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Chapter 1

Semiconjugacies between the
Julia sets of geometrically finite
rational maps

1.1 Introduction

Let f : Ĉ → Ĉ be a rational map of degree d ≥ 2. We call such a map geomet-
rically finite if all critical points contained in the Julia set J(f) are eventually
periodic. A geometrically finite rational map can have (super)attracting and
parabolic basins, but no Siegel disks or Herman rings. In particular, if a rational
map is (sub)hyperbolic or parabolic, then it is geometrically finite.

In this chapter, we discuss perturbations of a geometrically finite rational
map f within Ratd, the space of all rational maps of degree d. The topology of
this space is defined by uniform convergence on the sphere with respect to the
spherical distance dσ(·, ·). Our aim is to study the dynamical stability of f on its
Julia set; that is, structural stability of f restricted on the Julia set.

Perturbations of f . Let us consider a family of rational maps of degree d ≥ 2,
{fε ∈ Ratd : ε ∈ [0, 1]} with the following conditions:

• f0 = f ; and

• supx∈�̂ dσ(fε(x), f(x)) → 0 as ε↘ 0.

We represent this family in the convergence form, fε → f , and call it a perturba-
tion of f .

For this perturbation fε → f , let us consider whether the dynamics on J(f) is
perturbed continuously to that on J(fε). More precisely, we consider the existence
of a map hε : J(fε) → J(f) for each ε ∈ [0, 1] such that

• hε is a homeomorphism with hε ◦ fε = f ◦ hε on J(fε); and
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• h−1
ε : J(f) → J(fε) tends to id : J(f) → J(f) as ε→ 0.

Such an hε with the first condition is called a (topological) conjugacy between fε

and f on their respective Julia sets. In addition, for the first condition, if hε is
not a homeomorphism but merely continuous and surjective, then such an hε is
called a semiconjugacy between fε and f on their respective Julia sets.

By the Mañé-Sad-Sullivan theory[15], if f has a connected neighborhood U ⊂
Ratd where each fε ∈ U has the same number of attracting cycles as f , then for
each fε ∈ U there exists a unique quasiconformal conjugacy hε : J(fε) → J(f) as
above. This means any small perturbations of f have desired conjugacies. For
example, hyperbolic rational maps have this property.

On the other hand, when f is geometrically finite f can have parabolic cycles:
As we will describe, those parabolic cycles may change into attracting cycles
under some perturbations. Thus the number of attracting cycles may change and
we cannot apply the Mañé-Sad-Sullivan theory. Moreover, by a perturbation of
parabolic cycles into attracting cycles, the topology of J(f) may change and we
cannot even hope that J(f) and J(fε) are homeomorphic in general.

However, in our main theorem (Theorem 1.1.1), we will give a sufficient con-
dition for perturbations fε → f to be accompanied by such conjugacies as above
or best possible semiconjugacies between the dynamics on their Julia sets.

Parabolic points. Let f : Ĉ → Ĉ be a rational map of degree d ≥ 2, and let
a be a periodic point of f with period l and multiplier (f l)′(a) =: λ. We say a is
a parabolic (periodic) point if λ is a root of unity.

Now let us suppose that a is a parabolic point and λ is a primitive q-th root
of unity. Taking a local coordinate near a which maps a to 0, we obtain

f lq(z) = z + Ap+1z
p+1 +O(zp+2) (1.0)

with Ap+1 �= 0 and p ≥ 1. (Moreover, we can normalize Ap+1 to be 1 by using
a linear transformation.) It is known that p is a multiple of q which does not
depend on the choice of local coordinates. We call p = p(a) the petal number of
a. We also say that a has p petals.

Note that a is a fixed point of f lq of multiplicity p+1. By a perturbation of f
into fε, a splits into p+1 fixed points of f lq

ε counting with multiplicity. This may
cause drastic change of the dynamics, so we have to control the perturbation in
order to change the original dynamics tamely.

Horocyclic perturbations. After C. McMullen, we say a perturbation fε → f
is horocyclic if each parabolic point a of f as above satisfies the following:

(a) There are fixed points aε of f l
ε with multipliers (f l

ε)
′(aε) = λε satisfying

aε → a and λε → λ;
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(b) There is a neighborhood D of a with local coordinates φε, φ : D → C such
that:

1. aε ∈ D and φε(aε) = φ(a) = 0;

2. φε → φ uniformly on D; and

3. If we represent the actions of f lq
ε and f lq on D by φε and φ respectively,

we obtain the local representation of the perturbation as:

f lq
ε (z) = λq

εz + zp+1 +O(zp+2) → f lq(z) = z + zp+1 +O(zp+2). (1.1)

(c) If we set exp(Lε + iθε) := λq
ε , which tends to 1 as ε → 0, then θ2

ε = o(|Lε|)
as Lε, θε → 0.

Form (1.1) implies that the symmetry of the local dynamics near a is preserved
by the perturbation. In particular, φ, φε are not necessarily conformal, can be
just homeomorphisms from D to their images. By condition (c), a avoids being
perturbed into an irrationally indifferent periodic point. See §2 for more details.

Horocyclic perturbation was originally defined as horocyclic convergence of
rational maps, to study the continuity of the Hausdorff dimensions of the Julia
sets of geometrically finite rational maps[12, §7-9].

J-critical relations. A geometrically finite rational map may have critical
points in its Julia set. Here we introduce a condition which controls the per-
turbations of the orbits of such critical points.

Let c1, . . . , cN be all critical points of f contained in J(f), where N is counted
without multiplicity. A J-critical relation of f is a set of non-negative integers
(i, j,m, n) such that fm(ci) = fn(cj).

Let deg(f, x) denote the local degree of f at x. We say a perturbation fε → f
preserves the J-critical relations of f if:

• For all i = 1, . . . , N , the maps fε have critical points ci(ε) (may be in the
Fatou set) satisfying ci(ε) → ci and deg(fε, ci(ε)) = deg(f, ci) as ε→ 0; and

• For each J-critical relation (i, j,m, n) of f , fε satisfies fm
ε (ci(ε)) = fn

ε (cj(ε)).

If f is geometrically finite, then the maps fε are also geometrically finite. If
f is hyperbolic or parabolic, then C(f) ∩ J(f) = ∅ and any small perturbation
of f automatically preserves its J-critical relations.

Our main result is:

Theorem 1.1.1 Let f : Ĉ → Ĉ be a geometrically finite rational map of degree
d, and fε → f a horocyclic perturbation which preserves the J-critical relations
of f .

For each ε which is sufficiently small, there exists a unique semiconjugacy
hε : J(fε) → J(f) with the following properties:
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1. If card(h−1
ε (y)) ≥ 2 for some y ∈ J(f), then there exists an n such that

fn(y) is a parabolic point of f and card(h−1
ε (y)) = deg(fn, y) · p(fn(y)).

2. hε can be arbitrarily close to the identity on J(fε). That is, if we fix an
arbitrarily small r > 0, then for all sufficiently small ε, hε satisfies

sup {dσ(hε(x), x) : x ∈ J(fε)} < r.

Property 1 implies that the injectivity of hε may break on the backward orbits
of parabolic points of f . Since such points are countable, we say that hε is almost
bijective. However, even though f has parabolic points, hε can give a topological
conjugacy. The precise condition for this is described in Corollary 1.7.3. In
addition, Property 2 implies:

Corollary 1.1.2 For fε → f as above, J(fε) converges to J(f) in the Hausdorff
topology.

For a given geometrically finite rational map, the existence of such perturba-
tions is guaranteed by [10].

Example 1. Let us consider perturbations of a geometrically finite map f(z) =
z(1+z)m with m ≥ 2. Now −1 is a preparabolic critical point and 0 is a parabolic
fixed point with one petal. Here are two typical perturbations:

• fε(z) = λεz(1 + z)m with real λε ↘ 1

• fε(z) = λεz(1 + z)m with real λε ↗ 1

For both cases, 0 is split into a pair of attracting and repelling fixed points, 0 and
−1 + 1/ m

√
λε. For the first case, 0 is the repelling one, and for the second case,

the attracting one. In Figure 1.1, curves roughly show the shape of the Julia sets
for m = 3. These split fixed points and their first preimages are shown by heavy
dots. Figure 1.2 shows the equipotential curves in the Fatou sets.

Both two perturbations are horocyclic and preserving the J-critical relations
of f . For the first case, we obtain hε as a topological conjugacy. For the second
case, hε is a semiconjugacy which pinches the backward images of −1 + 1/ m

√
λε

onto those of 0. The injectivity is broken only at these points.

Remark on the Goldberg-Milnor conjecture. Theorem 1.1.1 gives a par-
tial and affirmative answer to the following Goldberg-Milnor conjecture[6]: For
a polynomial f which has a parabolic cycle, there exists a small perturbation of f
such that

• the immediate basin of the parabolic cycle is converted to basins of some
attracting cycles; and
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0−1

0

0

(λε ↘ 1)

(λε ↗ 1)

Figure 1.1: The perturbations fε(z) = λεz(1 + z)3 with real λε → 1

Figure 1.2: Equipotential curves for the Fatou sets of fε and f .
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• the perturbed polynomial on its Julia set is topologically conjugate to the
original polynomial f on J(f).

Some horocyclic perturbations of a geometrically finite polynomial explicitly
give such perturbations. For example, the first perturbation in Example 1 gives
an affirmative answer to this conjecture for f(z) = z(1 + z)m.

In general, any geometrically finite rational map has such a perturbation. See
[10]. For other partial solutions of this conjecture, see [3] and [7].

Example 2. Let us consider a Blaschke product f(z) = (3z2 +1)/(3+ z2) with
a parabolic fixed point at z = 1, which has 2 petals. The critical points of f are
0 and ∞. The Julia set is the unit circle and the Fatou set is the parabolic basin
of z = 1.

Let us consider perturbations of f of the form

fε(z) =
(2 + λε)z

2 + 2 − λε

2 + λε + (2 − λε)z2
with real λε → 1.

For ε  1, fε are also Blaschke products and the Julia sets are contained in the
unit circle. By this perturbation, the parabolic point z = 1 of f splits into the
following three fixed points (counting with multiplicity): z0 = 1 with multiplier
λε, z1 = (−λε + 2

√
−1 + λε)/(−2 + λε) and z2 = (−λε − 2

√
−1 + λε)/(−2 + λε)

with the same multipliers −1 + 2/λε.
Now consider the case of real λε with (a)λε ↘ 1 or (b)λε ↗ 1 (See Figure

1.3). For each cases, one can check that fε → f is a horocyclic perturbation.
When (a), z0 = 1 is repelling and z1, z2 are attracting. The Julia set of fε is

also the unit circle. By Theorem 1.1.1, there is a conjugacy between fε and f on
the unit circle.

When (b), z0 = 1 is attracting and z1, z2 are repelling. The Julia set of
fε is a Cantor set contained in the unit circle. By Theorem 1.1.1, there is a
semiconjugacy between fε and f on their respective Julia sets. Note that the
semiconjugacy maps a Cantor set onto the unit circle.

Sketch of the proof of the main theorem. Let us roughly sketch the proof
of Theorem 1.1.1; the construction of the semiconjugacy between fε and f on
their respective Julia sets.

Let f be a geometrically finite rational map and let fε → f be a horocyclic
perturbation which preserves the J-critical relations of f . We investigate the
properties of such a perturbation in §2.

In §3, we prepare the ingredients for the semiconjugacy. For f , we construct
a compact set Ω such that J(f) ⊂ Ω ⊂ f(Ω). Correspondingly, for each fixed
fε, we construct a compact set Ωε such that J(fε) ⊂ Ωε ⊂ fε(Ωε). We also
construct a certain surjective map h0(= h0,ε) : Ωε → Ω as the “0-th” step to the
semiconjugacy.
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Figure 1.3: The equipotential curves for the Fatou sets of fε of type (a), f , and
fε of type (b).
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Then in §4, we inductively construct a sequence of “lifts”

{
hn(= hn,ε) : f−n

ε (Ωε) → f−n(Ω)
}∞

n=1

satisfying f ◦ hn+1 = hn ◦ fε. In §5, we investigate the expanding property of f ;
in other words, the contracting property of f−1. By using this property, in §6,
we show that {hn} converges uniformly to a surjective map hε on J(fε) if ε 1.

...
...

fε

� �f

f−2
ε (Ωε)

h2−−−→ f−2(Ω)

fε

� �f

f−1
ε (Ωε)

h1−−−→ f−1(Ω)

fε

� �f

Ωε
h0−−−→ Ω

J(fε)
hε−−−→ J(f)

fε

� �f

J(fε)
hε−−−→ J(f)

In §7, we check that hε satisfies the properties in Theorem 1.1.1. To simplify the
argument, from §3 to §7, we suppose that J(f) �= Ĉ. The case of J(f) = Ĉ is
treated in §8.

Notes.

1. For the basic properties of the Julia sets and parabolic points, refer to [1],
[2] and [5], etc.

2. If f is hyperbolic, we obtain hε as a topological conjugacy. In particular,
by uniqueness, hε coincides with the quasiconformal conjugacy obtained by
using λ-Lemma in [15]. In general, for a perturbation fε → f as Theorem
1.1.1, if each fε for ε ∈ (0, 1] is hyperbolic, then each hε is characterized as
a uniform limit of quasiconformal conjugacies.

3. If a rational map f has no Siegel disks or Herman rings and fε → f horo-
cyclically, it is known that J(fε) → J(f) in the Hausdorff topology[8],[12,
Theorem 9.1]. Corollary 1.1.2 gives another proof of this fact in a special
case by using the existence of the semiconjugacy.

4. Theorem 1.1.1 is an improvement of an author’s result on horocyclic per-
turbation of parabolic rational maps in [9] or [8].
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Notation. Here we list some notation used throughout this chapter.

• σ := 2|dz|/(1 + |z|2) is the spherical metric on the Riemann sphere Ĉ.

• dσ(·, ·) : the spherical distance measured in σ.

• Bσ(x, r) := {y ∈ Ĉ : dσ(x, y) < r}

• F (f) : the Fatou set of f

• C(f) : the set of all critical points of f .

• P (f) := {fn(c) : c ∈ C(f), n = 1, 2, . . .}; the postcritical set of f .

• For any map f , f0 denotes the identity map on the domain of f .

• n� 0 means that n > 0 is sufficiently large.

• ε 1 means that ε > 0 is sufficiently small.

1.2 Horocyclic perturbations

Bifurcations of parabolic periodic points have a strong effect on the local dy-
namics as well as the global dynamics. In this section, we describe a horocyclic
perturbation fε → f of a geometrically finite rational map f in further detail.
In particular, we introduce the notion of planet and satellite for periodic points
generated by perturbation of parabolic points. Roughly speaking, a planet is the
central periodic point which determines the properties of the perturbed local dy-
namics. Satellites accompany a planet. Moreover, we will show a key lemma on
horocyclic perturbation (Lemma 1.2.2), and see the local dynamics near parabolic
points change tamely under such perturbations.

1.2.1 Planets and satellites.

First we consider condition (b)-3 of horocyclic perturbation. Let a be a parabolic
point of f as in the preceding section, which has a local representation as (1.0).

As we will see afterward, condition (b)-3 is important to keep the original
symmetry of the local dynamics for the petals of a. However, if we suppose only
conditions (a), (b)-1 and (b)-2 for fε → f , we just obtain a local representation
of the convergence near a as the following:

f lq
ε (z) = λq

εz + Aε,rz
r + · · · + Aε,p+1z

p+1 +O(zp+2)

→ f lq(z) = z + Ap+1z
p+1 +O(zp+2) (ε→ 0), (2.1)

where 2 ≤ r ≤ p. In [12, §7], C. McMullen gave some conditions which insure
form (2.1) becomes form (1.1) by taking suitable local coordinates. One of such
conditions is:

9



Proposition 1.2.1 If q = p, then through a continuous change of coordinates
near a, we obtain the normalized form of the convergence as (1.1).

Proof. For the local representation as (2.1), consider a coordinate change by

ζ = φε,r(z) = z −Bε,rz
r , Bε,r =

Aε,r

λε(λr−1
ε − 1)

.

Since λ is a primitive p-th root of unity and λε → λ, we obtain λr−1
ε �= 1 for all

ε  1. Thus Bε,r → 0 as Aε,r → 0 and φε,r → id uniformly near the origin. For
each ε, changing the coordinate by φε,r, we obtain

φε,r ◦ f lp
ε ◦ φ−1

ε,r (ζ) = λp
εζ +O(ζr+1).

So we can continue the discussion by replacing r with r + 1 until r + 1 becomes
p+ 1. Finally, take a linear coordinate change so that Ap+1 = Aε,p+1 = 1. �

The key point of the proof above is that Bε,r does not diverge as ε→ 0. Here we
used the condition that λ is a primitive p-th root of unity, however, we can replace
this by the condition that Bε,r converges as ε→ 0 for each step of r = 2, . . . , p. In
the original definition of horocyclicity by C. McMullen, he formulated and studied
this condition as dominant convergence of analytic germs[12, §7-9]. For example,
by using [12, Proposition 7.1], we can improve Proposition 1.2.1 as follows: For
the form (2.1) above, if Aε,i/(λ

q
ε − 1) converges as ε→ 0 for each r ≤ i ≤ p, then

through a continuous change of coordinates near a, we obtain the normalized form
of the convergence as (1.1).

Planets and satellites. Next, we consider the effect of condition (c) of horo-
cyclic perturbation. Let fε → f be a horocyclic perturbation. Now λq

ε =
exp(Lε + iθε), with the assumption that θ2

ε = o(|Lε|) as Lε, θε → 0. By this
relation, Lε = 0 implies θε = 0. In other words, if |λq

ε | = 1 then aε is persistently
a parabolic point of fε with the same multiplier λ as a. This means, perturbations
of a into another kind of indifferent periodic point are prohibited.

Let us look the relation θ2
ε = o(|Lε|) in the complex plane. If we fix a pair

of arbitrarily small closed disks on the both sides of the imaginary axis, so that
they are tangent to the axis at the origin, then they contain Lε + iθε for all ε 1.
Thus Lε + iθε cannot converge to 0 along the imaginary axis, but can converge
along a curve tangent to the imaginary axis with order < 2.

From (1.1), the solutions of the equation f lq
ε (z) = z near the origin are z = 0

and z ≈ (1−λq
ε)

1/p and they correspond to the symmetrically arrayed fixed points
of f lq

ε generated by the perturbation of a (See Figure 2). We classify them into
two types: planet and satellite.

First, we consider the case of multiple petals: That is, p ≥ 2. Then we have
the following three cases corresponding to Lε = 0, < 0, or > 0:
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Figure 1.4: A horocyclic perturbation of a parabolic fixed point of f lq of 3 petals (left)
into a repelling fixed point of f lq

ε (right).

