_{1}} \neq x_{N_{1}}^{\prime}$ and $x_{N_{1}+1}=x_{N_{1}+1}^{\prime}$, and
- $x_{N_{2}}=x_{N_{2}}^{\prime} \in Z_{\epsilon}^{1}$ and $x_{N_{2}+1}=x_{N_{2}+1}^{\prime} \in Z_{\epsilon}$.

Set $w:=x_{N_{1}+1}=x_{N_{1}+1}^{\prime}$. Since w is not contained in Z_{ϵ}, which is the set of critical values, the inverse image $f_{\epsilon}^{-1}(w)$ consists of d distinct points. (Recall that d is the degree of f.) Similarly, by the construction of $h_{\epsilon}, h_{\epsilon}(w)=: z$ is not contained in Z and $f^{-1}(z)$ also consists of d distinct points. Moreover, since h_{ϵ} is surjective, $h_{\epsilon}^{-1}\left(f^{-1}(z)\right)$ must consist of at least d points.

Note that $f_{\epsilon}^{-1}(w) \subset h_{\epsilon}^{-1}\left(f^{-1}(z)\right)$. Since $h_{\epsilon}\left(x_{N_{1}}\right)=h_{\epsilon}\left(x_{N_{1}}^{\prime}\right)$ for distinct $x_{N_{1}}, x_{N_{1}}^{\prime} \in$ $f_{\epsilon}^{-1}(w)$, there exists an $x^{\prime \prime} \in h_{\epsilon}^{-1}\left(f^{-1}(z)\right)-f_{\epsilon}^{-1}(w)$ which satisfies $f_{\epsilon}\left(x^{\prime \prime}\right) \neq w$ and $h_{\epsilon}\left(f_{\epsilon}\left(x^{\prime \prime}\right)\right)=z$. Setting $w^{\prime}:=f_{\epsilon}\left(x^{\prime \prime}\right)$, we obtain $h_{\epsilon}(w)=h_{\epsilon}\left(w^{\prime}\right)$ for $w \neq w^{\prime}$. Let us replace x and x^{\prime} by w and w^{\prime} respectively. This reduces Case 3-II with $x_{N_{2}} \in Z_{\epsilon}^{1}$ to Case 3-I or 3-II with $x_{N_{2}-N_{1}-1} \in Z_{\epsilon}^{1}$.

However, as we have seen, Case 3-I implies a contradiction. In Case 3-II, we can repeat the argument above. Hence we eventually consider the case where $h_{\epsilon}(x)=h_{\epsilon}\left(x^{\prime}\right)$ for $x \neq x^{\prime}$ with $x \in Z_{\epsilon}^{1}$.

Suppose that $f_{\epsilon}(x)=h_{\epsilon}^{-1}(b)$ for some $b \in Z$. Then $f_{\epsilon}(x)$ is contained in $B_{\sigma}(b, r)$ and is a repelling or parabolic fixed point. On the other hand, since the elements of Z_{ϵ}^{1} remain separated, $x \neq x^{\prime}$ implies $x^{\prime} \notin Z_{\epsilon}^{1}$, and thus $f_{\epsilon}\left(x^{\prime}\right) \notin Z_{\epsilon}$. By the local dynamics of f_{ϵ} on $B(b, \delta)$ in the form (2.2) or (2.4), $f_{\epsilon}\left(x^{\prime}\right)$ is not a fixed point and goes out of $B(b, \delta)$. This is a contradiction.

Case 3-III: If either x_{n} or x_{n}^{\prime} lands in \mathcal{B}, it goes out of \mathcal{B} by finitely many iterations of f_{ϵ}. Now we take a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ so that each $x_{n_{k}}$ is never contained in \mathcal{B}; that is, $x_{n_{k}} \in J\left(f_{\epsilon}\right)-\mathcal{B}$. Recall that $d\left(P\left(f_{\epsilon}\right), J\left(f_{\epsilon}\right)-\mathcal{B}\right)>\tilde{s} / 2$. For any s satisfying $\tilde{r}<s<\tilde{s} / 2$ and for any $k \gg 0$, there exists a branch $g_{n_{k}}$ of $f_{\epsilon}^{-n_{k}}$ on $B\left(x_{n_{k}}, s\right)$ which is univalent and $g_{n_{k}}\left(x_{n_{k}}\right)=x$. Set $V_{n_{k}}:=g_{n_{k}}\left(B\left(x_{n_{k}}, \tilde{r}\right)\right)$. Then $V_{n_{k}}$ contains x and x^{\prime}. By applying the Koebe distortion theorem to $g_{n_{k}}$ on $B\left(x_{n_{k}}, s\right)$, we obtain

$$
\operatorname{diam} V_{n_{k}}=O\left(\left|g_{n_{k}}^{\prime}\left(x_{n_{k}}\right)\right|\right)=O\left(1 /\left|\left(f_{\epsilon}^{n_{k}}\right)^{\prime}(x)\right|\right)
$$

If $\left|P\left(f_{\epsilon}\right)\right|<3, f_{\epsilon}$ is conjugate to $z \mapsto z^{ \pm d}$, and thus it is hyperbolic. On the Julia set, $\left|\left(f_{\epsilon}^{n_{k}}\right)^{\prime}(x)\right| \rightarrow \infty$ as $k \rightarrow \infty$ hence $\lim \left(\operatorname{diam} V_{n_{k}}\right)=0$. It contradicts $x \neq x^{\prime}$.

If $\left|P\left(f_{\epsilon}\right)\right| \geq 3$, let ρ_{ϵ} be the Poincaré metric of $\hat{\mathbb{C}}-P\left(f_{\epsilon}\right)$. By [13, Theorem 3.6], since $x_{n} \notin P\left(f_{\epsilon}\right)$ for any n, we obtain

$$
\left\|\left(f_{\epsilon}^{n}\right)^{\prime}(x)\right\|_{\rho_{\epsilon}}=\frac{\rho_{\epsilon}\left(f_{\epsilon}^{n}(x)\right)\left|\left(f_{\epsilon}^{n}\right)^{\prime}(x)\right|}{\rho_{\epsilon}(x)} \rightarrow \infty \quad(n \rightarrow \infty)
$$

Now recall again that $d\left(P\left(f_{\epsilon}\right), J\left(f_{\epsilon}\right)-\mathcal{B}\right)>\tilde{s} / 2$. Since $x_{n_{k}}$ and x stay away from $P\left(f_{\epsilon}\right), \rho_{\epsilon}\left(f_{\epsilon}^{n_{k}}(x)\right)$ and $\rho_{\epsilon}(x)$ are bounded. Hence $\left|\left(f_{\epsilon}^{n_{k}}\right)^{\prime}(x)\right| \rightarrow \infty$ as $k \rightarrow \infty$, then $\lim \left(\operatorname{diam} V_{n_{k}}\right)=0$. It contradicts $x \neq x^{\prime}$ again.

Uniqueness. From Proposition 1.6.2, Proposition 1.7.1 and the proof of the almost bijectivity above, it is easy to check that h_{ϵ} satisfies properties in Theorem 1.1.1. In particular, we obtain property 1 in Theorem 1.1.1 from the almost injectivity discussed above and property $(2, n)$ of h_{n} in Proposition 1.4.1.

Let h_{ϵ}^{\prime} be another semiconjugacy between f_{ϵ} and f on their respective Julia sets with properties 1 and 2 in Theorem 1.1.1. Take a repelling periodic point x of f_{ϵ} which has period more than one. By our assumption that $h_{\epsilon}^{-1}(A) \cup Z_{\epsilon}$ is a set of fixed points, x does not belong to $\Gamma_{-} \cup Z_{\epsilon}$. By surjectivity of h_{ϵ}^{\prime}, there exists an $x^{\prime} \in J\left(f_{\epsilon}\right)$ such that

$$
h_{\epsilon}(x)=h_{\epsilon}^{\prime}\left(x^{\prime}\right) .
$$

It is easy to see that $h_{\epsilon}(x)$ and x^{\prime} are also repelling periodic points with the same period as x.

Set $x_{n}:=f_{\epsilon}^{n}(x)$ and $x_{n}^{\prime}:=f_{\epsilon}^{n}\left(x^{\prime}\right)$. Then $h_{\epsilon}\left(x_{n}\right)=h_{\epsilon}\left(x_{n}^{\prime}\right)$ because h_{ϵ} and h_{ϵ}^{\prime} are semiconjugacies. Moreover, we obtain $d_{\sigma}\left(x_{n}, x_{n}^{\prime}\right)<2 r$ from property 2 in Theorem 1.1.1. Thus

$$
\left|x_{n}-x_{n}^{\prime}\right| \leq M r<\delta / 2
$$

for all n and we may suppose that x_{n}^{\prime} belongs to $\Gamma_{-} \cup Z_{\epsilon}$ as well as x_{n}.
Now we can apply the same argument as Case 3-III of the proof of the almost injectivity, and we conclude that $x=x^{\prime}$. This means that $h_{\epsilon}=h_{\epsilon}^{\prime}$ on the dense subset of $J\left(f_{\epsilon}\right)$, because repelling periodic points are dense in the Julia set. Since h_{ϵ} and h_{ϵ}^{\prime} are continuous, h_{ϵ}^{\prime} must coincide with h_{ϵ} on $J\left(f_{\epsilon}\right)$.

1.8 Geometrically finite maps with the empty Fatou set

In this section, we prove Theorem 1.1.1 for a geometrically finite rational map f with $J(f)=\hat{\mathbb{C}}$ by using the same idea as in the case of $J(f) \neq \hat{\mathbb{C}}$.

Now f has no parabolic or (super)attracting periodic point. Moreover, by the geometric finiteness, every critical point of f is preperiodic; that is, f is postcritically finite. Then we can consider the orbifold \mathcal{O}_{f} with base space $\widehat{\mathbb{C}}$ which is parabolic or hyperbolic type[13, §A]. This \mathcal{O}_{f} has an orbifold metric $\rho=\rho(z)|d z|$ which is induced from the Euclidean or hyperbolic metric of the universal covering. In both cases, there exists a constant $C>1$ such that

$$
\left\|f^{\prime}\right\|_{\rho}:=\frac{f^{*} \rho}{\rho} \geq C
$$

(See the argument in [13, Theorem A.6]). Note that ρ has singularity at $b \in P(f)$ as $\left|d(z-b)^{1 / v(b)}\right|$.

Let us consider a horocyclic perturbation $f_{\epsilon} \rightarrow f$ preserving the J-critical relations of f. Since f has no parabolic point, horocyclicity is trivial. By the
J-critical relations of f, f_{ϵ} is also postcritically finite. Since f has no attracting or superattracting periodic point, f_{ϵ} has no superattracting periodic point: This implies $J\left(f_{\epsilon}\right)$ is also the whole sphere (See [13, Theorem A.6] again).

Now let us begin the construction of h_{ϵ}.
Proof of Theorem 1.1.1 in the case of $J(f)=\hat{\mathbb{C}}$. First, set $\Omega:=\hat{\mathbb{C}}$ and $\Omega_{\epsilon}:=\widehat{\mathbb{C}}$. We take $h_{0}: \Omega_{\epsilon} \rightarrow \Omega$ as a homeomorphism which satisfies condition 5 of Proposition 1.3.2. For any fixed $r>0$, if $\epsilon \ll 1$, such h_{0} satisfies $d_{\sigma}\left(h_{0}(x), x\right)<r$ for all $x \in \hat{\mathbb{C}}$.

Next, we lift h_{0} to the family of homeomorphism $\left\{h_{n}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}\right\}_{n=1}^{\infty}$ as in Proposition 1.4.1. We can show that h_{n} converges to the limit h_{ϵ} in the same way as Proposition 1.6.1. In fact, we may replace the Poincaré metric in the proof of Proposition 1.6 .1 with the orbifold metric ρ of \mathcal{O}_{f}. Furthermore, we can also lift h_{0}^{-1} to the uniformly convergent sequence of homeomorphisms $\left\{h_{n}^{-1}\right\}$. The limit must be surjective and thus $h_{\epsilon}: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a homeomorphism.

Finally, we show the uniqueness in the same way as Proposition 1.7.2: Let h_{ϵ}^{\prime} be another conjugacy with property 2 in Theorem 1.1.1, and x be a repelling periodic point of f_{ϵ} which does not belong to $P(f)$. Since h_{ϵ}^{\prime} is a homeomorphism, there exists a unique x^{\prime} such that $h_{\epsilon}(x)=h_{\epsilon}^{\prime}\left(x^{\prime}\right)$. Set $x_{n}:=f_{\epsilon}^{n}(x)$ and $x_{n}^{\prime}:=$ $f_{\epsilon}^{n}\left(x^{\prime}\right)$. By using the uniformly expanding property of f_{ϵ} with respect to the orbifold metric ρ_{ϵ} of $\mathcal{O}_{f_{\epsilon}}, d_{\rho_{\epsilon}}\left(x, x^{\prime}\right)$ is bounded by $d_{\rho_{\epsilon}}\left(x_{n}, x_{n}^{\prime}\right) / C_{\epsilon}^{n}$ with $C_{\epsilon}>1$. This implies $x=x^{\prime}$. Thus $h_{\epsilon}=h_{\epsilon}^{\prime}$ on a dense subset of the sphere, which is a set of repelling periodic points. By continuity of h_{ϵ} and h_{ϵ}^{\prime}, we obtain $h_{\epsilon}=h_{\epsilon}^{\prime}$ on the whole sphere.

