
Stony Brook IMS Preprint #2014/5
November 2014
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abstract. Consider the parameter space Pλ ⊂ C2 of complex Hénon maps

Hc,a(x, y) = (x2 + c+ ay, ax), a 6= 0

which have a semi-parabolic fixed point with one eigenvalue λ = e2πip/q. We give a charac-
terization of those Hénon maps from the curve Pλ that are small perturbations of a quadratic
polynomial p with a parabolic fixed point of multiplier λ. We prove that there is an open disk
of parameters in Pλ for which the semi-parabolic Hénon map has connected Julia set J and
is structurally stable on J and J+. The Julia set J+ has a nice local description: inside a
bidisk Dr × Dr it is a trivial fiber bundle over Jp, the Julia set of the polynomial p, with fibers
biholomorphic to Dr. The Julia set J is homeomorphic to a quotiented solenoid.
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1. Introduction

A Hénon map is a polynomial automorphism of C2 and can be written as

Hc,a (x, y)=
(
x2 + c+ ay, ax

)
, for a 6= 0,

where a and c are complex parameters. In this parametrization, the Hénon map has
constant Jacobian −a2. In order to study the dynamics of polynomial automorphisms
of C2 we need to understand their behavior under forward and backward iterations.
The dynamical objects that we need to analyze are the sets K± (the set of points with
bounded forward/backward orbits) and their topological boundaries J± = ∂K±. The
set J = J+ ∩ J− is the analogue of the one-dimensional Julia set for polynomials.

We say that the Hénon map is hyperbolic if it is hyperbolic on its Julia set J . If
Hc,a is hyperbolic and |a| < 1 then the interior of K+ consists of the basins of at-
traction of finitely many attractive periodic points [BS1]. Each basin of attraction is a
Fatou-Bieberbach domain (a proper subset of C2, biholomorphic to C2). The common
boundary of the basins is the set J+ [BS1]. The set J+ is where the most interesting
chaotic behavior takes place. For hyperbolic Hénon maps, periodic points are dense in
J and the map is structurally stable on J [BS1]. When x 7→ x2 + c is a hyperbolic poly-
nomial, the Hénon map Hc,a is also hyperbolic for small values of a. Hyperbolic Hénon
maps that come from perturbations of hyperbolic polynomials are very well understood,
by work of Hubbard and Oberste-Vorth [HOV1], [HOV2] and Fornæss and Sibony [FS].
However, there is very little known about Hénon maps which are not hyperbolic.

In this paper, we study Hénon maps with a semi-parabolic fixe point (or cycle). A
fixed point of Hc,a is called semi-parabolic if the derivative of Hc,a at the fixed point has

two eigenvalues λ = e2πip/q and µ, with |µ| < 1. For clarity and simplicity of exposition,
we will call a Hénon map semi-parabolic if it has a semi-parabolic fixed point.

Unlike hyperbolic Hénon maps, which exhibit structural stability, semi-parabolic
Hénon maps are not expected to be structurally stable. The general assumption is
that bifurcations will occur as we perturb from a semi-parabolic Hénon map. Bedford,
Smillie, and Ueda show in [BSU] some of the complications that can arise by describing
the phenomenon of “semi-parabolic implosion” in C2 (discontinuity of J and J+ on the
parameters). We prove that there are classes of semi-parabolic Hénon maps that are
structurally stable on the sets J and J+ inside a parametric region of codimension one
in C2. We give a complete characterization of the dynamics of these Hénon maps. In
particular, we show that J is homeomorphic to a solenoid with identifications, hence it
is connected.

This parametric region of structural stability will be obtained by considering appro-
priate perturbations in C2 of a polynomial with a parabolic fixed point of multiplier
λ = e2πip/q. The set of parameters (c, a) ∈ C2 for which the Hénon map Hc,a has a fixed
point with one eigenvalue λ is an algebraic curve Pλ in C2. The parameter c = c(a) is
a function of a and the parametric line a = 0 intersects the curve Pλ at a point c0. The
polynomial p(x) = x2 + c0 has a parabolic fixed point of multiplier λ. Let Jp be the
Julia set of the parabolic polynomial p.

In this article, we will describe the class of semi-parabolic Hénon maps Hc,a where
(c, a) lies in a small disk around 0 inside the curve Pλ. Consider r > 3 and let V denote
the bidisk Dr × Dr throughout this section. We can now state the following theorem.
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Theorem 1.1 (Structure Theorem). Let p(x) = x2 + c0 be a polynomial with a

parabolic fixed point of multiplier λ = e2πip/q. There exists δ > 0 such that for all
parameters (c, a) ∈ Pλ with 0 < |a| < δ there exists a homeomorphism

Φ : Jp × Dr → J+ ∩ V
which makes the diagram

Jp × Dr
Φ−−−−→ J+ ∩ V

ψ

y
yHc,a

Jp × Dr
Φ−−−−→ J+ ∩ V

commute, where

ψ(ζ, z) =

(
p(ζ), aζ − a2z

p′(ζ)

)
.

The map ψ depends on a, but we will show in Lemmas 12.7 and 12.8 that all maps ψ
are conjugate to each other, for sufficiently small 0 < |a| < δ. Thus it does not matter

which one we use and we can assume that the model map is ψ(ζ, z) =
(
p(ζ), εζ − ε2z

p′(ζ)

)
,

for some ε > 0 independent of a. The function ψ is a solenoidal map in the sense of
[HOV1]; it behaves like angle-doubling in the first coordinate, and contracts strongly in
the second coordinate.

Theorem 1.1 shows that J+ ∩ V is a trivial fiber bundle over Jp, the Julia set of the
parabolic polynomial p(x) = x2 + c0, with fibers biholomorphic to Dr. The set J+ is
laminated by Riemann surfaces isomorphic to C. In fact, the current µ+ supported on
J+ defined by Bedford and Smillie in [BS1] is laminar.

Theorem 1.2 (Model for J). The Julia set J for the Hénon map is homeomorphic
to a quotiented solenoid

J '
⋂

n≥0

ψ◦n(Jp × Dr),

hence connected. Moreover J = J∗, where J∗ is the closure of the saddle periodic points.

We describe J as the quotient of a topological solenoid; it is easy to pass from the
topological model to a combinatorial description and see that J is equivalent to a dyadic
solenoid as in [HOV2] (as a projective limit of Jp under the polynomial p).

In Corollary 12.9.1 we establish that J = J∗, the closure of the saddle periodic
points. This was not known for this particular class of Hénon maps and it is still an
open question whether J = J∗ in general. It was shown to be true if J is hyperbolic
[BS1].

Let f : X → X be an open, injective map from a space X to itself. Define the
inductive limit as lim−→(X, f) := X × N

/
∼, where the equivalence relation is defined by

(x, n) ∼ (f(x), n+ 1). In this setting, the inductive limit is an increasing union of sets
homeomorphic to X, so locally it looks like X. The limit space comes with a natural

bijective map qf : lim−→(X, f)→ lim−→(X, f) given by (x, n) 7→ (f(x), n).

Passing to the inductive limit as done by Hubbard and Oberste-Vorth in [HOV2] we
get a global model for J+.
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Figure 1. A parameter plot inside the curve P−1. In both pictures
the large region in the center contains the disk |a| < δ. The black
region represents (a rough approximation of) the set of parameters
(c, a) ∈ P−1 for which J is connected. The picture on the left is a
double cover of the picture on the right. Both pictures were gen-
erated using FractalStream. left: The Hénon map is written as
Hc,a(x, y) = (x2 + c+ ay, ax). right: The Hénon map is written in
the standard form Hc,a(x, y) = (x2 + c− ay, x).

Theorem 1.3 (Model for J+). The map Φ extends naturally to a homeomorphism qΦ
and the following diagram

lim−→(Jp × Dr, ψ)
qΦ−−−−→ J+

qψ

y
yHc,a

lim−→(Jp × Dr, ψ)
qΦ−−−−→ J+

commutes.

As a consequence of the previous theorems, we get that the family of semi-parabolic
Hénon maps Pλ 3 (c, a)→ Hc,a is a structurally stable family on J and J+ for |a| < δ.
By structural stability on J and J+ we understand the following:

Theorem 1.4 (Stability). If (c1, a1) and (c2, a2) belong to Pλ and if 0 < |ai| < δ then
Jc1,a1 is homeomorphic to Jc2,a2 and (Hc1,a1 , Jc1,a1) is conjugate to (Hc2,a2 , Jc2,a2). The
same is true for J+ instead of J .

Let λ = 1 and consider perturbations of the parabolic polynomial p(x) = x2 + 1/4
(the root of the main cardioid of the Mandelbrot set) inside P1. The Julia set Jp of
this polynomial is a Jordan curve and therefore Theorem 1.2 implies that the Julia
set Jc,a of the Hénon map is homeomorphic to a solenoid. Together with Theorem 1.4
this gives a positive answer to some questions of Bedford (Questions 1 and 2 in [B]).
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Moreover, the set J+
c,a is homeomorphic to a 3-sphere with a dyadic solenoid removed,

for all (c, a) ∈ P1 and a sufficiently small [R].
In order to have nontrivial identifications in the description of the Julia set J from

Theorem 1.2 we need to consider λ = e2πip/q, different from 1. To do so, we have
generalized a theorem of Ueda [U] and Hakim [Ha] regarding the local normal form

around the semi-parabolic fixed point from the case λ = 1 to the case λ = e2πip/q. This
is given in Section 3. In Section 4 we define big attractive petals for semi-parabolic
germs of (C2, 0). Both sections are of independent interest. In Theorem 6.2 we show
how to control the size of the normalizing neighborhood for our family of semi-parabolic
Hénon maps.