(1) aε is persistently a parabolic point with p petals and the multiplier λε = λ;

(2) aε is an attracting periodic point, and there are p symmetrically arrayed
repelling periodic points near aε; or

(3) aε is a repelling periodic point, and there are p symmetrically arrayed at-
tracting periodic points near aε.

For cases (2) and (3), these symmetrically arrayed periodic points have the same
period lq and the multipliers ≈ λ−pq

ε . Moreover, they are contained in an open
ball centered at aε with radius O(|1−λq

ε |1/p). We call them the satellites of aε and
aε itself the planet. In particular, for case (2), we say that the parabolic point a
is perturbed into an attracting planet aε. As we will see in the following sections,
attracting planets are the cause of non-injectivity of the semiconjugacies. For
case (1), we also call aε the planet, although it has no satellite.

Next, we consider the case of one petal. Now p = 1, then automatically q = 1
and λ = 1. If λε = λ(= 1), aε is persistently a parabolic point with one petal.
In this case, we also call aε the planet. If λε �= λ, a splits into a pair of repelling
and attracting periodic points. Which one is suitable for the planet? To define
the planet in this case, we need to consider the J-critical relations.

Preparabolic critical orbits in J(f). Let b be a preimage of a such that
a = f i(b) = f i+l(b). If deg(f i, b) = m, we can take a local coordinate near b such
that ζ(b) = 0 and

f−i ◦ f lq ◦ f i(ζ) = ζ + ζmp+1 +O(ζmp+2),

with a suitable branch of f−i. This implies that there are mp petals attached to
b as preimages of the petals of a.

Let us suppose that a horocyclic perturbation fε → f preserves the J-critical
relations of f . Then there exists bε such that aε = f i

ε(bε) = f i+l
ε (bε) and deg(f i

ε , bε) =

11



m. Taking a suitable local coordinate near bε such that ζ(bε) = 0, we obtain the
corresponding normalized form of fε;

f−i
ε ◦ f lq

ε ◦ f i
ε(ζ) = λq

εζ + ζmp+1 +O(ζmp+2).

If λq
ε �= 1 (that is, Lε �= 0) and p ≥ 2, there are symmetrically arrayed mp

“satellites” near bε as the preimages of the satellites of aε. Recall that aε may be
attracting: this implies, bε may be in the Fatou set.

Now let us return to the definition of the planet when a has one petal. In
the case of λε = λ(= 1), it has been defined by aε. In the case of λε �= λ, a
splits into a pair of repelling and attracting fixed points of f l

ε, say a+
ε and a−ε

respectively. If a has a critical point in its preimages, then either a+
ε or a−ε has

a critical point in its preimages because the J-critical relations are preserved. In
this case, we define the planet as one containing a critical point in its preimages,
and the satellite bas the other one. In particular, if a−ε is the planet, we also say
that a is perturbed into an attracting planet a−ε . If a has no critical point in its
preimages, then we formally define the planet as a+

ε and the satellite as a−ε .

Example. Let us consider perturbations of f(z) = z(1+z)m with m > 1 again.
Recall that 0 is a parabolic fixed point with one petal.

For both perturbations in Example 1, 0 is the planet and −1 + 1/ m
√
λε is

the satellite (See Figure 1). For the second perturbation, 0 is perturbed into an
attracting planet.

On the other hand, for a trivial perturbation fε(z) = z(1+λεz)
m with λε → 1,

where fε are conjugate to f by linear transformations, 0 is the planet with no
satellite.

Prerepelling critical orbits in J(f). By geometric finiteness of f , some crit-
ical orbits in J(f) land on repelling cycles. Since the J-critical relations are pre-
served, such repelling cycles are perturbed into repelling cycles of fε for ε  1.
Let us consider local representations of the perturbations near such cycles.

Let b be a repelling periodic point of f in P (f) ∩ J(f), with multiplier λ and
period l. Then there exists a repelling periodic point bε of fε in P (fε)∩J(fε), with
multiplier λε and period l, such that bε → b and λε → λ. By using a fundamental
fact about linearization near repelling fixed points, we can take suitable local
coordinates ψε, ψ on a neighborhood of b such that ψε(bε) = ψ(b) = 0 and

ψε ◦ f l
ε ◦ ψ−1

ε (z) = λεz → ψ ◦ f l ◦ ψ−1(z) = λz, (2.2)

where ψε converges to ψ uniformly near b. See [5, 8.3 Remark].

1.2.2 Key lemma on horocyclic perturbation.

Here we show a key lemma on horocyclic perturbation, which describes the per-
turbation of an orbit which accumulates on parabolic periodic points. We will

12



see how horocyclic perturbations control the parabolic bifurcations.
Let a0 be a periodic point of f with period l. The cycle α of a0 is defined by

α :=
{
a0, f(a0), . . . , f

l−1(a0)
}
.

When a0 is parabolic (resp. attracting, etc.), we call α a parabolic (resp. attract-
ing, etc.) cycle.

Let us fix an x ∈ Ĉ whose orbit accumulates on a parabolic cycle α. For
an arbitrarily small δ > 0, set ∆ = ∆(δ) :=

⋃
a∈αBσ(a, δ), and take N0 =

N0(x, δ) � 0 such that fn(x) are contained in ∆ for all n ≥ N0. Now the key
lemma is described as:

Lemma 1.2.2 If the perturbation fε → f is horocyclic, then there exists an
N ≥ N0 such that fn

ε (x) are contained in ∆ for all n ≥ N and all ε 1.

To simplify the proof of this lemma, we use “linearization” of parabolic bifur-
cations due to C. McMullen[12].

Proof. We begin the proof with constructing a simpler representation of the
perturbation.

Linearizing parabolics. Let us take an integer k so that fk(a) = a and
(fk)′(a) = 1 for any a ∈ α, and replace f by fk. Then we may assume that
α = {a} is a fixed point with multiplier 1 and that ∆ = Bσ(a, δ). It is sufficient
to prove the statement in this case.

From the conditions of horocyclic perturbation, there exists a fixed point aε

of fε converging to a. We may assume ε 1 such that aε is contained in ∆ and
sufficiently close to a. Now we set

λε = exp(Lε + iθε) := 1/f ′
ε(aε),

which tends to 1 with θ2
ε = o(|Lε|).

By replacing ∆ = ∆(δ) with smaller δ and the definition of horocyclic pertur-
bation, we can take a normalized convergent form on ∆ as (1.1);

fε(z) = λ−1
ε z + zp+1 +O(zp+2) → f(z) = z + zp+1 +O(zp+2)

where z(aε) = z(a) = 0 and p is the petal number of a. Moreover, we take a
simpler form of the convergence as follows.

First, by using local coordinates such that z(aε) = z(a) = ∞, we obtain

fε(z) = λεz + z1−p +O(z−p) → f(z) = z + z1−p +O(z−p) (2.3)

as a normal form of the convergence. Next, by using [12, Theorem 8.3] and
additional linear conjugacies, we can show that there exist quasiconformal maps

13



φε,0, φ0 with φε,0 → φ0 near infinity and φε,0(∞) = φ0(∞) = ∞ such that

Tε(z) := φε,0 ◦ fε ◦ φ−1
ε,0(z) = (λp

εz
p + 1)1/p

→ T (z) := φ0 ◦ f ◦ φ−1
0 (z) = (zp + 1)1/p. (2.4)

Where p-th roots are taken so that (λp
εz

p+1)1/p = λεz+O(1) and (zp+1)1/p = z+
O(1). Note that Tε and T are p-fold branched coverings of linear transformations
T̃ε(w) = λp

εw + 1 and T̃ (w) = w + 1 respectively (where w = zp). We call this
form (2.4) a linearized model of the perturbation fε → f near a.

Let φε (resp. φ) be the composition of local coordinates of aε (resp. a)
as (2.3) with φε,0 (resp. φ0) as (2.4). Then we obtain φε → φ, a uniformly
convergent family of local coordinates near a, which satisfies φε(aε) = φ(a) = ∞
and conjugates fε → f to Tε → T . Finally, by replacing ∆ = ∆(δ) with much
smaller δ, we may assume that ∆ is the domains of φε and φ.

Now let us show the lemma by using the linearized model as (2.4). Take a
constant R � 0 and a closed disk D := {|z| ≥ R}, such that D is contained in
both φε(∆) and φ(∆). Then there exists an N1 ≥ N0 such that φ(fn(x)) ∈ D
for all n ≥ N1. Moreover, by uniform convergence of fε → f and φε → φ, we
may assume that φε(f

N1
ε (x)) ∈ D. To prove the lemma, it is enough to show that

there exists an N ≥ N1 such that φε(f
n
ε (x)) ∈ D for all n ≥ N .

The proof breaks into the cases of p = 1 and p ≥ 2.

Case 1: p = 1. Now φε → φ conjugates fε → f to

Tε(z) = λεz + 1 → T (z) = z + 1 (2.5)

on D, with φε(aε) = φ(a) = ∞. (See Figure 3. The four regions are centered at
infinity.)

When λε = 1, Tε is still parabolic and

T k
ε (φε(f

N1
ε (x))) = φε(f

N1
ε (x)) + k ∈ D

for all k ≥ 0. This implies that fN1+k
ε (x) never escapes from φ−1

ε (D) ⊂ ∆ for all
k ≥ 0. Hence we take N1 as N in this case.

We henceforth assume that |λε| �= 1. By the perturbation, a splits into a
pair of attracting and repelling fixed points. We may suppose that aε is the
repelling one, and let bε denote the attracting one. (Here we do not consider
which the planet is.) Then |1/λε| = |f ′

ε(aε)| > 1, that is, Lε ↗ 0. Moreover, in
the linearized model (2.5), φε(bε) must be the attracting fixed point of Tε; thus
φε(bε) = (1 − λε)

−1 =: b′ε, and the multiplier of b′ε is λε.
Since the real part of T n(z) tends to infinity, there exists an integer N ≥ N1

such that φ(fN (x)) is in D∩ {| arg z| < π/4}. By uniform convergence of fε → f

14



f T

φ

fε Tε

φε

|z| = R

Figure 1.5: The dynamics on a neighborhood of infinity.

D D

φ(fN (x)) φε(f
N
ε (x))

∞ ∞

T Tε

b′ε

Figure 1.6: The orbits of fN (x) and fN
ε (x) in the model.
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and φε → φ, we may also assume that y := φε(f
N
ε (x)) is in D ∩ {| arg z| < π/4}

for all ε 1(Figure 4).
To see the dynamics of Tε in detail, we take a Möbius conjugacy of Tε by

w = ψε(z) =
z − b′ε
y − b′ε

,

which maps ∞ �→ ∞, b′ε �→ 0 and y �→ 1. This conjugates the action of Tε to
w �→ λεw with |λε| < 1. Hence 1 = ψε(y) is attracted to 0 = ψε(b

′
ε) by the

iteration of w �→ λεw.
Now we claim: For any fixed ε  1, fn

ε (x) is contained in ∆ for all n ≥ N ,
and converges to bε as n → ∞. In other words, the whole orbit of 1 = ψε(y) is
contained in ψε(D) where the conjugation between Tε and w �→ λεw holds.

Set B := Ĉ −D and B′ := ψε(B). Then B′ is defined by this inequality:∣∣∣∣w − b′ε
b′ε − y

∣∣∣∣ < R

|b′ε − y| . (2.6)

We will show that the orbit of 1, that is, {1 = ψε(y), λε, λ
2
ε , . . .}, never enters

B′.
For all ε  1, the center b′ε/(b

′
ε − y) of B′ is approximately 1 − y(Lε + iθε).

On the other hand, for any k such that |k(Lε + iθε)|  1, λk
ε is approximately

1+k(Lε+iθε). Since |arg y| < π/4, the direction of first several points of the orbit
{1, λε, λ

2
ε , . . .} is opposite to the center of B′ with respect to 1. This means, at

least, the orbit does not go to B′ immediately (Figure 5).

λk
ε ≈ 1 + k(Lε + iθε)

1

B′

Lε + iθε

0

Figure 1.7: The orbit of 1 = ψε(y) near 1

Suppose that θε = 0. Then the orbit of 1 accumulates on 0 along the real
axis, and it is disjoint from B′.

Suppose that θε �= 0. We may assume that θε > 0 because the signature of θε

determines only the direction of the rotation by the action of w �→ λεw. Then
the orbit of 1 returns near the positive real axis by nearly 2π/θε times iterations
of w �→ λεw. Now we have to handle the case where the order of θε ↘ 0 is lower
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10

B′

lε

Figure 1.8: The orbit of 1

than that of Lε ↗ 0: Then the orbit might touch B′. However, we will show that
it cannot occur if ε 1.

Now note that the following two facts: when the orbit of 1 returns near the pos-
itive real axis, the distance between 0 and the orbit is nearly lε := exp(2πLε/θε);
on the other hand, by (2.6), B′ is contained in a ball centered at 1 with radius
O(|Lε + iθε|), that is, every point in B′ tends to 1 as ε→ 0.

By these facts, if lim inf |Lε/θε| �= 0, lε does not tend to 1 and the orbit of 1
never touches B′ (Figure 6).

Otherwise we can take a decreasing sequence εn ↘ 0 such that Lεn/θεn → 0.
Now lεn → 1 as n→ ∞. In this case, |1 − lεn| ≈ 2π|Lεn|/θεn for n� 0 thus

O(|Lεn + iθεn|)
|1 − lεn |

= O
(∣∣θεn + iθ2

εn
/|Lεn|

∣∣) → 0 (εn → 0). (2.7)

This means, for any choice of {εn}, every point in B′ tends to 1 faster than lεn

does. Note that the order of convergence in (2.7) depends only on the order of
Lε, θε → 0 (not on the choice of {εn}). Hence for ε 1, the orbit of 1 is attracted
to 0 without entering B′.

Case 2 : p ≥ 2. Now φε → φ with φε(aε) = φ(a) = ∞ conjugates fε → f to

Tε(z) = (λp
εz

p + 1)1/p → T (z) = (zp + 1)1/p (2.8)

on D. As in the case of p = 1, we may assume that

φ(fN (x)) ∈
p−1⋃
j=0

{∣∣∣∣arg z − 2πj

p

∣∣∣∣ < π

4p

}

for an N ≥ N1, and

y = φε(f
N
ε (x)) ∈

p−1⋃
j=0

{∣∣∣∣arg z − 2πj

p

∣∣∣∣ < π

4p

}

for all ε 1.

17



Let us consider a semiconjugation of Tε by a branched covering w = π(z) = zp.
Then the dynamics of Tε on D is reduced to the dynamics of T̃ε(w) = λp

εw+ 1 on
π(D) = {|w| ≥ Rp}(Figure 7). Similarly, π(z) gives a semiconjugacy from T (z)
on D to T̃ (w) = w + 1 on π(D).

D = {|z| ≥ R}

π

Tε T̃ε

{|w| ≥ Rp}

Figure 1.9: w = π(z) = zp

By the same argument as the case of p = 1, when λε = 1, the orbit of π(y)
tends to w = ∞ and never escapes from π(D). Similarly, if |λε| �= 1, the orbit of
π(y) tends to an attracting fixed point, which is either w = ∞ or w = 1/(1−λp

ε),
and never escapes from π(D). Thus the original orbit of φε(f

N
ε (x)) by Tε never

escapes from D. �

Remark. One can easily check that the same result holds if we replace x with
a compact set in the parabolic basin of a. We will use this in the proof of
Proposition 1.3.2.

1.3 Construction of Ω and Ωε

In this section, we prepare the ingredients for the construction of the semiconju-
gacy; Ω, Ωε and h0 : Ωε → Ω.

To simplify the arguments, from this section to §7, we assume that J(f) �= Ĉ.
The case of J(f) = Ĉ is treated in §8.

Let us introduce some notation. Let A denote the finite set of all parabolic
points of f . We define the sets of all preperiodic critical orbits in the Julia sets
by

Z :=
∞⋃

n=1

fn(C(f) ∩ J(f)), Zε :=
∞⋃

n=1

fn
ε (C(fε) ∩ J(fε)).

In addition, we set Z1 := f−1(Z) and Z1
ε := f−1

ε (Zε). Since fε → f preserves
the J-critical relations of f , card(Zε) ≤ card(Z) < ∞ in general. The equality
holds precisely if none of the parabolic points of f is perturbed into an attracting
planet.
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1.3.1 Construction of Ω.

Here we construct a compact set Ω for f .

Proposition 1.3.1 There exists a finitely connected compact set Ω ⊂ Ĉ with the
following properties:

1. Ω∩ (P (f) ∪C(f)) = J(f) ∩ (P (f)∪C(f)). This set is the union of A and
all critical orbits in J(f).

2. J(f) ⊂ Ω and f−1(Ω) ⊂ Int(Ω) ∪ A.

Proof. To define the compact set Ω, we will construct two open sets F and V
which consist of finitely many simply connected components.

Let a be an attracting or parabolic periodic point of f and α the cycle of a.
First, we construct F : If α is attracting, we take a small disk neighborhood Fa

for each a ∈ α such that f(Fa) ⊂ Ff(a). Here we can take {Fa} to be pairwise
disjoint. If α is parabolic, we take Fa for each point a ∈ α to be a small “flower”
(that is, a union of attracting petals for each attracting directions of a) such that
f(Fa−{a}) ⊂ Ff(a). Here we can also take {Fa} to be pairwise disjoint, and each
∂Fa to be tangent to the repelling directions.

Now we set
F :=

⋃
α

⋃
a∈α

Fa

where α ranges over all attracting and parabolic cycles. Note that f(F −A) ⊂ F .
Next, we construct V : Let C(f, α) denote the set of all critical points of f

whose orbits accumulate on α but never land on it. Now let us set Fα :=
⋃

a∈α Fa.
For each c ∈ C(f, α), there exists a natural number N = N(c) such that fn(c) ∈
Fα for all n ≥ N . Then we can take a family of open disks {V i

c }
N
i=0 satisfying the

following conditions (See Figure 1.10):

• V i
c is a small disk-neighborhood of f i(c);

• V i
c ∩ V j

c = ∅ for i �= j;

• V N
c ⊂ Fα; and

• f(V i
c ) ⊂ V i+1

c for all i < N .

Now we set

V :=
⋃
α

⋃
c∈C(f,α)

N(c)⋃
i=0

V i
c

where α ranges over all attracting and parabolic cycles. Note that f(V ) ⊂ V ∪F .
Using F and V , we define Ω as Ĉ − (F ∪ V ). Then we can easily check that

Ω satisfies the conditions in the statement. �
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V 0
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f f ff

Figure 1.10: The orbit of c and
{
V i

c

}

1.3.2 Construction of Ωε and the “0-th” map h0.

Next we consider a horocyclic perturbation fε → f preserving the J-critical
relations of f . For each fε, we construct a compact set Ωε corresponding to
Ω = Ĉ− (F ∪ V ), and the correspondence is represented by the map h0(= h0,ε) :
Ωε → Ω.