Remark. If the orbifold \mathcal{O}_{f} does not have signature $(2,2,2,2)$, by Thurston's theorem([5], [13, Theorem B.2]), h_{ϵ} is a Möbius transformation which conjugates f_{ϵ} to f. Here we gave a general construction of the conjugacy h_{ϵ} including such a particular case of signature $(2,2,2,2)$.

Bibliography

[1] A.F. Beardon. Iteration of Rational Functions. Springer-Verlag, 1991.
[2] L. Carleson and T. Gamelin. Complex Dynamics . Springer-Verlag, 1993.
[3] G. Cui. Geometrically finite rational maps with given combinatrics. preprint, 1997.
[4] A. Douady and J. H. Hubbard. Etude dynamique des polynômes complexes I \mathcal{E} II. Pub. Math. d'Orsay 84-02, 85-05, 1984/85.
[5] A. Douady and J. H. Hubbard. A proof of Thurston's topological characterization of rational maps. Acta Math. 171(1993), 263-297.
[6] L.R. Goldberg and J. Milnor. Fixed points of polynomial maps, Part II: Fixed point portraits. Ann. Sci. Éc. Norm. Sup. 26(1993), 51-98.
[7] P. Haïsssinsky. Déformation J-équivalence de polynômes géométriquement finis. Fund. Math. 163(2000), no.2, 131-141.
[8] T. Kawahira. On continuity of the Julia sets in parabolic bifurcations (in Japanese). Master's thesis, University of Tokyo, 2000.
[9] T. Kawahira. On dynamical stability of the Julia sets of parabolic rational maps. preprint, 2000.
[10] T. Kawahira. Semiconjugacies between the Julia sets of geometrically finite rational maps II. preprint, 2003.
[11] B. Maskit. Kleinian Groups. Springer-Verlag, 1988.
[12] C. McMullen. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comm. Math. Helv. 75(2000), no.4, 535-593
[13] C. McMullen. Complex Dynamics and Renormalization. Annals of Math Studies 135, Princeton University Press, 1994.
[14] J. Milnor. Dynamics in one complex variable: Introductory lectures. vieweg, 1999.
[15] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Sup. 16(1983), 193-217.
[16] Tan Lei and Yin Y. Local connectivity of the Julia set for geometrically finite rational maps. Science in China A 39(1996), 39-47.

Chapter 2

Regular leaf spaces of parabolic quadratic polynomials

2.1 Introduction

As an analogy to hyperbolic 3-orbifolds associated with Kleinian groups, Lyubich and Minsky[3] introduced hyperbolic orbifold 3-laminations associated with rational maps. For a given rational map $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ of degree ≥ 2, considering its natural extension \mathcal{N}_{f} and regular leaf space \mathcal{R}_{f} is the first step to the construction of such a hyperbolic orbifold 3-lamination. The natural exten$\operatorname{sion} \mathcal{N}_{f}$ is the set of all backward orbits ("history") of the dynamics. The regular leaf space \mathcal{R}_{f} is an analytically well behaved part of \mathcal{N}_{f}. The leaves of \mathcal{R}_{f} are Riemann surfaces and the natural lift \hat{f} of f acts leafwise isomorphically.

However, the global structures of the regular leaf spaces of rational maps are not precisely known except only a few examples. Here are some of such examples. For $f_{c}(z)=z^{2}+c$ with c in the main cardioid of the Mandelbrot set, all regular leaf spaces of f_{c} are topologically the same as that of $f_{0}(z)=z^{2}$, which is 2dimensional extension of 2-adic solenoid[4, Example 2][3, §11].

In [2], the author introduced the method of tessellation for f_{c} with $c \in(0,1 / 4]$ and describe the structure of the regular leaf space of $f_{1 / 4}$ as a degeneration of that of f_{c} with $c \in(0,1 / 4)$. Such an f_{c} and $f_{1 / 4}$ have topologically the same dynamics on and outside the Julia sets, and thus their natural extentions have topologically the same parts. Such a part of $\mathcal{N}_{f_{1 / 4}}$ contains the backward orbit staying at the parabolic fixed point on the Julia set. The intriguing fact is, the backward orbit is not in $\mathcal{R}_{f_{1 / 4}}$, while corresponding backward orbit in $\mathcal{N}_{f_{c}}$ staying at the repelling fixed point on the Julia set is in $\mathcal{R}_{f_{c}}$. To describe this phenomenon, we need to investigate the degeneration of the dynamics inside the Julia sets. The tessellation is defined for the interiors of the filled Julia sets and works like external rays of the dynamics outside the Julia sets. Then we obtain a precise description of the degeneration and we can lift it to their natural extentions. Now we have a clear picture of the phenomenon.

In this chapter, we develop the method of tessellation to treat the case where f_{c} has a parabolic fixed point of multiple petals. In $\S 2$, we survey some of basic notion on the dynamics of quadratic polynomials. In $\S 3$, we show a fundamental lemma which is necessary for the definition of tessellation. The tessellation for a quadratic polynomial with an attracting or parabolic fixed point is defined in $\S 4$.

In $\S 5$, we construct a semiconjugacy $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ from a hyperbolic $f=f_{c}$ to a parabolic $g=f_{\sigma}$, by gluing tile-to-tile homeomorphisms and the topological conjugacy outside the Julia sets induced from Böttcher coordinates. Then we have the precise description of the degeneration of the dynamics.

In $\S 6$, we first survey the basics of natural extensions and regular leaf spaces. By lifting the semiconjugacy H above to $\hat{H}: \mathcal{N}_{f} \rightarrow \mathcal{N}_{g}$, we describe how the regular leaf space degenerates, in detail. The significant degeneration happens only on the periodic leaves corresponding to the repelling directions of the parabolic fixed point of g. We construct an analytic model of these degenerating periodic leaves.

In §7, we apply the method of tessellation to some quadratic polynomials with attracting cycles.

2.2 Dynamics of quadratic polynomials

In this section we first recall some basic facts on the dynamics of quadratic polynomials on the Riemann sphere.

2.2.1 Douady-Hubbard theory of quadratic polynomials

In [1], Douady and Hubbard developed the theory of complex polynomial dynamics. Here we survey some basic results and notions used throughout this chapter.

The Julia set. Let us set $f(z)=f_{c}(z)=z^{2}+c \quad(c \in \mathbb{C})$ and consider it as a rational map on the Riemann sphere $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with $f(\infty)=\infty$. The filled Julia set K_{f} of f is defined by

$$
K_{f}:=\left\{z \in \overline{\mathbb{C}}:\left\{f^{n}(z)\right\}_{n=0}^{\infty} \text { is bounded }\right\} .
$$

The Julia set J_{f} of f is the boundary of K_{f}. One can easily check that those sets are forward and backward invariant under the action of f.

Böttcher coordinate and external rays. Now suppose that K_{f} is connected. (Thus so is J_{f}.) We denote the unit disk by \mathbb{D}. For the outside of K_{f}, there exists a unique conformal map $\phi_{f}: \overline{\mathbb{C}}-K_{f} \rightarrow \overline{\mathbb{C}}-\overline{\mathbb{D}}$ such that

- $\phi_{f}\left(f_{c}(z)\right)=\phi_{f}(z)^{2}$; and
- $\phi_{f}(z) / z \rightarrow 1$ as $z \rightarrow \infty$.

For $\theta \in \mathbb{R} / \mathbb{Z}$, the external ray of angle θ is defined by the following set:

$$
R_{f}(\theta)=\left\{\phi_{f}^{-1}\left(r e^{2 \pi i \theta}\right): 1<r<\infty\right\} .
$$

If the limit of $\phi_{f}^{-1}\left(r e^{2 \pi i \theta}\right)$ as $r \rightarrow 1$ exists, it is called the landing point of $R_{f}(\theta)$, and we denote it by $\gamma_{f}(\theta)$.

If J_{f} is locally connected, ϕ_{f} continuously extends to $\bar{\phi}_{f}: \overline{\mathbb{C}}-K_{f}^{\circ} \rightarrow \overline{\mathbb{C}}-\mathbb{D}$. In this case, $\gamma_{f}(\cdot)$ defines a semiconjugacy $\gamma_{f}: \mathbb{R} / \mathbb{Z} \rightarrow J_{f}$ from $\theta \mapsto 2 \theta$ to $\left.f\right|_{J_{f}}$. γ_{f} is a conjugacy if and only if J_{f} is a Jordan curve.

Linearizing coordinates. Suppose that $f=f_{c}$ has an attracting fixed point α with multiplier $\lambda \neq 0$. (That is, we take c from the main cardioid of the Mandelbrot set other than the origin.) Then K_{f}° is its attracting basin and contains the critical point $z=0$. Moreover, J_{f} is known to be a quasicircle, and thus is a Jordan curve.

On a small neighborhood of α, there exists a linearizing coordinate Φ_{f} which analytically conjugates the action of f near α to $w \mapsto \lambda w$ near the origin. Moreover, we can extend this map to $\Phi_{f}: K_{f}^{\circ} \rightarrow \mathbb{C}$, and it is unique up to multiplication by a constant $[5, \S 8]$. Now let us normalize it as follows:

- $\Phi_{f}(f(z))=\lambda \Phi_{f}(z) ;$
- $\Phi_{f}(\alpha)=0, \Phi_{f}(0)=1$, and
- Φ_{f} is an infinitely branched covering whose branch points are $\bigcup_{k \geq 0} f^{-k}(\{0\})$, and their ramified points (critical value of Φ_{f}) are $\left\{1, \lambda^{-1}, \lambda^{-2}, \ldots\right\}$.

In this chapter, by the linearizing coordinate of α we mean this extended and normalized Φ_{f}.

2.3 Internal landing lemma

In this section we deal with the case of $f_{c}(z)=z^{2}+c$ with an attracting fixed point. We will show "Internal landing lemma" for such an f, which gives a nice invariant arc system in the filled Julia set. In the case of $f_{0}(z)=z^{2}$, the external rays naturally penetrate the Julia set (the unit circle) and land at the origin. The lemma gives a similar fact in the case of $c \neq 0$.

Combinatorial rotation number. We assume from now on that p and q are relatively prime positive integers. (That is, $(p, q)=1$ where we allow $p=q=1$.) Then the following is well-known:

Lemma 2.3.1 For p and q above, there is a set of q distinct angles $\Theta:=\left\{\theta_{1}, \ldots, \theta_{q}\right\}$ in \mathbb{Q} / \mathbb{Z} with $0 \leq \theta_{1}<\cdots<\theta_{q}<1$ such that:
(1) For each $\theta_{j} \in \Theta$, there exists $\theta_{k} \in \Theta$ such that $\theta_{k}=2 \theta_{j}$ in \mathbb{Q} / \mathbb{Z}; and
(2) for such j and k as above, $k \equiv j+p \bmod q$.

Then Θ is a periodic cycle of period q under doubling. In particular, such $a \Theta$ is determined uniquely by the value $p / q \in \mathbb{Q} / \mathbb{Z}$.

We consider that the subscripts $\{1, \ldots, q\}$ of angles of Θ are the elements of $\mathbb{Z} / q \mathbb{Z}$. For $\Theta=\Theta(p / q)$ above, $p / q \in \mathbb{Q} / \mathbb{Z}$ is called the (combinatorial) rotation number. Note that each $\theta_{j} \in \Theta$ has the form $n /\left(2^{q}-1\right) \in \mathbb{Q} / \mathbb{Z}$.

Let $g(z):=f_{\sigma}(z)=z^{2}+\sigma$ be a quadratic polynomial which has a parabolic fixed point of multiplier $\omega:=\exp (2 \pi i p / q)$. Note that $\sigma=\omega / 2-\omega^{2} / 4$. Now let us fix an $r \in(0,1)$ and take a value $c:=r \omega / 2-(r \omega)^{2} / 4$ from the main cardioid of the Mandelbrot set. Then $f(z):=f_{c}(z)=z^{2}+c$ has an attracting fixed point of multiplier $\lambda:=r \omega$ and J_{f} is a Jordan curve. The dynamics on J_{f} is topologically the same as that of $f_{0}(z)=z^{2}$ on the unit circle.

For the rotation number p / q, let $\mathcal{F}(p / q)$ denote the family of such an f_{c}, that is,

$$
\mathcal{F}(p / q):=\left\{f_{c}: c=r \omega / 2-(r \omega)^{2} / 4, r \in(0,1)\right\} .
$$

For example, $\mathcal{F}(0)=\mathcal{F}(1)=\left\{f_{c}: c \in(0,1 / 4)\right\}$ and $\mathcal{F}(1 / 2)=\left\{f_{c}: c \in(-3 / 4,0)\right\}$.
By Douady-Hubbard theory[1], above lemma implies:
Lemma 2.3.2 For $f=f_{c} \in \mathcal{F}(p / q)$ and $\Theta=\Theta(p / q)=\left\{\theta_{1}, \ldots, \theta_{q}\right\}$ above, f maps $R_{f}\left(\theta_{j}\right)$ onto $R_{f}\left(\theta_{k}\right)$ univalently iff $k \equiv j+p \bmod q$. Thus each $R_{f}\left(\theta_{j}\right)$ has period exactly q, that is, $f^{q}\left(R_{f}\left(\theta_{j}\right)\right)=R_{f}\left(\theta_{j}\right)$.

Note that $\gamma_{f}\left(\theta_{j}\right)$ is a repelling periodic point of period q. In the case of $g=f_{\sigma}$, the external rays $R_{g}\left(\theta_{1}\right), \ldots, R_{g}\left(\theta_{q}\right)$ also have the same properties as (1) and (2) though they have the same landing point at the parabolic fixed point, say β. The set of angles of external rays landing at β is exactly $\Theta=\left\{\theta_{1}, \ldots, \theta_{q}\right\}$, and is called the portrait of β.