Remark 1.5. We were able to characterize J without using J−, by carefully describing
the set J+ inside the polydisk Dr × Dr. We know from [BS8] that the Hénon map is
hyperbolic on J if and only if there is a neighborhood N of J and Riemann surface
laminations L± of N ∩ J± such that L+ and L− intersect transversely at all points
of J . In our setting, we have shown that J+ is laminar and J = J∗, but the Hénon
map is semi-parabolic (hence not hyperbolic), so J− is non-laminar or J+ and J− may
have points of non-transverse intersection. From Theorem 1.2, J is connected and by
Theorem 1.5 in [Du] it follows that the set J−−K+ supports a unique Riemann surface
lamination which is uniquely ergodic. In fact, it seems reasonable that J− is non-laminar
precisely at the semi-parabolic fixed point.

Remark 1.6. Let (Ha)a∈Dδ be the family of complex Hénon maps with a semi-parabolic

fixed point with one eigenvalue λ = e2πip/q from Theorem 1.1. It follows from Bedford,
Lyubich and Smillie [BLS] that Ha admits an invariant measure µa which is the unique
measure of maximal entropy log(2). The measure µa has two non-zero Lyapunov ex-
ponents λ−a < 0 < λ+

a . Let Ja denote the Julia set of Ha. We have the following
dichotomy from [BS5]: λ−a = log(2) if and only if Ja is connected. We have shown in
Theorem 1.2, that the Julia set Ja is connected for each a ∈ Dδ. Thus λ+

a = log(2) and
λ−a = 2 log |a| − log(2) for this family of semi-parabolic Hénon maps.

In Theorem 1.1 we give a characterization of semi-parabolic Hénon maps Hc,a that
are perturbations of a parabolic polynomial p(x) = x2+c0. This generalizes the theorem
of Hubbard and Oberste-Vorth [HOV2], which describes Hénon maps that are pertur-
bations of a hyperbolic polynomial, to the semi-parabolic setting. The technique of our
proof is quite new and is inspired by the proof of Douady and Hubbard [DH], Section X,
(see also [H1]) that the Julia set of a parabolic polynomial is locally connected. They
show that the (inverse) Böttcher isomorphism extends continuously to the boundary
for quadratic polynomials with a parabolic cycle, thus showing local connectivity of the
Julia set. We create a two-dimensional analogue to show connectivity of the Julia set
for the semi-parabolic Hénon map.

The key to proving Theorem 1.1 is to build a metric on a neighborhood of J+ ∩ V
for which the Hénon map is expanding in the horizontal direction. We will consider the
infimum of a pull-back of an Euclidean metric in a small tubular neighborhood of the
local stable manifold of the semi-parabolic fixed point and a product of a Poincaré metric
with an Euclidean metric outside. The details are given in Section 8. The expanding
factor depends on the distance to the local stable manifold of the semi-parabolic fixed
point, so it is strictly bigger than one, but there is no constant of uniform expansion.
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We prove the result in Theorem 1.1 as a Browder fixed point theorem [Br]. We will
recover the set J+ inside a bidisk as the image of the unique fixed point of a weakly
contracting graph-transform operator in an appropriate function space F . The space
F and the contraction are described in Sections 10 and 11. In order to establish the
conjugacy of the semi-parabolic Hénon map to the model map ψ we have used some
heavy-duty topology: a theorem of Hamstrom [Ham], which states that if S is a compact
surface with nonempty boundary then the components of the group of homeomorphisms
which are the identity on the boundary are contractible. This is described in detail in
Section 12. The approach outlined above was used in [R] to reprove the theorem of
Hubbard and Oberste-Vorth about hyperbolic Hénon maps [HOV2] as an application
of the Banach fixed point theorem.

This article is built on previous work done by the authors in [R] and [T]. We will
further use the techniques developed in this paper in [RT] to study perturbations of
semi-parabolic Hénon maps. We show in [RT] that the family of semi-parabolic Hénon
maps Ha, where a belongs to an open disk of parameters |a| < δ from Pλ, lies in the
boundary of a hyperbolic component of the Hénon connectedness locus.

Remark 1.7. For the family of semi-parabolic Hénon maps with small enough Jacobian
(suppose |a| < δ as in Theorem 1.1) there are no wandering components of int(K+).
The proof is given in [R] and is similar to the hyperbolic case from [BS2]. This essentially
follows from the fact that the Hénon map expands in horizontal cones on a neighborhood
of J+ ∩ V as shown in Sections 8 and 9.

Acknowledgements. We thank John Hubbard for his entire support and guidance with
this project, for explaining us the one-dimensional technique used in proving that the
Julia set of a parabolic polynomial is locally connected and for his help in designing a
two-dimensional technique to understand semi-parabolic Hénon maps. We would also
like to thank John Smillie and Eric Bedford for many useful discussions and suggestions.

2. Preliminaries

For a polynomial p of degree d ≥ 2, the filled Julia set of p is

Kp = {z ∈ C | |p◦n(z)| bounded as n→∞}.
The set Jp = ∂Kp is the Julia set of p. If Kp is connected (or equivalently Jp is
connected) then there exists a unique analytic isomorphism

Φp : C− D→ C−Kp (1)

such that Φp(z
d) = p(Φp(z)) and Φp(z)/z → 1 as z →∞. Furthermore, if Jp is locally

connected then Φp extends to the boundary S1 and defines a continuous, surjective
map γ : S1 → Jp [M]. The Julia set of a hyperbolic or parabolic polynomial is locally
connected [DH]. The boundary map γ is called the Carathéodory loop. We will use this
map in an essential way in Section 12.

Fix λ = e2πip/q a root of unity. The set of parameters (c, a) ∈ C2 for which the Hénon
map Hc,a has a fixed point with one eigenvalue λ is a curve of equation

Pλ :=

{
(c, a) ∈ C2 | c = c(a) := (1− a2)

(
λ

2
− a2

2λ

)
−
(
λ

2
− a2

2λ

)2
}
. (2)
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To see this, let (x, y) be a fixed point of the Hénon map such that the derivative
DHc,a at (x, y) has an eigenvalue λ. Then λ is a root of the characteristic polynomial
λ2 − 2xλ − a2 = 0. The parameters (c, a) must verify the equations x2 + c + ay = x,

y = ax and x = λ
2 − a2

2λ . The solution set is the curve Pλ.

The parameter c is a quadratic function of the Jacobian −a2, so we will refer to the
curves Pλ as parabolas. For (c, a) in Pλ, Hc,a has a fixed point qa such that DHc,a(qa)

has one eigenvalue λ and one eigenvalue µ = −a2

λ . When |a| < 1, the eigenvalue µ is
smaller than one in absolute value, and we call qa a semi-parabolic fixed point, and Hc,a

a semi-parabolic Hénon map. The fixed point has an explicit equation

qa :=

(
λ

2
− a2

2λ
, a

(
λ

2
− a2

2λ

))
. (3)

We will use this notation throughout this paper. We will see that for δ small enough
and (c, a) ∈ Pλ with 0 < |a| < δ, the semi-parabolic fixed point qa has multiplicity q+1
as a solution of the equation H◦qa (x, y) = (x, y). In analogy with the one dimensional
dynamics, we say that the semi-parabolic multiplicity of qa in this case is 1.

The semi-parabolic fixed point qa has a strong stable manifold W s(qa) biholomorphic
to C corresponding to the eigenvalue µ whose absolute value is strictly less than 1,

W s(qa) := {p ∈ C2 | ||H◦m(p)− qa|| < C|µ|m for m ≥ 0}, (4)

where C > 0 is a constant [U]. This is the set of points for which H◦m(p) → qa
exponentially as m→∞. Bedford, Smillie and Ueda show that W s(qa) is dense in J+

[BSU]. The basin of attraction of the semi-parabolic fixed point qa belongs to int(K+)
and is a Fatou-Bieberbach domain [Ha], [U]. The rate of convergence to qa is parabolic.

The parametric line a = 0 intersects the curve Pλ at the point c0 = λ
2 − λ2

4 . It is

easy to see that the polynomial p(x) = x2 + c0 has a parabolic fixed point q0 = λ
2 of

multiplier λ. This is the polynomial from which we are perturbing in C2. Let Jp and
Kp denote the Julia set, respectively the filled-in Julia set of the polynomial p.

For (c, a) ∈ Pλ the equation for c from 2 can be rewritten as

c =
λ

2
− λ2

4
+ a2w, where w :=

2λ− 2λ2 − 1

4λ
+ a2 2λ− 1

4λ2
. (5)

Thus we can also write the semi-parabolic Hénon map Hc,a(x, y) = (x2 + c+ ay, ax) as

Ha (x, y)=
(
p(x) + a2w + ay, ax

)
, (6)

with inverse

H−1
a (x, y) =

1

a

(
y, x− p (y/a)− a2w

)
, (7)

where p is the parabolic polynomial p(x) = x2 + c0. This emphasizes the dependency
on the parabolic polynomial p. The constant w depends only on a and λ and clearly
|w| < 2.

Following [HOV1], we choose a constant r greater than the largest root of the qua-
dratic equation |x|2− (|a|+ 2)|x| − |c0| − |a|2|w| = 0. Then the dynamical space C2 can
be divided into three regions: the bidisk Dr × Dr = {(x, y) ∈ C2 | |x| ≤ r, |y| ≤ r},

V + = {(x, y) | |x| ≥ max(|y|, r)} and V − = {(x, y) | |y| ≥ max(|x|, r)}.
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The sets J and K are contained in Dr ×Dr. The escaping sets are U+ = C2 −K+ and
U− = C2 −K− and they can be described in terms of V + and V − as follows [HOV1]:

U+ =
⋃

k≥0

H−◦k(V +) and U− =
⋃

k≥0

H◦k(V −).

Therefore the Julia set J+ is the common boundary of K+ and U+. We know that
|c0| < 2 from [DH] so any constant r > 3 works for our purpose.