Proposition 1.3.2 For each ε  1, there exists a compact set Ωε ⊂ Ĉ and a
continuous map h0(= h0,ε) : Ωε → Ω with the following properties:

1. Ωε ∩ (P (fε) ∪ C(fε)) = J(fε) ∩ (P (fε) ∪C(fε)), and this set is the union of
all parabolic points of fε and all critical orbits in J(fε).

2. J(fε) ⊂ Ωε and f−1
ε (Ωε) � Ωε.

3. h0 : Ωε → Ω is surjective.

4. If there exists y ∈ Ω such that card(h−1
0 (y)) ≥ 2 then y is a parabolic point

and card(h−1
0 (y)) = p(y). Moreover, y is perturbed into an attracting planet

and h−1
0 (y) is the set of p(y) repelling satellites of the attracting planet.

5. For each bε ∈ Z1
ε , there exists a unique b ∈ Z1 such that bε → b, and

h0(bε) = b.

Moreover, for any fixed r > 0, we can make h0 satisfy

sup {dσ(h0(x), x) : x ∈ Ωε} ≤ r

for all ε 1.

For example, suppose that f is hyperbolic; that is, both A and J(f) ∩ C(f)
are empty. For ε 1, fε is a very small perturbation of f , thus every attracting
cycle of f is perturbed into an attracting cycle of fε. By uniform convergence
of fε → f , we obtain fε(F ) ⊂ F for all ε  1. Similarly, if ε  1, V satisfies
fε(V ) ⊂ V ∪ F . Hence we can set Ωε := Ω = Ĉ − (F ∪ V ) and h0 := id.
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For general geometrically finite rational maps, to construct Ωε for fε → f , we
need to modify F ; in particular, certain parts of the flowers {Fa}a∈A. We also
need additional modification near the critical orbits in the Julia set.

Let us fix an r > 0 and set Bx := Bσ(x, r/2) for each x ∈ A∪Z1. We suppose
that r is sufficiently small so that Bx ∩ Bx′ = ∅ for different x, x′ ∈ A ∪ Z1 and
that Bx ⊂ Int(Ω) for x ∈ Z1 − A.

Modification of Ω near the parabolics. Fix a parabolic point of f , say
a ∈ A. Set Ea := Ω ∩ Ba. We may assume that Ea is a union of p(a) narrow
cusps near the repelling directions.

Lemma 1.3.3 For each ε  1, there exists a compact set E ′
a and a map ha :

E ′
a → Ea with the following conditions:

• ∂Ea ∩ ∂Ba = ∂E ′
a ∩ ∂Ba, and ha is the identity on this set.

• f−1
ε (E ′

f(a)) ∩Ba ⊂ E ′
a.

• Ba − E ′
a ⊂ F (fε).

• ha : E ′
a → Ea is continuous and surjective.

• If y ∈ Ea and card(h−1
a (y)) ≥ 2, then y = a. In this case, a is perturbed

into an attracting planet aε and h−1
a (y) is the set of all repelling satellites

of aε.

• dσ(ha(x), x) ≤ r for any x ∈ E ′
a.

Proof. For simplicity, here we only treat the case where a is a fixed point with
multiplier 1. The case of a with multiplier �= 1 or period �= 1 is similar.

As fε → f horocyclically, suppose that a is perturbed into the planet aε, a
fixed point of fε.

Let us consider the local dynamics by f−1 and f−1
ε restricted near Ba. We

denote by g (resp. gε) the branch of f−1 (resp. f−1
ε ) near Ba which fixes a (resp.

aε). Then a is still a parabolic fixed point of g and aε is a fixed point of gε with
multiplier 1/f ′

ε(aε). Note that gε → g is a locally defined horocyclic perturbation,
thus we can apply Lemma 1.2.2.

Set p := p(a), the petal number of a. The construction of E ′
a and ha breaks

into the cases of p = 1 and p ≥ 2.

Case 1 : p = 1. In this case, we may assume that aε is an attracting or parabolic
fixed point of gε. (Here we need not distinguish planet from satellite.)

Now ∂Ea∩∂Ba is an arc. Let e1 and e2 be its end points. Since r is sufficiently
small, we may assume that e1 and e2 are enough close to the attracting direction
for g, and that their orbits by g accumulate on a within Ea. Then we may apply
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the argument in Lemma 1.2.2 to the orbits of e1 and e2 by gε. For ε 1, joining
the orbits of ei (i = 1, 2) by gε contained in Ba, we obtain a piecewise smooth
Jordan arcs ηi with the following properties:

• Joining from ei to aε.

• gε(ηi) ⊂ ηi ⊂ Ba ∪ {ei} and fε(ηi) −Ba ⊂ Fa

• η1 ∩ η2 = {aε}.

In fact, joining ei and gε(ei) by nearly straight curve and taking the union of
their forward images by gε, we obtain such a curve ηi. We define E ′

a as the
closure of the region in Ba enclosed by η1, η2 and ∂Ea ∩ ∂Ba. Then we see that
f−1

ε (E ′
a) ∩Ba ⊂ E ′

a.

e1

e2

Ba

e1

e2

Ba

ha

E ′
a Ea

a

Figure 1.11: Construction of E′
a

We claim thatBa−E ′
a ⊂ F (fε) for ε 1. Let us take an arbitrary x ∈ Ba−E ′

a.
If the orbit of x never escapes from Ba and is attracted to the parabolic or

attracting point of fε in Ba, then x ∈ F (fε). So we consider the case where
the orbit of x escapes from Ba. Then for some i > 0, f i

ε(x) is contained in the
compact set Fa − Ba ⊂ F (f).

By the local dynamics in Fa, there exists N � 0 such that fN(Fa −Ba) is
contained in Ba and is sufficiently near the attracting direction of a. By uni-
form convergence of fε → f , we may suppose the same holds for fN

ε (Fa −Ba).
Furthermore, since fn(Fa −Ba) converges uniformly to a within Ba as n tends
to infinity, we may apply the argument in Lemma 1.2.2 to the forward images
of fN

ε (Fa −Ba) by fε; thus fn
ε (Fa −Ba) converges uniformly to the parabolic or

attracting point of fε within Ba. This implies x ∈ F (fε).
Finally we define the map ha : E ′

a → Ea: Let us take a Riemann map Rε :
Int(E ′

a) → D, here D is the unit disk. Since the boundary of E ′
a is a Jordan

curve, Rε is extended to a homeomorphism Rε : E ′
a → D. Similarly, we take an

extended Riemann map R : Ea → D. By choosing a suitable topological map
Hε : D → D, we obtain ha := R−1 ◦Hε ◦Rε such that:

• ha : E ′
a → Ea is a homeomorphism;

22



• ha|(∂E ′
a ∩ ∂Ba) = id; and

• ha(aε) = a.

Furthermore, since the radius of Ba is r/2, we obtain dσ(ha(x), x) ≤ r for any
x ∈ E ′

a.

Case 2 : p ≥ 2. Now Ea is the union of p narrow cusps which intersect only
at a. We distinguish these p cusps as {E1, . . . , Ep}; that is, each Ej is a union of
{a} and one of the p connected components of Ea − {a}. Let e1j and e2j be the
end points of ∂Ej ∩ ∂Ba for j = 1, . . . , p.

As in the case of p = 1, let us apply the argument in Lemma 1.2.2. Then we
can take gε-invariant path ηij which joins eij and a parabolic or attracting point
of gε generated in Ba by the perturbation of a. We define E ′

j as the compact set

in Ba enclosed by η1j , η2j , and ∂Ej ∩ ∂Ba. Note that we obtain the following
three cases:

1. The planet aε is a parabolic fixed point of fε, that is, the multiplier f ′
ε(aε)

satisfies f ′
ε(aε) = 1. In this case, each E ′

j joins Ej∩∂Ba to aε and
⋂p

j=1E
′
j =

{aε}.

2. The planet aε is a repelling fixed point of fε, that is, the multiplier f ′
ε(aε)

satisfies |f ′
ε(aε)| > 1. In this case, each E ′

j joins Ej∩∂Ba to aε and
⋂p

j=1E
′
j =

{aε} (Figure 1.12).

3. The planet aε is an attracting fixed point of fε, that is, the multiplier f ′
ε(aε)

satisfies |f ′
ε(aε)| < 1. In this case, each E ′

j joins Ej ∩ ∂Ba to one of the
symmetrically arrayed repelling satellites of aε and

⋂p
j=1E

′
j = ∅ (Figure

1.12).

|f ′
ε(aε)| > 1 |f ′

ε(aε)| < 1

Figure 1.12: Cases 2 and 3 of E′
a

Now we set E ′
a :=

⋃p−1
j=0 E

′
j . We can show Ba − E ′

a ⊂ F (fε) for ε  1 by the
same argument as the case of p = 1.
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For each E ′
j , let us take a homeomorphism ha,j : E ′

j → Ej in the same way as
ha for p = 1, and define a continuous map ha : E ′

a → Ea by ha|E′
j = ha,j . Then

ha has the following properties:

• ha|(∂E ′
a ∩ ∂Ba) = id;

• ha : E ′
a → Ea is surjective; and

• if y ∈ Ea and card(h−1
a (y)) ≥ 2, then y = a. Moreover, a is perturbed into

the attracting planet aε, and h−1
a (y) consist of p repelling satellites of aε.

In particular, we also obtain dσ(ha(x), x) ≤ r for any x ∈ E ′
a. �

Finally let us show the existence of Ωε.

Proof(Proposition 1.3.2). For each fixed ε 1, set

Ωε :=

(
Ω −

⋃
a∈A

Ba

)
∪
⋃
a∈A

E ′
a.

By the construction of E ′
a, one can easily check that J(fε) ⊂ Ωε and f−1

ε (Ωε) � Ωε.
To check that Ωε ∩ (P (fε) ∪ C(fε)) = J(fε) ∩ (P (fε) ∪ C(fε)), it is sufficient

to show that the critical orbits in the Fatou set never land on Ωε.
Let us take cε ∈ C(fε) ∩ F (fε). Then there exists c ∈ C(f) such that cε →

c (ε→ 0).
If c ∈ J(f), by geometric finiteness of f , the orbit of c lands on a parabolic

or repelling cycle, say α. Since the J-critical relations of f are preserved, cε
also lands on a cycle. By our assumption that cε ∈ F (fε), α must be parabolic
and the orbit of cε must land on an attracting cycle which is generated by the
perturbation of α. Thus the orbit of cε never lands on Ωε by the definition of⋃

a∈AE
′
a.

If c ∈ F (f), the orbit of c accumulates on a parabolic or attracting cycle. By
the construction of Ω, c is not contained in Ω. Similarly, by the definition of Ωε,
we may assume that cε /∈ Ωε. Let us suppose that fn

ε (cε) ∈ Ωε for some n. Then
cε ∈ f−n

ε (Ωε) � Ωε and it is a contradiction. Thus fn
ε (cε) /∈ Ωε for all n.

Finally we define h0 : Ωε → Ω. Since fε → f preserves the J-critical relations
of f , we may assume that for any b ∈ Z1 − A, Bb contains only one point of
Z1

ε , say bε, such that bε → b. Recall that Bb ⊂ Int(Ω), by the assumption for r.
Let hb : Bb → Bb be an arbitrary topological map which satisfies hb(bε) = b and
hb|∂Bb = id. Then we obtain dσ(hb(x), x) ≤ r for x ∈ Bb.

Let us define h0 : Ωε → Ω by

h0 = ha on E ′
a for a ∈ A,

h0 = hb on Bb for b ∈ Z1 − A, and

h0 = id otherwise.

�
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1.4 Construction of hn

For Ωε and Ω constructed in §3, we set

Ωn
ε := f−n

ε (Ωε) and Ωn := f−n(Ω) (n = 0, 1, 2, . . .).

In addition, we set Un
ε := Int(Ωn

ε ) and Un := Int(Ωn). By the construction of
these sets, fε : Ωn+1

ε → Ωn
ε and f : Ωn+1 → Ωn are branched covering maps, where

the critical values are contained in Zε and Z respectively. Note that {Ωn
ε } and

{Ωn} form the decreasing sequences as below:

Ωε = Ω0
ε � Ω1

ε � · · · � Ωn
ε � Ωn+1

ε � · · · � J(fε),

Ω = Ω0 � Ω1 � · · · � Ωn � Ωn+1 � · · · � J(f).

In this section, we inductively construct a sequence of lifts of h0 : Ω0
ε → Ω0,

{hn(= hn,ε) : Ωn
ε → Ωn}∞n=1

satisfying f ◦ hn+1 = hn ◦ fε.

Proposition 1.4.1 For an n ≥ 0, assume that there exists hn(= hn,ε) : Ωn
ε → Ωn

satisfying the following properties:

(1, n) hn is continuous and surjective.

(2, n) hn maps Un
ε onto Un homeomorphically. Moreover, if there exists y ∈ Ωn

such that card(h−1
n (y)) ≥ 2 then fn(y) is a parabolic point of f perturbed

into an attracting planet and card(h−1
n (y)) = deg(fn, y) · p(fn(y)).

(3, n) For any bε ∈ Z1
ε , there exists a unique b ∈ Z1 such that

hn(bε) = b.

Under these assumptions, there exists hn+1(= hn+1,ε) : Ωn+1
ε → Ωn+1 satisfying

f ◦ hn+1 = hn ◦ fε

and properties (1, n+ 1), (2, n+ 1) and (3, n+ 1).

Recall that the map h0 : Ω0
ε → Ω0 has properties (1, 0), (2, 0), and (3, 0).

Thus this proposition gives us desired {hn : Ωn
ε → Ωn}∞n=1.

Proof. The proof breaks into 3 steps.
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Step 1: Interior correspondence. The first step is to try to construct a
homeomorphism between Un+1

ε and Un+1. To begin with, we construct hn+1 such
that the following diagram commutes:

Un+1
ε − Z1

ε

hn+1−−−→ Un+1 − Z1

fε

� �f

Un
ε − Zε

hn−−−→ Un − Z

Here f |(Un+1−Z1) and fε|(Un+1
ε −Z1

ε ) are d-sheeted covering maps. Moreover, by
properties (2, n) and (3, n), hn|(Un

ε −Zε) is a homeomorphism. We will construct
prospective hn+1 in the diagram by lifting this hn|(Un

ε − Zε). Note that Un
ε and

Un for n ≥ 1 are either connected or finitely many connected components. (For
example, suppose that J(f) is a Cantor set.) Hence we construct hn+1 on each
connected component of Un+1

ε − Z1
ε .

Let Q1
ε be a connected component of Un+1

ε −Z1
ε , and take a base point x1

0 ∈ Q1
ε .

Set Qε := fε(Q
1
ε), a connected component of Un

ε , and set x0 := fε(x
1
0) ∈ Qε.

Moreover, set Q := hn(Qε) and y0 := hn(x0) ∈ Q.
Let y1

0 ∈ Un+1 be the closest point to x1
0 in f−1(y0). Such y1

0 is uniquely
determined, since critical values in the Fatou sets stay a bounded distance away
from Qε and Q. Let Q1 denote a connected component of f−1(Q) containing y1

0 .
We will lift hn to hn+1 such that the following diagram commutes:

(Q1
ε , x

1
0)

hn+1−−−→ (Q1, y1
0)

fε

� �f

(Qε, x0)
hn−−−→ (Q, y0)

Take a point x1 ∈ Q1
ε and a curve ηε : [0, 1] → Q1

ε such that ηε(0) = x1
0 and

ηε(1) = x1. Then the curve hn(fε(ηε)) has the initial point y0. We lift this curve
to η : [0, 1] → Q1 with the initial point y1

0, and define hn+1(x
1) as its end point

η(1).
Since hn|Qε is a homeomorphism and the J-critical relations of f are preserved,

for the fundamental groups π1(Q
1
ε , x

1
0) and π1(Q

1, y1
0),

(hn)∗ : (fε)∗π1(Q
1
ε , x

1
0) → f∗π1(Q

1, y1
0)

is a group isomorphism. Hence the above definition of hn+1(x
1) gives the home-

omorphism hn+1 : (Q1
ε , x

1
0) → (Q1, y1

0) as a lift of hn : (Qε, x0) → (Q, y0) (See [11,
Ch.III]).

Now we have a homeomorphism hn+1 : Un+1
ε − Z1

ε → Un+1 − Z1. For x ∈
Uε ∩ Z1

ε , let us set hn+1(x) := hn(x). Then we obtain a homeomorphism hn+1 :
Un+1

ε → Un+1 as a natural lift of hn : Un
ε → Un.
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Step 2: Boundary correspondence. The second step is to extend hn+1 de-
fined on Un+1

ε to the boundary ∂Un+1
ε = ∂Ωn+1

ε , in a natural way. Here we should
be careful about the boundary correspondence near the preimages of a parabolic
point which is perturbed into an attracting planet. Note that the injectivity of
hn has already been broken at some of these points.

To construct hn+1|∂Ωn+1
ε , it suffices to construct hn+1|∂Q1

ε for each Q1
ε in Step

1. For x1
0 ∈ Q1

ε and x1 ∈ ∂Q1
ε , take a curve ηε : [0, 1] → Q1

ε ∪{x1} with ηε(0) = x1
0

and ηε(1) = x1. Now the value of hn+1 at x1 is defined by

hn+1(x
1) := lim

t→1
hn+1(ηε(t)) ∈ ∂Q1.

One can easily check that this value does not depend on the choice of ηε.
By this definition, if a ∈ ∂Q1 is a parabolic point with p ≥ 2 petals and

is perturbed into an attracting planet, then h−1
n+1(a) is p distinct points in ∂Q1

ε

corresponding to p distinct accesses to a in Ea. The case of k-th preimages of a
with k ≤ n+1 is similar. Moreover, note that hn+1(x

1) = hn(x1) if x1 ∈ ∂Q1
ε ∩Z1

ε .

Step 3: Checking the properties. Now we have already defined a continuous
map hn+1 : Ωε → Ω. For the last step, we check that hn+1 has properties (1, n+1),
(2, n+ 1) and (3, n+ 1).