Internal landing lemma. For $f \in \mathcal{F}(p / q)$, those rays $R_{f}\left(\theta_{1}\right), \ldots, R_{f}\left(\theta_{q}\right)$ above continuously extend to the inside of the Julia set, and meet at the attracting fixed point:

Lemma 2.3.3 (Internal landing) Let α be the attracting fixed point of f. For $\theta_{1}, \ldots, \theta_{q}$ as above, there exist open arcs $I\left(\theta_{1}\right), \ldots, I\left(\theta_{q}\right)$ such that:

- For each j modulo $q, I\left(\theta_{j}\right)$ joins α and $\gamma_{f}\left(\theta_{j}\right)$.
- f maps $I\left(\theta_{j}\right)$ onto $I\left(\theta_{k}\right)$ univalently iff $k \equiv j+p \bmod q$.

Proof. For $w \in \mathbb{C}$, set $T(w):=\lambda w=(r \omega) w$. Let $\Phi_{f}: K_{f}^{\circ} \rightarrow \mathbb{C}$ be the linearizing coordinate of α, that is, $\Phi_{f}(\alpha)=\Phi_{f}(0)-1=0$ and $\Phi_{f}(f(z))=$ $T\left(\Phi_{f}(z)\right)$. Note that the critical points of Φ_{f} are $\bigcup_{k>0} f^{-k}(0)$, and thus the critical values are the form $T^{-k}(1)=\lambda^{-k}(k=1,2, \ldots)$.

Set

$$
\begin{aligned}
& U_{0}:=\mathbb{C}-\bigcup_{k=0}^{q-1}\left\{t \omega^{k}: t \in(1, \infty)\right\} ; \text { and } \\
& U_{1}:=\mathbb{C}-\bigcup_{k=0}^{q-1}\left\{t \omega^{k}: t \in(r, \infty)\right\}
\end{aligned}
$$

Note that $T\left(U_{0}\right)=U_{1} \subsetneq U_{0}$. Let ρ_{0} and ρ_{1} denote the Poincaré metric on U_{0} and U_{1} respectively. Since $T: U_{0} \rightarrow U_{1}$ is a conformal isomorphism,

$$
\frac{T^{*} \rho_{1}}{\rho_{1}} \leq \frac{T^{*} \rho_{1}}{\rho_{0}}=1
$$

by Schwartz-Pick.
Note that U_{0} does not contain critical value of Φ_{f}. Thus we can take a univalent branch Ψ of $\left(\left.\Phi_{f}\right|_{U_{0}}\right)^{-1}$ such that $\Psi(0)=\alpha$. Set

$$
U_{i}^{\prime}:=\Psi\left(U_{i}\right) \text { and } \rho_{i}^{\prime}:=\Psi^{*} \rho_{i} \quad(i=0,1)
$$

Then U_{i}^{\prime} are f-invariant regions in K_{f}° and ρ_{i}^{\prime} are their respective Poincaré metric with $f^{*} \rho_{1}^{\prime} / \rho_{1}^{\prime} \leq 1$ on U_{1}^{\prime}.

For each integer k modulo q, set

$$
I_{k}=\{t \exp ((2 k-1) \pi i / q): t \in(0, \infty)\} \subset U_{1}
$$

and set $I_{k}^{\prime}:=\Psi\left(I_{k}\right) \subset U_{1}^{\prime}$. Now it is clear that f maps I_{j}^{\prime} onto I_{k}^{\prime} univalently iff $k \equiv j+p \bmod q$. We claim that I_{k}^{\prime} is one of $I\left(\theta_{1}\right), \ldots, I\left(\theta_{q}\right)$ in the statement.

First we show that each I_{k}^{\prime} lands at a periodic point in the Julia set J_{f}. By f^{q}, I_{k}^{\prime} is mapped univalently onto itself. Take $\left\{z_{n}\right\}_{n \geq 1}$ in I_{k}^{\prime} such that $f^{q}\left(z_{n+1}\right)=z_{n}$. Set $w_{n}:=\Phi_{f}\left(z_{n}\right)$.

Now let η_{n} denote the line segment of I_{k} which joins w_{n} and w_{n+1}. Then length $\rho_{\rho_{1}}\left(\eta_{n}\right)$ are bounded for all n since $\left(T^{q}\right)^{*} \rho_{1} / \rho_{1} \leq 1$. By pushing forward by $\Psi, \Psi\left(\eta_{n}\right)$ is getting uniformly closer to J_{f} since f is hyperbolic. Thus if we set $\rho_{1}^{\prime}(z)=u(z)|d z|$, for any $z \in \Psi\left(\eta_{n}\right), u(z)$ uniformly tends to $+\infty$ as $n \rightarrow \infty$. Thus $\left|z_{n}-z_{n+1}\right| \rightarrow 0$ as $n \rightarrow 0$.

Let $\zeta \in J_{f}$ be an accumulation point of z_{n}. By taking a subsequence $\left\{n_{j}\right\} \subset$ $\{n\}$, we may assume that $z_{n_{j}} \rightarrow \zeta$. By continuity, we also have $z_{n_{j}-1}=f^{q}\left(z_{n_{j}}\right) \rightarrow$ $f^{q}(\zeta)$. Thus

$$
\begin{aligned}
&\left|f^{q}(\zeta)-\zeta\right| \\
& \leq\left|f^{q}(\zeta)-f^{q}\left(z_{n_{j}}\right)\right|+\left|z_{n_{j}-1}-z_{n_{j}}\right|+\left|z_{n_{j}}-\zeta\right| \\
& \rightarrow 0 \quad(j \rightarrow \infty)
\end{aligned}
$$

Figure 2.1: U_{0} and I_{k} in the case of $p / q=1 / 3\left(\omega=e^{2 \pi i / 3}\right)$. The dotted lines are removed from \mathbb{C}.

This implies $f^{q}(\zeta)=\zeta$. It is not difficult to show that any accumulation point of I_{k}^{\prime} is that of z_{n}. Since the set of accumulation points of I_{k}^{\prime} is connected [5, Problem 5-b] and fixed points of f^{q} are finite, I_{k}^{\prime} accumulates only on ζ above. In other words, I_{k}^{\prime} lands on $\zeta \in J_{f}$, a fixed point of f^{q}. Since $\zeta \in J_{f}$ and J_{f} is a Jordan curve, there exists an angle θ_{k}^{\prime} such that $\zeta=\gamma_{f}\left(\theta_{k}^{\prime}\right)$.

If f maps $\gamma_{f}\left(\theta_{j}^{\prime}\right)$ to $\gamma_{f}\left(\theta_{k}^{\prime}\right)$, then $\theta_{k}^{\prime}=2 \theta_{j}$ by the dynamics on the Julia set and $k \equiv j+p \bmod q$ by the dynamics of $I_{1}^{\prime}, \ldots, I_{q}^{\prime}$. Thus $\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}$ has the combinatorial rotation number p / q and thus $\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}=\left\{\theta_{1}, \ldots, \theta_{q}\right\}$. By shifting subscripts such that $0 \leq \theta_{1}^{\prime}<\cdots<\theta_{q}^{\prime}<1$, we have $\theta_{j}^{\prime}=\theta_{j}$ for all j and then I_{j}^{\prime} satisfies the conditions of $I\left(\theta_{j}\right)$ in the statement.

Degenerating arc system. For $\Theta=\left\{\theta_{1}, \ldots . \theta_{q}\right\}$, set

$$
I(\Theta):=\bigcup_{j=1}^{q} \overline{I\left(\theta_{j}\right)}=\{\alpha\} \cup \bigcup_{j=1}^{q}\left(I\left(\theta_{j}\right) \cup\left\{\gamma_{f}\left(\theta_{j}\right)\right\}\right)
$$

Since this set contains no critical orbit, its preimages are univalently spread around in K_{f}°. Let I_{f} denote $\bigcup_{n \geq 0} f^{-n}(I(\Theta))$. We call I_{f} the degenerating arc system of f with rotation number p / q (See Remark below). Note that I_{f} is a forward and backward invariant set of f.

For each connected component I of I_{f}, there is a unique set of q distinct angles $\Theta^{\prime}=\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}$ such that:
(1) there exists an $n \geq 0$ such that $\theta_{j}=2^{n} \theta_{j}^{\prime}$ for all $j=1, \ldots q$; and
(2) $I \cap J_{f}=\left\{\gamma_{f}\left(\theta_{1}^{\prime}\right), \ldots, \gamma_{f}\left(\theta_{q}^{\prime}\right)\right\}$.

We denote such an I by $I\left(\Theta^{\prime}\right)$. By $I\left(\theta_{j}^{\prime}\right)$ we denote the open arc in $I\left(\Theta^{\prime}\right)$ which is an n-th preimage of $I\left(\theta_{j}\right)$ joining α^{\prime} and $\gamma_{f}\left(\theta_{j}^{\prime}\right)$. In addition, I contains a
unique α^{\prime} such that $f^{n}\left(\alpha^{\prime}\right)=\alpha$. Thus we abuse the term "portrait" and call Θ^{\prime} the portrait of α^{\prime} with rotation number p / q, or simply, the portrait of α^{\prime} in our situation.

Now we may consider that I_{f} degenerates to $\bigcup_{n \geq 0} g^{-n}(\{\beta\})$ as $r \rightarrow 1$, and denote it by I_{g}. For Θ^{\prime} as above, there is a unique $\beta^{\prime} \in I_{g}$ which is the landing point of external rays $R_{g}\left(\theta_{1}^{\prime}\right), \ldots, R_{g}\left(\theta_{q}^{\prime}\right)$ and satisfies $g^{n}\left(\beta^{\prime}\right)=\beta$. Thus we also call Θ^{\prime} the portrait of β^{\prime}.

Figure 2.2: Left, the Julia set for an $f \in \mathcal{F}(1 / 3)$ with its degenerating arc system with rotation number $1 / 3$ drawn in. Right, the Julia set for g with rotation number $1 / 3$. Colors distinguish the regions mapped to distinct copies of \mathbb{C} in the linearized models (§4).

Remark. It is known that for any two c, c^{\prime} in the main cardioid of the Mandelbrot set other than the origin, f_{c} and $f_{c^{\prime}}$ are topologically conjugate. Thus for any $f_{c}(c \neq 0)$ with an attracting fixed point, the degenerating arc system with any rotation number exists.

2.4 Tessellation: Making tiles

In this section, we develop the method in [2] and we tessellate the interior of the filled Julia sets for such f and g in the proceeding section. Tiles are parameterized by an address, which consists of an angle $\in \mathbb{Q} / \mathbb{Z}$, a level $\in \mathbb{Z}$, and a signature $\in\{+,-\}$. Let $\tilde{\Theta}=\tilde{\Theta}(p / q)$ be the set of angles which eventually land on one of the angles in Θ by iteration of angle doubling. For each $\theta \in \tilde{\Theta}$ and $m \in \mathbb{Z}$, we will define the tile $T_{f}(\theta, m, \pm)$ with the property

$$
f\left(T_{f}(\theta, m, \pm)\right)=T_{f}(2 \theta, m+1, \pm)
$$

We will also define the tiles for g having the same property.

2.4.1 Tiles of K_{f}°

Linearized model. Let $\Phi_{f}: K_{f}^{\circ} \rightarrow \mathbb{C}$ be the linearizing coordinate of α with multiplier $\lambda=r \omega$ and with portrait $\Theta=\left\{\theta_{1}, \ldots, \theta_{q}\right\}$. Recall that $\Phi_{f}\left(I\left(\theta_{j}\right)\right)=I_{j}$ for each j modulo q, which is renumbered in the proof of Lemma 2.3.3. Now $\{0\} \cup \bigcup_{j} I_{j}$ divides the plane into q open sectors. For each j modulo q, let Σ_{j}^{*} denote the union of I_{j} and one of the q sectors bounded by I_{j} and I_{j+1}. We also set $\Sigma_{j}:=\Sigma_{j}^{*} \cup\{0\}$.

Let \mathbb{C}_{j} be a copy of \mathbb{C}. For $w \in \Sigma_{j}$, we define $\chi: \Sigma_{j} \rightarrow \mathbb{C}_{j}$ by

$$
W=\chi(w):=\frac{1}{1-R}\left(1-w^{q}\right) \in \mathbb{C}_{j}
$$

where $R:=r^{q}=\lambda^{q} \in(0,1)$. Note that $\chi\left(\Sigma_{j}^{*}\right)=\mathbb{C}_{j}-\{1 /(1-R)\}$ and $1 /(1-R)$ is fixed by the map $W \mapsto R W+1$. Set $a:=1 /(1-R)$. Now χ naturally glues the copies $\mathbb{C}_{1}, \ldots, \mathbb{C}_{q}$ of \mathbb{C} along $\chi\left(I_{1}\right), \ldots, \chi\left(I_{q}\right)$ and at $\chi(0)$. Thus we consider that χ is not branched at $w=0$. Let $\bigcup \mathbb{C}_{j}$ denote this glued set homeomorphic to $\mathbb{C}=\bigcup \Sigma_{j}$. Let us define $F: \bigcup \mathbb{C}_{j} \rightarrow \bigcup \mathbb{C}_{j}$ by

$$
\mathbb{C}_{j} \ni W \stackrel{F}{\longmapsto} R W+1 \in \mathbb{C}_{j+p} .
$$

Then χ conjugates $w \mapsto \lambda w$ on $\mathbb{C}=\bigcup \Sigma_{j}$ and F on $\bigcup \mathbb{C}_{j}$:

Fundamental semi-annuli. For $m \in \mathbb{Z}$ and j modulo q, set

$$
\begin{aligned}
& A(m,+)_{j}:=\left\{W \in \mathbb{C}_{j}-\chi\left(I_{j}\right): R^{m+1} a \leq|W-a| \leq R^{m} a, \operatorname{Im} W \geq 0\right\} \\
& A(m,-)_{j}:=\left\{W \in \mathbb{C}_{j}-\chi\left(I_{j}\right): R^{m+1} a \leq|W-a| \leq R^{m} a, \operatorname{Im} W \leq 0\right\}
\end{aligned}
$$

and we call them the fundamental semi-annuli.
Note the following three facts:

- F maps $A(m, \pm)_{j}$ onto $A(m+1, \pm)_{j+p}$ univalently.
- $\chi \circ \Phi_{f}$ maps the grand orbit of 0 (critical point) to vertices of fundamental semi-annuli on the q copies of the interval $(-\infty, a)$. In particular, all of the ramified points (critical values) of $\chi \circ \Phi_{f}$ are on the q copies of the interval $(-\infty, 0]$.
- For any $\theta \in \tilde{\Theta}, I(\theta)$ is mapped univalently onto one of the copies of the interval (a, ∞) by $\chi \circ \Phi_{f}$.