In order to understand these objects better it is useful to look first at the case when
a = 0. In this case the dynamics of the Hénon map reduces to the dynamics of the
polynomial p. The relevant sets under forward dynamics can then be easily described:
J+ = Jp × C, K+ = Kp × C and U+ = (C−Kp)× C.

3. Normal form of semi-parabolic Hénon maps

Hakim in [Ha] and Ueda in [U] have studied normal forms for germs of semi-attractive
transformations H of (Cn, 0) for which DH(0) has one eigenvalue λ = 1, and the other
eigenvalues µ2, . . . µn have absolute values |µj | < 1, j = 2, . . . , n.

The following results are similar to Proposition 2.1, 2.2, and 2.3 from [Ha] and to
Section 6 from [U]. We have adapted the propositions in [Ha] to semi-parabolic germs

of transformations of (C2, 0) with eigenvalues λ = e2πip/q and |µ| < 1. As a consequence
we get that 0 is a fixed point with multiplicity νq+ 1 for some constant ν which we call
the (semi) parabolic multiplicity of the fixed point, like in one-dimensional dynamics.

Proposition 3.1. Let H be a semi-parabolic germ of transformation of (C2, 0), with

eigenvalues λ and µ, with λ = e2πip/q and |µ| < 1. There exist local coordinates (x, y)
in which H has the form H(x, y) = (x1, y1), with

{
x1 = a1(y)x+ a2(y)x2 + . . .
y1 = µy + xh(x, y)

(8)

where aj(·) and h(·, ·) are germs of holomorphic functions from (C, 0) to C, respectively
from (C2, 0) to C, with a1(0) = λ and h(0, 0) = 0.

Proof. The proof is the same as in [Ha] and [U] and is based on the straightening of
the local strong stable manifold of the fixed point. �

Proposition 3.2. Let H be a semi-parabolic germ of transformation of (C2, 0), with

eigenvalues λ and µ, with λ = e2πip/q and |µ| < 1. For every integer m there exist local
coordinates (x, y) in which H has the form H(x, y) = (x1, y1), with

{
x1 = λx+ a2x

2 + . . .+ amx
m + am+1(y)xm+1 + . . .

y1 = µy + xh(x, y)
(9)

where a2, . . . , am constants.

Proof. The proof is the same as in Proposition 2.2 from [Ha] (proved also in Section
6 of [U]). We will refer to this proof when we discuss the domain of convergence of the



A STRUCTURE THEOREM FOR SEMI-PARABOLIC HÉNON MAPS 9

functions u(·) and v(·) defined below. We know from Proposition 3.1 that there exist
local coordinates (x, y) in which H has the form

{
x1 = a1(y)x+ a2(y)x2 + . . .
y1 = µy + xh(x, y).

The germs ai(·) and h(·, ·) germs of holomorphic functions from (C, 0) to C, respectively
from (C2, 0) to C, with a1(0) = λ and h(0, 0) = 0.
(1) Reduction to a1(y) = λ. Consider as in [Ha] and [U] a coordinate transformation

{
X = u(y)x
Y = y

with inverse

{
x = X/u(Y )
y = Y

where u is a germ of analytic functions from (C, 0) to C with u(0) = λ. We need to find
u such that

X1 = u(y1)x1 = u(µy + xh(x, y))
(
a1(y)x+ a2(y)x2 + . . .

)

= u(µY +X/u(Y )h(X/u(Y ), Y ))
(
a1(Y )X/u(Y ) + a2(Y )(X/u(Y ))2 + . . .

)

=
u(µY )a1(Y )

u(Y )
X +O(X2) = λX +O(X2).

Thus u satisfies the equation u(Y ) = u(µY )a1(Y )
λ . We successively substitute µY instead

of Y in this equation and obtain the unique solution

u(Y ) =
∞∏

n=0

a1(µnY )

λ
. (10)

This series converges in a neighborhood of 0 since µ < 1 and a1(0) = λ.
(2) Reduction to a2(y), . . . , am(y) constants. We proceed by induction on m. The
base case m = 1 was discussed above. Suppose that m ≥ 2 and that there exist local
coordinates (x, y) in which H has the form

{
x1 = λx+ a2x

2 + . . .+ am−1x
m−1 + am(y)xm + . . .

y1 = µy + xh(x, y),

with a2, . . . , am−1 constant. We would like to find local coordinates so that am(y) is
also constant. Consider the transformation{

X = x+ v(y)xm

Y = y
with inverse

{
x = X − v(Y )Xm + . . .
y = Y

where v is a germ of analytic functions from (C, 0) to C with v(0) = 0. Using the
coordinates given by this transformation we get

X1 = x1 + v(y1)xm1

= λx+ a2x
2 + . . .+ am−1x

m−1 + (am(y) + v(µy))xm +O(xm+1)

= X − v(Y )Xm + a2X
2 + . . .+ am−1X

m−1 + (am(Y ) + v(µY ))Xm +O(Xm+1)

= X + a2X
2 + . . .+ am−1X

m−1 + (am(Y ) + v(µY )− v(Y ))Xm +O(Xm+1).

We need v such that the coefficient of Xm is constant, i.e. am(Y )+v(µY )−v(Y ) = am(0)
is constant. This gives the equation v(Y ) − v(µY ) = am(Y ) − am(0). We successively
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substitute µY instead of Y in this equation and obtain

v(Y ) =
∞∑

n=0

(am (µnY )− am(0)) . (11)

The series clearly converges in a neighborhood of 0 since µ < 1. �

Proposition 3.3. Let H be a semi-parabolic germ of transformation of (C2, 0), with

eigenvalues λ and µ, with λ = e2πip/q and |µ| < 1. There exist local coordinates (x, y)
in which H has the form H(x, y) = (x1, y1), with

{
x1 = λ(x+ xνq+1 + Cx2νq+1 + a2νq+2(y)x2νq+2 + . . .)
y1 = µy + xh(x, y)

(12)

and C a constant. Moreover the multiplicity of the fixed point is νq + 1.

Proof. Suppose that the map has the form from Equation 9, where m is big enough,
and fixed {

x1 = λx+ akx
k + . . .+ amx

m + am+1(y)xm+1 + . . .
y1 = µy + xh(x, y).

Consider the coordinate transformation
{
X = x+ bxk

Y = y
with inverse

{
x = X − bXk + . . .
y = Y

In the new coordinate system, we get

X1 = x1 + bxk1 = (λx+ akx
k + . . .) + b(λx+ akx

k + . . .)k

= λx+ akx
k + . . .+ bλkxk + . . .

= λx+ (ak + bλk)xk + . . .

= λ(X − bXk + . . .) + (ak + bλk)(X − bXk + . . .)k + . . .

= λX + (ak + b(λk − λ))Xk + . . .

If k is not congruent to 1 modulo q (i.e. λk 6= λ), then we can set

b =
ak

λ− λk

and eliminate the term akx
k. This proves that by successive coordinate transformations

of the form X = x + bxk, Y = y we can eliminate terms with powers that are not
congruent to 1 modulo q, so the first term that cannot be eliminated in this way will
have a power of the form νq + 1 for some ν.

Thus the map takes the form
{
x1 = λ(x+ aνq+1x

νq+1 + . . .+ amx
m + am+1(y)xm+1 + . . .)

y1 = µy + xh(x, y).
(13)

Here we will assume that m was chosen so that m > 2νq + 1. Thus the coefficients
up to order m are still constants. We can further reduce Equation 13 to aνq+1 = 1 by
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considering a transformation of the form X = Ax, Y = y, where A is a constant such
that Aνq = aνq+1. Consider therefore the transformation H written as

{
x1 = λ(x+ xνq+1 + . . .+ amx

m + am+1(y)xm+1 + . . .)
y1 = µy + xh(x, y).

(14)

We have previously showed that we can eliminate any term of degree k between 1 and
m, which is not congruent to 1 modulo q. One can also eliminate all terms of degree
jq + 1, where ν < j < 2ν. Assume ajq+1 is the first such coefficient different from 0 as
below {

x1 = λ(x+ xνq+1 + ajq+1x
jq+1 + . . .)

y1 = µy + xh(x, y).
(15)

Consider the transformation

φ

(
x
y

)
=

(
X
Y

)
where

{
X = x+ bx(j−ν)q+1

Y = y
and b =

ajq+1

(2ν − j)q .

Define G := φ ◦H ◦ φ−1 and suppose that G(X,Y ) = (X1, Y1) with
{
X1 = λ(X +Xνq+1 +AXk + . . .)
Y1 = µY +Xh(X,Y )

(16)

and k ≤ jq. We show that A = 0 by comparing the terms of the power series of G ◦ φ
and φ ◦H. We will only need to analyze the x-coordinate. The first coordinate of φ ◦H
is

X1 = x1 + bx
(j−ν)q+1
1

= λ(x+ xνq+1 + ajq+1x
jq+1 + . . .) + bλ(x+ xνq+1 + ajq+1x

jq+1 + . . .)(j−ν)q+1

= λ
(
x+ bx(j−ν)q+1 + xνq+1 + (ajq+1 + b((j − ν)q + 1))xjq+1 +Oy(xjq+2)

)
.

The first coordinate of G ◦ φ is

X1 = λ(X +Xνq+1 +AXk + . . .)

= λ
(

(x+ bx(j−ν)q+1) + (x+ bx(j−ν)q+1)νq+1 +A(x+ bx(j−ν)q+1)k + . . .
)

= λ
(
x+ bx(j−ν)q+1 + xνq+1 + b(νq + 1)xjq+1 +Axk +Oy(xk+1)

)
.