Note that hn+1|Q1
ε is a homeomorphism and hn+1|Q1

ε is continuous. Thus
bijectivity of hn+1 may break only at the boundary points. For a boundary point
y1 of Q1, take a curve η : [0, 1] → Q1 ∪ {y1} such that η(0) = y1

0 and η(1) = y1.
Then the limit of h−1

n+1(η(t)) as t → 1 determines an element of h−1
n+1(y

1) which
is contained in the boundary of Q1

ε . Hence hn+1|∂Q1
ε is surjective and we obtain

property (1, n+ 1).
Next, suppose that q := card(h−1

n+1(y
1)) ≥ 2. Note that η determines an access

to y1 within Q1 and an element of h−1
n+1(y

1). Thus q ≥ 2 means that there are
two or more distinct accesses to y1 (more precisely, there are two or more distinct
prime ends of Q1 at y1). By the definition of Ωn+1, fn+1(y1) must be a parabolic
point with p ≥ 1 petals such that q = p · deg(fn+1, y1) ≥ 2. By the definition
of Ωn+1

ε , such a must be perturbed into an attracting planet, since otherwise all
possible η determines the same element of h−1

n+1(y
1). Thus we obtain property

(2, n+ 1).
Finally, we obtain property (3, n + 1) by the fact that hn+1(x

1) = hn(x1) if
x1 ∈ Z1

ε . �

1.5 Contracting property of f−1

By the construction above, hn is one of the branches of f−n ◦ h0 ◦ fn
ε . This

implies, to obtain the convergence of {hn} on J(f), it is necessary to use some
kind of contracting property of the branches of f−1 (in other words, some kind
of expanding property of f) near the Julia set. In this section, to obtain such a
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property of f , we follow [16, Step 2-5] with brief sketches of the proofs. The idea
is originally due to A. Douady and J. H. Hubbard[1, Exposé No.X].

1.5.1 Branched covering of Ω

There exists a function v : Ω → N such that v(x) is the multiple of v(y) ·deg(f, y)
for each y ∈ f−1(x). For example,

v(x) =
∏

fn(y)=x

deg(f, y)

satisfies this condition. Here we take v as the function which takes minimal
possible values. Note that Z = {x ∈ Ω : v(x) ≥ 2}.

Let O be an open δ-neighborhood of Ω with δ  1. Then O contains a
neighborhood of each a ∈ A. For x ∈ O − Ω, set v(x) = 1. Let us take an
N -sheeted branched covering q : O∗ → O such that:

• O∗ is connected;

• there are N/v(x) points over x ∈ O; and

• for any y ∈ q−1(x), deg(q, y) = v(x).

Now set U := Int(Ω), U ∗ := q−1(U) and Ω∗ := q−1(Ω). For U ∗ let us take
the universal covering π : D → U ∗, where D is the unit disk. Then we obtain a
branched covering p := q ◦ π : D → U .

Let Γ be the fundamental group of U ∗ and Λ(Γ ) the limit set of Γ . By lifting
paths in Ω∗ terminating at boundary points, we can continuously extend π to
the ideal boundary, π|(∂D − Λ(Γ )) → ∂Ω∗. Thus we obtain a branched covering
p : D − Λ(Γ ) → Ω.

Remark. For a parabolic point a of f with multiple petals, every component
of Ea −{a} defines a different access to a. For such accesses, corresponding ideal
boundary points of ∂D − Λ(Γ ) over a are distinct.

1.5.2 Lifting f−1

Next, we lift f−1 to the branched covering D − Λ(Γ ) of Ω.

Proposition 1.5.1 There is a holomorphic map g : D → D such that f◦p◦g = p.
Moreover, g can be extended to g : D − Λ(Γ ) → D − Λ(Γ ) continuously.
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Sketch of the proof. For x ∈ Ω, we take a small disk neighborhood Bx. Let
G be one of the components of q−1(Bx), and H that of (f ◦ q)−1(Bx). Then
there exists a unique y such that {y} = f−1(x) ∩ q(H). By taking suitable local
coordinates, q|G → Bx and (f ◦ q)|H → Bx are represented as z �→ zv(x) and
z �→ zv(y) deg(f,y) respectively. Thus we can define the unique map gGH : G → H
which has the form

z �→ zv(x)/(v(y) deg(f,y))

as a branch of (f ◦ q)−1 ◦ q.
Let us fix x0 ∈ Ω − Z and x̃0 ∈ p−1(x0). Let η be a curve η : [0, 1] → Ω∗

with η(0) = π(x̃0) and η((0, 1)) ⊂ U ∗, and η′ be the unique lifting of η by π
with η̃(0) = x̃0. Now we consider analytic continuation of the function elements
{gGH} along η̃. Let gG0H0 be a function element at π(x̃0). Since D − Λ(Γ )
is simply connected, the analytic continuation of gG0H0 along η̃ determines a
unique function element at η̃(1). Next, by ranging over all possible η, we obtain
g : D − Λ(Γ ) → D − Λ(Γ ). It is clear that g|D is holomorphic.�

1.5.3 The metric ρ

Proposition 1.5.2 There exists a piecewise continuous metric ρ with the follow-
ing properties:

• ρ is defined on U −Z and small disk neighborhoods for each parabolic point
of f .

• For every C1 curve η ⊂ f−1(Ω) = Ω1,

lengthρ(f ◦ η) > lengthρ(η).

So f is expanding for ρ in the sense of this inequality.

Sketch of the proof. Let ρ0 = u0(z)|dz| be a metric of U − Z induced from
the Poincaré metric of D by the branched covering p : D → U . Note that
u0(z) � |z − b|−1+1/v(b) near b ∈ Z. Thus any rectifiable curve η : [0, 1] → U
passing through Z has finite length with respect to ρ0.

However, any curve in f−1(Ω) terminating at A has infinite length with respect
to ρ0. So we try to modify ρ0 so that such a curve has finite length.

For a sufficiently small δ > 0 and for each a ∈ A, set Da := Bσ(a, δ) and
D :=

⋃
a∈A Da. Note that Ω ∩ D is a finite union of narrow cusps near the

repelling directions. Thus on each Da, we can take a suitable local coordinate
ζa such that f is strictly expanding from the metric |dζa| to the metric |dζf(a)|
on any compact subset of f−1(Ω ∩ Df(a)) ∩ Da − {a}. Furthermore, we take a
sufficiently large M > 0 so that for any a ∈ A, f is expanding from ρ0 to M |dζa|
on a relatively compact set f−1(Ω ∩ Da − Z) − D. Set ua(z)|dz| := |dζa|. Then
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we define the metric ρ = u(z)|dz| on U ∪ D − Z by u(z) := min {u0(z),Mua(z)}
for z ∈ Da, and by u(z) := u0(z) otherwise.

By construction, it is not difficult to show

u(f(z))|f ′(z)| > u(z)

for z ∈ f−1(Ω − Z) − A. This implies

lengthρ(f ◦ η) > lengthρ(η).

for every C1 curve η ⊂ f−1(Ω). �

1.5.4 Continuous modulus

Let ρ̃ be the lifting of ρ on p−1(U − Z). Since f−1(Ω) = Ω1 has one or more
connected components, p−1(Ω1) is either connected or has countably many con-
nected components. Take one of the components of p−1(Ω1), say Q, and take
x, y ∈ Q. We define the distance by

dρ̃(x, y) := inf
η̃

lengthρ̃(η̃),

where η̃ ranges over all rectifiable curves such that

η̃ : [0, 1] → p−1(Ω1), η̃(0) = x, and η̃(1) = y.

Note that such η̃ has finite length with respect to ρ̃. Now (Q, dρ̃) is a complete
metric space. For different components Q and Q′ of p−1(Ω1), we formally define
dρ̃(x, y) := ∞ if x ∈ Q and y ∈ Q′.

For g, a lifting of f−1, we define a function τg : R+ → R+ by

τg(s) := sup
{
dρ̃(g(x), g(y)) : x, y ∈ p−1(Ω1), dρ̃(x, y) ≤ s

}
.

Furthermore, we define τ : R+ → R+ by

τ(s) := sup
{
τg(s) : g a lifting of f−1

}
.

Then we obtain:

Proposition 1.5.3 τ has the following properties:

(i) τ is an increasing and right-continuous function;

(ii) s > τ(s) for any s;

(iii) the function s �→ s− τ(s) is also increasing; and

(iv) For any x, y ∈ p−1(Ω1) and any lifting g of f−1,

dρ̃(g(x), g(y)) ≤ τ(dρ̃(x, y)).
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Sketch of the proof. If we replace τ by τg, then (i), (ii) and (iv) are almost
clear by definition. (iii) follows from the fact that τg(s1 + s2) ≤ τg(s1) + τg(s2).
A calculation shows that there exist d distinct liftings of f−1, say g1, . . . , gd, such
that any τg coincide with one of τg1, . . . , τgd

. Thus

τ(s) = sup {τgi
(s) : 1 ≤ i ≤ d},

and satisfies properties (i)-(iv). �

1.6 Convergence of hn

In this section, we give the proof of the convergence of the sequence {hn : Ωn
ε → Ωn}∞n=0.

Here the expanding property of f with respect to ρ plays an important role. For
instance, we can easily show the convergence when f is hyperbolic:

Proposition 1.6.1 Suppose that f is hyperbolic. For ε  1, the sequence hn

converges uniformly to the limit hε on J(fε) which satisfies f ◦ hε = hε ◦ fε.

Proof. Since f has no parabolic point nor critical point in J(f), the metric ρ
in Proposition 1.5.2 is the Poincaré metric on U . Now Ω1 ⊂ U thus there is a
constant C such that f∗ρ/ρ ≥ C > 1 on Ω1.

Note that the constant

M := sup
{
dρ(h0(x), h1(x)) : x ∈ Ω1

ε

}
is finite since h0(Ω

1
ε) ⊂ U . For any x ∈ Ω2

ε , we obtain

Cdρ(h1(x), h2(x))

≤dρ(f(h1(x)), f(h2(x))) = dρ(h0(fε(x)), h1(fε(x)))

≤M,

thus dρ(h1(x), h2(x)) ≤M/C. Similarly, for any x ∈ J(fε), we obtain

dρ(hn(x), hn+1(x)) ≤M/Cn → 0 (n→ ∞).

(Recall that J(fε) ⊂ Ωn
ε and thus hn|J(fε) are defined for any n ≥ 0.) Hence hn

converges uniformly and rapidly to the limit hε on J(fε). The relation f ◦ hε =
hε ◦ fε follows from f ◦ hn+1 = hn ◦ fε. �

Let us consider the general case. When f has parabolic points, it is not uni-
formly expanding on Ω1. However, since it is uniformly expanding on each com-
pact subset of Ω1 with respect to the metric ρ, hn converges slowly to the limit:

Proposition 1.6.2 For ε 1, the sequence hn converges uniformly to the limit
hε on J(fε) which satisfies f ◦ hε = hε ◦ fε. Moreover, hε can be arbitrarily close
to the identity map: That is, for arbitrarily small r > 0, if ε 1, hε satisfies

sup {dσ(hε(x), x) : x ∈ J(fε)} < r.
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Proof. Let us fix an arbitrary L > 0. Then we may assume that

dρ(h0(x), h1(x)) < L− τ(L)

for any x ∈ J(fε). In fact, by the construction of h0 and h1, if ε 1, dρ(h0(x), h1(x))
can be arbitrarily small for any x ∈ J(fε).

We claim that dρ(h0(x), hn(x)) < L for any n ≥ 1 and any x ∈ J(fε). If n = 1,
dρ(h0(x), h1(x)) < L−τ(L) < L. For n = k, let us assume that dρ(h0(x), hk(x)) <
L for any x ∈ J(fε). We first show that

dρ(h1(x), hk+1(x)) < τ(L).

By assumption, we can take a rectifiable curve η : [0, 1] → Ω1 such that

• η(0) = h0(fε(x)) and η(1) = hk(fε(x));

• η ∩ Z = ∅; and

• L > lengthρ(η).

Fix z0 ∈ p−1(h0(fε(x))), and let η̃ be the lifting of η by p whose initial point is
z0. Then the end point over hk(fε(x)) is uniquely determined, say z1, and

L > lengthρ(η) = lengthρ̃(η̃)

> dρ̃(z0, z1).

By using the function τ ,

τ(L) > τ(dρ̃(z0, z1)) ≥ dρ̃(g(z0), g(z1)),

where g is a lifting of f−1 such that p ◦ g(z0) = h1(x). Then we can take a curve
η̃′ : [0, 1] → D − Λ(Γ ) such that

• η̃′(0) = g(z0) and η̃′(1) = g(z1);

• η̃′ ∩ p−1(Z) = ∅; and

• τ(L) > lengthρ̃(η̃
′).

Hence

τ(L) > lengthρ̃(η̃
′) = lengthρ(p ◦ η̃′)

> dρ(p(g(z0)), p(g(z1))) = dρ(h1(x), hk+1(x)).

Then for n = k + 1 and for any x ∈ J(fε),

dρ(h0(x), hk+1(x)) ≤ dρ(h0(x), h1(x)) + dρ(h1(x), hk+1(x))

< L− τ(L) + τ(L) = L.
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Thus we have shown the claim by induction on n.
Let us show the convergence. By the same argument as above, for sufficiently

large integer l, m,

dρ(hl(x), hm+l(x)) < τ l
(
dρ(h0(f

l
ε(x)), hm(f l

ε(x)))
)

< τ l(L) → 0 (l → ∞).

Because we can take arbitrary x ∈ J(fε), hn converges uniformly on J(fε) with
respect to the distance dρ. Since the topology of Ωn defined by dρ is equivalent to
the topology defined by the spherical distance dσ, hn also converges uniformly on
J(fε) with respect to dσ. By continuity of each hn, the limit hε is also continuous.
The relation f ◦ hε = hε ◦ fε follows from f ◦ hn+1 = hn ◦ fε.

Finally we show the last part of the statement. Let us fix any r > 0 and
suppose that ε  1. Then we can take h0 such that dσ(x, h0(x)) < r/2 for any
x ∈ J(fε). On the other hand, by the claim above, we obtain dρ(h0(x), hε(x)) ≤ L
for arbitrarily small L. Since we may also suppose that L is sufficiently small such
that dσ(h0(x), hε(x)) < r/2 for any x ∈ J(fε), we obtain

dσ(x, hε(x)) ≤ dσ(x, h0(x)) + dσ(h0(x), hε(x)) < r.

�

1.7 Almost bijectivity and uniqueness of hε

In this section, we prove that the continuous map hε in Proposition 1.6.2 maps
J(fε) onto J(f) “almost bijectively”; that is, there are at most countably many
points in J(f) where hε is not one-to-one. Furthermore we prove the uniqueness
of such an hε.

First we show:

Proposition 1.7.1 hε maps J(fε) to J(f).

Proof. Let X denote the set of all repelling periodic points of fε. Since hε◦fn
ε =

fn ◦ hε for any n, hε maps X to a set of periodic points of f in Ω, which must be
a subset of J(f). Since hε is continuous and J(fε) = X, hε maps J(fε) into J(f).
�

Next, we complete the proof of Theorem 1.1.1 under the assumption that
J(f) �= Ĉ. For fixed ε, let A− = A−,ε ⊂ A be the set of all parabolic points
of f which are perturbed into attracting planets of fε.

Proposition 1.7.2 If ε 1, hε : J(fε) → J(f) has the following properties:

• (Surjectivity) hε is surjective.
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• (Almost injectivity) If hε(x) = hε(x
′) for distinct x, x′ ∈ J(fε), then there

exists an integer N such that fN
ε (x) and fN

ε (x′) are repelling satellites of
an attracting planet aε generated by the perturbation of a point in A−.

• (Uniqueness) hε is the unique semiconjugacy between fε and f on their
respective Julia sets which satisfies properties 1 and 2 in Theorem 1.1.1.

By the almost injectivity above, we obtain the precise condition for hε to be
a topological conjugacy.

Corollary 1.7.3 hε is a topological conjugacy if and only if A− = ∅; that is,
none of the parabolic points of f is perturbed into an attracting planet.

Proof of Proposition 1.7.2: Surjectivity. Fix any y ∈ J(f). By surjectivity
of hn, there is a sequence xn ∈ Ωn

ε ⊂ Ωε such that hn(xn) = y. Since Ωε is compact,
{xn} has an accumulation point x ∈ Ωε and we can choose a subsequence xnk

so
that xnk

→ x (k → ∞). Now we claim that x ∈ J(fε). If x ∈ F (fε), f
n
ε (x) is

attracted to an attracting or parabolic cycle as n → ∞. Thus there exists an N
and a small disk neighborhood D such that fn

ε (D) is outside of Ωε for all n ≥ N .
On the other hand, for all k � 0, we have nk ≥ N , xnk

∈ D, and fnk
ε (xnk

) ∈ Ωε.
This is a contradiction.

Since hn → hε uniformly and the family {hn} is clearly equicontinuous, the
inequality

dρ(y, hε(x)) ≤ dρ(hnk
(xnk

), hnk
(x)) + dρ(hnk

(x), hε(x))

implies y = hε(x). Thus hε is surjective.

Preliminary to the almost injectivity and uniqueness. Since f is geo-
metrically finite and the assumption that J(f) �= Ĉ, f has at least one critical
point in the Fatou set, and so does fε. Now we take suitable conjugations of
fε → f0 = f by rotations of Ĉ so that ∞ ∈ C(fε)∩F (fε). By the construction of
Ωε, there exist R � 0 such that D(R) := Ĉ − {|z| ≤ R} is a disk neighborhood
of ∞ which is not contained in Ωε for all 0 ≤ ε  1. Then Ωε and J(fε) are
bounded sets in the complex plane.

For δ > 0 and x ∈ C, we set

B(x, δ) := {z ∈ C : |z − x| < δ},

which is an open Euclidean ball. Now we fix δ to be sufficiently small so that the
set

B :=
⋃

x∈A∪Z1

B(x, δ)

is a disjoint union of balls satisfying the following conditions:
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• if an x ∈ A ∪ Z1 is periodic, then there exists a local chart on B(x, δ) as
(2.2) or (2.4); and

• for x ∈ Z1 − A, P (f) ∩B(x, δ) = {x}.

Set s̃ := d(P (f), J(f)−B), where d(·, ·) is the distance between sets measured
by Euclidean distance. Since f is geometrically finite, every critical orbit either
accumulates on an attracting or parabolic cycle, or is already contained in Z1.
Hence we obtain 0 < s̃ ≤ δ.