For the boundary of $A(m, \pm)_{j}$, we call the edge on the interval $(-\infty, a)$ (resp. $[a, \infty)$) the critical-edge (resp. degenerating-edge). We call the edges shared by $A(m-1, \pm)_{j}$ or $A(m+1, \pm)_{j}$ the circular edges. Note that the degenerating edge is not contained in $A(m, \pm)_{j}$.

Figure 2.3: Linearized models for f and g.

Definition of tiles. Let α^{\prime} be a preimages of α such that $f^{n}\left(\alpha^{\prime}\right)=\alpha$ for some $n \geq 0$. Then $\Phi_{f}\left(\alpha^{\prime}\right)=0$ by the definition. Since $U_{0} \subset \mathbb{C}$ in the proof of Lemma 2.3.3 does not contain ramified points (critical values) of $\Phi_{f}, \Phi_{f}^{-1}: U_{0} \rightarrow K_{f}^{\circ}$ is a multivalued function with univalent branches. Now we take such a branch $\Psi: U_{0} \rightarrow K_{f}^{\circ}$ such that $\Psi(0)=\alpha^{\prime}$. Let $\Theta^{\prime}=\left\{\theta_{j}^{\prime}\right\}$ be the portrait of α^{\prime}. Then we may assume that $\Psi\left(I_{j-n p}\right)=I\left(\theta_{j}^{\prime}\right)$.

For $m \in \mathbb{Z}$ and j modulo $q, \Psi \circ \chi^{-1}$ maps the interior of $A(m,+)_{j}$ into K_{f}° univalently. Since $\Psi \circ \chi^{-1}$ extends to the whole $A(m,+)_{j}$ homeomorphically, the set

$$
T_{f}\left(\theta_{j}^{\prime}, m,+\right):=\Psi \circ \chi^{-1}\left(A(m,+)_{j}\right) \subset K_{f}^{\circ}
$$

is well defined. Similarly, we set

$$
T_{f}\left(\theta_{j+1}^{\prime}, m,-\right):=\Psi \circ \chi^{-1}\left(A(m,-)_{j}\right) \subset K_{f}^{\circ} .
$$

For any $\theta \in \tilde{\Theta}$ and $m \in \mathbb{Z}$, we can define $T_{f}(\theta, m, \pm)$ in this way and we call it the tile of address (θ, m, \pm). Now one can easily check the desired property:

$$
f\left(T_{f}(\theta, m, \pm)\right)=T_{f}(2 \theta, m+1, \pm)
$$

For the boundary of $T=T_{f}(\theta, m,+)$ or $T_{f}(\theta, m,-)$, the critical, degenerating and circular edges are defined by the edges corresponding to the critical, degenerating,
circular edges of $A(m, \pm)_{j}$. Note that ∂T has degenerating edge on $I\left(\theta^{\prime}\right)$ while T does not contain the edge itself.

We call the family of tiles

$$
\mathcal{T}_{f}:=\left\{T_{f}(\theta, m, *): \theta \in \tilde{\Theta}, m \in \mathbb{Z}, * \in\{+,-\}\right\}
$$

defined as above the tessellation of K_{f}° with rotation number p / q. Indeed, $K_{f}^{\circ}-I_{f}$ is tessellated by \mathcal{T}_{f} and K_{f} is the closure of the union $\bigcup_{T \in \mathcal{I}_{f}} T$.

2.4.2 Tiles of K_{g}°

Let β be the parabolic fixed point of g with multiplier $\omega=e^{2 \pi i p / q}$ and with portrait $\Theta=\left\{\theta_{j}\right\}$. Now $\{\beta\} \cup \bigcup R_{g}\left(\theta_{j}\right)$ divide \mathbb{C} into q sectors. For each j modulo q, let S_{j} denote the sector bounded by $R_{g}\left(\theta_{j}\right)$ and $R_{g}\left(\theta_{j+1}\right)$. (That is, the union of external rays with angles satisfying $\theta_{j} \leq \theta \leq \theta_{j+1}\left(<\theta_{j}+1\right)$.) S_{j} contains an attracting petal $\Pi_{j} \subset K_{g}^{\circ}$ such that $g^{q}\left(\Pi_{j}\right) \subset \Pi_{j}$. Set $\tilde{\Pi}_{j}:=\bigcup_{n=0}^{\infty} g^{-n q}\left(\Pi_{j}\right)$. Note that $K_{g}^{\circ}=\bigsqcup \tilde{\Pi}_{j}$. We take q copies $\mathbb{C}_{1}, \ldots, \mathbb{C}_{q}$ of \mathbb{C} again.

Let us fix k modulo q such that S_{k} contains the critical point 0 of g. On $\tilde{\Pi}_{k}$, there is a unique Fatou coordinate $\Phi_{k}: \tilde{\Pi}_{k} \rightarrow \mathbb{C}_{k}$ such that

- $\Phi_{k}\left(g^{q}(z)\right)=\Phi_{k}(z)+q ;$
- $\Phi_{k}(0)=0$; and
- Φ_{k} is an infinitely branched covering whose branch points are $\bigcup_{m \geq 0} g^{-m q}(\{0\})$, and their ramified points (critical value of Φ_{k}) are $\{0,-q,-2 q, \ldots\}$.
($[5, \S 10]$. We used the fact that $w \mapsto w+1$ is conjugate to $w \mapsto w+q$.) We extend Φ_{k} to $\Phi_{g}: K_{g}^{\circ} \rightarrow \bigsqcup \mathbb{C}_{j}$ as following: For any j modulo q, there is an n such that $k \equiv j+p n \bmod q$, that is, $g^{n}\left(\tilde{\Pi}_{j}\right)=\tilde{\Pi}_{k}$. We define Φ_{g} on $\tilde{\Pi}_{j}$ by

$$
\tilde{\Pi}_{j} \ni z \xrightarrow{\Phi_{g}} \Phi_{k}\left(g^{n}(z)\right)-n \in \mathbb{C}_{j} .
$$

Then for $z \in \mathbb{C}_{j}$, we have $\Phi_{g}(g(z))=\Phi_{g}(z)+1 \in \mathbb{C}_{j+p}$. We define $G: \bigsqcup \mathbb{C}_{j} \rightarrow$ $\bigsqcup \mathbb{C}_{j}$ by

$$
\mathbb{C}_{j} \ni W \stackrel{G}{\longmapsto} W+1 \in \mathbb{C}_{j+p},
$$

and then Φ_{g} semiconjugates g on K_{g}° and G on $\bigsqcup \mathbb{C}_{j}$:

Fundamental semi-cylinders. For $m \in \mathbb{Z}$ and $j=1, \ldots, q$, set

$$
\begin{aligned}
& C(m,+)_{j}:=\left\{W \in \mathbb{C}_{j}: m \leq \operatorname{Re} W \leq m+1, \operatorname{Im} W \geq 0\right\} \\
& C(m,-)_{j}:=\left\{W \in \mathbb{C}_{j}: m \leq \operatorname{Re} W \leq m+1, \operatorname{Im} W \leq 0\right\}
\end{aligned}
$$

and we call them the fundamental semi-cylinders.
Note the following two facts, and compare with the case of f :

- G maps $C(m,+)_{j}$ onto $C(m+1,+)_{j+p}$ univalently.
- Φ_{g} maps the grand orbit of 0 to the vertices of fundamental semi-cylinders on the q copies of the real axis $(-\infty, \infty)$. In particular, all of the ramified points of Φ_{g} are on the q copies of the interval $(-\infty, 0]$.

For the boundary of $C(m, \pm)_{j}$, we call the edge on the real axis the criticaledge. We also call the edges shared by $C(m-1, \pm)_{j}$ or $C(m+1, \pm)_{j}$ the circular edges. Note that $C(m, \pm)_{j}$ has no edges corresponding to degenerating edges of fundamental semi-annuli.

Definition of tiles. Let β^{\prime} be a preimage of β such that $g^{n}\left(\beta^{\prime}\right)=\beta$ for some $n \geq 0$, and $\Theta^{\prime}=\left\{\theta_{j}^{\prime}\right\}$ be the portrait of β^{\prime} with $\theta_{j}=2^{n} \theta_{j}^{\prime}$ for each j modulo q. Note that $\left\{\beta^{\prime}\right\} \cup \bigcup R_{g}\left(\theta_{j}^{\prime}\right)$ divide the plane into q sectors. For each j modulo q, one of the q sectors bounded by $R_{g}\left(\theta_{j}^{\prime}\right)$ and $R_{g}\left(\theta_{j+1}^{\prime}\right)$ contains a component Π^{\prime} of $\tilde{\Pi}_{j}$ attached to β^{\prime}. Let $(-\infty, 0]_{j}$ denote the copy of $(-\infty, 0]$ in \mathbb{C}_{j}. Since $\mathbb{C}_{j}-(-\infty, 0]_{j}$ does not contain ramified points (critical values) of $\Phi_{g}, \Phi_{g}^{-1}: \mathbb{C}_{j}-(-\infty, 0]_{j} \rightarrow$ $\tilde{\Pi}_{j}$ is a multivalued function with univalent branches. Now we take a branch $\Psi: \mathbb{C}_{j}-(-\infty, 0]_{j} \rightarrow K_{g}^{\circ}$ of Φ_{g}^{-1} above such that $\Psi\left(\mathbb{C}_{j}-(-\infty, 0]_{j}\right) \subset \Pi^{\prime}$.

For $m \in \mathbb{Z}$ and j modulo q, Ψ maps the interior of $C(m,+)_{j}$ into K_{g}° univalently. Since Ψ extends to the whole $C(m,+)_{j}$ homeomorphically, the set

$$
T_{g}\left(\theta_{j}^{\prime}, m,+\right):=\Psi^{-1}\left(C(m,+)_{j}\right) \subset K_{g}^{\circ}
$$

is well defined. Similarly, we set

$$
T_{g}\left(\theta_{j+1}^{\prime}, m,-\right):=\Psi^{-1}\left(C(m,-)_{j}\right) \subset K_{g}^{\circ} .
$$

For any $\theta \in \tilde{\Theta}$ and $m \in \mathbb{Z}$, we can define $T_{g}(\theta, m, \pm)$ in this way and we call it the tile of address (θ, m, \pm). Now one can easily check the desired property:

$$
g\left(T_{g}(\theta, m, \pm)\right)=T_{g}(2 \theta, m+1, \pm)
$$

For the boundary of $T=T_{g}(\theta, m,+)$ or $T_{g}(\theta, m,-)$, the critical and circular edges are defined by the edges which are mapped to the critical and circular edges of fundamental semi-cylinders by Φ_{g}. Note that T has no edge corresponding to the degenerating edges of $\left\{T_{f}(\theta, m, \pm)\right\}$.

We call the family of tiles

$$
\mathcal{T}_{g}:=\left\{T_{g}(\theta, m, *): \theta \in \tilde{\Theta}, m \in \mathbb{Z}, * \in\{+,-\}\right\}
$$

defined as above the tessellation of K_{g}° with rotation number p / q. Indeed, K_{g}° is tessellated by \mathcal{I}_{g} and K_{g} is the closure of the union $\bigcup_{T \in \mathcal{T}_{g}} T$.

Figure 2.4: The tessellation for an $f \in \mathcal{F}(1 / 1)$ and $z^{2}+1 / 4$, which has a parabolic fixed point with one petal.

Figure 2.5: The tessellation for an $f \in \mathcal{F}(1 / 2)$ and anther $f \in \mathcal{F}(1 / 3)$.

2.4.3 Edge sharing

Here we describe how tiles share their edges with one another.

Circular edges. For f and g, by the definition of \mathcal{T}_{f} and \mathcal{T}_{g}, one can easily check the following:

For $\theta \in \tilde{\Theta}, m \in \mathbb{Z}$ and $* \in\{+,-\}$, the tile of address $(\theta, m, *)$ shares its circular edges with the tiles of addresses $(\theta, m-1, *)$ and $(\theta, m+1, *)$.

Degenerating edges. Only tiles in \mathcal{T}_{f} have degenerating edges. By the definition, one can also check the following:

For $\theta \in \tilde{\Theta}$ and $m \in \mathbb{Z}, T_{f}(\theta, m,+)$ shares its degenerating edge with $T_{f}(\theta, m,-)$.

Critical edges in K_{f}°. The combinatorics of tiles are essentially determined by the connection of critical edges. Here we consider the critical edges of tiles in \mathcal{T}_{f}.