We have that ajq+1 + b((j − ν)q + 1) = b(νq + 1) by the choice for b. The two power

series are equal so the coefficient of xk vanishes, so A = 0. Thus in the first coordinate
of φ ◦H ◦ φ−1 the coefficient of xjq+1 is zero and the coordinate transformation did not
introduce additional terms of lower powers.

Using similar transformations we can eliminate all terms between νq+ 1 and 2νq+ 1
and write H(x, y) = (x1, y1) with

{
x1 = λ(x+ xνq+1 + Cx2νq+1 +Oy(x2νq+2))
y1 = µy + xh(x, y)

for some constant C.
It is easy to prove that in the last coordinate system, H◦q takes the form

{
x1 = x+ qxνq+1 + C̃x2νq+1 +Oy(x2νq+2)

y1 = µqy + xh̃(x, y).
(17)
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The partial derivative ∂y1
∂y (0, 0) = µq < 1, hence by the Implicit Function Theorem, the

equation µqy + xh(x, y) = y has a unique solution y = ϕ(x) in a neighborhood of 0,
where ϕ is a holomorphic function. From the first equation it then follows that x = 0
is a fixed point of H◦q of multiplicity νq + 1. �

The normalizing form as proven in the previous theorem holds locally around the
semi-parabolic fixed point. The disadvantage of the “local” statement is that it does
not allow us to control the size of the neighborhood of the fixed point where we can
put on normalizing coordinates. However, in Section 6 we show how to control the
size of this neighborhood. We consider a class of semi-parabolic Hénon maps which are
perturbations of a polynomial with a parabolic fixed point or cycle, and show how to
extend this theorem in order to get uniform bounds (with respect to the parameters)
on the size of the normalizing neighborhood.

4. Attracting and repelling sectors

Set m := νq and let

∆R =

{
x ∈ C

∣∣
(
Re(xm) +

1

2R

)2

+

(
|Im(xm)| − 1

2R

)2

<
1

2R2

}
.

There are m connected components of ∆R, which we denote ∆R,j , for 1 ≤ j ≤ m.
Define

Patt =
{

(x, y) ∈ C2 | x ∈ ∆R, |y| < r
}

and let

Patt,j =
{

(x, y) ∈ C2 | x ∈ ∆R,j , |y| < r
}

be the connected components of Patt. These are called (big) attractive petals for the
Hénon map, similar to the one-dimensional case.

Proposition 4.1. For R large enough and r small enough

H(Patt,j) ⊂ Patt,j+νp ∪ {0} × Dr for 1 ≤ j ≤ νq.
In particular H(Patt) ⊂ Patt ∪{0}×Dr and all points of Patt are attracted to the origin
under iterations by H.

Proof. The analysis is similar to [Ha], but one should have in mind the formalism from
the one-dimensional case (see [DH], [BH]) to resolve the ambiguity about which branch

of x1/m we are talking about.
Assume that R is large enough and r is small enough so that H is well defined and

has the expansion from Proposition 3.3. Define the region UR1

UR1 := {X ∈ C | R1 −Re(X) < |Im(X)|}
where R1 = R/m and set WR1,r := UR1 × Dr ⊂ C2.

Consider the Hénon map H written as
{
x1 = λ(x+ xm+1 + Cx2m+1 + a2m+2(y)x2m+2 + . . .)
y1 = µy + xh(x, y).
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Suppose (x, y) ∈ Patt,j and consider the transformation
{
X = − 1

mxm
Y = y.

It maps each Patt,j to WR1,r (it maps points (0, y) to (∞, y)). Let Ĥ(X,Y ) = (X1, Y1)
be the map in these coordinates

X1 = − 1

mxm1
= − 1

m (λ(x+ xm+1 + Cx2m+1 + a2m+2(y)x2m+2 + . . .))m

=
X

(1 + xm + Cx2m + a2m+2(y)x2m+1 + . . .)m

= X

(
1−m(xm + Cx2m + . . .) +

m(m+ 1)

2
x2m + . . .

)

= X + 1 +
A

X
+OY

(
1

|X|1+1/m

)

where A := 1
m

(
m+1

2 − C
)

is a constant. The notation OY
(

1
|X|α

)
represents a holo-

morphic function of (X,Y ) in WR1,r which is bounded by K
|X|α for some constant K.

Similarly

Y1 = µy + xh(x, y) = µY +OY
(

1

|X|1/m
)
.

Note that |X| > R1√
2

for all X ∈ UR1 . There exists constants K ′ and K ′′ such that

|X1 −X − 1| ≤ K ′

|X| <
K1

R1
where K1 := K ′

√
2

|Y1 − µY | ≤
K ′′

|X|1/m <
K2

R
1/m
1

where K2 := K ′′
√

2
1/m

.

Choose R1 large enough and r small enough so that



K1
R1

< 1
2

K2

R
1/m
1

< (1− |µ|)r . (18)

The first condition gives |X1 − X − 1| < 1
2 , which implies Re(X1) > Re(X) + 1

2 and

|Im(X1)| > |Im(X)| − 1
2 . Thus R1 −Re(X1) < |Im(X1)|. The second condition gives

|Y1| ≤ |Y1 − µY |+ |µ||Y | <
K2

R
1/m
1

+ |µ|r < r.

Hence Ĥ(WR1,r) ⊂WR1,r.

We need to show that points in WR1,r are attracted by (∞, 0) under iterations by Ĥ.

Let (X,Y ) ∈ WR1,r and set (Xn, Yn) = Ĥ◦n(X,Y ). Assume without loss of generality
that Re(X) > ρ, where ρ > 0 is a constant to be defined later. We can make this
assumption since Re(Xk) > Re(X) + k

2 for every positive integer k. We take the first
integer k0 such that Re(Xk0) > ρ and let X := Xk0 and Y := Yk0 .
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Clearly

Re(Xn) > ρ+
n

2
(19)

for every n ≥ 0. This follows immediately by induction since

Re(Xn+1) > Re(Xn) + 1/2 > ρ+ (n+ 1)/2.

We now show by induction that

|Yn| < 2NrR
1/m
1

(
1

ρ+ n
2

)1/m

, n ≥ 0

where N is an integer number such that NR
1/m
1 > ρ1/m. When n = 0, |Y | < r and

r < 2NrR
1/m
1

1

ρ1/m
⇔ ρ1/m < 2NR

1/m
1 .

We now proceed to the induction step. First note that |Xn| ≥ Re(Xn) > ρ + n
2 and

K ′′ < K2. We get

|Yn+1| ≤ |Yn+1 − µYn|+ |µ||Yn| <
K ′′

|Xn|1/m
+ |µ||Yn|

< (K2 + |µ|2NrR1/m
1 )

(
1

ρ+ n
2

)1/m

< (1 + (2N − 1)|µ|) rR1/m
1

(
1

ρ+ n
2

)1/m

and we want to show that

|Yn+1| < 2NrR
1/m
1

(
1

ρ+ n+1
2

)1/m

.

This inequality is satisfied if
(
ρ+ 1

2

ρ

)1/m

=

(
1 +

1

2ρ

)1/m

<
2

1 + |µ| ≤
2N

1 + (2N − 1)|µ| . (20)

But |µ| < 1, so 2/(1 + |µ|) > 1. This allows us to choose a number ρ large enough so

that Equation 20 is satisfied. Then choose an integer N such that NR
1/m
1 > ρ1/m.

It follows that (Xn, Yn)→ (∞, 0) as n→∞. �

Let ε0 = tan(π/12). Define the attractive sectors

∆+ :=

{
x ∈ C | Re(xm) ≤ ε0|Im(xm)| and |xm| < 1√

2R

}
(21)

and repelling sectors

∆− :=

{
x ∈ C | Re(xm) > ε0|Im(xm)| and |xm| < 1√

2R

}
. (22)

Let W+ = ∆+ × Dr ⊂ Patt ∪ {0} × Dr and W− = ∆− × Dr. We call W− repelling
because as we will see, the Hénon map expands horizontally when the Jacobian is small
enough. There are m components of W± which we denote W±j for 1 ≤ j ≤ m. These

are the preimages of the red/green regions in Figure 2 under x 7→ xm. The choice of ε0
means that the angle of the image of W− under x 7→ xm is 5π/6.
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Figure 2. The image of Patt under the map x 7→ xm at height y = 0
is shown in light red. Similarly the attracting sector ∆+ is shown in
red and the repelling sector ∆− in green. The angle opening of the
green region is 5π/6.

Furthermore, since Re(xm) > ε0|Im(xm)| on W−, we have

Re(xm) > ε1|xm|, where ε1 :=
ε0√

1 + ε20
>

1

4
. (23)

Proposition 4.2. The interior of the union
⋃
n≥0H

−◦n(W+) is the basin of attraction
of the semi-parabolic fixed point.

Proof. The proof follows immediately by analyzing the situation at infinity using
Equation 19 as in the proof of Proposition 4.1. �

5. The parametrizing map of the stable manifold

This is a self-contained section where we study the degeneracy of the parametrization
of the stable manifold of the semi-parabolic fixed point qa as a→ 0. Consider the Hénon
map H and its inverse H−1 written as in Equation 6, respectively 7.

Fix λ = e2πip/q. Suppose H has a semi-parabolic fixed point at qa such that DH(qa)

has eigenvalues λ and µ, with |µ| < 1. We have λµ = −a2 so µ = −a2

λ and |µ| = |a|2.

Set for simplicity qa := λ
2 − a2

2λ = λ+µ
2 . With this notation, the equation 3 of the fixed

point qa reduces to

qa :=

(
qa
aqa

)
=
λ+ µ

2

(
1
a

)
.
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Let v =

(
−a/λ

1

)
=

(
µ/a

1

)
be an eigenvector for the eigenvalue µ. The semi-parabolic

fixed point qa has a stable manifold W s(qa) ⊂ C2 as in Equation 4. The stable man-
ifold is biholomorphic to C and has a natural parametrization given by the following
proposition.