Now we claim that d(P (fε), J(fε) − B) > s̃/2 for all ε  1. It suffices to
restrict our attention to the perturbation of the critical orbits accumulating on
A or Z1. First, take a parabolic cycle α ⊂ A and a critical orbit accumulating to
α. By horocyclicity of fε → f , we may apply Lemma 1.2.2. That is, for ε  1,
the corresponding perturbed critical orbit of fε is contained in ∪a∈αB(a, δ) ⊂ B
except finitely many points in the orbit. Since fε → f uniformly, such finitely
many points are very close to the original ones. On the other hand, J(fε) is very
close to J(f) with respect to the Hausdorff topology, since hε maps J(fε) onto
J(f) and r-neighborhood of J(f) with respect to the spherical distance contains
h−1

ε (J(f)) = J(fε). (Recall that r is fixed and arbitrarily small for ε 1.) Thus
such finitely many points stay away from J(fε)−B for ε 1, and the distance can
be at least s̃/2. Next, take b ∈ Z1. Since fε → f preserves the J-critical relations
of f , for all ε  1, we may suppose that there exists a unique bε ∈ f−1

ε (P (fε))
such that |b − bε| < δ/2. For such bε, d(bε, J(fε) − B) ≥ δ/2 ≥ s̃/2. Thus we
conclude the claim.

Replacing fε (resp. f) by its suitable iteration, we may consider the extreme
case where every point in h−1

0 (A) ∪ Zε (resp. A ∪ Z) is a fixed point of fε (resp.
f), and the multipliers of all parabolic points are 1. Then Zε and Z are the sets
of all critical values of fε and f on their respective Julia sets.

Set Γ− = Γ−,ε := h−1
0 (A−), the set of all repelling satellites generated by the

perturbation of parabolic points in A−. Note that now every element in A− or
Γ− is a fixed point of f or fε respectively. Also, note that Γ− and Zε are disjoint.

Almost injectivity. Now let us start the discussion on the almost injectivity
of hε. We suppose that hε(x) = hε(x

′) for distinct x, x′ ∈ J(fε). Set xn := fn
ε (x)

and x′n := fn
ε (x′). Then hε(xn) = hε(x

′
n) because fn ◦ hε = hε ◦ fn

ε . Recall that
dσ(x, hε(x)) < r for any x ∈ J(fε). Thus we obtain

dσ(xn, x
′
n) ≤ dσ(xn, hε(xn)) + dσ(hε(x

′
n), x′n) < 2r

and it implies |xn − x′n| = O(r). Indeed, since the Julia set is contained in
Ĉ − D(R), there exists a constant M ≈ 1 + R2 such that |xn − x′n| ≤ Mr for
sufficiently small r. Now we set

r̃ := sup
n

|xn − x′n| (≤Mr).
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Then we may suppose that r is sufficiently small such that r̃ ≤ Mr < s̃/2 for
ε 1. Note that r̃ ≤Mr < δ/2 also holds.

For the orbit of the x and x′, we consider the following three cases:

1. Both xn and x′n land on Γ−.

2. xn lands on Γ− but x′n never lands on Γ−.

3. Both xn and x′n never land on Γ−.

Case 1: Suppose that xn lands on h−1
ε (a) for some a ∈ A− when n = N . Here

h−1
ε (a) ⊂ Γ− is a set of repelling fixed points contained in Bσ(a, r). By the facts

that
Bσ(a, r) ⊂ B(a,Mr) ⊂ B(a, δ/2)

and r̃ < δ/2, x′n must be contained in B(a, δ) for all n ≥ N . If x′N /∈ h−1
ε (a),

by the local dynamics of fε on B(a, δ) in the form (2.4), x′n goes out of B(a, δ).
Thus x′N ∈ h−1

ε (a); that is, xn and x′n simultaneously land on repelling satellites
in h−1

ε (a), when n = N .
Hence we need to show that the other cases cannot occur.

Case 2: We suppose again that xn lands on h−1
ε (a) for some a ∈ A− when

n = N . By the same argument as Case 1, x′n must be contained in B(a, δ) for
all n ≥ N . However, x′n /∈ h−1

ε (a) ⊂ Γ−, and thus by the local dynamics of fε on
B(a, δ) in the form (2.4), x′n goes out of B(a, δ). This is a contradiction.

Case 3: Furthermore we need to consider the following three cases:

I. xn lands on Zε but x′n never lands on Zε.

II. Both xn and x′n land on Zε.

III. Both xn and x′n never land on Zε.

Case 3-I: Suppose that xn lands on h−1
ε (b) for some b ∈ Z when n = N . Here

h−1
ε (b) ⊂ Zε is a repelling or parabolic fixed point of fε contained in Bσ(b, r). By

the same argument as above, x′n must be contained in B(b, δ) for n ≥ N . Now
x′n never lands on Zε. This implies, by the local dynamics of fε on B(b, δ) in the
form (2.2) or (2.4), x′n goes out of B(b, δ). This is also a contradiction.

Case 3-II: Since r̃ < δ/2 and all elements of Z1
ε remain at leaset δ apart, the

orbits of x and x′ have merged before landing on Zε: That is, there exist two
integers N1 and N2 with N1 < N2 such that

• xN1 �= x′N1
and xN1+1 = x′N1+1, and
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• xN2 = x′N2
∈ Z1

ε and xN2+1 = x′N2+1 ∈ Zε.

Set w := xN1+1 = x′N1+1. Since w is not contained in Zε, which is the set
of critical values, the inverse image f−1

ε (w) consists of d distinct points. (Recall
that d is the degree of f .) Similarly, by the construction of hε, hε(w) =: z is not
contained in Z and f−1(z) also consists of d distinct points. Moreover, since hε

is surjective, h−1
ε (f−1(z)) must consist of at least d points.

Note that f−1
ε (w) ⊂ h−1

ε (f−1(z)). Since hε(xN1) = hε(x
′
N1

) for distinct xN1 , x
′
N1

∈
f−1

ε (w), there exists an x′′ ∈ h−1
ε (f−1(z))−f−1

ε (w) which satisfies fε(x
′′) �= w and

hε(fε(x
′′)) = z. Setting w′ := fε(x

′′), we obtain hε(w) = hε(w
′) for w �= w′. Let us

replace x and x′ by w and w′ respectively. This reduces Case 3-II with xN2 ∈ Z1
ε

to Case 3-I or 3-II with xN2−N1−1 ∈ Z1
ε .

However, as we have seen, Case 3-I implies a contradiction. In Case 3-II, we
can repeat the argument above. Hence we eventually consider the case where
hε(x) = hε(x

′) for x �= x′ with x ∈ Z1
ε .

Suppose that fε(x) = h−1
ε (b) for some b ∈ Z. Then fε(x) is contained in

Bσ(b, r) and is a repelling or parabolic fixed point. On the other hand, since the
elements of Z1

ε remain separated, x �= x′ implies x′ /∈ Z1
ε , and thus fε(x

′) /∈ Zε.
By the local dynamics of fε on B(b, δ) in the form (2.2) or (2.4), fε(x

′) is not a
fixed point and goes out of B(b, δ). This is a contradiction.

Case 3-III: If either xn or x′n lands in B, it goes out of B by finitely many
iterations of fε. Now we take a subsequence {nk} of {n} so that each xnk

is never
contained in B; that is, xnk

∈ J(fε) − B. Recall that d(P (fε), J(fε) − B) > s̃/2.
For any s satisfying r̃ < s < s̃/2 and for any k � 0, there exists a branch gnk

of
f−nk

ε on B(xnk
, s) which is univalent and gnk

(xnk
) = x. Set Vnk

:= gnk
(B(xnk

, r̃)).
Then Vnk

contains x and x′. By applying the Koebe distortion theorem to gnk
on

B(xnk
, s), we obtain

diamVnk
= O(|g′nk

(xnk
)|) = O(1/|(fnk

ε )′(x)|).

If |P (fε)| < 3, fε is conjugate to z �→ z±d, and thus it is hyperbolic. On the
Julia set, |(fnk

ε )′(x)| → ∞ as k → ∞ hence lim(diamVnk
) = 0. It contradicts

x �= x′.
If |P (fε)| ≥ 3, let ρε be the Poincaré metric of Ĉ − P (fε). By [13, Theorem

3.6], since xn /∈ P (fε) for any n, we obtain

‖(fn
ε )′(x)‖ρε

=
ρε(f

n
ε (x))|(fn

ε )′(x)|
ρε(x)

→ ∞ (n→ ∞).

Now recall again that d(P (fε), J(fε)−B) > s̃/2. Since xnk
and x stay away from

P (fε), ρε(f
nk
ε (x)) and ρε(x) are bounded. Hence |(fnk

ε )′(x)| → ∞ as k → ∞, then
lim(diamVnk

) = 0. It contradicts x �= x′ again.
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Uniqueness. From Proposition 1.6.2, Proposition 1.7.1 and the proof of the
almost bijectivity above, it is easy to check that hε satisfies properties in Theorem
1.1.1. In particular, we obtain property 1 in Theorem 1.1.1 from the almost
injectivity discussed above and property (2, n) of hn in Proposition 1.4.1.

Let h′ε be another semiconjugacy between fε and f on their respective Julia
sets with properties 1 and 2 in Theorem 1.1.1. Take a repelling periodic point x
of fε which has period more than one. By our assumption that h−1

ε (A) ∪ Zε is
a set of fixed points, x does not belong to Γ− ∪ Zε. By surjectivity of h′ε, there
exists an x′ ∈ J(fε) such that

hε(x) = h′ε(x
′).

It is easy to see that hε(x) and x′ are also repelling periodic points with the same
period as x.

Set xn := fn
ε (x) and x′n := fn

ε (x′). Then hε(xn) = hε(x
′
n) because hε and h′ε

are semiconjugacies. Moreover, we obtain dσ(xn, x
′
n) < 2r from property 2 in

Theorem 1.1.1. Thus
|xn − x′n| ≤Mr < δ/2

for all n and we may suppose that x′n belongs to Γ− ∪ Zε as well as xn.
Now we can apply the same argument as Case 3-III of the proof of the almost

injectivity, and we conclude that x = x′. This means that hε = h′ε on the dense
subset of J(fε), because repelling periodic points are dense in the Julia set. Since
hε and h′ε are continuous, h′ε must coincide with hε on J(fε). �

1.8 Geometrically finite maps with the empty

Fatou set

In this section, we prove Theorem 1.1.1 for a geometrically finite rational map f
with J(f) = Ĉ by using the same idea as in the case of J(f) �= Ĉ.

Now f has no parabolic or (super)attracting periodic point. Moreover, by
the geometric finiteness, every critical point of f is preperiodic; that is, f is
postcritically finite. Then we can consider the orbifold Of with base space Ĉ

which is parabolic or hyperbolic type[13, §A]. This Of has an orbifold metric
ρ = ρ(z)|dz| which is induced from the Euclidean or hyperbolic metric of the
universal covering. In both cases, there exists a constant C > 1 such that

‖f ′‖ρ :=
f∗ρ

ρ
≥ C.

(See the argument in [13, Theorem A.6]). Note that ρ has singularity at b ∈ P (f)
as |d(z − b)1/v(b)|.

Let us consider a horocyclic perturbation fε → f preserving the J-critical
relations of f . Since f has no parabolic point, horocyclicity is trivial. By the
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J-critical relations of f , fε is also postcritically finite. Since f has no attracting
or superattracting periodic point, fε has no superattracting periodic point: This
implies J(fε) is also the whole sphere (See [13, Theorem A.6] again).

Now let us begin the construction of hε.

Proof of Theorem 1.1.1 in the case of J(f) = Ĉ. First, set Ω := Ĉ and
Ωε := Ĉ. We take h0 : Ωε → Ω as a homeomorphism which satisfies condition 5 of
Proposition 1.3.2. For any fixed r > 0, if ε 1, such h0 satisfies dσ(h0(x), x) < r
for all x ∈ Ĉ.

Next, we lift h0 to the family of homeomorphism {hn : Ĉ → Ĉ}∞n=1 as in
Proposition 1.4.1. We can show that hn converges to the limit hε in the same way
as Proposition 1.6.1. In fact, we may replace the Poincaré metric in the proof of
Proposition 1.6.1 with the orbifold metric ρ of Of . Furthermore, we can also lift
h−1

0 to the uniformly convergent sequence of homeomorphisms {h−1
n }. The limit

must be surjective and thus hε : Ĉ → Ĉ is a homeomorphism.
Finally, we show the uniqueness in the same way as Proposition 1.7.2: Let

h′ε be another conjugacy with property 2 in Theorem 1.1.1, and x be a repelling
periodic point of fε which does not belong to P (f). Since h′ε is a homeomorphism,
there exists a unique x′ such that hε(x) = h′ε(x

′). Set xn := fn
ε (x) and x′n :=

fn
ε (x′). By using the uniformly expanding property of fε with respect to the

orbifold metric ρε of Ofε, dρε(x, x
′) is bounded by dρε(xn, x

′
n)/Cn

ε with Cε > 1.
This implies x = x′. Thus hε = h′ε on a dense subset of the sphere, which is a set
of repelling periodic points. By continuity of hε and h′ε, we obtain hε = h′ε on the
whole sphere. �

Remark. If the orbifold Of does not have signature (2, 2, 2, 2) , by Thurston’s
theorem([5], [13, Theorem B.2]), hε is a Möbius transformation which conjugates
fε to f . Here we gave a general construction of the conjugacy hε including such
a particular case of signature (2,2,2,2).
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Chapter 2

Regular leaf spaces of parabolic
quadratic polynomials

2.1 Introduction

As an analogy to hyperbolic 3-orbifolds associated with Kleinian groups, Lyu-
bich and Minsky[3] introduced hyperbolic orbifold 3-laminations associated with
rational maps. For a given rational map f : C̄ → C̄ = C ∪ {∞} of degree ≥ 2,
considering its natural extension Nf and regular leaf space Rf is the first step to
the construction of such a hyperbolic orbifold 3-lamination. The natural exten-
sion Nf is the set of all backward orbits (“history”) of the dynamics. The regular
leaf space Rf is an analytically well behaved part of Nf . The leaves of Rf are

Riemann surfaces and the natural lift f̂ of f acts leafwise isomorphically.
However, the global structures of the regular leaf spaces of rational maps are

not precisely known except only a few examples. Here are some of such examples.
For fc(z) = z2 + c with c in the main cardioid of the Mandelbrot set, all regular
leaf spaces of fc are topologically the same as that of f0(z) = z2, which is 2-
dimensional extension of 2-adic solenoid[4, Example 2][3, §11].

In [2], the author introduced the method of tessellation for fc with c ∈ (0, 1/4]
and describe the structure of the regular leaf space of f1/4 as a degeneration of
that of fc with c ∈ (0, 1/4). Such an fc and f1/4 have topologically the same
dynamics on and outside the Julia sets, and thus their natural extentions have
topologically the same parts. Such a part of Nf1/4

contains the backward orbit
staying at the parabolic fixed point on the Julia set. The intriguing fact is,
the backward orbit is not in Rf1/4

, while corresponding backward orbit in Nfc

staying at the repelling fixed point on the Julia set is in Rfc . To describe this
phenomenon, we need to investigate the degeneration of the dynamics inside the
Julia sets. The tessellation is defined for the interiors of the filled Julia sets
and works like external rays of the dynamics outside the Julia sets. Then we
obtain a precise description of the degeneration and we can lift it to their natural
extentions. Now we have a clear picture of the phenomenon.
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In this chapter, we develop the method of tessellation to treat the case where
fc has a parabolic fixed point of multiple petals. In §2, we survey some of basic
notion on the dynamics of quadratic polynomials. In §3, we show a fundamental
lemma which is necessary for the definition of tessellation. The tessellation for a
quadratic polynomial with an attracting or parabolic fixed point is defined in §4.

In §5, we construct a semiconjugacy H : C̄ → C̄ from a hyperbolic f = fc

to a parabolic g = fσ, by gluing tile-to-tile homeomorphisms and the topological
conjugacy outside the Julia sets induced from Böttcher coordinates. Then we
have the precise description of the degeneration of the dynamics.

In §6, we first survey the basics of natural extensions and regular leaf spaces.
By lifting the semiconjugacy H above to Ĥ : Nf → Ng, we describe how the reg-
ular leaf space degenerates, in detail. The significant degeneration happens only
on the periodic leaves corresponding to the repelling directions of the parabolic
fixed point of g. We construct an analytic model of these degenerating periodic
leaves.

In §7, we apply the method of tessellation to some quadratic polynomials with
attracting cycles.

2.2 Dynamics of quadratic polynomials

In this section we first recall some basic facts on the dynamics of quadratic poly-
nomials on the Riemann sphere.

2.2.1 Douady-Hubbard theory of quadratic polynomials

In [1], Douady and Hubbard developed the theory of complex polynomial dy-
namics. Here we survey some basic results and notions used throughout this
chapter.

The Julia set. Let us set f(z) = fc(z) = z2 + c (c ∈ C) and consider it as a
rational map on the Riemann sphere C̄ = C ∪ {∞} with f(∞) = ∞. The filled
Julia set Kf of f is defined by

Kf :=
{
z ∈ C̄ : {fn(z)}∞n=0 is bounded

}
.

The Julia set Jf of f is the boundary of Kf . One can easily check that those sets
are forward and backward invariant under the action of f .

Böttcher coordinate and external rays. Now suppose thatKf is connected.
(Thus so is Jf .) We denote the unit disk by D. For the outside of Kf , there exists
a unique conformal map φf : C̄ −Kf → C̄ − D̄ such that

• φf (fc(z)) = φf (z)2; and
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• φf (z)/z → 1 as z → ∞.

For θ ∈ R/Z, the external ray of angle θ is defined by the following set:

Rf (θ) =
{
φ−1

f (re2πiθ) : 1 < r <∞
}
.

If the limit of φ−1
f (re2πiθ) as r → 1 exists, it is called the landing point of Rf (θ),

and we denote it by γf (θ).
If Jf is locally connected, φf continuously extends to φ̄f : C̄ −K◦

f → C̄ − D.
In this case, γf (·) defines a semiconjugacy γf : R/Z → Jf from θ �→ 2θ to f |Jf

.
γf is a conjugacy if and only if Jf is a Jordan curve.

Linearizing coordinates. Suppose that f = fc has an attracting fixed point
α with multiplier λ �= 0. (That is, we take c from the main cardioid of the
Mandelbrot set other than the origin.) Then K◦

f is its attracting basin and
contains the critical point z = 0. Moreover, Jf is known to be a quasicircle, and
thus is a Jordan curve.

On a small neighborhood of α, there exists a linearizing coordinate Φf which
analytically conjugates the action of f near α to w �→ λw near the origin. More-
over, we can extend this map to Φf : K◦

f → C, and it is unique up to multiplication
by a constant[5, §8]. Now let us normalize it as follows:

• Φf (f(z)) = λΦf(z);

• Φf (α) = 0, Φf (0) = 1; and

• Φf is an infinitely branched covering whose branch points are
⋃

k≥0 f
−k({0}),

and their ramified points (critical value of Φf ) are {1, λ−1, λ−2, . . .}.

In this chapter, by the linearizing coordinate of α we mean this extended and
normalized Φf .