We begin with some notation. Let δ denote the angle doubling map on \mathbb{R} / \mathbb{Z} to itself. For $\Theta=\Theta(p / q)$ and $n=0,1, \ldots$, set $\Theta_{-n}:=\delta^{-n}(\Theta)$. Then Θ_{-n} consists of $2^{n} q$ angles. We denote them by $\theta_{1}^{(-n)}, \ldots, \theta_{2^{n} q}^{(-n)}$ with cyclic order $\theta_{1}^{(-n)}<\cdots<\theta_{2^{n} q}^{(-n)}<\theta_{1}^{(-n)}+1$ and with subscripts modulo $2^{n} q$. One can easily check that $\Theta_{-n} \subset \Theta_{-n-1}$ and $\tilde{\Theta}=\bigcup_{n} \Theta_{-n}$.

First we consider the insular part of the tessellation. Let us take an α^{\prime} such that $f^{n}\left(\alpha^{\prime}\right)=\alpha$ with minimal $n \geq 0$. Then the portrait Θ^{\prime} of α^{\prime} is a subset of Θ_{-n}. In the w-plane which is the target space of $\Phi_{f}: K_{f}^{\circ} \rightarrow \mathbb{C}$, we take a closed disk $B_{-n}:=\left\{|w| \leq r^{-n+1}\right\}$. By the definition of Φ_{f}, there exists a univalent branch $\Psi: B_{-n} \rightarrow K_{f}^{\circ}$ of $\left.\Phi^{-1}\right|_{B_{-n}}$ with $\Phi(0)=\alpha^{\prime}$. The image $\Psi\left(B_{-n}\right)$ consist of the tiles of addresses of the form (θ, m, \pm) with $\theta \in \Theta^{\prime}$ and $m>-n$ which are univalent pull-backs of fundamental semi-annuli in B_{-n}. Thus we have:

Such a tile $T_{f}(\theta, m,+)$ with $\theta \in \Theta^{\prime}$ and $m>-n$ shares the critical edge with $T_{f}\left(\theta^{\prime}, m,-\right)$ where θ^{\prime} is the angle next to θ in the cyclic order of Θ^{\prime}. More precisely, if we set $\Theta^{\prime}=\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}$ with cyclic order $\theta_{1}^{\prime}<\cdots<\theta_{q}^{\prime}<\theta_{1}^{\prime}+1$ and with subscripts modulo q, then $\theta=\theta_{j}^{\prime}$ and $\theta^{\prime}=\theta_{j+1}^{\prime}$ for some j.

Next we consider the other part of tessellation. Take the univalent branch Ψ of Φ_{f}^{-1} on the unit disk of the w-plane such that $\Psi(0)=\alpha$. Let C_{0} denote the pull-back of the circle $\{|w|=\sqrt{r}\}$ by Ψ, which is a simple closed curve in K_{f}° passing through each tile of address $\left(\theta_{j}, 0, \pm\right)$, where $\theta_{j} \in \Theta$. Let D_{0} denote the topological disk bounded by C_{0}, which contains α. For $n=0,1, \ldots$, we set $C_{-n}:=f^{-n}\left(C_{0}\right)$ and $D_{-n}:=f^{-n}\left(D_{0}\right)$. Then we have:

- Each C_{-n} is also a simple closed curve, passing though the tiles of addresses $\left(\theta_{j}^{(-n)},-n, \pm\right)$, where $\theta_{j}^{(-n)} \in \Theta_{-n}$.
- $D_{-n} \Subset D_{-n-1}$.
- $f: D_{-n-1} \rightarrow D_{-n}$ is a proper 2-fold branched covering.

Since C_{0} intersects $I\left(\theta_{j}\right)$ once for each j modulo q in the cyclic order of Θ, C_{-n} intersects $I\left(\theta_{j}^{(-n)}\right)$ once for each j modulo $2^{n} q$ in the cyclic order of Θ_{-n}. Thus we have:

Such a tile $T_{f}(\theta,-n,+)$ with $\theta \in \Theta_{-n}$ shares the critical edge with $T_{f}\left(\theta^{\prime},-n,-\right)$ where θ^{\prime} is the angle next to θ in the cyclic order of Θ_{-n}. That is, $\theta=\theta_{j}^{(-n)}$ and $\theta^{\prime}=\theta_{j+1}^{(-n)}$ for some j modulo $2^{n} q$.

More precisely, the angle θ^{\prime} is given as following: Now $2^{n} \theta=\theta_{j} \in \Theta$ for some j modulo q. Then $2^{n} \theta^{\prime}$ must be $\theta_{j+1} \in \Theta$. Let ℓ denote the length of the interval of angle $\left[\theta_{j}, \theta_{j+1}\right]$. Then θ^{\prime} is given by

$$
\theta^{\prime}=\theta+\frac{\ell}{2^{n}} .
$$

Critical edges in K_{g}°. The same argument works for the tiles in \mathcal{T}_{g} with a little modification. Instead of the insular part of \mathcal{T}_{f}, we use the "flower part" of the \mathcal{T}_{g}. More precisely, instead of α^{\prime} and $\Psi\left(B_{-n}\right)$ in the argument above, which is the union

$$
\left\{\alpha^{\prime}\right\} \cup \bigcup\left\{T_{f}(\theta, m, \pm): \theta \in \Theta^{\prime}, m>-n\right\}
$$

we take $\beta^{\prime} \in I_{g}$ with portrait Θ^{\prime} and use the union

$$
\left\{\beta^{\prime}\right\} \cup \bigcup\left\{T_{g}(\theta, m, \pm): \theta \in \Theta^{\prime}, m>-n\right\}
$$

Instead of the simple closed curve C_{0} and the topological disk D_{0}, we may use the curve C_{0}^{\prime} and the topological disk D_{0}^{\prime} constructed as following: First take attracting petals Π_{1}, \ldots, Π_{q} as in the construction of \mathcal{T}_{g} such that Φ_{g} univalently maps each petal Π_{j} onto the half plane $\left\{W \in \mathbb{C}_{j}: \operatorname{Re} W>1 / 2\right\}$. Then the boundary of each Π_{j} passes through the tiles $T_{f}\left(\theta_{j}, 0,+\right)$ and $T_{f}\left(\theta_{j+1}, 0,-\right)$. Next we take a small open disk centered at β, say Δ. Then the boundary circle of Δ intersects each boundary of Π_{j} twice, and each $R_{g}\left(\theta_{j}\right)$ once. Now $D_{0}^{\prime}:=\Delta \cup \bigsqcup \Pi_{j}$ is a topological disk containing β as desired. Let C_{0}^{\prime} be the boundary curve of D_{0}^{\prime}. One can easily check that $C_{-n}^{\prime}:=g^{-n}\left(C_{0}^{\prime}\right)$ and $D_{-n}^{\prime}:=g^{-n}\left(D_{0}^{\prime}\right)$ have similar properties to C_{-n} and D_{-n}, and we can apply the same argument.

2.5 Pinching semiconjugacy

In this section we construct a semiconjugacy $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ by gluing tile-to-tile homeomorphisms inside the Julia sets and the topological conjugacy induced from Böttcher coordinates outside the Julia sets.

Theorem 2.5.1 For f, g as above, there exists a semiconjugacy $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ from f to g such that

- H maps $\overline{\mathbb{C}}-I_{f}$ to $\overline{\mathbb{C}}-I_{g}$ homeomorphically and is a topological conjugacy between $\left.f\right|_{\overline{\mathbb{C}}-I_{f}}$ and $\left.g\right|_{\overline{\mathbb{C}}-I_{g}}$;
- For each $\alpha^{\prime} \in \bigcup_{n} f^{-n}(\alpha)$ with portrait Θ^{\prime}, H maps $I\left(\Theta^{\prime}\right)$ onto a point $\beta^{\prime} \in I_{g}$ with portrait Θ^{\prime}.

Proof. The rest of this section is devoted to the proof of this theorem. The proof breaks into four steps.

Conjugacy on the fundamental semi-annuli and semi-cylinders. First we make a topological map $h: \bigsqcup\left(\mathbb{C}_{j}-\chi\left(I_{j} \cup\{0\}\right) \rightarrow \bigsqcup \mathbb{C}_{j}\right.$ which maps $A(m, \pm)_{j}$ to $C(m, \pm)_{j}$ homeomorphically. Note that each $\mathbb{C}_{j}-\chi\left(I_{j} \cup\{0\}\right)$ is a copy of $\mathbb{C}-[a, \infty)$. For j modulo q and $W \in \mathbb{C}_{j}-\chi\left(I_{j} \cup\{0\}\right)$, set $W:=a+\rho e^{i t}$ where $\rho>0$ and $0<t<2 \pi$. We define the map h by

$$
h(W):=\frac{\log \rho-\log a}{\log R}+i \tan \frac{\pi-t}{2} \in \mathbb{C}_{j} .
$$

Then one can check that h conjugates the action of F on $\bigsqcup\left(\mathbb{C}_{j}-\chi\left(I_{j} \cup\{0\}\right)\right)$ to that of G on $\bigsqcup \mathbb{C}_{j}$ and h maps $A(m, \pm)_{j}$ to $C(m, \pm)_{j}$ homeomorphically.

Figure 2.6: h maps $A(0,+)_{j}$ to $C(0,+)_{j}$.

Tile-to-tile conjugation. Fix a $\beta^{\prime} \in I_{g}$ with portrait $\Theta^{\prime}=\left\{\theta_{j}^{\prime}\right\}$. For j modulo q, the boundary of $T=T_{g}\left(\theta_{j}^{\prime}, m,+\right)$ contains $\gamma_{g}\left(\theta_{j}^{\prime}\right)$, and T itself is contained in the sector bounded by $R_{g}\left(\theta_{j}^{\prime}\right)$ and $R_{g}\left(\theta_{j+1}^{\prime}\right)$. In particular, $T \subset \tilde{\Pi}_{j}$. Since Φ_{g} does not branch over $\mathbb{C}_{j}-(-\infty, 0]_{j}$, there exist a univalent branch $\Psi_{g}=\Psi_{g}\left[\theta_{j}^{\prime}\right]$: $\mathbb{C}_{j}-(-\infty, 0]_{j} \rightarrow \tilde{\Pi}_{j}$ which maps the interior of $C(m,+)_{j}$ to that of T. By extending Ψ_{g} to the edges of $C(m,+)_{j}$, we have a tile-to-tile homeomorphism Ψ_{g} :
$C(m,+)_{j} \rightarrow T_{g}\left(\theta_{j}^{\prime}, m,+\right)$. In the same way, Ψ_{g} also extends to $\Psi_{g}: C(m,-)_{j} \rightarrow$ $T_{g}\left(\theta_{j+1}^{\prime}, m,-\right)$. Now we define tile-to-tile homeomorphisms

$$
\begin{aligned}
& H \mid T_{f}\left(\theta_{j}^{\prime}, m,+\right) \rightarrow T_{g}\left(\theta_{j}^{\prime}, m,+\right) \quad \text { and } \\
& H \mid T_{f}\left(\theta_{j+1}^{\prime}, m,-\right) \rightarrow T_{g}\left(\theta_{j+1}^{\prime}, m,-\right)
\end{aligned}
$$

by $H:=\Psi_{g} \circ h \circ \Phi_{f}$. By gluing such tile-to-tile homeomorphisms along the edges of tiles, we obtain the topological conjugacy $H: K_{f}^{\circ}-I_{f} \rightarrow K_{g}^{\circ}$. (Here we used the fact that the combinatorics of \mathcal{T}_{f} and \mathcal{T}_{g} are the same.)

Continuous extension to the Julia set. For $\beta^{\prime} \in I_{g}$ with portrait Θ^{\prime} above, we define $H\left(I\left(\Theta^{\prime}\right)\right):=\beta^{\prime}$. Then H maps I_{f} onto I_{g} and $H: K_{f}^{\circ} \cup I_{f} \rightarrow K_{g}^{\circ} \cup I_{g}$ semiconjugates $\left.f\right|_{K_{f}^{\circ} \cup I_{f}}$ to $\left.g\right|_{K_{g}^{\circ} \cup I_{g}}$. Now we claim that H continuously extends to $H: K_{f} \rightarrow K_{g}$.

Take $z_{n} \in K_{f}^{\circ} \cup I_{f}$ converging to a point $\zeta \in J_{f}$. Since J_{f} is a Jordan curve, there exists $\theta \in \mathbb{R} / \mathbb{Z}$ such that $\zeta=\gamma_{f}(\theta)$. We show that $w_{n}:=H\left(z_{n}\right) \in K_{g}^{\circ} \cup I_{g}$ converges to $\gamma_{g}(\theta) \in J_{g}$. (Recall that J_{g} is locally connected and $\gamma_{g}(\theta) \in J_{g}$ exists.)

Take a small interval of angle $\left[t, t^{\prime}\right]$ containing θ, where $t, t^{\prime} \in \Theta_{-m}$ with $m \gg 0$. Then $\gamma_{f}(t)$ and $\gamma_{f}\left(t^{\prime}\right)$ bound a small piece of J_{f}, and the piece, say J_{f}^{\prime}, is a Jordan arc containing ζ. Take an open $\operatorname{arc} C \subset K_{f}^{\circ}$ joining $\gamma_{f}(t)$ and $\gamma_{f}\left(t^{\prime}\right)$ via $I(t), C_{-m}$, and $I\left(t^{\prime}\right)$. Let V denote the small open set with $\partial V=C \cup J_{f}^{\prime}$. By the definition of $H, \overline{H(V)} \cap J_{g}=: J_{g}^{\prime}$ is a small piece of J_{g} which is the set of all landing points of external rays of angles in $\left[t, t^{\prime}\right]$.