Proposition 5.1. The stable manifold W s(qa) has a parametrization Fa : C→W s(qa)
given by

Fa(z) = lim
m→∞

H−◦m(qa + µmvz). (24)

Fa is an injective immersion of C onto W s(qa) with the property that Fa(µz) = H(Fa(z)).

Proof. The proof is similar to the proof of Theorem 1 from [H2]. Consider the inverse
map H−1 instead of H. Then qa is a fixed point of H−1 and DH−1(qa) has eigenvalues
λ and µ′ = 1/µ, where |µ′| > 1. The fixed point qa has now an unstable manifold
W u(qa) which has a natural parametrization given by Fa as shown in [H2]. �

Proposition 5.2. The parametrizing function Fa → F0 as a→ 0, where

F0(z) := q0 + (0, z)= (λ/2, z).

Proof. Define a sequence of points

(xi, yi)= H−1 (xi−1, yi−1) for 1 ≤ i ≤ m,
where

(x0, y0)= qa + µmvz =

(
qa +

µm+1

a
z, aqa + µmz

)
.

At the first step we have

(x1, y1)= H−1 (x0, y0)=
1

a

(
y0, x0 − p(y0/a)− a2w

)
,

so

x1 =
y0

a
= qa +

µm

a
z.

From the fixed point equation H(qa) = qa we get that p(qa) + a2qa + a2w = qa so
qa − p(qa) − a2w = a2qa. Moreover, the matrix DH(qa) has eigenvalues λ and µ so

λ + µ = tr(DH(qa)), which gives p′(qa) = λ + µ. Since y0 = aqa + µmz and µ = −a2

λ ,
we can write

p(y0/a) = p

(
qa +

µm

a
z

)
= p(qa) + p′(qa)

µm

a
z +O(µ2m−1).

Note that this is a finite sum. Thus the equation for y1 has the following form

y1 =
x0 − p(y0/a)− a2w

a
=

qa − p(qa)− a2w

a
+
µm+1z − p′(qa)µmz

a2
+O(aµ2m−2)

= aqa + µm−1z +O(aµ2m−2).
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By induction we can show that for 1 ≤ i ≤ m we have

xi = qa +
µm−(i−1)

a
z +O(µ2(m−(i−1)))

yi = aqa + µm−iz +O(aµ2(m−i)).

For i = m these reduce to

xm = qa − aλz +O(a4)

ym = aqa + z +O(a).

Thus xm → q0 and ym → z as a → 0. Therefore Fa converges to F0 uniformly on
compact subsets of C as a→ 0. �

6. Choosing uniform normalizing coordinates

In Section 3, we described the normal form of germs of transformations of C2 with a
semi-parabolic fixed point. In this section, we will study the normal form for the family
of Hénon maps with a semi-parabolic fixed point, which are small perturbations of the
parabolic polynomial p(x) inside the parabola Pλ. Since Pλ is parametrized by a, we
write the Hénon map as Ha(x, y) =

(
x2 + c+ ay, ax

)
, where c is chosen as in Equation

2, so that (c, a) ∈ Pλ.
We will show how to extend the results from Section 3 in order to get uniform bounds

(with respect to the parameter a) on the size of the normalizing neighborhood. We will
prove that the coordinate transformation φa that puts the Hénon map Ha in the normal
form is holomorphic with respect to a. Then we will use the theory developed in Section
4 to exhibit local attractive and repelling sectors for the Hénon map Ha. The attractive
sectors will belong to the interior of K+. In the repelling sectors we will show that
the derivative of the Hénon map is weakly expanding in the “horizontal” direction and
strongly contracting in the “vertical” direction.

We first look at the normal form from [DH] and [H1] for the polynomial p(x) = x2+c0

which has a parabolic fixed point q0 = λ
2 , of multiplier λ = e2πip/q. Denote, for the

clarity of exposition, ρ := (
√

2R)−1/q in the definition of the set ∆± from Equations 21
and 22.

Lemma 6.1. There exists a neighborhood V0 of q0 and an isomorphism φ : V0 → Dρ such
that p̃(x) = φ ◦ p ◦ φ−1(x) where p̃(x) = λx

(
1 + xq + Cx2q +O(x2q+1)

)
. Furthermore,

there exists ρ small enough such that in the region

∆− = {|x| < ρ | Re(xq) > ε0|Im(xq)|}
the map p̃ satisfies |p̃ ′(x)| > 1 + ε1|x|q. The compact region

∆+ = {|x| < ρ | Re(xq) ≤ ε0|Im(xq)|}
satisfies p(∆+) ⊂ int(Kp) ∪ {0}.

Proof. After a global coordinate change that brings the parabolic fixed point at the
origin, we can write the polynomial as p(x) = λx+x2. Since p is a quadratic polynomial,
the fixed point q0 can only have parabolic multiplicity 1, hence its multiplicity as a
solution of the equation p◦q(z)− z = 0 is q+ 1. The local normal form of p around q0 is
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obtained by successive elimination of the terms of degree less than 2q+ 1 which are not
congruent to 1 mod q, using the same coordinate transformations as in Theorem 3.3.

The derivative p̃ ′(x) is weakly expanding in ∆−. To show this, let m be chosen so
that

∣∣p̃ ′(x)− λ(1 + (q + 1)xq)
∣∣ < m|x|2q on Dρ. Since |λ| = 1 and Re(xq) > ε1|x|q from

Equation 23, we can estimate |p̃ ′(x)| on ∆− as follows:

|p̃ ′(x)| =
∣∣1 + (q + 1)xq +O(x2q)

∣∣ ≥
∣∣1 + (q + 1)xq

∣∣−m|x|2q

≥ 1 + (q + 1)ε1|x|q −m|x|2q > 1 + ε1|x|q,
for x small enough so that |x|q < qε1/m. It follows that |p̃ ′(x)| > 1 + ε1|x|q for x ∈ ∆−

and |x| sufficiently small. �

Choose ρ′ > 0 such that the disk D2ρ′(q0) of radius 2ρ′ centered at q0 is contained in
the neighborhood V0. We make this choice for technical reasons.

Theorem 6.2. Let r > 3 be a fixed constant. There exists δ > 0 such that for any
(c, a) ∈ Pλ with |a| < δ we can find a coordinate transformation φa from a tubular
neighborhood B = Dρ′(q0) × Dr of the local stable manifold of the semi-parabolic fixed
point qa

φa : B → Dρ × Dr+O(|a|)

in which the Hénon map has the form H̃a(x, y) = (x1, y1), with
{
x1 = λ(x+ xq+1 + Cx2q+1 + a2q+2(y)x2q+2 + . . .)
y1 = µy + xh(x, y)

(25)

and C is a constant (depending on a) and xh(x, y) = O(a). Moreover, the maps φa are
holomorphic in a and

lim
a→0

φa = φ0(x, y) = (φ(x), y),

where φ : Dρ′ → Dρ is the change of coordinates for the polynomial p(x) = x2 + c0 with
a parabolic fixed point at q0,

φ ◦ p ◦ φ−1(x) = λx(1 + xq + Cx2q +O(x2q+1)).

Proof. We will follow the same steps as in Section 3. The following two propositions
are part of the proof.

The degenerate map H0(x, y) = (p(x), 0) has a semi-parabolic fixed point q0 = (λ2 , 0)
of multiplicity q+1 and the stable manifold W s(q0) is just a vertical line passing through
q0. The multiplicity of the semi-parabolic fixed point is constant in a neighborhood of
a = 0 in Pλ. When a 6= 0, W s(qa) is an analytic submanifold biholomorhic to C. By
[H2], W s(qa) depends analytically on a in a neighborhood of a = 0 inside Pλ.

Definition 6.3. Denote by Sr the horizontal strip Sr := {(x, y) ∈ C2 | |y| < r} and by
W s
loc(qa) the connected component of W s(qa) ∩ Sr that contains the fixed point qa.

Let us choose δ > 0, such that for all (c, a) ∈ Pλ with |a| < δ the Hénon map Ha has
a fixed point qa of multiplicity q + 1 and such that the local stable manifold W s

loc(qa)
is ”vertical-like”. Rigorously, we require that the horizontal distance between W s

loc(qa)

and the vertical line that contains qa is less than ρ′

4 , and that W s
loc(qa) has no horizontal

foldings.
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The parametrizing map Fa : C→ W s(qa) defined in 24 is analytic in the parameter
a. By Proposition 5.2, it degenerates to a translation in the horizontal direction when
a = 0, given by F0(y) = q0 + (0, y). By Proposition 5.2 we know that

Fa(y) = F0(y) +O(a),

so Fa will map the disk {y ∈ C | |y| < r} onto a holomorphic disk inside W s(qa) around
qa of size approximately r + O(a). For a small, fix therefore 3 < r′ ≤ r such that
W s
loc(qa) ∩ Sr′ ⊂ Fa(Sr). In principle r′ = r + O(|a|), but the vertical size is not a

delicate issue, so we can think of r′ as simply being r.

Proposition 6.4. Choose δ > 0 as before. For all (c, a) ∈ Pλ with |a| < δ there exists
a coordinate transformation φ1

a : Sr′ → Sr, such that in the new coordinates, the Hénon
map Ha has the form Ha(x, y) = (x1, y1), with

{
x1 = a1(y)x+ a2(y)x2 + . . .
y1 = µy + xh(x, y)

, (26)

where aj(·) and h(·, ·) are holomorphic functions from {y ∈ C, |y| < r′} to C, respectively
from {(x, y) ∈ C2, |y| < r′} to C, with a1(0) = λ and h(0, 0) = 0.

Proof. Suppose Fa(y) = (f(y), g(y)), and let ψa : Sr → C2 be the map

ψa(x, y) = (x+ f(y), g(y)).