2.3 Internal landing lemma

In this section we deal with the case of fc(z) = z2 + c with an attracting fixed
point. We will show “Internal landing lemma” for such an f , which gives a nice
invariant arc system in the filled Julia set. In the case of f0(z) = z2, the external
rays naturally penetrate the Julia set (the unit circle) and land at the origin. The
lemma gives a similar fact in the case of c �= 0.

Combinatorial rotation number. We assume from now on that p and q are
relatively prime positive integers. (That is, (p, q) = 1 where we allow p = q = 1.)
Then the following is well-known:
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Lemma 2.3.1 For p and q above, there is a set of q distinct angles Θ := {θ1, . . . , θq}
in Q/Z with 0 ≤ θ1 < · · · < θq < 1 such that:

(1) For each θj ∈ Θ, there exists θk ∈ Θ such that θk = 2θj in Q/Z; and

(2) for such j and k as above, k ≡ j + p mod q.

Then Θ is a periodic cycle of period q under doubling. In particular, such a Θ is
determined uniquely by the value p/q ∈ Q/Z.

We consider that the subscripts {1, . . . , q} of angles of Θ are the elements of
Z/qZ. For Θ = Θ(p/q) above, p/q ∈ Q/Z is called the (combinatorial) rotation
number. Note that each θj ∈ Θ has the form n/(2q − 1) ∈ Q/Z.

Let g(z) := fσ(z) = z2 + σ be a quadratic polynomial which has a parabolic
fixed point of multiplier ω := exp(2πip/q). Note that σ = ω/2−ω2/4. Now let us
fix an r ∈ (0, 1) and take a value c := rω/2 − (rω)2/4 from the main cardioid of
the Mandelbrot set. Then f(z) := fc(z) = z2 + c has an attracting fixed point of
multiplier λ := rω and Jf is a Jordan curve. The dynamics on Jf is topologically
the same as that of f0(z) = z2 on the unit circle.

For the rotation number p/q, let F(p/q) denote the family of such an fc, that
is,

F(p/q) :=
{
fc : c = rω/2 − (rω)2/4, r ∈ (0, 1)

}
.

For example, F(0) = F(1) = {fc : c ∈ (0, 1/4)} and F(1/2) = {fc : c ∈ (−3/4, 0)}.
By Douady-Hubbard theory[1], above lemma implies:

Lemma 2.3.2 For f = fc ∈ F(p/q) and Θ = Θ(p/q) = {θ1, . . . , θq} above, f
maps Rf (θj) onto Rf(θk) univalently iff k ≡ j + p mod q. Thus each Rf (θj) has
period exactly q, that is, f q(Rf(θj)) = Rf(θj).

Note that γf (θj) is a repelling periodic point of period q. In the case of g = fσ,
the external rays Rg(θ1), . . . , Rg(θq) also have the same properties as (1) and (2)
though they have the same landing point at the parabolic fixed point, say β. The
set of angles of external rays landing at β is exactly Θ = {θ1, . . . , θq}, and is
called the portrait of β.

Internal landing lemma. For f ∈ F(p/q), those rays Rf(θ1), . . . , Rf (θq)
above continuously extend to the inside of the Julia set, and meet at the at-
tracting fixed point:

Lemma 2.3.3 (Internal landing) Let α be the attracting fixed point of f . For
θ1, . . . , θq as above, there exist open arcs I(θ1), . . . , I(θq) such that:

• For each j modulo q, I(θj) joins α and γf (θj).

• f maps I(θj) onto I(θk) univalently iff k ≡ j + p mod q.

46



Proof. For w ∈ C, set T (w) := λw = (rω)w. Let Φf : K◦
f → C be the

linearizing coordinate of α, that is, Φf (α) = Φf (0) − 1 = 0 and Φf(f(z)) =
T (Φf (z)). Note that the critical points of Φf are

⋃
k>0 f

−k(0), and thus the
critical values are the form T−k(1) = λ−k (k = 1, 2, . . .).

Set

U0 := C −
q−1⋃
k=0

{
tωk : t ∈ (1,∞)

}
; and

U1 := C −
q−1⋃
k=0

{
tωk : t ∈ (r,∞)

}
.

Note that T (U0) = U1 � U0. Let ρ0 and ρ1 denote the Poincaré metric on U0 and
U1 respectively. Since T : U0 → U1 is a conformal isomorphism,

T ∗ρ1

ρ1

≤ T ∗ρ1

ρ0

= 1

by Schwartz-Pick.
Note that U0 does not contain critical value of Φf . Thus we can take a

univalent branch Ψ of (Φf |U0)
−1 such that Ψ(0) = α. Set

U ′
i := Ψ(Ui) and ρ′i := Ψ∗ρi (i = 0, 1).

Then U ′
i are f -invariant regions in K◦

f and ρ′i are their respective Poincaré metric
with f∗ρ′1/ρ

′
1 ≤ 1 on U ′

1.
For each integer k modulo q, set

Ik = {t exp((2k − 1)πi/q) : t ∈ (0,∞)} ⊂ U1,

and set I ′k := Ψ(Ik) ⊂ U ′
1. Now it is clear that f maps I ′j onto I ′k univalently iff

k ≡ j + p mod q. We claim that I ′k is one of I(θ1), . . . , I(θq) in the statement.
First we show that each I ′k lands at a periodic point in the Julia set Jf . By f q,

I ′k is mapped univalently onto itself. Take {zn}n≥1 in I ′k such that f q(zn+1) = zn.
Set wn := Φf (zn).

Now let ηn denote the line segment of Ik which joins wn and wn+1. Then
lengthρ1

(ηn) are bounded for all n since (T q)∗ρ1/ρ1 ≤ 1. By pushing forward by
Ψ, Ψ(ηn) is getting uniformly closer to Jf since f is hyperbolic. Thus if we set
ρ′1(z) = u(z)|dz|, for any z ∈ Ψ(ηn), u(z) uniformly tends to +∞ as n → ∞.
Thus |zn − zn+1| → 0 as n→ 0.

Let ζ ∈ Jf be an accumulation point of zn. By taking a subsequence {nj} ⊂
{n}, we may assume that znj

→ ζ. By continuity, we also have znj−1 = f q(znj
) →

f q(ζ). Thus

|f q(ζ) − ζ|
≤|f q(ζ) − f q(znj

)| + |znj−1 − znj
| + |znj

− ζ|
→0 (j → ∞).
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1

ω

ω2

I1

I2

I3

0

Figure 2.1: U0 and Ik in the case of p/q = 1/3 (ω = e2πi/3). The dotted lines are
removed from C.

This implies f q(ζ) = ζ. It is not difficult to show that any accumulation point
of I ′k is that of zn. Since the set of accumulation points of I ′k is connected [5,
Problem 5-b] and fixed points of f q are finite, I ′k accumulates only on ζ above.
In other words, I ′k lands on ζ ∈ Jf , a fixed point of f q. Since ζ ∈ Jf and Jf is a
Jordan curve, there exists an angle θ′k such that ζ = γf (θ

′
k).

If f maps γf (θ
′
j) to γf (θ

′
k), then θ′k = 2θj by the dynamics on the Julia set

and k ≡ j + p mod q by the dynamics of I ′1, . . . , I
′
q. Thus

{
θ′1, . . . , θ

′
q

}
has the

combinatorial rotation number p/q and thus
{
θ′1, . . . , θ

′
q

}
= {θ1, . . . , θq}. By

shifting subscripts such that 0 ≤ θ′1 < · · · < θ′q < 1, we have θ′j = θj for all j and
then I ′j satisfies the conditions of I(θj) in the statement. �

Degenerating arc system. For Θ = {θ1, . . . .θq}, set

I(Θ) :=

q⋃
j=1

I(θj) = {α} ∪
q⋃

j=1

(I(θj) ∪ {γf (θj)}).

Since this set contains no critical orbit, its preimages are univalently spread
around in K◦

f . Let If denote
⋃

n≥0 f
−n(I(Θ)). We call If the degenerating arc

system of f with rotation number p/q (See Remark below). Note that If is a
forward and backward invariant set of f .

For each connected component I of If , there is a unique set of q distinct angles
Θ′ =

{
θ′1, . . . , θ

′
q

}
such that:

(1) there exists an n ≥ 0 such that θj = 2nθ′j for all j = 1, . . . q; and

(2) I ∩ Jf =
{
γf(θ

′
1), . . . , γf (θ

′
q)
}
.

We denote such an I by I(Θ′). By I(θ′j) we denote the open arc in I(Θ′) which
is an n-th preimage of I(θj) joining α′ and γf (θ

′
j). In addition, I contains a
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unique α′ such that fn(α′) = α. Thus we abuse the term “portrait” and call Θ′

the portrait of α′ with rotation number p/q, or simply, the portrait of α′ in our
situation.

Now we may consider that If degenerates to
⋃

n≥0 g
−n({β}) as r → 1, and

denote it by Ig. For Θ′ as above, there is a unique β′ ∈ Ig which is the landing
point of external rays Rg(θ

′
1), . . . , Rg(θ

′
q) and satisfies gn(β′) = β. Thus we also

call Θ′ the portrait of β′.

Figure 2.2: Left, the Julia set for an f ∈ F(1/3) with its degenerating arc system
with rotation number 1/3 drawn in. Right, the Julia set for g with rotation
number 1/3. Colors distinguish the regions mapped to distinct copies of C in the
linearized models (§4).

Remark. It is known that for any two c, c′ in the main cardioid of the Man-
delbrot set other than the origin, fc and fc′ are topologically conjugate. Thus for
any fc(c �= 0) with an attracting fixed point, the degenerating arc system with
any rotation number exists.

2.4 Tessellation: Making tiles

In this section, we develop the method in [2] and we tessellate the interior of the
filled Julia sets for such f and g in the proceeding section. Tiles are parameterized
by an address, which consists of an angle ∈ Q/Z, a level ∈ Z, and a signature
∈ {+,−}. Let Θ̃ = Θ̃(p/q) be the set of angles which eventually land on one of
the angles in Θ by iteration of angle doubling. For each θ ∈ Θ̃ and m ∈ Z, we
will define the tile Tf (θ,m,±) with the property

f(Tf (θ,m,±)) = Tf (2θ,m+ 1,±).

We will also define the tiles for g having the same property.
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2.4.1 Tiles of K◦
f

Linearized model. Let Φf : K◦
f → C be the linearizing coordinate of α with

multiplier λ = rω and with portrait Θ = {θ1, . . . , θq}. Recall that Φf(I(θj)) = Ij
for each j modulo q, which is renumbered in the proof of Lemma 2.3.3. Now
{0} ∪

⋃
j Ij divides the plane into q open sectors. For each j modulo q, let Σ∗

j

denote the union of Ij and one of the q sectors bounded by Ij and Ij+1. We also
set Σj := Σ∗

j ∪ {0}.
Let Cj be a copy of C. For w ∈ Σj, we define χ : Σj → Cj by

W = χ(w) :=
1

1 −R
(1 − wq) ∈ Cj,

where R := rq = λq ∈ (0, 1). Note that χ(Σ∗
j) = Cj −{1/(1 − R)} and 1/(1−R)

is fixed by the map W �→ RW + 1. Set a := 1/(1 − R). Now χ naturally glues
the copies C1, . . . ,Cq of C along χ(I1), . . . , χ(Iq) and at χ(0). Thus we consider
that χ is not branched at w = 0. Let

⋃
Cj denote this glued set homeomorphic

to C =
⋃

Σj. Let us define F :
⋃

Cj →
⋃

Cj by

Cj � W
F�−→ RW + 1 ∈ Cj+p.

Then χ conjugates w �→ λw on C =
⋃

Σj and F on
⋃

Cj:

K◦
f

f−−−→ K◦
f

Φf

� �Φf

C =
⋃

Σj
·λ−−−→ C =

⋃
Σj

χ

� �χ⋃
Cj

F−−−→
⋃

Cj

Fundamental semi-annuli. For m ∈ Z and j modulo q, set

A(m,+)j :=
{
W ∈ Cj − χ(Ij) : Rm+1a ≤ |W − a| ≤ Rma, ImW ≥ 0

}
A(m,−)j :=

{
W ∈ Cj − χ(Ij) : Rm+1a ≤ |W − a| ≤ Rma, ImW ≤ 0

}
and we call them the fundamental semi-annuli.

Note the following three facts:

• F maps A(m,±)j onto A(m+ 1,±)j+p univalently.

• χ ◦Φf maps the grand orbit of 0 (critical point) to vertices of fundamental
semi-annuli on the q copies of the interval (−∞, a). In particular, all of the
ramified points (critical values) of χ ◦Φf are on the q copies of the interval
(−∞, 0].
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• For any θ ∈ Θ̃, I(θ) is mapped univalently onto one of the copies of the
interval (a,∞) by χ ◦ Φf .

For the boundary of A(m,±)j, we call the edge on the interval (−∞, a) (resp.
[a,∞)) the critical-edge (resp. degenerating-edge). We call the edges shared by
A(m−1,±)j or A(m+1,±)j the circular edges. Note that the degenerating edge
is not contained in A(m,±)j .

Cj

Cj+p

Cj+2p Cj+2p

Cj+p

Cj

F

F

G

G

Figure 2.3: Linearized models for f and g.

Definition of tiles. Let α′ be a preimages of α such that fn(α′) = α for some
n ≥ 0. Then Φf(α

′) = 0 by the definition. Since U0 ⊂ C in the proof of Lemma
2.3.3 does not contain ramified points (critical values) of Φf , Φ−1

f : U0 → K◦
f

is a multivalued function with univalent branches. Now we take such a branch
Ψ : U0 → K◦

f such that Ψ(0) = α′. Let Θ′ =
{
θ′j
}

be the portrait of α′. Then we
may assume that Ψ(Ij−np) = I(θ′j).

For m ∈ Z and j modulo q, Ψ ◦ χ−1 maps the interior of A(m,+)j into K◦
f

univalently. Since Ψ ◦χ−1 extends to the whole A(m,+)j homeomorphically, the
set

Tf (θ
′
j,m,+) := Ψ ◦ χ−1(A(m,+)j) ⊂ K◦

f

is well defined. Similarly, we set

Tf (θ
′
j+1,m,−) := Ψ ◦ χ−1(A(m,−)j) ⊂ K◦

f .

For any θ ∈ Θ̃ and m ∈ Z, we can define Tf (θ,m,±) in this way and we call it
the tile of address (θ,m,±). Now one can easily check the desired property:

f(Tf (θ,m,±)) = Tf (2θ,m+ 1,±).

For the boundary of T = Tf (θ,m,+) or Tf (θ,m,−), the critical, degenerating and
circular edges are defined by the edges corresponding to the critical, degenerating,
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circular edges of A(m,±)j. Note that ∂T has degenerating edge on I(θ′) while T
does not contain the edge itself.

We call the family of tiles

Tf :=
{
Tf (θ,m, ∗) : θ ∈ Θ̃,m ∈ Z, ∗ ∈ {+,−}

}
defined as above the tessellation of K◦

f with rotation number p/q. Indeed, K◦
f −If

is tessellated by Tf and Kf is the closure of the union
⋃

T∈Tf
T .

2.4.2 Tiles of K◦
g

Let β be the parabolic fixed point of g with multiplier ω = e2πip/q and with
portrait Θ = {θj}. Now {β} ∪

⋃
Rg(θj) divide C into q sectors. For each j

modulo q, let Sj denote the sector bounded by Rg(θj) and Rg(θj+1). (That is, the
union of external rays with angles satisfying θj ≤ θ ≤ θj+1(< θj +1).) Sj contains
an attracting petal Πj ⊂ K◦

g such that gq(Πj) ⊂ Πj. Set Π̃j :=
⋃∞

n=0 g
−nq(Πj).

Note that K◦
g =

⊔
Π̃j . We take q copies C1, . . . ,Cq of C again.

Let us fix k modulo q such that Sk contains the critical point 0 of g. On Π̃k,
there is a unique Fatou coordinate Φk : Π̃k → Ck such that

• Φk(g
q(z)) = Φk(z) + q;

• Φk(0) = 0; and

• Φk is an infinitely branched covering whose branch points are
⋃

m≥0 g
−mq({0}),

and their ramified points (critical value of Φk) are {0,−q,−2q, . . .}.

([5, §10]. We used the fact that w �→ w + 1 is conjugate to w �→ w + q.) We
extend Φk to Φg : K◦

g →
⊔

Cj as following: For any j modulo q, there is an n

such that k ≡ j + pn mod q, that is, gn(Π̃j) = Π̃k. We define Φg on Π̃j by

Π̃j � z
Φg�−→ Φk(g

n(z)) − n ∈ Cj.

Then for z ∈ Cj, we have Φg(g(z)) = Φg(z) + 1 ∈ Cj+p. We define G :
⊔

Cj →⊔
Cj by

Cj � W
G�−→ W + 1 ∈ Cj+p,

and then Φg semiconjugates g on K◦
g and G on

⊔
Cj:

K◦
g

g−−−→ K◦
g

Φg

� �Φg⊔
Cj

G−−−→
⊔

Cj
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Fundamental semi-cylinders. For m ∈ Z and j = 1, . . . , q, set

C(m,+)j := {W ∈ Cj : m ≤ ReW ≤ m+ 1, ImW ≥ 0}
C(m,−)j := {W ∈ Cj : m ≤ ReW ≤ m+ 1, ImW ≤ 0}

and we call them the fundamental semi-cylinders.
Note the following two facts, and compare with the case of f :

• G maps C(m,+)j onto C(m+ 1,+)j+p univalently.

• Φg maps the grand orbit of 0 to the vertices of fundamental semi-cylinders
on the q copies of the real axis (−∞,∞). In particular, all of the ramified
points of Φg are on the q copies of the interval (−∞, 0].

For the boundary of C(m,±)j, we call the edge on the real axis the critical-
edge. We also call the edges shared by C(m− 1,±)j or C(m+ 1,±)j the circular
edges. Note that C(m,±)j has no edges corresponding to degenerating edges of
fundamental semi-annuli.

Definition of tiles. Let β′ be a preimage of β such that gn(β′) = β for some
n ≥ 0, and Θ′ =

{
θ′j
}

be the portrait of β′ with θj = 2nθ′j for each j modulo q.
Note that {β′}∪

⋃
Rg(θ

′
j) divide the plane into q sectors. For each j modulo q, one

of the q sectors bounded by Rg(θ
′
j) and Rg(θ

′
j+1) contains a component Π′ of Π̃j

attached to β′. Let (−∞, 0]j denote the copy of (−∞, 0] in Cj. Since Cj−(−∞, 0]j
does not contain ramified points (critical values) of Φg, Φ−1

g : Cj − (−∞, 0]j →
Π̃j is a multivalued function with univalent branches. Now we take a branch
Ψ : Cj − (−∞, 0]j → K◦

g of Φ−1
g above such that Ψ(Cj − (−∞, 0]j) ⊂ Π′.