Since $z_{n} \in V \cup J_{f}^{\prime}$ for all $n \gg 0, w_{n} \in H(V) \cup J_{g}^{\prime}$ for all $n \gg 0$. If there exists a subsequence $\left\{n_{i}\right\} \subset\{n\}$ such that $w_{n_{i}}$ converges to a point in K_{g}°, then $z_{n_{i}} \rightarrow \zeta \in K_{f}^{\circ}-I_{f}$ by the definition of H. This contradicts $\zeta \in J_{f}$. Thus w_{n} accumulates on J_{g}^{\prime}. Since t and t^{\prime} are arbitrarily close to θ, w_{n} must converges to $\gamma_{g}(\theta)$.

Global extension. Finally we define H outside the Julia set by

$$
\begin{aligned}
H: \overline{\mathbb{C}}-K_{f} & \rightarrow \overline{\mathbb{C}}-K_{g} \\
z & \mapsto \phi_{g}^{-1} \circ \phi_{f}(z),
\end{aligned}
$$

which gives a topological conjugacy on the domain, and continuously extends to the semiconjugacy $H: \overline{\mathbb{C}}-K_{f}^{\circ} \rightarrow \overline{\mathbb{C}}-K_{g}^{\circ}$. Then H inside and outside J_{f} are continuously glued along J_{f}. Now $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a desired semiconjugacy.

2.6 Degeneration of the regular leaf spaces

2.6.1 The regular leaf space

We first survey the basic notion on the regular leaf spaces of quadratic polynomials. We follow $[3, \S 3]$.

The natural extension. For general $f=f_{c}(c \in \mathbb{C})$, let us consider the set of all possible backward orbits

$$
\mathcal{N}_{f}:=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right): z_{0} \in \overline{\mathbb{C}}, f\left(z_{-n-1}\right)=z_{-n}\right\} .
$$

This set is called the natural extension of f, and is equipped with a topology from $\overline{\mathbb{C}} \times \overline{\mathbb{C}} \times \cdots$. On this natural extension, the lift of f and a natural projection are defined by

$$
\begin{aligned}
\hat{f}(\hat{z}) & :=\left(f\left(z_{0}\right), z_{0}, z_{-1}, \ldots\right) \text { and } \\
\pi_{f}(\hat{z}) & :=z_{0}
\end{aligned}
$$

It is clear that \hat{f} is a homeomorphism, and satisfies $\pi_{f} \circ \hat{f}=f \circ \pi_{f}$. For a fixed point $\zeta \in \overline{\mathbb{C}}$ of $f, \operatorname{set} \hat{\zeta}:=(\zeta, \zeta, \ldots) \in \mathcal{N}_{f}$.

The regular leaf space. An element $\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{N}_{f}$ is regular if there exists a neighborhood U_{0} of z_{0} such that its pull-back U_{-n} along the backward orbit \hat{z} are eventually univalent. For example, $\hat{\infty}=(\infty, \infty, \ldots)$ is not regular for any $f=f_{c}(c \in \mathbb{C})$.

Let \mathcal{R}_{f} denote the set of regular points in $\mathcal{N}_{f} . \mathcal{R}_{f}$ is called the regular leaf space of f. A leaf of \mathcal{R}_{f} is a path connected component of \mathcal{R}_{f}. By [3, Lemma 3.1], leaves of \mathcal{R}_{f} are Riemann surfaces:

Lemma 2.6.1 Leaves of \mathcal{R}_{f} have following properties:

- For each leaf L, we can introduce a complex structure such that $\pi_{f}: L \rightarrow \overline{\mathbb{C}}$ is an analytic map.
- $\pi_{f}: L \rightarrow \overline{\mathbb{C}}$ branches at $\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in L$ if and only if \hat{z} contains a critical point in $\left\{z_{-n}\right\}$.
- \hat{f} maps a leaf to a leaf isomorphically.

This lemma holds for any $c \in \mathbb{C}$. In our case, we have:
Proposition 2.6.2 Suppose f_{c} has an attracting or parabolic fixed point ζ. Then $\mathcal{R}_{f_{c}}$ has the following properties:

- $\mathcal{R}_{f_{c}}=\mathcal{N}_{f_{c}}-\{\hat{\infty}, \hat{\zeta}\}$
- Each leaf of $\mathcal{R}_{f_{c}}$ is isomorphic to \mathbb{C}.

Thus the regular leaf spaces of f and g in the preceding sections have these properties. This proposition is immediate from lemmas in [3, §3].

2.6.2 Semiconjugacy on the natural extensions

Here we investigate the structure of \mathcal{R}_{g}, the regular leaf space of g. We begin with some notation and remarks.

For the portrait $\Theta=\left\{\theta_{j}\right\}$ of the attracting fixed point α of f, set $\gamma_{j}:=\gamma_{f}\left(\theta_{j}\right)$, and

$$
\hat{\gamma}_{j}:=\left(\gamma_{j}, \gamma_{j-p}, \gamma_{j-2 p}, \ldots\right)
$$

Then $\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{q}$ are periodic cycle of period q under the action of \hat{f} and contained in \mathcal{R}_{f}. On the other hand, for g, the lift of the parabolic fixed point $\hat{\beta}=(\beta, \beta, \ldots)$ is not regular and thus $\hat{\beta} \notin \mathcal{R}_{g}$.

For each j modulo q, we set

$$
\begin{aligned}
L_{j} & :=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{f}: z_{-n q} \rightarrow \gamma_{j}\right\} \\
L_{j}^{\prime} & :=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{g}: z_{-n q} \rightarrow \Pi_{j}^{+} \text {for all } n \gg 0\right\}
\end{aligned}
$$

where Π_{j}^{+}is a repelling petal of β containing the end of $R_{g}\left(\theta_{j}\right)$ near J_{g}. Then each L_{j} (resp. L_{j}^{\prime}) is invariant under the action of \hat{f}^{q} (resp. \hat{g}^{q}), and actually is a leaf isomorphic to \mathbb{C}. (We will construct the isomorphisms later.) In particular, \hat{f} (resp. \hat{g}) maps L_{j} (resp. L_{j}^{\prime}) to L_{j+p} (resp. L_{j+p}^{\prime}) isomorphically, and thus L_{j} (resp. L_{j}^{\prime}) is periodic leaf of period q.

For each j modulo q, we define a component \hat{I}_{j} of $\pi_{f}^{-1}\left(I\left(\theta_{j}\right)\right)$ in L_{j} by

$$
\hat{I}_{j}:=\left\{\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{f}: z_{-n} \in I\left(\theta_{j-n p}\right)\right\} \subset L_{j} .
$$

Then each \hat{I}_{j} is an open arc in \mathcal{N}_{f} which joins $\hat{\alpha}$ and $\hat{\gamma}_{j}$.
Let us set $\mathcal{I}_{f}:=\pi_{f}^{-1}\left(I_{f}\right)$ and $\mathcal{I}_{g}:=\pi_{g}^{-1}\left(I_{g}\right)$. Take a backward orbit $\hat{\beta}^{\prime}=$ $\left(\beta_{0}^{\prime}, \beta_{-1}^{\prime}, \ldots\right) \in \mathcal{I}_{g}$. Then it uniquely determines a sequence $\hat{\Theta}^{\prime}:=\left(\Theta_{0}^{\prime}, \Theta_{-1}^{\prime}, \ldots\right)$ of portraits of each β_{-n}^{\prime}. We call $\hat{\Theta}^{\prime}$ the portrait of $\hat{\beta}^{\prime}$. On the other hand, $\hat{\Theta}^{\prime}$ bijectively corresponds to a component of \mathcal{I}_{f} which consists of backward orbits $\left(z_{0}, z_{-1}, \ldots\right)$ with $z_{-n} \in I\left(\Theta_{-n}^{\prime}\right)$. We denote this component by $\hat{I}\left(\hat{\Theta}^{\prime}\right)$. Set $\hat{\Theta}=$ (Θ, Θ, \ldots). Then $\hat{\beta}$ has the portrait $\hat{\Theta}$ and $\hat{I}(\hat{\Theta})$ contains $\hat{\alpha}$. Note that $\hat{\beta}$ and $\hat{\alpha}$ are irregular points. However, $\hat{I}(\hat{\Theta})-\{\hat{\alpha}\}=\bigsqcup\left(\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}\right)$ is contained in the regular leaf space \mathcal{R}_{f}. Now the main result is:

Theorem 2.6.3 For f and g as above, there exists a semiconjugacy $\hat{H}: \mathcal{N}_{f} \rightarrow$ \mathcal{N}_{g} from \hat{f} to \hat{g} with the following properties:
(1) $\hat{H}: \mathcal{N}_{f}-\mathcal{I}_{f} \rightarrow \mathcal{N}_{g}-\mathcal{I}_{g}$ is a topological conjugacy between $\left.\hat{f}\right|_{\mathcal{N}_{f}-\mathcal{I}_{f}}$ and $\left.\hat{g}\right|_{\mathcal{N}_{g}-\mathcal{I}_{g}}$.
(2) For any $\hat{\beta}^{\prime}$ with portrait $\hat{\Theta}^{\prime}$ as above, $\hat{H}^{-1}\left(\hat{\beta}^{\prime}\right)=\hat{I}\left(\hat{\Theta}^{\prime}\right)$. In particular, $\hat{H}^{-1}(\hat{\beta})=$ $\hat{I}(\hat{\Theta})$.
(3) For each j modulo $q, \hat{H}^{-1}\left(L_{j}^{\prime}\right)=L_{j}-\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}$.
(4) \hat{H} maps a leaf of $\mathcal{R}_{f}-\bigsqcup L_{j}$ onto a leaf of $\mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}$.
(5) For a leaf L of $\mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}, \hat{H}^{-1}(L)$ is a leaf of $\mathcal{R}_{f}-\bigsqcup L_{j}$.

Proof. For $\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{N}_{f}$, set

$$
\hat{H}(\hat{z}):=\left(H\left(z_{0}\right), H\left(z_{-1}\right), \ldots\right) \in \mathcal{N}_{g}
$$

Since H is a semiconjugacy from f to g, one can easily check that \hat{H} is surjective, continuous, and satisfies $\hat{H} \circ \hat{f}=\hat{g} \circ \hat{H}$. Thus \hat{H} is a semiconjugacy from \hat{f} to \hat{g} on their respective natural extensions. In particular, since $H: \overline{\mathbb{C}}-I_{f} \rightarrow \overline{\mathbb{C}}-I_{g}$ is a topological conjugacy, corresponding lift to the natural extensions $\hat{H}: \mathcal{N}_{f}-\mathcal{I}_{f} \rightarrow$ $\mathcal{N}_{g}-\mathcal{I}_{g}$ is also a topological conjugacy. Thus we obtain property (1).

Property (2) comes from the definition of \hat{H} above and the one-to-one correspondence between $\hat{\beta}^{\prime}$ with portrait $\hat{\Theta}^{\prime}$ and $\hat{I}\left(\hat{\Theta}^{\prime}\right)$.

Now let us show properties (3) to (5), by using the idea of [3, Lemma 3.2]. Take a leaf L^{\prime} in \mathcal{R}_{g}, and fix two distinct points $\hat{z}^{\prime}=\left(z_{0}^{\prime}, z_{-1}^{\prime}, \ldots\right)$ and $\hat{w}^{\prime}=\left(w_{0}^{\prime}, w_{-1}^{\prime}, \ldots\right)$ in L^{\prime}. Let $\hat{\eta}^{\prime}$ be a path in L^{\prime} joining \hat{z}^{\prime} and \hat{w}^{\prime}. Then $\eta_{-n}^{\prime}:=\pi_{g} \circ \hat{f}^{-n}\left(\hat{\eta}^{\prime}\right)$ is a path joining z_{-n}^{\prime} and w_{-n}^{\prime}, and η_{-n}^{\prime} has a neighborhood U_{-n} whose pull-back along \hat{z}^{\prime} and \hat{w}^{\prime} is eventually univalent. (That is, $\eta_{-n}^{\prime}(n \gg 0)$ does not pass through $\hat{\beta}$ and $\hat{\infty}$.)

Choose any $\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \hat{H}^{-1}\left(\hat{z}^{\prime}\right)$ and $\hat{w}=\left(w_{0}, w_{-1}, \ldots\right) \in \hat{H}^{-1}\left(\hat{w}^{\prime}\right)$. For $N \gg 0$, even if η_{-N}^{\prime} passes through $I_{g}, H^{-1}\left(\eta_{-N}^{\prime}\right)$ is a path connected set by the definition of H. Since z_{-N} and w_{-N} are contained in $H^{-1}\left(\eta_{-N}^{\prime}\right)$, we can choose a path η_{-N} joining z_{-N} and w_{-N}. Since we may assume that η_{-N}^{\prime} contains neither β nor ∞, we may assume that η_{-N} contains neither $I(\Theta)$ nor ∞. Then we can take a neighborhood of η_{-N} whose pull-back along \hat{z} and \hat{w} is eventually univalent. Since we can lift paths $\left\{\eta_{-N-n}\right\}$ to a path in \mathcal{N}_{f} joining \hat{z} and \hat{w}, \hat{z} and \hat{w} are in the same leaf in \mathcal{R}_{f}, say L. Now we have $\hat{H}^{-1}\left(L^{\prime}\right) \subset L$, and thus $L^{\prime} \subset \hat{H}(L)$.