It is easy to see that ψa is an invertible function. The Jacobian matrix is given by

Dψa|(x,y) =

(
1 f ′(y)
0 g′(y)

)
.

The local stable manifold W s
loc(qa) is vertical-like. In particular it has no horizontal

foldings, hence g′(y) 6= 0 for |y| < r. This means that ψa is invertible in the strip Sr.
Define φ1

a(x, y) := ψ−1
a (x, y).

The fact that φ1
a(x, y) is holomorphic in a follows immediately, since we know that

Fa(y) depends holomorphically on a. From Proposition 5.2 we obtain that

φ1
a(x, y) = φ1

0(x, y) +O(a).

The transformation φ1
0 is straightforward to compute

φ1
0(x, y) = (x, y)− q0 = (x− λ/2, y) .

In the new coordinate system the Hénon map H0 becomes H0(x, y) = (x1, y1), where
{
x1 = λx+ x2

y1 = 0

Therefore, when a 6= 0, it is easy to control the size of the coefficients in Equation 26 in
terms of a, as follows: a1(y) = λ+O(a), a2(y) = 1 +O(a), ai(y) = O(a) for i > 2 and
h(x, y) = O(a). �
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Proposition 6.5. There exists δ > 0 such that for all parameters (c, a) ∈ Pλ with
|a| < δ there exists a coordinate transformation φ2

a : D1/2 × Dr → Sr in which Ha has
the form Ha(x, y) = (x1, y1), with

{
x1 = λx+ a2x

2 + . . .+ a2q+1x
2q+1 + a2q+2(y)x2q+2 + . . .

y1 = µy + xh(x, y)
(27)

where a2 is close to 1 and the coefficients a3, . . . , a2q+1 are constants close to 0.

Proof. Suppose Ha is written as in Equation 26. The proof of this proposition is the
same as that of Theorem 3.2 with m = 2q+ 1. Notice that a1(y) = λ+O(a) for |y| < r,
so one can perform the same change of coordinates as in the proof of Theorem 3.2

T1 : (x, y)→ (u(y)x, y), where u(y) =
∏

n≥0

a1(µny)

in order to set a1(y) = λ. Since a1(y) is close to λ when |y| < r, it follows that the
product is convergent when |y| < r. We get that u(y) 6= 0, hence T1(x, y) is invertible.

The coordinate changes that make aj(y) constant for 2 ≤ j ≤ 2q + 1 are of the form

Tj : (x, y)→ (x+ v(y)xj , y), where v(y) =
∑

n≥0

aj(µ
ny)− aj(0).

Clearly the sum is convergent when |y| < r. We get v(y) = O(a). The transformation
Tj is invertible because x is bounded (1/2 would be a reasonable bound for x, but any
bound less than 1 would do), so for a small 1 + v(y)jxj−1 does not vanish.

The coordinate changes that are done in order to make the first 2q + 1 coefficients
constants are identity on the second coordinate. Denote by φ2

a(x, y) their composition.
Notice also that in Equation 26, H0(x, y) = (λx+x2, 0) already has constant coefficients,
so φ2

0 is just the identity map. It is easy to check that

φ2
a(x, y) = (x+O(a), y)

and h(x, y) = O(a). We also have that a2 = 1 +O(a), ai = O(a) for 2 < i ≤ 2q+ 1 and
ai(y) = O(a) for i > 2q + 1. �

We are now able to finish the proof of Theorem 6.2. The coordinate changes done
in Proposition 6.4 did not require any bounds on x. The coordinate transformations
done in Proposition 6.5 required only a mild assumption on x (such as |x| < 1/2). We
will now use the coordinate changes for the polynomial p to put the Hénon map in the
normal form given in Equation 25. We will thus require a bound on x comparable to
the size of the normalizing neighborhood V0 from Lemma 6.1.

Assume that Ha is written in the form 27. We use the same transformations as in
Theorem 3.3 in order to eliminate the terms xi, where 1 < i < q+1 and q+1 < i < 2q+1.
Let φ3

a : D2ρ′−O(|a|) × Dr → Dρ × Dr denote the coordinate change from Theorem 3.3.

When a = 0, H0(x, y) = (λx+ x2, 0) and

φ3
0(x, y) = (φ(x), y),

where φ(x) is the coordinate transformation used in Lemma 6.1 to put p(x) = λx+ x2

in the normal form p̃(x) = λ(x+ xq+1 + Cx2q+1 +O(x2q+2)).
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Define φa(x, y) = φ3
a ◦ φ2

a ◦ φ1
a(x, y). Recall that φ1

0 is a horizontal translation by λ/2
and φ2

0 is the identity map, so when a = 0 the composition of the three transformations

yields exactly the coordinate transformation used in Lemma 6.1 to put p(x) = x2+ λ
2− λ2

4

in the normal form p̃(x) = λ(x+ xq+1 + Cx2q+1 +O(x2q+2)). � of Theorem 6.2

In the normalizing coordinates we define attractive and repelling sectors for the Hénon

map and study the behavior of H̃a for |a| < δ.

Lemma 6.6 (Attractive/Repelling sectors). Let W± be defined as in Equations 22

and 21. There exists ρ > 0 and δ > 0 such that for all |a| < δ the derivative DH̃a

expands horizontally by a factor of (1 + ε1
2 |x|q) in the region

W− = ∆− × Dr = {|x| ≤ ρ | Re(xq) > ε0|Im(xq)|} × Dr
The compact region

W+ = ∆+ × Dr = {|x| ≤ ρ | Re(xq) ≤ ε0|Im(xq)|} × Dr

satisfies H̃a(W
+) ⊂ int(K+) ∪ {0} × Dr.

Proof. By construction, W+ ⊂ Patt ∪ {0} × Dr and all points in Patt are attracted to
the origin under forward iterations by Proposition 4.1. Hence W+ ⊂ int(K+)∪{0}×Dr.
The horizontal expansion in W− follows from Proposition 6.8 below. �

The multiplicity of the semi-parabolic fixed point is q + 1, so there are exactly q
connected components of W− and q components of int(W+).

W s
loc(qa)

B

x = 0

0

Dρ ×Dr

W+ (attracting sectors)

W− (repelling sectors)

φa
qa

Figure 3. The transformation φa and the sectors W± for q = 2.
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Let |a| < δ as before and consider the Hénon map H̃ : Dρ × Dr → C2 written in
normal coordinates as in Theorem 6.2,

H̃a (x, y)=
(
λ(x+ xq+1 + ga(x, y)), µy + xha(x, y)

)
,

where ga(x, y) = g0(x) +O(a) and ha(x, y) = O(a) and

ga(x, y) = Cax
2q+1 + a2q+2(y)x2q+2 + . . .

ha(x, y) = b1(y) + . . .+ bk(y)xk + . . . .

When a = 0, H̃0(x, y) = (p̃(x), 0), where p̃(x) = λ(x+ xq+1 + g(x)) and

g(x) = C0x
2q+1 + a2q+2x

2q+2 + . . . .

The function g0(x, y) = g(x) is just a function of the variable x, hence ∂yg0(x, y) ≡ 0.
For |a| < δ we can assume that there exists a constant Ma with 0 < Ma < 1 such that

∣∣∂yga(x, y)
∣∣ < Ma|x|2q+2. (28)

As usual, ∂x and ∂y denote the partial derivatives with respect to the variable x, and
respectively y. When a = 0 we also know that xh0(x, y) ≡ 0. Moreover by the construc-
tion of the normalizing coordinates we have xha(x, y) = O(a). There exists a constant
Na, depending on a, with 0 < Na < 1 such that when |a| < δ the following bounds hold

∣∣∂x(xha)(x, y)
∣∣ < Na and

∣∣∂y(xha)(x, y)
∣∣ < Na. (29)

Let ∂xga(x, y) = x2qta(x, y) and denote by m the supremum of |ta(x, y)| on the set W−,
where the supremum is taken after all |a| < δ. Hence for any a with |a| < δ and any
(x, y) taken from the repelling sectors W− = ∆− × Dr of the Hénon map we have

∣∣∂xga(x, y)
∣∣ < m|x|2q.

By eventually reducing ρ > 0, we can assume as in Equation 23 that

|1 + (q + 1)xq| −m|x|2q > 1 + ε1|x|q > 1, for all x ∈ ∆−. (30)

Definition 6.7. Let (x, y) be a point in the repelling sectors W− of the Hénon map.
Define the horizontal cone at (x, y) to be

Ch(x,y) = {(ξ, η) ∈ T(x,y)W
−, |ξ| > |η|}.

We will show that the horizontal cones are invariant under DH̃ and that DH̃ is
expanding inside the horizontal cones.

Proposition 6.8 (Horizontal cones). Let (x, y) and (x′, y′) be two points from W−

such that H̃(x, y) = (x′, y′). Then

DH̃(x,y)

(
Ch(x,y)

)
⊂ Int Ch(x′,y′)

and
∥∥DH̃(x,y)(ξ, η)

∥∥ ≥ (1 + ε1
2 |x|q)‖(ξ, η)‖ for (ξ, η) ∈ Ch(x,y).

Proof. Pick (ξ, η) ∈ Ch(x,y) and let DH̃(x,y)(ξ, η) = (ξ′, η′). The derivative of H̃ is

DH̃(x,y) =

(
λ(1 + (q + 1)xq + ∂xga(x, y)) λ∂yga(x, y)

∂x(xha)(x, y) µ+ ∂y(xha)(x, y)

)
.
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Consider now the Euclidean metric on the set Dρ × Dr and estimate

|η′| ≤ Na|ξ|+ (|µ|+Na) |η| < (2Na + |µ|)|ξ| (31)

|ξ′| ≥
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| −Ma|x|2q+2|η|

>
(
|1 + (q + 1)xq| −m|x|2q −Ma|x|2q+2

)
|ξ|. (32)

We then obtain

|η′| < B2

B1
|ξ′|,

where B1 and B2 are defined in the obvious way

B2 := 2Na + |µ|
B1 := |1 + (q + 1)xq| −m|x|2q −Ma|x|2q+2.