For m ∈ Z and j modulo q, Ψ maps the interior of C(m,+)j into K◦
g univa-

lently. Since Ψ extends to the whole C(m,+)j homeomorphically, the set

Tg(θ
′
j,m,+) := Ψ−1(C(m,+)j) ⊂ K◦

g

is well defined. Similarly, we set

Tg(θ
′
j+1,m,−) := Ψ−1(C(m,−)j) ⊂ K◦

g .

For any θ ∈ Θ̃ and m ∈ Z, we can define Tg(θ,m,±) in this way and we call it
the tile of address (θ,m,±). Now one can easily check the desired property:

g(Tg(θ,m,±)) = Tg(2θ,m+ 1,±).

For the boundary of T = Tg(θ,m,+) or Tg(θ,m,−), the critical and circular edges
are defined by the edges which are mapped to the critical and circular edges of
fundamental semi-cylinders by Φg. Note that T has no edge corresponding to the
degenerating edges of {Tf (θ,m,±)}.
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We call the family of tiles

Tg :=
{
Tg(θ,m, ∗) : θ ∈ Θ̃,m ∈ Z, ∗ ∈ {+,−}

}
defined as above the tessellation of K◦

g with rotation number p/q. Indeed, K◦
g is

tessellated by Tg and Kg is the closure of the union
⋃

T∈Tg
T .

Figure 2.4: The tessellation for an f ∈ F(1/1) and z2+1/4, which has a parabolic
fixed point with one petal.

Figure 2.5: The tessellation for an f ∈ F(1/2) and anther f ∈ F(1/3).

2.4.3 Edge sharing

Here we describe how tiles share their edges with one another.
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Circular edges. For f and g, by the definition of Tf and Tg, one can easily
check the following:

For θ ∈ Θ̃, m ∈ Z and ∗ ∈ {+,−}, the tile of address (θ,m, ∗)
shares its circular edges with the tiles of addresses (θ,m − 1, ∗) and
(θ,m+ 1, ∗).

Degenerating edges. Only tiles in Tf have degenerating edges. By the defi-
nition, one can also check the following:

For θ ∈ Θ̃ and m ∈ Z, Tf (θ,m,+) shares its degenerating edge with
Tf (θ,m,−).

Critical edges in K◦
f . The combinatorics of tiles are essentially determined by

the connection of critical edges. Here we consider the critical edges of tiles in Tf .
We begin with some notation. Let δ denote the angle doubling map on R/Z

to itself. For Θ = Θ(p/q) and n = 0, 1, . . ., set Θ−n := δ−n(Θ). Then Θ−n

consists of 2nq angles. We denote them by θ
(−n)
1 , . . . , θ

(−n)
2nq with cyclic order

θ
(−n)
1 < · · · < θ

(−n)
2nq < θ

(−n)
1 + 1 and with subscripts modulo 2nq. One can easily

check that Θ−n ⊂ Θ−n−1 and Θ̃ =
⋃

n Θ−n.
First we consider the insular part of the tessellation. Let us take an α′ such

that fn(α′) = α with minimal n ≥ 0. Then the portrait Θ′ of α′ is a subset of
Θ−n. In the w-plane which is the target space of Φf : K◦

f → C, we take a closed
disk B−n := {|w| ≤ r−n+1}. By the definition of Φf , there exists a univalent
branch Ψ : B−n → K◦

f of Φ−1|B−n with Φ(0) = α′. The image Ψ(B−n) consist of
the tiles of addresses of the form (θ,m,±) with θ ∈ Θ′ and m > −n which are
univalent pull-backs of fundamental semi-annuli in B−n. Thus we have:

Such a tile Tf (θ,m,+) with θ ∈ Θ′ and m > −n shares the critical
edge with Tf (θ′,m,−) where θ′ is the angle next to θ in the cyclic
order of Θ′. More precisely, if we set Θ′ =

{
θ′1, . . . , θ

′
q

}
with cyclic

order θ′1 < · · · < θ′q < θ′1 +1 and with subscripts modulo q, then θ = θ′j
and θ′ = θ′j+1 for some j.

Next we consider the other part of tessellation. Take the univalent branch
Ψ of Φ−1

f on the unit disk of the w-plane such that Ψ(0) = α. Let C0 denote

the pull-back of the circle {|w| =
√
r} by Ψ, which is a simple closed curve in

K◦
f passing through each tile of address (θj, 0,±), where θj ∈ Θ. Let D0 denote

the topological disk bounded by C0, which contains α. For n = 0, 1, . . ., we set
C−n := f−n(C0) and D−n := f−n(D0). Then we have:

• Each C−n is also a simple closed curve, passing though the tiles of addresses

(θ
(−n)
j ,−n,±), where θ

(−n)
j ∈ Θ−n.

• D−n � D−n−1.
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• f : D−n−1 → D−n is a proper 2-fold branched covering.

Since C0 intersects I(θj) once for each j modulo q in the cyclic order of Θ, C−n

intersects I(θ
(−n)
j ) once for each j modulo 2nq in the cyclic order of Θ−n. Thus

we have:

Such a tile Tf (θ,−n,+) with θ ∈ Θ−n shares the critical edge with
Tf (θ

′,−n,−) where θ′ is the angle next to θ in the cyclic order of

Θ−n. That is, θ = θ
(−n)
j and θ′ = θ

(−n)
j+1 for some j modulo 2nq.

More precisely, the angle θ′ is given as following: Now 2nθ = θj ∈ Θ for some
j modulo q. Then 2nθ′ must be θj+1 ∈ Θ. Let � denote the length of the interval
of angle [θj, θj+1]. Then θ′ is given by

θ′ = θ +
�

2n
.

Critical edges in K◦
g . The same argument works for the tiles in Tg with a

little modification. Instead of the insular part of Tf , we use the “flower part” of
the Tg. More precisely, instead of α′ and Ψ(B−n) in the argument above, which
is the union

{α′} ∪
⋃

{Tf (θ,m,±) : θ ∈ Θ′,m > −n},

we take β′ ∈ Ig with portrait Θ′ and use the union

{β′} ∪
⋃

{Tg(θ,m,±) : θ ∈ Θ′,m > −n}.

Instead of the simple closed curve C0 and the topological disk D0, we may use the
curve C ′

0 and the topological disk D′
0 constructed as following: First take attract-

ing petals Π1, . . . ,Πq as in the construction of Tg such that Φg univalently maps
each petal Πj onto the half plane {W ∈ Cj : ReW > 1/2}. Then the boundary
of each Πj passes through the tiles Tf (θj, 0,+) and Tf (θj+1, 0,−). Next we take
a small open disk centered at β, say ∆. Then the boundary circle of ∆ intersects
each boundary of Πj twice, and each Rg(θj) once. Now D′

0 := ∆ ∪
⊔

Πj is a
topological disk containing β as desired. Let C ′

0 be the boundary curve of D′
0.

One can easily check that C ′
−n := g−n(C ′

0) and D′
−n := g−n(D′

0) have similar
properties to C−n and D−n, and we can apply the same argument.

2.5 Pinching semiconjugacy

In this section we construct a semiconjugacy H : C̄ → C̄ by gluing tile-to-tile
homeomorphisms inside the Julia sets and the topological conjugacy induced from
Böttcher coordinates outside the Julia sets.
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Theorem 2.5.1 For f, g as above, there exists a semiconjugacy H : C̄ → C̄

from f to g such that

• H maps C̄ − If to C̄ − Ig homeomorphically and is a topological conjugacy
between f |�̄−If

and g|�̄ −Ig
;

• For each α′ ∈
⋃

n f
−n(α) with portrait Θ′, H maps I(Θ′) onto a point

β′ ∈ Ig with portrait Θ′.

Proof. The rest of this section is devoted to the proof of this theorem. The
proof breaks into four steps.

Conjugacy on the fundamental semi-annuli and semi-cylinders. First
we make a topological map h :

⊔
(Cj −χ(Ij ∪{0}) →

⊔
Cj which maps A(m,±)j

to C(m,±)j homeomorphically. Note that each Cj − χ(Ij ∪ {0}) is a copy of
C − [a,∞). For j modulo q and W ∈ Cj − χ(Ij ∪ {0}), set W := a + ρeit where
ρ > 0 and 0 < t < 2π. We define the map h by

h(W ) :=
log ρ− log a

logR
+ i tan

π − t

2
∈ Cj.

Then one can check that h conjugates the action of F on
⊔

(Cj − χ(Ij ∪ {0})) to
that of G on

⊔
Cj and h maps A(m,±)j to C(m,±)j homeomorphically.

0 1 0 1

t

a

W

R R

h(W )

Figure 2.6: h maps A(0,+)j to C(0,+)j.

Tile-to-tile conjugation. Fix a β′ ∈ Ig with portrait Θ′ =
{
θ′j
}
. For j modulo

q, the boundary of T = Tg(θ
′
j,m,+) contains γg(θ

′
j), and T itself is contained in

the sector bounded by Rg(θ
′
j) and Rg(θ

′
j+1). In particular, T ⊂ Π̃j. Since Φg

does not branch over Cj − (−∞, 0]j , there exist a univalent branch Ψg = Ψg[θ
′
j] :

Cj − (−∞, 0]j → Π̃j which maps the interior of C(m,+)j to that of T . By
extending Ψg to the edges of C(m,+)j, we have a tile-to-tile homeomorphism Ψg :
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C(m,+)j → Tg(θ
′
j,m,+). In the same way, Ψg also extends to Ψg : C(m,−)j →

Tg(θ
′
j+1,m,−). Now we define tile-to-tile homeomorphisms

H| Tf (θ
′
j,m,+) → Tg(θ

′
j,m,+) and

H| Tf (θ
′
j+1,m,−) → Tg(θ

′
j+1,m,−)

by H := Ψg ◦h ◦Φf . By gluing such tile-to-tile homeomorphisms along the edges
of tiles, we obtain the topological conjugacy H : K◦

f − If → K◦
g . (Here we used

the fact that the combinatorics of Tf and Tg are the same.)

Continuous extension to the Julia set. For β′ ∈ Ig with portrait Θ′ above,
we define H(I(Θ′)) := β′. Then H maps If onto Ig and H : K◦

f ∪ If → K◦
g ∪ Ig

semiconjugates f |K◦
f∪If

to g|K◦
g∪Ig . Now we claim that H continuously extends to

H : Kf → Kg.

Take zn ∈ K◦
f ∪ If converging to a point ζ ∈ Jf . Since Jf is a Jordan curve,

there exists θ ∈ R/Z such that ζ = γf (θ). We show that wn := H(zn) ∈ K◦
g ∪ Ig

converges to γg(θ) ∈ Jg. (Recall that Jg is locally connected and γg(θ) ∈ Jg

exists.)

Take a small interval of angle [t, t′] containing θ, where t, t′ ∈ Θ−m with
m � 0. Then γf (t) and γf (t

′) bound a small piece of Jf , and the piece, say J ′
f ,

is a Jordan arc containing ζ. Take an open arc C ⊂ K◦
f joining γf (t) and γf (t

′)
via I(t), C−m, and I(t′). Let V denote the small open set with ∂V = C ∪ J ′

f . By

the definition of H, H(V ) ∩ Jg =: J ′
g is a small piece of Jg which is the set of all

landing points of external rays of angles in [t, t′].

Since zn ∈ V ∪ J ′
f for all n � 0, wn ∈ H(V ) ∪ J ′

g for all n � 0. If there
exists a subsequence {ni} ⊂ {n} such that wni

converges to a point in K◦
g , then

zni
→ ζ ∈ K◦

f − If by the definition of H. This contradicts ζ ∈ Jf . Thus wn

accumulates on J ′
g. Since t and t′ are arbitrarily close to θ, wn must converges to

γg(θ).

Global extension. Finally we define H outside the Julia set by

H : C̄ −Kf → C̄ −Kg

z �→ φ−1
g ◦ φf (z),

which gives a topological conjugacy on the domain, and continuously extends to
the semiconjugacy H : C̄ − K◦

f → C̄ − K◦
g . Then H inside and outside Jf are

continuously glued along Jf . Now H : C̄ → C̄ is a desired semiconjugacy. �
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2.6 Degeneration of the regular leaf spaces

2.6.1 The regular leaf space

We first survey the basic notion on the regular leaf spaces of quadratic polyno-
mials. We follow [3, §3].

The natural extension. For general f = fc (c ∈ C), let us consider the set of
all possible backward orbits

Nf :=
{
ẑ = (z0, z−1, . . .) : z0 ∈ C̄, f(z−n−1) = z−n

}
.

This set is called the natural extension of f , and is equipped with a topology from
C̄× C̄× · · · . On this natural extension, the lift of f and a natural projection are
defined by

f̂(ẑ) := (f(z0), z0, z−1, . . .) and

πf(ẑ) := z0.

It is clear that f̂ is a homeomorphism, and satisfies πf ◦ f̂ = f ◦ πf . For a fixed

point ζ ∈ C̄ of f , set ζ̂ := (ζ, ζ, . . .) ∈ Nf .

The regular leaf space. An element ẑ = (z0, z−1, . . .) ∈ Nf is regular if there
exists a neighborhood U0 of z0 such that its pull-back U−n along the backward
orbit ẑ are eventually univalent. For example, ∞̂ = (∞,∞, . . .) is not regular for
any f = fc (c ∈ C).

Let Rf denote the set of regular points in Nf . Rf is called the regular leaf
space of f . A leaf of Rf is a path connected component of Rf . By [3, Lemma
3.1], leaves of Rf are Riemann surfaces:

Lemma 2.6.1 Leaves of Rf have following properties:

• For each leaf L, we can introduce a complex structure such that πf : L→ C̄

is an analytic map.

• πf : L → C̄ branches at ẑ = (z0, z−1, . . .) ∈ L if and only if ẑ contains a
critical point in {z−n}.

• f̂ maps a leaf to a leaf isomorphically.

This lemma holds for any c ∈ C. In our case, we have:

Proposition 2.6.2 Suppose fc has an attracting or parabolic fixed point ζ. Then
Rfc has the following properties:

• Rfc = Nfc − {∞̂, ζ̂}
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• Each leaf of Rfc is isomorphic to C.

Thus the regular leaf spaces of f and g in the preceding sections have these
properties. This proposition is immediate from lemmas in [3, §3].

2.6.2 Semiconjugacy on the natural extensions

Here we investigate the structure of Rg, the regular leaf space of g. We begin
with some notation and remarks.

For the portrait Θ = {θj} of the attracting fixed point α of f , set γj := γf (θj),
and

γ̂j := (γj, γj−p, γj−2p, . . .).

Then γ̂1, . . . , γ̂q are periodic cycle of period q under the action of f̂ and contained

in Rf . On the other hand, for g, the lift of the parabolic fixed point β̂ = (β, β, . . .)

is not regular and thus β̂ /∈ Rg.
For each j modulo q, we set

Lj := {ẑ = (z0, z−1, . . .) ∈ Rf : z−nq → γj}
L′

j :=
{
ẑ = (z0, z−1, . . .) ∈ Rg : z−nq → Π+

j for all n� 0
}
,

where Π+
j is a repelling petal of β containing the end of Rg(θj) near Jg. Then

each Lj (resp. L′
j) is invariant under the action of f̂ q (resp. ĝq), and actually is a

leaf isomorphic to C. (We will construct the isomorphisms later.) In particular,
f̂ (resp. ĝ) maps Lj (resp. L′

j) to Lj+p (resp. L′
j+p) isomorphically, and thus Lj

(resp. L′
j) is periodic leaf of period q.

For each j modulo q, we define a component Îj of π−1
f (I(θj)) in Lj by

Îj := {(z0, z−1, . . .) ∈ Rf : z−n ∈ I(θj−np)} ⊂ Lj.

Then each Îj is an open arc in Nf which joins α̂ and γ̂j .

Let us set If := π−1
f (If) and Ig := π−1

g (Ig). Take a backward orbit β̂′ =

(β′
0, β

′
−1, . . .) ∈ Ig. Then it uniquely determines a sequence Θ̂′ := (Θ′

0,Θ
′
−1, . . .)

of portraits of each β′
−n. We call Θ̂′ the portrait of β̂′. On the other hand, Θ̂′

bijectively corresponds to a component of If which consists of backward orbits

(z0, z−1, . . .) with z−n ∈ I(Θ′
−n). We denote this component by Î(Θ̂′). Set Θ̂ =

(Θ,Θ, . . .). Then β̂ has the portrait Θ̂ and Î(Θ̂) contains α̂. Note that β̂ and
α̂ are irregular points. However, Î(Θ̂) − {α̂} =

⊔
(Îj ∪ {γ̂j}) is contained in the

regular leaf space Rf . Now the main result is:

Theorem 2.6.3 For f and g as above, there exists a semiconjugacy Ĥ : Nf →
Ng from f̂ to ĝ with the following properties:
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(1) Ĥ : Nf − If → Ng − Ig is a topological conjugacy between f̂ |Nf−If
and

ĝ|Ng−Ig .

(2) For any β̂′ with portrait Θ̂′ as above, Ĥ−1(β̂′) = Î(Θ̂′). In particular, Ĥ−1(β̂) =
Î(Θ̂).

(3) For each j modulo q, Ĥ−1(L′
j) = Lj − Îj ∪ {γ̂j}.

(4) Ĥ maps a leaf of Rf −
⊔
Lj onto a leaf of Rg −

⊔
L′

j.

(5) For a leaf L of Rg −
⊔
L′

j, Ĥ
−1(L) is a leaf of Rf −

⊔
Lj.

Proof. For ẑ = (z0, z−1, . . .) ∈ Nf , set

Ĥ(ẑ) := (H(z0), H(z−1), . . .) ∈ Ng.

Since H is a semiconjugacy from f to g, one can easily check that Ĥ is surjective,
continuous, and satisfies Ĥ ◦ f̂ = ĝ◦Ĥ. Thus Ĥ is a semiconjugacy from f̂ to ĝ on
their respective natural extensions. In particular, since H : C̄ − If → C̄ − Ig is a

topological conjugacy, corresponding lift to the natural extensions Ĥ : Nf −If →
Ng − Ig is also a topological conjugacy. Thus we obtain property (1).

Property (2) comes from the definition of Ĥ above and the one-to-one corre-
spondence between β̂′ with portrait Θ̂′ and Î(Θ̂′).