Case 1: Suppose that $\hat{H}(L)$ contains either $\hat{\beta}$ or $\hat{\infty}$. Since $\hat{H}^{-1}(\hat{\beta})=\hat{I}(\hat{\Theta})$ and $\hat{H}^{-1}(\hat{\infty})=\hat{\infty}$, it is equivalent to $L \cap \hat{I}(\Theta) \neq \emptyset$, that is, $L=L_{j}$ for some j modulo q. Since $\hat{\beta}$ and L^{\prime} are disjoint, we have

$$
\hat{H}^{-1}\left(L^{\prime}\right) \subset L_{j}-\hat{H}^{-1}(\hat{\beta})=L_{j}-\hat{I}(\hat{\Theta})=L_{j}-\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}
$$

Let us set $L_{j}^{-}:=L_{j}-\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}$ for simplicity. Then we have $L^{\prime} \subset \hat{H}\left(L_{j}^{-}\right)$. Since L_{j}^{-}is path connected, so is $\hat{H}\left(L_{j}^{-}\right)$and thus contained in a leaf of \mathcal{R}_{g}, which must be L^{\prime}. Thus we have $\hat{H}\left(L_{j}^{-}\right)=L^{\prime}$ and it implies

$$
L_{j}^{-} \subset \hat{H}^{-1}\left(\hat{H}\left(L_{j}^{-}\right)\right)=\hat{H}^{-1}\left(L^{\prime}\right) \subset L_{j}^{-} .
$$

Let us show (3) by checking $L^{\prime}=L_{j}^{\prime}$. Set

$$
\begin{aligned}
& \hat{R}_{j}:=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{f}: z_{-n} \in R_{f}\left(\theta_{j-n p}\right)\right\} \text { and } \\
& \hat{R}_{j}^{\prime}:=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{g}: z_{-n} \in R_{g}\left(\theta_{j-n p}\right)\right\} .
\end{aligned}
$$

Then $\hat{R}_{j} \subset L_{j}^{-}$and $\hat{R}_{j}^{\prime} \subset L_{j}^{\prime}$. Moreover, \hat{H} maps \hat{R}_{j} onto \hat{R}_{j}^{\prime} univalently. Thus $L^{\prime}=\hat{H}\left(L_{j}^{-}\right)$must be L_{j}^{\prime}.

Case 2: Suppose that $\hat{H}(L)$ contains neither $\hat{\beta}$ nor $\hat{\infty}$. It is equivalent to $L \neq L_{j}$ for any j modulo q. Since $\hat{H}(L) \subset \mathcal{R}_{g}$ is path connected, there is a leaf of \mathcal{R}_{g} containing $\hat{H}(L)$, which must be L^{\prime}. In particular, by property (3), $L^{\prime} \neq L_{j}^{\prime}$ for any j modulo q. Now we have $\hat{H}(L)=L^{\prime}$ and thus

$$
L \subset \hat{H}^{-1}(\hat{H}(L))=\hat{H}^{-1}\left(L^{\prime}\right) \subset L
$$

Hence we conclude property (5).
Property (4) comes from (3) and (5). Take a leaf $L \in \mathcal{R}_{f}-\bigsqcup L_{j}$. Then $\hat{H}(L)$ is path connected and thus contained in a leaf $L^{\prime} \in \mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}$. Then we have $L \subset \hat{H}^{-1}\left(L^{\prime}\right)=L$ by (5), and it implies $\hat{H}(L)=L^{\prime}$, a leaf in $\mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}$.

2.6.3 Degeneration of periodic leaves.

Let us describe property (3) in further detail. For any j modulo q, L_{j} compactly contains all but one component of $\mathcal{I}_{f} \cap L_{j}$. The exception is $\hat{H}^{-1}(\hat{\beta}) \cap L_{j}=$ $\hat{I}_{j} \cup\left\{\gamma_{j}\right\} \subset \hat{I}(\Theta)$. Since $\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}$ and $\hat{\beta}$ are invariant under the action of \hat{f}^{q} and \hat{g}^{q} respectively, the map

$$
\hat{H} \mid L_{j}-\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}=L_{j}^{-} \rightarrow L_{j}^{\prime}
$$

is a semiconjugacy from $\left.\hat{f^{q}}\right|_{L_{j}^{-}}$to $\left.\hat{g}^{q}\right|_{L_{j}^{\prime}}$. Let us describe this semiconjugacy more precisely.

An analytic model. We start with an analytic model of the dynamics on $\bigsqcup L_{j}$ and $\bigsqcup L_{j}^{\prime}$. Let $\mathbb{C}_{1}, \ldots, \mathbb{C}_{q}$ be q copies of \mathbb{C} again, taking subscripts modulo q. Set

$$
\tilde{\lambda}:=\sqrt[q]{f^{\prime}\left(\gamma_{1}\right) \cdots f^{\prime}\left(\gamma_{q}\right)}
$$

where the q-th root is taken to be the closest to 1 . Set $\tilde{a}:=1 /(1-\tilde{\lambda})$. Then \tilde{a} is fixed by the linear map $S(W)=\tilde{\lambda}(W-\tilde{a})+\tilde{a}=\tilde{\lambda} W+1$. Note that as $r \rightarrow 1(f \rightarrow g),|\tilde{a}| \rightarrow \infty$ and S converges to $W \mapsto W+1$ on any compact subset of \mathbb{C}_{j}. Now we define a "linear map" $\tilde{F}: \bigsqcup \mathbb{C}_{j} \rightarrow \bigsqcup \mathbb{C}_{j}$ by

$$
\mathbb{C}_{j} \ni W \stackrel{\tilde{F}}{\longmapsto} S(W) \in \mathbb{C}_{j+p} .
$$

Then for each j modulo $q, \tilde{F}^{q} \mid \mathbb{C}_{j} \rightarrow \mathbb{C}_{j}$ is the same as $S^{q}(W)=\tilde{\lambda}^{q}(W-\tilde{a})+\tilde{a}$.
On the other hand, we define a map \tilde{G} as a copy of $G: \bigsqcup \mathbb{C}_{j} \rightarrow \bigsqcup \mathbb{C}_{j}$ in the construction of \mathcal{I}_{g}. Then for each j modulo $q, \tilde{G}^{q} \mid \mathbb{C}_{j} \rightarrow \mathbb{C}_{j}$ is the same as $W \mapsto W+q$.

Simultaneous uniformization. For f (resp. g), take a linearizing (resp. Fatou) coordinate Φ_{1} on a neighborhood V_{1} (resp. repelling petal Π_{1}^{+}) of γ_{1} (resp. β) such that the action of $f^{q}\left(\right.$ resp. $\left.g^{q}\right)$ is conjugate to $S^{q}(w)=\tilde{\lambda}^{q}(w-\tilde{a})+\tilde{a}$ (resp. $w \mapsto w+q$). In particular, for $\rho>1$ sufficiently close to $1, V_{1}$ (resp. Π_{1}^{+}) contains $\zeta_{0}=\phi_{f}^{-1}\left(\rho e^{2 \pi i \theta_{1}}\right)$ (resp. $\left.\phi_{g}^{-1}\left(\rho e^{2 \pi i \theta_{1}}\right)\right)$ and $\Phi_{1}\left(\zeta_{0}\right)=0$. Then for any $\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in L_{1}$, there exists an N such that $z_{-n q} \in V_{1}$ (resp. $\left.\Pi_{1}^{+}\right)$for any $n \geq N$. By [3,§4], an isomorphism between L_{1} and \mathbb{C}_{1} is given by:

$$
\left.\hat{\Phi}_{f}\right|_{L_{1}}(\hat{z}):=(S)^{N q}\left(\Phi_{1}\left(z_{-N q}\right)\right) .
$$

Similarly, an isomorphism between L_{1}^{\prime} and \mathbb{C}_{1} is given by:

$$
\left.\hat{\Phi}_{g}\right|_{L_{1}^{\prime}}(\hat{z}):=\Phi_{1}\left(z_{-N q}\right)+N q .
$$

One can easily check that they do not depend on the choice of N. For $k=$ $1, \ldots, q-1$, we define $\hat{\Phi}_{f}: L_{1+k p} \rightarrow \mathbb{C}_{1+k p}$ and $\hat{\Phi}_{g}: L_{1+k p}^{\prime} \rightarrow \mathbb{C}_{1+k p}$ by

$$
\hat{\Phi}_{f}:=\left.\tilde{F}^{k} \circ \hat{\Phi}_{f}\right|_{L_{1}} \circ \hat{f}^{-k} \text { and } \hat{\Phi}_{g}:=\left.\tilde{G}^{k} \circ \hat{\Phi}_{f}\right|_{L_{1}^{\prime}} \circ \hat{g}^{-k} .
$$

Then for each j modulo $q, \hat{\Phi}_{f} \mid L_{j} \rightarrow \mathbb{C}_{j}$ and $\hat{\Phi}_{g} \mid L_{j}^{\prime} \rightarrow \mathbb{C}_{j}$ give isomorphisms respectively. Moreover, $\hat{\Phi}_{f}: \bigsqcup L_{j} \rightarrow \bigsqcup \mathbb{C}_{j}$ has a property that for any $\hat{z} \in L_{j}$, $\hat{\Phi}_{f}(\hat{f}(\hat{z}))=\tilde{\lambda} \hat{\Phi}_{f}(\hat{z})+1 \in \mathbb{C}_{j+p}$. On the other hand, $\hat{\Phi}_{g}: \bigsqcup L_{j}^{\prime} \rightarrow \bigsqcup \mathbb{C}_{j}$ also has a property that $\hat{\Phi}_{g}(\hat{g}(\hat{z}))=\hat{\Phi}_{g}(\hat{z})+q \in \mathbb{C}_{j+p}$ for any $\hat{z} \in L_{j}^{\prime}$. Informally, $\hat{\Phi}_{f}\left(\hat{\gamma}_{j}\right)=\tilde{a} \in \mathbb{C}_{j}$ tends to " ∞ " as $f \rightarrow g$ and $\tilde{I}_{j}:=\hat{\Phi}_{f}\left(\hat{I}_{j}\right) \subset \mathbb{C}_{j}$ is an open path joining $\tilde{a} \in \mathbb{C}_{j}$ and " ∞ " which is invariant under the action of \tilde{F}^{q}.

Now let us consider the map

$$
\hat{\Phi}_{g}^{+} \circ \hat{H} \circ\left(\hat{\Phi}_{f}\right)^{-1}: \bigsqcup\left(\mathbb{C}_{j}-\hat{I}_{j} \cup\{\tilde{a}\}\right) \rightarrow \bigsqcup \mathbb{C}_{j}
$$

which is a semiconjugacy from $\left.\tilde{F}\right|_{\sqcup\left(\mathbb{C}_{j}-\hat{I}_{j} \cup\{\tilde{a}\}\right)}$ to \tilde{G}. The "slits" $\tilde{I}_{j} \cup\{\tilde{a}\}$ of each \mathbb{C}_{j} are just like pinched and pushed away to "infinity". Topologically the same thing happens on the periodic leaves. By \hat{H}, the slits $\hat{I}_{j} \cup\left\{\hat{\gamma}_{j}\right\}$ are pinched, and pushed away to their common "point at infinity" $\hat{\beta}$. As a result, each $\pi_{g}^{-1}\left(J_{g}\right) \cap L_{j}^{\prime}$ is split into two components. (See Figure 2.7)

Figure 2.7: Invariant leaves of an $f \in \mathcal{F}(1 / 1)$ and $g=f_{1 / 4}$, parabolic with one petal.

Notes.

1. Both \mathcal{R}_{f} and \mathcal{R}_{g} have the structures of Riemann surface lamination. More precisely, each point of \mathcal{R}_{f} (resp. \mathcal{R}_{g}) has a neighborhood homeomorphic to $D \times T$, where D is a topological disk and T is a Cantor set, and each $t \in T$, $D \times\{t\}$ corresponds to a topological disk on a leaf of \mathcal{R}_{f} (resp. \mathcal{R}_{g}). (See $[3, \S 2]$.) \hat{H} preserves the Cantor set direction of such neighborhoods, and the holonomies of fibers of π_{f} and π_{g}.
2. The hyperbolic 3-lamination of f is constructed by adding "height" to the leaves of \mathcal{R}_{f} to obtain leaves isomorphic to \mathbb{H}^{3}. Though the actual construction in [3] is very complicated, we may hope that the pinching \hat{H} will naturally extend to this hyperbolic 3-lamination and describe the degeneration as f tends to g.

2.7 Bifurcation of the regular leaf spaces

Next we investigate the regular leaf space of another f_{c} which has an attracting cycle of period q generated by bifurcation of the parabolic fixed point β of $g=f_{\sigma}$ in preceding sections.

By Douady and Hubbard theory, σ in the parameter space is the root point of p / q-wake. Let $\mathcal{H}=\mathcal{H}(p / q)$ be the hyperbolic component attaching to the main cardioid at σ. Then it is known that for any $c \in \mathcal{H}, f_{c}$ has an attracting cycle of period q, and there is a canonical homeomorphism from the unit disk \mathbb{D} to \mathcal{H} which parameterize the multiplier of the attracting cycles. For fixed $0<R<1$ (which is distinct from R in $\S 4$), we take the unique $c \in \mathcal{H}$ such that $f=f_{c}$ has an attracting cycle with multiplier R^{q}. For any $c^{\prime} \in \mathcal{H}$ other than the center
(that is, the image of the origin by the canonical homeomorphism above), $f_{c^{\prime}}$ are quasiconformally conjugate to f. Thus the structure of the regular leaf spaces are topologically the same, and it is enough to consider the structure of \mathcal{R}_{f}.