The bounds Na, Ma and |µ| = |a|2 tend to 0 as a→ 0, so we can make B2 as small as
we want, for example we assume B2 <

1
2 . The points (x, y) and (x′, y′) are chosen from

the repelling sectors, so we can assume that

B1 ≥ 1 +
ε1
2
|x|q. (33)

In conclusion we get |η′| < B2|ξ′|, so (ξ′, η′) ∈ Int Ch(x′,y′). In fact, when η = 0, we have

that |η′| < Na|ξ′|, which will be useful in Lemma 10.5.

The same computation 32 also shows that |ξ′| > B1|ξ| so DH̃ expands the horizontal
length of vectors, i.e.

‖(ξ′, η′)‖ = max
{
|ξ′|, |η′|

}
= |ξ′| > B1|ξ| ≥ |ξ| = max {|ξ|, |η|} = ‖(ξ, η)‖. (34)

�

7. Construction of a neighborhood V for J+

We will build a neighborhood of J+ for a semi-parabolic Hénon map Ha inside a
polydisk Dr × Dr, inspired by the construction of a neighborhood of the Julia set of a
parabolic polynomial p on which p is strictly, but not strongly expanding, as in [DH].
Inside a tubular neighborhood B of the local stable manifold W s(qa), we want to forget
about the dynamics of the polynomial p and construct a neighborhood of J+ ∩B that
is meaningful for the dynamics of the Hénon map.

Let q0 be the parabolic fixed point of the polynomial p and let q1 be the other
preimage of q0 under p. Suppose |a| < δ and consider B = Dρ′(q0) × Dr as defined
in Theorem 6.2. Let W± be the attractive/repelling sectors from Lemma 6.6. Define
W±B = φ−1

a (W±)∩Dr×Dr. For our purpose, it is more convenient to view these sectors
in B rather than in the normalized coordinates. The set H−1(B) ∩ Dr × Dr consists of
two connected components. We denote by B′ the connected component which contains
q1. Define W±B′ to be the preimage of the attractive/repelling sectors W±B in B′.

Choose ρ′′ > 0 as large as possible so that p◦2(Dρ′′(q0)) ⊂ Dρ′(q0). Clearly this choice
depends only on the parabolic polynomial p and the radius ρ′. Consider the annulus
A := A(q0; ρ′, ρ′′) between the disk of radius ρ′′ and the disk of radius ρ′ centered at q0.

Let n be the first iterate of p such that p◦(n+1)(0) ∈ Dρ′(q0) and implicitly p◦(n+1)(0) ∈ A.
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Dρ′

c 0

W−
B

W−
B

thin attracting

sectors for the

polynomial

A

Figure 4. Here q = 2. This is a cross section around the parabolic
fixed point of the polynomial p(x) = x2 + c0. The red lines are the
boundaries of the attractive sectors for the Hénon map. The thin
attractive sectors for the polynomial and their preimages are shown
in green.

We now construct attractive sectors Satt associated with the parabolic polynomial p in
Dρ′(q0), thin enough along the attractive axes of the polynomial so that

(
p−◦(n+1)(Satt) ∩A

)
× Dr ⊂W+

B . (35)

Let ∂in(W+
B ) be the part of the boundary of W+

B that lies strictly inside A × Dr.
Similarly, let ∂in(p−◦(n+1)(Satt) ∩ A) be the part of the boundary of p−◦(n+1)(Satt) ∩ A
that is strictly inside the annulus A. We will further require that Satt be thin enough so
that the distance between the two boundaries ∂in(W+

B ) and ∂in(p−◦(n+1)(Satt)∩A)×Dr is
at least η0 > 0. The constant η0 depends only on the local dynamics of the polynomial
p and it can be taken to be a fraction of the distance between ∂in(∆+ ∩ A) and an
attractive axes that passes through ∆+, where ∆+ is defined in Lemma 6.1.

Let Ω = p−◦n(Satt). In the definition of the set Ω, we only consider the preimages of
Satt that contain the parabolic fixed point in the boundary, so they are local preimages.
The set Ω has q connected components and contains the critical value, but not the
critical point of the polynomial p. Let us now define a set U as the complement of Ω
inside an equipotential of the Green’s function of p, i.e.

U := C− Ω− {z ∈ C−Kp | |Φ−1
p (z)| ≥ R} (36)

for some large enough R > 2. Define U ′ := p−1(U) and Ω′ := p−1(Ω). The constant R
is chosen so that the outer boundary of U ′ (which is an equipotential of the polynomial
p) is in the escaping set U+ (more precisely in the set V +).

We endow U ′ with the Poincaré metric of U . The set U ′ is contained in U and
p : U ′ → U is a covering map, hence expanding. However U ′ is not relatively compact
in U , so there is no constant of uniform expansion.
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∂U

∂U ′

Ω
Ω′

Figure 5. The polynomial p(x) = x2 − 3
4 has a parabolic fixed

point at −1
2 and locally connected Julia set Jp. The corresponding

neighborhoods U and U ′ are also shown, but U ′ is not compactly
contained in U , as in the hyperbolic case. Their boundaries touch
at the parabolic fixed point.

Define
V :=

(
U ′ × Dr − (B ∪B′)

)
∪
(
W−B ∪W−B′

)
, (37)

where B and B′ are the two tubular neighborhoods defined above.
The vertical size of the neighborhood V is r > 3 where r is chosen so that Dr ⊂ U ′∪Ω′.

We also require that H(V ) does not intersect the horizontal boundary of V , that is
|ax| < r for any x ∈ U ′.

The horizontal size of the neighborhood V is given by an equipotential of the parabolic
polynomial, contained entirely in the escaping set U+.

Let a be small enough so that the following two conditions hold:

• r|a| < |p(x) − c0| for any x in U ′. This is possible because we removed a disc
around the critical value c0 of the polynomial p, hence infx∈U ′ |p(x)− c0| > 0.
• 2r|a| < d(∂U ′−Dρ′(q0), ∂U). This assures that for all x in U ′−Dρ′(q0) the disk

of radius 2r|a| around x belongs to U . In other words, the 2r|a|−neighborhood
of the set U ′ − Dρ′(q0) is compactly contained in U .

Furthermore, we choose a small enough so that in the construction of the set V we
make sure to remove points only from the interior of K+ and not J+. We only need
to check for points that are outside the tubes B and B′. This is guaranteed by the
following lemma.

Lemma 7.1. The removed set Ω′ × Dr − (B ∪B′) belongs to the interior of K+.

Proof. From the construction of the sets U ′ and Ω′, after at most n + 1 iterations of
the polynomial p, points from Ω′ are mapped to Dρ′(q0). In fact, points from Ω−Dρ′(q0)

are mapped to the region p−◦(n+1)(Satt) ∩ A inside the annulus A after at most n + 1
iterates.
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W s
loc(qa)

qa

Dr

f0(t, z) = (γ0(t), z)

B′B

0c
Dρ′

Figure 6. A neighborhood V of the set J+ in Dr × Dr. The map
γ0 used in the definition of the fiber f0(t, z) is the equipotential that
gives the outer boundary of the set U ′ (see also Equation 60).

The Hénon map is given byH(x, y) = (p(x)+a2w+ay, ax). The y component does not
pose any problems as |ax| < r for any x ∈ Ω′. Let (x, y) ∈ (Ω−Dρ′(q0))×Dr. Suppose k

is the first iterate for which p◦k(x) ∈ Dρ′(q0). Then p◦k(x) ∈ p−◦(n+1−k)(Satt)∩A. After

k iterates, the distance between the x coordinate of H◦k(x, y) and pk(x) is at most |a|η1,
where η1 is a constant which depends only on the parabolic polynomial p and the integer
n. Notice that n is fixed and depends only on the polynomial p and ρ′, which is also
fixed. However, if after n+ 1 iterates p◦(n+1)(x) is too close to the outer boundary of A,
then we take one more iterate and it is still in A, by construction of this annulus. Based
on the construction of Satt we know that for |a| < η0/η1, H◦k(x, y) ∈ W+

B ∩ A × Dr,
which is in the interior of K+.

This shows that Ω × Dr − B belongs to the interior of K+, but a similar technical
argument can be made for Ω′ × Dr − (B ∪B′). �

Let V denote the set V together with W s
loc(qa) and H−1(W s

loc(qa))∩B′. In all other

cases X denotes the closure of the set X.
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Lemma 7.2. J+ ∩ (Dr × Dr) = J+ ∩ V .

Proof. The outer boundary of the set V is an equipotential of the polynomial cross Dr,
which belongs to U+. From the tubular neighborhood B of the local stable manifold we
removed only the attractive sectors W+

B , which are contained inside the interior of K+

union the local stable manifoldW s
loc(qa). FromB′ we only removed the attractive sectors

W+
B′ , which are contained inside the interior of K+ union a preimage of the local stable

manifold H−1(W s
loc(qa))∩B′. Outside of B∪B′, we removed the set Ω′×Dr− (B∪B′)

which belongs to the interior of K+, as shown in Lemma 7.1. Therefore

J+ ∩ (Dr × Dr) =
(
J+ ∩ V

)
∪W s

loc(qa) ∪
(
H−1(W s

loc(qa)) ∩B′
)

= J+ ∩ V .
In this sense we say that V is a neighborhood of J+ inside the bidisk Dr × Dr. �

Corollary 7.2.1. H(J+ ∩ V ) ⊂ J+ ∩ V and H−1(J+ ∩ V ) ∩ (Dr × Dr) ⊂ J+ ∩ V .