Now let us show properties (3) to (5), by using the idea of [3, Lemma 3.2]. Take
a leaf L′ in Rg, and fix two distinct points ẑ′ = (z′0, z

′
−1, . . .) and ŵ′ = (w′

0, w
′
−1, . . .)

in L′. Let η̂′ be a path in L′ joining ẑ′ and ŵ′. Then η′−n := πg ◦ f̂−n(η̂′) is a path
joining z′−n and w′

−n, and η′−n has a neighborhood U−n whose pull-back along ẑ′

and ŵ′ is eventually univalent. (That is, η′−n (n � 0) does not pass through β̂
and ∞̂.)

Choose any ẑ = (z0, z−1, . . .) ∈ Ĥ−1(ẑ′) and ŵ = (w0, w−1, . . .) ∈ Ĥ−1(ŵ′).
For N � 0, even if η′−N passes through Ig, H

−1(η′−N) is a path connected set
by the definition of H. Since z−N and w−N are contained in H−1(η′−N), we can
choose a path η−N joining z−N and w−N . Since we may assume that η′−N contains
neither β nor ∞, we may assume that η−N contains neither I(Θ) nor ∞. Then
we can take a neighborhood of η−N whose pull-back along ẑ and ŵ is eventually
univalent. Since we can lift paths {η−N−n} to a path in Nf joining ẑ and ŵ, ẑ

and ŵ are in the same leaf in Rf , say L. Now we have Ĥ−1(L′) ⊂ L, and thus

L′ ⊂ Ĥ(L).

Case 1: Suppose that Ĥ(L) contains either β̂ or ∞̂. Since Ĥ−1(β̂) = Î(Θ̂) and
Ĥ−1(∞̂) = ∞̂, it is equivalent to L∩ Î(Θ) �= ∅, that is, L = Lj for some j modulo

q. Since β̂ and L′ are disjoint, we have

Ĥ−1(L′) ⊂ Lj − Ĥ−1(β̂) = Lj − Î(Θ̂) = Lj − Îj ∪ {γ̂j}.
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Let us set L−
j := Lj − Îj ∪ {γ̂j} for simplicity. Then we have L′ ⊂ Ĥ(L−

j ). Since

L−
j is path connected, so is Ĥ(L−

j ) and thus contained in a leaf of Rg, which must

be L′. Thus we have Ĥ(L−
j ) = L′ and it implies

L−
j ⊂ Ĥ−1(Ĥ(L−

j )) = Ĥ−1(L′) ⊂ L−
j .

Let us show (3) by checking L′ = L′
j. Set

R̂j := {ẑ = (z0, z−1, . . .) ∈ Rf : z−n ∈ Rf(θj−np)} and

R̂′
j := {ẑ = (z0, z−1, . . .) ∈ Rg : z−n ∈ Rg(θj−np)}.

Then R̂j ⊂ L−
j and R̂′

j ⊂ L′
j. Moreover, Ĥ maps R̂j onto R̂′

j univalently. Thus

L′ = Ĥ(L−
j ) must be L′

j.

Case 2: Suppose that Ĥ(L) contains neither β̂ nor ∞̂. It is equivalent to L �= Lj

for any j modulo q. Since Ĥ(L) ⊂ Rg is path connected, there is a leaf of Rg

containing Ĥ(L), which must be L′. In particular, by property (3), L′ �= L′
j for

any j modulo q. Now we have Ĥ(L) = L′ and thus

L ⊂ Ĥ−1(Ĥ(L)) = Ĥ−1(L′) ⊂ L.

Hence we conclude property (5).
Property (4) comes from (3) and (5). Take a leaf L ∈ Rf −

⊔
Lj. Then Ĥ(L)

is path connected and thus contained in a leaf L′ ∈ Rg −
⊔
L′

j. Then we have

L ⊂ Ĥ−1(L′) = L by (5), and it implies Ĥ(L) = L′, a leaf in Rg −
⊔
L′

j. �

2.6.3 Degeneration of periodic leaves.

Let us describe property (3) in further detail. For any j modulo q, Lj compactly

contains all but one component of If ∩ Lj. The exception is Ĥ−1(β̂) ∩ Lj =

Îj ∪ {γj} ⊂ Î(Θ). Since Îj ∪ {γ̂j} and β̂ are invariant under the action of f̂ q and
ĝq respectively, the map

Ĥ| Lj − Îj ∪ {γ̂j} = L−
j → L′

j

is a semiconjugacy from f̂ q|L−
j

to ĝq|L′
j
. Let us describe this semiconjugacy more

precisely.

An analytic model. We start with an analytic model of the dynamics on
⊔
Lj

and
⊔
L′

j. Let C1, . . . ,Cq be q copies of C again, taking subscripts modulo q. Set

λ̃ := q

√
f ′(γ1) · · · f ′(γq)
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where the q-th root is taken to be the closest to 1. Set ã := 1/(1 − λ̃). Then
ã is fixed by the linear map S(W ) = λ̃(W − ã) + ã = λ̃W + 1. Note that as
r → 1 (f → g), |ã| → ∞ and S converges to W �→ W + 1 on any compact subset
of Cj. Now we define a “linear map” F̃ :

⊔
Cj →

⊔
Cj by

Cj � W
F̃�−→ S(W ) ∈ Cj+p.

Then for each j modulo q, F̃ q| Cj → Cj is the same as Sq(W ) = λ̃q(W − ã) + ã.
On the other hand, we define a map G̃ as a copy of G :

⊔
Cj →

⊔
Cj in

the construction of Tg. Then for each j modulo q, G̃q| Cj → Cj is the same as
W �→ W + q.

Simultaneous uniformization. For f (resp. g), take a linearizing (resp. Fa-
tou) coordinate Φ1 on a neighborhood V1 (resp. repelling petal Π+

1 ) of γ1 (resp.
β) such that the action of f q (resp. gq) is conjugate to Sq(w) = λ̃q(w − ã) + ã
(resp. w �→ w + q). In particular, for ρ > 1 sufficiently close to 1, V1 (resp. Π+

1 )
contains ζ0 = φ−1

f (ρe2πiθ1) (resp. φ−1
g (ρe2πiθ1)) and Φ1(ζ0) = 0. Then for any

ẑ = (z0, z−1, . . .) ∈ L1, there exists an N such that z−nq ∈ V1 (resp. Π+
1 ) for any

n ≥ N . By [3, §4], an isomorphism between L1 and C1 is given by:

Φ̂f |L1(ẑ) := (S)Nq(Φ1(z−Nq)).

Similarly, an isomorphism between L′
1 and C1 is given by:

Φ̂g|L′
1
(ẑ) := Φ1(z−Nq) +Nq.

One can easily check that they do not depend on the choice of N . For k =
1, . . . , q − 1, we define Φ̂f : L1+kp → C1+kp and Φ̂g : L′

1+kp → C1+kp by

Φ̂f := F̃ k ◦ Φ̂f |L1 ◦ f̂−k and Φ̂g := G̃k ◦ Φ̂f |L′
1
◦ ĝ−k.

Then for each j modulo q, Φ̂f | Lj → Cj and Φ̂g| L′
j → Cj give isomorphisms

respectively. Moreover, Φ̂f :
⊔
Lj →

⊔
Cj has a property that for any ẑ ∈ Lj,

Φ̂f (f̂(ẑ)) = λ̃Φ̂f(ẑ) + 1 ∈ Cj+p. On the other hand, Φ̂g :
⊔
L′

j →
⊔

Cj also

has a property that Φ̂g(ĝ(ẑ)) = Φ̂g(ẑ) + q ∈ Cj+p for any ẑ ∈ L′
j. Informally,

Φ̂f (γ̂j) = ã ∈ Cj tends to “∞” as f → g and Ĩj := Φ̂f(Îj) ⊂ Cj is an open path
joining ã ∈ Cj and “∞” which is invariant under the action of F̃ q.

Now let us consider the map

Φ̂+
g ◦ Ĥ ◦ (Φ̂f)

−1 :
⊔

(Cj − Îj ∪ {ã}) →
⊔

Cj,

which is a semiconjugacy from F̃ |�(� j−Îj∪{ã}) to G̃. The “slits” Ĩj ∪ {ã} of each
Cj are just like pinched and pushed away to “infinity”. Topologically the same

thing happens on the periodic leaves. By Ĥ, the slits Îj ∪ {γ̂j} are pinched, and

pushed away to their common “point at infinity” β̂. As a result, each π−1
g (Jg)∩L′

j

is split into two components. (See Figure 2.7)
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Figure 2.7: Invariant leaves of an f ∈ F(1/1) and g = f1/4, parabolic with one
petal.

Notes.

1. Both Rf and Rg have the structures of Riemann surface lamination. More
precisely, each point of Rf (resp. Rg) has a neighborhood homeomorphic to
D × T , where D is a topological disk and T is a Cantor set, and each t ∈ T ,
D × {t} corresponds to a topological disk on a leaf of Rf (resp. Rg). (See

[3, §2].) Ĥ preserves the Cantor set direction of such neighborhoods, and the
holonomies of fibers of πf and πg.

2. The hyperbolic 3-lamination of f is constructed by adding “height” to the
leaves of Rf to obtain leaves isomorphic to H3. Though the actual construction

in [3] is very complicated, we may hope that the pinching Ĥ will naturally
extend to this hyperbolic 3-lamination and describe the degeneration as f
tends to g.

2.7 Bifurcation of the regular leaf spaces

Next we investigate the regular leaf space of another fc which has an attracting
cycle of period q generated by bifurcation of the parabolic fixed point β of g = fσ

in preceding sections.
By Douady and Hubbard theory, σ in the parameter space is the root point of

p/q-wake. Let H = H(p/q) be the hyperbolic component attaching to the main
cardioid at σ. Then it is known that for any c ∈ H, fc has an attracting cycle
of period q, and there is a canonical homeomorphism from the unit disk D to H
which parameterize the multiplier of the attracting cycles. For fixed 0 < R < 1
(which is distinct from R in §4), we take the unique c ∈ H such that f = fc

has an attracting cycle with multiplier Rq. For any c′ ∈ H other than the center
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(that is, the image of the origin by the canonical homeomorphism above), fc′ are
quasiconformally conjugate to f . Thus the structure of the regular leaf spaces
are topologically the same, and it is enough to consider the structure of Rf .

We start with some notation. Let α1, . . . , αq, taking subscript modulo q, be
the attracting cycle of f with f(αj) = αj+p. Let γ be the repelling fixed point
with portrait Θ = Θ(p/q). Here the term portrait means the set of angles of
external rays landing at the point, just as in the case of β. For any preimage γ′

of γ, we also use this term. For each j modulo q, set

α̂j := (αj, αj−p, αj−2p, . . .) ∈ Nf .

Then Proposition 2.6.2 easily extends to the following:

Proposition 2.7.1 Rf is a Riemann surface lamination with the following prop-
erties:

• Rf = Nf − {∞̂, α̂1, . . . , α̂q}

• Each leaf of Rf is isomorphic to C.

According to the method described in the preceding sections, let us describe
the structure of Rf for this new f by reconstructing the semiconjugacy Ĥ : Nf →
Ng.

2.7.1 Linearizing coordinate and tessellation

Linearizing coordinate. For each j modulo q, let Vj be the attracting basin
of αj by the action of f q. Take q copies C1, . . . ,Cq of C again, and define the
“isomorphism” F :

⊔
Cj →

⊔
Cj by the same map as in §4. Suppose that

Vk contains the critical point 0 of f . There is a unique linearizing coordinate
Φk : Vk → Ck such that Φk(f

q(z)) = Rq(Φk(z) − a) + a and Φk(0) = 0, where
a = 1/(1 −R). For any n = 0, . . . , q − 1, we redefine Φf : K◦

f =
⊔
Vj →

⊔
Cj by

Vk−np � z
Φf�−→ F−n ◦ Φk ◦ fn ∈ Ck−np.

Tessellation of K◦
f . For each j modulo q, take a univalent branch Ψj : Cj −

(−∞, 0]j → Vj of Φf such that Ψj(a) = αj. Let Ij be the copy of the interval
(a,∞) in Cj. Then one can check that I ′j := Ψj(Ij) is invariant under the action
of f q and is an open arc joining αj and γ. The rays Rf(θ1), . . . , Rf (θq) divide the
plane into q sectors, and now we may suppose that I ′j is contained in one of the
q sectors bounded by Rf(θj) and Rf (θj+1). We also denote I ′j by I(θj). For the
portrait Θ of γ, we redefine I(Θ) by

I(Θ) :=

q⋃
j=1

I(θj) = {γ} ∪
q⋃

j=1

(I(θj) ∪ {αj}),
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and the degenerating arc system If by
⋃

n≥0 f
−n(I(Θ)).

For each j modulo q and m ∈ Z, we redefine A(m,±)j by replacing χ(Ij)
in the previous definition in §4 by this Ij. Let γ′ ∈ f−n(γ) (n = 1, 2, . . .) with
portrait Θ′ =

{
θ′1, . . . , θ

′
q

}
satisfying 2nθ′j = θj. Then there is a component V of

Vj attached to γ′ contained in the sector bounded by Rf(θj) and Rf(θj+1). On
Cj − (−∞, 0]j, there is a univalent branch Ψ of Φ−1

f which maps Ij into V . By
extending Ψ on the interiors of A(m,±)j to their edges, we define the tiles in K◦

f

by

Tf (θ
′
j,m,+) := Ψ−1(A(m,+)j) ⊂ Vj

Tf (θ
′
j+1,m,−) := Ψ−1(A(m,−)j) ⊂ Vj.

For θ ∈ Θ̃ andm ∈ Z, the family {Tf (θ,m,±)} gives the tessellation Tf ofK◦
f−If .

Edge sharing. Tiles of Tf has the same property of edge sharing as those of Tg.
To check the fact, one can start with the closed path C0 defined as following. For
each j modulo q, take a path ηj ⊂ Cj which comes from +∞ along the real axis
in the negative direction, turn around the circle |W − a| =

√
Ra anticlockwise,

and then return to +∞ along the real axis in the positive direction. Then the
pull-back η′j of ηj by Φj is a path in Vj and the union C0 := {γ}∪

⋃
η′j is a closed

path. Now we may consider C0 as a map C0 : R/Z → C with C0(θj) = γ for any
j modulo q. Let C−n be the pull-back of this path by f−n, and then the same
argument in the case of Tg works.

Note that for a preimage γ′ of γ with portrait Θ′ =
{
θ′1, . . . , θ

′
q

}
as above,

Tf (θ′j,m,+) shares its degenerating edge with Tf (θ
′
j+1,m,±).

Remark. We can simplify the tessellation above and Tg without changing the
combinatorics of tiles. For each angle and signature, glue q tiles along their
circular edges such that the two vertices of the critical edge of this new tile are
contained in the grand orbit of the critical point 0. (Compare Figure 2.5 and
Figure 2.8.)

2.7.2 Semiconjugacies

By gluing tile-to-tile homeomorphisms and the conjugacy outside the Julia sets
induced from Böttcher coordinates, we have a semiconjugacy H : C̄ → C̄ from
f to g which corresponds to the semiconjugacy in Theorem 2.5.1. In particular,
H pinches a component of If containing a preimage γ′ of γ into β′ ∈ Ig with the
same portrait as γ′.

Let us consider the pinching in the natural extentions. Now we can redefine
Î(Θ̂′), If and Ig in the same way as §6. Note that Î(Θ̂) contains {α̂1, . . . , α̂q},
however, Î(Θ̂) − {α̂1, . . . , α̂q} is in Rf . In fact, if we set

Lf := {ẑ = (z0, z−1, . . .) ∈ Rf : z−n → γ},
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Figure 2.8: Simplified tessellation for an f ∈ H(1/2) and another f ∈ H(1/3).
(Here we identify c in the parameter space with fc. )

which is an invariant leaf isomorphic to C, then Lf contains Î(Θ̂)− {α̂1, . . . , α̂q}
non-compactly. In addition, the action of f̂ on Lf is conjugate to that of W �→
f ′(γ)W on C. The result corresponding to Theorem 2.6.3 is:

Theorem 2.7.2 For f and g as above, there exists a semiconjugacy Ĥ : Nf →
Ng from f̂ to ĝ with the following properties:

(1) Ĥ : Nf − If → Ng − Ig is a topological conjugacy between f̂ |Nf−If
and

ĝ|Ng−Ig .

(2) For any β̂′ with portrait Θ̂′, Ĥ−1(β̂′) = Î(Θ̂′). In particular, Ĥ−1(β̂) = Î(Θ̂).

(3) For each j modulo q, Ĥ−1(
⊔
L′

j) = Lf − Î(Θ̂).

(4) Ĥ maps a leaf of Rf − Lf onto a leaf of Rg −
⊔
L′

j.

(5) For a leaf L of Rg −
⊔
L′

j, Ĥ
−1(L) is a leaf of Rf − Lf .

Sketch of the theorem. Follow the argument in Theorem 2.6.3. To show
(3), (4) and (5), take a leaf L′ in Rg. Then Ĥ−1(L′) is contained in a leaf
L of Rf . If H(L) intersects the irregular points (Case 1), then L = Lf and

H−1(L′) ⊂ Lf − Î(Θ̂) := L−
f . Note that L−

f is the union of q sectors divided by

Î(Θ̂). By the correspondence of R̂j ⊂ L−
f to R̂′

j ⊂ L′
j, we obtain Ĥ(L−

f ) =
⊔
L′

j

and this implies property (3). If H(L) and the irregular points are disjoint (Case
2), then L �= Lf . Now (4) and (5) follows as in Theorem 2.6.3. �

Structure of Rf . As c of fc changes from 0 to the center of the H, the
transversal Cantor set direction of the Riemann surface lamination Rfc is pre-
served. However, the periodic leaves L1, . . . , Lq of f ∈ F(p/q) with an affine
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loxodromic dynamics are pinched to be the periodic leaves L′
1, . . . , L

′
q of g with

an affine parabolic dynamics, and then L′
1, . . . , L

′
q merge into the invariant leaf

Lf of f ∈ H(p/q) with an affine loxodromic dynamics.

×2 ×2

Figure 2.9: Periodic leaves of f ∈ F(1/2) become those of parabolic g ∈ F(1/2)∩
H(1/2), and merge into an invariant leaf of another f ∈ H(1/2).

Note. For any quadratic polynomial with an attracting cycle, we can consider
its degeneration to a parabolic cycle with multiple petals. To investigate the
associated degeneration of the regular leaf spaces, the method developed in this
chapter is useful. For any quadratic polynomial with an attracting or parabolic
cycle, we can define the tessellation of the interior of its filled Julia set by using
the notion of orbit portrait. The degeneration of tiles induces a semiconjugation
from a hyperbolic map to a parabolic map, and we can naturally lift it to their
natural extensions. Then the lifted semiconjugation gives us essential information
about the degeneration (or bifurcation) of the regular leaf spaces.
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