We start with some notation. Let $\alpha_{1}, \ldots, \alpha_{q}$, taking subscript modulo q, be the attracting cycle of f with $f\left(\alpha_{j}\right)=\alpha_{j+p}$. Let γ be the repelling fixed point with portrait $\Theta=\Theta(p / q)$. Here the term portrait means the set of angles of external rays landing at the point, just as in the case of β. For any preimage γ^{\prime} of γ, we also use this term. For each j modulo q, set

$$
\hat{\alpha}_{j}:=\left(\alpha_{j}, \alpha_{j-p}, \alpha_{j-2 p}, \ldots\right) \in \mathcal{N}_{f}
$$

Then Proposition 2.6 .2 easily extends to the following:
Proposition 2.7.1 \mathcal{R}_{f} is a Riemann surface lamination with the following properties:

- $\mathcal{R}_{f}=\mathcal{N}_{f}-\left\{\hat{\infty}, \hat{\alpha}_{1}, \ldots, \hat{\alpha}_{q}\right\}$
- Each leaf of \mathcal{R}_{f} is isomorphic to \mathbb{C}.

According to the method described in the preceding sections, let us describe the structure of \mathcal{R}_{f} for this new f by reconstructing the semiconjugacy $\hat{H}: \mathcal{N}_{f} \rightarrow$ \mathcal{N}_{g}.

2.7.1 Linearizing coordinate and tessellation

Linearizing coordinate. For each j modulo q, let V_{j} be the attracting basin of α_{j} by the action of f^{q}. Take q copies $\mathbb{C}_{1}, \ldots, \mathbb{C}_{q}$ of \mathbb{C} again, and define the "isomorphism" $F: \bigsqcup \mathbb{C}_{j} \rightarrow \bigsqcup \mathbb{C}_{j}$ by the same map as in $\S 4$. Suppose that V_{k} contains the critical point 0 of f. There is a unique linearizing coordinate $\Phi_{k}: V_{k} \rightarrow \mathbb{C}_{k}$ such that $\Phi_{k}\left(f^{q}(z)\right)=R^{q}\left(\Phi_{k}(z)-a\right)+a$ and $\Phi_{k}(0)=0$, where $a=1 /(1-R)$. For any $n=0, \ldots, q-1$, we redefine $\Phi_{f}: K_{f}^{\circ}=\bigsqcup V_{j} \rightarrow \bigsqcup \mathbb{C}_{j}$ by

$$
V_{k-n p} \ni z \stackrel{\Phi_{f}}{\longmapsto} F^{-n} \circ \Phi_{k} \circ f^{n} \in \mathbb{C}_{k-n p} .
$$

Tessellation of K_{f}°. For each j modulo q, take a univalent branch $\Psi_{j}: \mathbb{C}_{j}-$ $(-\infty, 0]_{j} \rightarrow V_{j}$ of Φ_{f} such that $\Psi_{j}(a)=\alpha_{j}$. Let I_{j} be the copy of the interval (a, ∞) in \mathbb{C}_{j}. Then one can check that $I_{j}^{\prime}:=\Psi_{j}\left(I_{j}\right)$ is invariant under the action of f^{q} and is an open arc joining α_{j} and γ. The rays $R_{f}\left(\theta_{1}\right), \ldots, R_{f}\left(\theta_{q}\right)$ divide the plane into q sectors, and now we may suppose that I_{j}^{\prime} is contained in one of the q sectors bounded by $R_{f}\left(\theta_{j}\right)$ and $R_{f}\left(\theta_{j+1}\right)$. We also denote I_{j}^{\prime} by $I\left(\theta_{j}\right)$. For the portrait Θ of γ, we redefine $I(\Theta)$ by

$$
I(\Theta):=\bigcup_{j=1}^{q} \overline{I\left(\theta_{j}\right)}=\{\gamma\} \cup \bigcup_{j=1}^{q}\left(I\left(\theta_{j}\right) \cup\left\{\alpha_{j}\right\}\right)
$$

and the degenerating arc system I_{f} by $\bigcup_{n \geq 0} f^{-n}(I(\Theta))$.
For each j modulo q and $m \in \mathbb{Z}$, we redefine $A(m, \pm)_{j}$ by replacing $\chi\left(I_{j}\right)$ in the previous definition in $\S 4$ by this I_{j}. Let $\gamma^{\prime} \in f^{-n}(\gamma)(n=1,2, \ldots)$ with portrait $\Theta^{\prime}=\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}$ satisfying $2^{n} \theta_{j}^{\prime}=\theta_{j}$. Then there is a component V of V_{j} attached to γ^{\prime} contained in the sector bounded by $R_{f}\left(\theta_{j}\right)$ and $R_{f}\left(\theta_{j+1}\right)$. On $\mathbb{C}_{j}-(-\infty, 0]_{j}$, there is a univalent branch Ψ of Φ_{f}^{-1} which maps I_{j} into V. By extending Ψ on the interiors of $A(m, \pm)_{j}$ to their edges, we define the tiles in K_{f}° by

$$
\begin{aligned}
T_{f}\left(\theta_{j}^{\prime}, m,+\right) & :=\Psi^{-1}\left(A(m,+)_{j}\right) \subset V_{j} \\
T_{f}\left(\theta_{j+1}^{\prime}, m,-\right) & :=\Psi^{-1}\left(A(m,-)_{j}\right) \subset V_{j} .
\end{aligned}
$$

For $\theta \in \tilde{\Theta}$ and $m \in \mathbb{Z}$, the family $\left\{T_{f}(\theta, m, \pm)\right\}$ gives the tessellation \mathcal{T}_{f} of $K_{f}^{\circ}-I_{f}$.

Edge sharing. Tiles of \mathcal{T}_{f} has the same property of edge sharing as those of \mathcal{T}_{g}. To check the fact, one can start with the closed path C_{0} defined as following. For each j modulo q, take a path $\eta_{j} \subset \mathbb{C}_{j}$ which comes from $+\infty$ along the real axis in the negative direction, turn around the circle $|W-a|=\sqrt{R} a$ anticlockwise, and then return to $+\infty$ along the real axis in the positive direction. Then the pull-back η_{j}^{\prime} of η_{j} by Φ_{j} is a path in V_{j} and the union $C_{0}:=\{\gamma\} \cup \bigcup \eta_{j}^{\prime}$ is a closed path. Now we may consider C_{0} as a map $C_{0}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C}$ with $C_{0}\left(\theta_{j}\right)=\gamma$ for any j modulo q. Let C_{-n} be the pull-back of this path by f^{-n}, and then the same argument in the case of \mathcal{T}_{g} works.

Note that for a preimage γ^{\prime} of γ with portrait $\Theta^{\prime}=\left\{\theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right\}$ as above, $T_{f}\left(\theta_{j}^{\prime}, m,+\right)$ shares its degenerating edge with $T_{f}\left(\theta_{j+1}^{\prime}, m, \pm\right)$.

Remark. We can simplify the tessellation above and \mathcal{I}_{g} without changing the combinatorics of tiles. For each angle and signature, glue q tiles along their circular edges such that the two vertices of the critical edge of this new tile are contained in the grand orbit of the critical point 0. (Compare Figure 2.5 and Figure 2.8.)

2.7.2 Semiconjugacies

By gluing tile-to-tile homeomorphisms and the conjugacy outside the Julia sets induced from Böttcher coordinates, we have a semiconjugacy $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ from f to g which corresponds to the semiconjugacy in Theorem 2.5.1. In particular, H pinches a component of I_{f} containing a preimage γ^{\prime} of γ into $\beta^{\prime} \in I_{g}$ with the same portrait as γ^{\prime}.

Let us consider the pinching in the natural extentions. Now we can redefine $\hat{I}\left(\hat{\Theta}^{\prime}\right), \mathcal{I}_{f}$ and \mathcal{I}_{g} in the same way as $\S 6$. Note that $\hat{I}(\hat{\Theta})$ contains $\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{q}\right\}$, however, $\hat{I}(\hat{\Theta})-\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{q}\right\}$ is in \mathcal{R}_{f}. In fact, if we set

$$
L_{f}:=\left\{\hat{z}=\left(z_{0}, z_{-1}, \ldots\right) \in \mathcal{R}_{f}: z_{-n} \rightarrow \gamma\right\},
$$

Figure 2.8: Simplified tessellation for an $f \in \mathcal{H}(1 / 2)$ and another $f \in \mathcal{H}(1 / 3)$. (Here we identify c in the parameter space with f_{c}.)
which is an invariant leaf isomorphic to \mathbb{C}, then L_{f} contains $\hat{I}(\hat{\Theta})-\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{q}\right\}$ non-compactly. In addition, the action of \hat{f} on L_{f} is conjugate to that of $W \mapsto$ $f^{\prime}(\gamma) W$ on \mathbb{C}. The result corresponding to Theorem 2.6.3 is:

Theorem 2.7.2 For f and g as above, there exists a semiconjugacy $\hat{H}: \mathcal{N}_{f} \rightarrow$ \mathcal{N}_{g} from \hat{f} to \hat{g} with the following properties:
(1) $\hat{H}: \mathcal{N}_{f}-\mathcal{I}_{f} \rightarrow \mathcal{N}_{g}-\mathcal{I}_{g}$ is a topological conjugacy between $\left.\hat{f}\right|_{\mathcal{N}_{f}-\mathcal{I}_{f}}$ and $\left.\hat{g}\right|_{\mathcal{N}_{g}-\mathcal{I}_{g}}$.
(2) For any $\hat{\beta}^{\prime}$ with portrait $\hat{\Theta}^{\prime}, \hat{H}^{-1}\left(\hat{\beta}^{\prime}\right)=\hat{I}\left(\hat{\Theta}^{\prime}\right)$. In particular, $\hat{H}^{-1}(\hat{\beta})=\hat{I}(\hat{\Theta})$.
(3) For each j modulo $q, \hat{H}^{-1}\left(\sqcup L_{j}^{\prime}\right)=L_{f}-\hat{I}(\hat{\Theta})$.
(4) \hat{H} maps a leaf of $\mathcal{R}_{f}-L_{f}$ onto a leaf of $\mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}$.
(5) For a leaf L of $\mathcal{R}_{g}-\bigsqcup L_{j}^{\prime}, \hat{H}^{-1}(L)$ is a leaf of $\mathcal{R}_{f}-L_{f}$.

Sketch of the theorem. Follow the argument in Theorem 2.6.3. To show (3), (4) and (5), take a leaf L^{\prime} in \mathcal{R}_{g}. Then $\hat{H}^{-1}\left(L^{\prime}\right)$ is contained in a leaf L of \mathcal{R}_{f}. If $H(L)$ intersects the irregular points (Case 1), then $L=L_{f}$ and $H^{-1}\left(L^{\prime}\right) \subset L_{f}-\hat{I}(\hat{\Theta}):=L_{f}^{-}$. Note that L_{f}^{-}is the union of q sectors divided by $\hat{I}(\hat{\Theta})$. By the correspondence of $\hat{R}_{j} \subset L_{f}^{-}$to $\hat{R}_{j}^{\prime} \subset L_{j}^{\prime}$, we obtain $\hat{H}\left(L_{f}^{-}\right)=\bigsqcup L_{j}^{\prime}$ and this implies property (3). If $H(L)$ and the irregular points are disjoint (Case $2)$, then $L \neq L_{f}$. Now (4) and (5) follows as in Theorem 2.6.3.

Structure of \mathcal{R}_{f}. As c of f_{c} changes from 0 to the center of the \mathcal{H}, the transversal Cantor set direction of the Riemann surface lamination $\mathcal{R}_{f_{c}}$ is preserved. However, the periodic leaves L_{1}, \ldots, L_{q} of $f \in \mathcal{F}(p / q)$ with an affine
loxodromic dynamics are pinched to be the periodic leaves $L_{1}^{\prime}, \ldots, L_{q}^{\prime}$ of g with an affine parabolic dynamics, and then $L_{1}^{\prime}, \ldots, L_{q}^{\prime}$ merge into the invariant leaf L_{f} of $f \in \mathcal{H}(p / q)$ with an affine loxodromic dynamics.

Figure 2.9: Periodic leaves of $f \in \mathcal{F}(1 / 2)$ become those of parabolic $g \in \overline{\mathcal{F}(1 / 2)} \cap$ $\mathcal{H}(1 / 2)$, and merge into an invariant leaf of another $f \in \mathcal{H}(1 / 2)$.

Note. For any quadratic polynomial with an attracting cycle, we can consider its degeneration to a parabolic cycle with multiple petals. To investigate the associated degeneration of the regular leaf spaces, the method developed in this chapter is useful. For any quadratic polynomial with an attracting or parabolic cycle, we can define the tessellation of the interior of its filled Julia set by using the notion of orbit portrait. The degeneration of tiles induces a semiconjugation from a hyperbolic map to a parabolic map, and we can naturally lift it to their natural extensions. Then the lifted semiconjugation gives us essential information about the degeneration (or bifurcation) of the regular leaf spaces.

Bibliography

[1] A. Douady and J. H. Hubbard. Etude dynamique des polynômes complexes I δ II. Pub. Math. d'Orsay 84-02, 85-05, 1984/85.
[2] T. Kawahira. On the regular leaf space of the cauliflower. Kodai Math. J. 26(2003) 167-178.
[3] M. Lyubich and Y. Minsky. Laminations in holomorphic dynamics. J. Diff. Geom. 47(1997) 17-94.
[4] D. Sullivan. Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers. Topological Methods in Modern Mathematics, L. Goldberg and Phillips, editor, Publish or Perish, 1993
[5] J. Milnor. Dynamics in one complex variable: Introductory lectures. vieweg, 1999.

[^0]: ${ }^{1}$ Appeared in Erg. Th. © Dyn. Sys. 23(2003), 1125-1152.