Lemma 7.3. J+ ∩ V =
⋂
n≥0H

−◦n(V ∩ U+).

Proof. Let q ∈ ⋂n≥0H
−◦n(V ∩U+), where U+ = U+ ∪ J+. Since all forward iterates

of q remain in the bounded set V , q cannot belong to U+. Hence q ∈ J+. Suppose now
that q ∈ J+ ∩ V . By construction of the neighborhood V , H(J+ ∩ V ) ⊂ J+ ∩ V , so all
forward iterates of q remain in V . Hence q ∈ ⋂n≥0H

−◦n(V ). �

From Proposition 7.2 we immediately get that the Julia set J =
⋂
n≥0H

◦n(J+ ∩ V ).

8. Infinitesimal metrics on V

On the set V we will define two infinitesimal metrics with respect to which the
derivative of the Hénon map is weekly expanding horizontally and strongly contracting
vertically.

To formalize our definitions, recall that q0 is the parabolic fixed point of the quadratic
polynomial p, B = Dρ′(q0) × Dr and B′′ = Dρ′′(q0) × Dr, where 0 < ρ′′ < ρ′. We have
chosen a small enough so that the local stable manifold W s

loc(qa) of the semi-parabolic
fixed point qa is contained in B′′ and that Equation 35 is satisfied. In addition, the set
U ′ is compactly contained in U outside the disk Dρ′′(q0).

Definition 8.1 (Euclidean metric). In the repelling sectors W−B of the tubular neigh-
borhood B of the local stable manifold of the semi-parabolic fixed point, we have a
natural metric defined as a pull-back of the Euclidean metric from the normalizing
coordinates by φa : W−B →W− ⊂ Dρ × Dr,

µB((x, y), (ξ, η)) := max
{
|ξ̃|, |η̃|

}
, (38)

where φa is the coordinate transformation from Lemma 6.2, (ξ̃, η̃) = Dφa
∣∣
(x,y)

(ξ, η) and

|ξ̃| and |η̃| represent the length of ξ̃ and η̃ with respect to the Euclidean metric.

Remark 8.2. By construction, the coordinate transformation φa takes horizontal curves
to horizontal curves. Therefore, if we choose a point (x, y) ∈ B and a tangent vector

(ξ, 0) ∈ T(x,y)B, then Dφa
∣∣
(x,y)

(ξ, 0) = (ξ̃, 0) and µB ((x, y), (ξ, 0)) = |ξ̃|.
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Definition 8.3 (Poincaré metric). The set V , outside of a small neighborhood B′′

of the local stable manifold W s
loc(qa) of the semi-parabolic fixed point qa, is contained

in the product space U × Dr. On V −B′′ we will use a product metric µU × µE of the
Poincaré metric µU of the set U and the Euclidean metric µE on the vertical disk Dr.
Tangent vectors (ξ, η) from T(x,y)V −B′′ will be measured with respect to the metric

µP ((x, y), (ξ, η)) := max(µU (x, ξ), |η|), (39)

where |η| is the absolute value of the complex number η.

Definition 8.4 (Combining the metrics). Let B′ = (H−1(B) − B) ∩ V be one of
the preimages of B in V as in Section 7. Choose a number M such that

M ≥ sup
(x,y)∈B′

(ξ,η)∈Ch,P
(x,y)

2 · µP ((x, y), (ξ, η))

µB
(
H(x, y), DH(x,y)(ξ, η)

) . (40)

Define as in [DH] µ := inf{µP ,MµB}, where the infimum is taken pointwise between
the metrics on V .

Remark 8.5. Note that the supremum from 40 is a finite number. Since (ξ, η) ∈ Ch,P(x,y),

the numerator µP ((x, y), (ξ, η)) is equal to µU (x, ξ) which is bounded above for all (x, y)
in B′, because B′ is far away from the boundary of the set U , so the Poincaré metric
µU is finite on B′. The denominator is bounded away from zero, because the tangent
vector DH(x,y)(ξ, η) belongs to the horizontal cone Ch,B(H(x, y)) when the vector (ξ, η)

belongs to the horizontal cone Ch,P(x,y).

Remark 8.6. The constant M is chosen so that the Hénon map expands in horizontal
cones with respect to the combined metrics, as we will see in Theorem 8.7. By eventually
increasing M we can assume that inside horizontal cones on ∂Dρ′(q0)×Dr, the infimum
of the two metrics is attained by the Poincaré metric µP . As we approach the point q0

which belongs to the boundary of U , the Poincaré metric explodes in horizontal cones,
whereas the pull-back Euclidean metric µB is finite, so the infimum of the two metrics
will be realized by the metric µB. By eventually reducing a, we can assume that inside
horizontal cones on ∂Dρ′′(q0)×Dr, the infimum is attained by the pull-back metric µB.

Theorem 8.7 (µ-Expansion). Consider (x, y), (x1, y1) ∈ V with H(x, y) = (x1, y1).
Let (ξ, η) and (ξ1, η1) be two tangent vectors such that DH(x,y)(ξ, η) = (ξ1, η1) and (ξ, η)

belongs to the horizontal cones defined at (x, y), i.e. Ch,P(x,y) and/or Ch,B(x,y).

Then the Hénon map is strictly but not strongly expanding with respect to µ, that is

µ ((x1, y1), (ξ1, η1)) > α(x, y) · µ ((x, y), (ξ, η)) , where α(x, y) > 1,

and α(x, y) is a constant in cases (a), (c) and (d), and α(x, y) = E(x, y), the expansion
factor of the pull-back metric µB, in case (b). The expansion factor α(x, y) → 1 if
and only if (x, y) tends to W s

loc(qa), the local stable manifold of the semi-parabolic fixed
point.

Proof. There are four cases to consider:
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(a) Suppose

µ ((x, y), (ξ, η)) = µP ((x, y), (ξ, η)) and

µ ((x1, y1), (ξ1, η1)) = µP ((x1, y1), (ξ1, η1)) .

Since the Poincaré metric is smaller than the pull-back metric, it means that the
points (x, y) and (x1, y1) are not very close to q0×Dr. In particular by Remark
8.6 they must lie outside Dρ′′(q0)× Dr. By Proposition 9.8,

µ ((x1, y1), (ξ1, η1)) > k · µ ((x, y), (ξ, η)) .

(b) Suppose

µ((x, y), (ξ, η)) = MµB((x, y), (ξ, η)) and

µ((x1, y1), (ξ1, η1)) = MµB((x1, y1), (ξ1, η1)).

By Proposition 6.6 we get µ ((x1, y1), (ξ1, η1)) > E(x, y) · µ ((x, y), (ξ, η)). The
expansion factor E(x, y) = 1 + ε1

2 |x̃|q, where (x̃, ỹ) = φa(x, y).
(c) Suppose

µ ((x, y), (ξ, η)) = MµB ((x, y), (ξ, η)) and

µ ((x1, y1), (ξ1, η1)) = µP ((x1, y1), (ξ1, η1)) .

By Remark 8.6 above, the point (x1, y1) cannot be too close to q0 × Dr and it
must stay outside the small tube B′′. By Proposition 9.8, we have

µP ((x1, y1), (ξ1, η1)) > k · µP ((x, y), (ξ, η))

≥ k ·MµB ((x, y), (ξ, η)) = k · µ ((x, y), (ξ, η)) .

(d) Suppose

µ ((x, y), (ξ, η)) = µP ((x, y), (ξ, η)) and

µ ((x1, y1), (ξ1, η1)) = MµB ((x1, y1), (ξ1, η1)) .

In this case there are two subcases to consider:
(i) If (x, y) ∈ B′, then by the choice of the constant M we have

µP ((x, y), (ξ, η)) <
2 · µP ((x, y), (ξ, η))

µB ((x1, y1), (ξ1, η1))
· 1

2
µB ((x1, y1), (ξ1, η1))

<
1

2
·MµB ((x1, y1), (ξ1, η1))

hence µ ((x1, y1), (ξ1, η1)) > 2 · µ ((x, y), (ξ, η)).
(ii) If (x, y) ∈ B, and the Poincaré metric is smaller than the pull-back metric,

then (x, y) must be outside the small tube B′′ which encloses the local stable
manifold W s

loc(qa). If we denote by k′ := inf
(x,y)∈V−B′′
|a|<δ

E(x, y) the infimum of

the expansion rate E(x, y) outside B′′, then k′ > 1. By Proposition 6.6, we
know that µB ((x1, y1), (ξ1, η1)) > E(x, y) · µB ((x, y), (ξ, η)). Therefore

MµB ((x1, y1), (ξ1, η1)) > E(x, y) ·MµB ((x, y), (ξ, η))

≥ k′ · µP ((x, y), (ξ, η)),
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hence µ ((x1, y1), (ξ1, η1)) > k′ · µ ((x, y), (ξ, η)). �

9. Vertical and horizontal cones

Definition 9.1. In Section 6 we gave the definition 6.7 of a horizontal cone at a point
(x, y) from the set Dρ × Dr, namely:

Ch(x,y) =
{

(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| > |η|
}
.

We will now define the vertical cone at a point (x, y) from the set Dρ × Dr to be

Cv(x,y) =
{

(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| < |x|2q|η|
}
.

In Proposition 6.8, we showed that horizontal cones are invariant under DH̃. More-
over, by Equation 34 of Proposition 6.6, the Hénon map expands the length of vectors
from the horizontal cone Ch(x,y) by a factor of 1 + ε1

2 |x|q. Now we will show that the

vertical cones are invariant under DH̃−1 and that DH̃−1 is expanding in the vertical
direction.

Proposition 9.2 (Vertical cones). Consider (x, y) and (x1, y1) in the repelling sectors

of Dρ × Dr such that H̃(x, y) = (x1, y1). Then

DH̃−1
(x1,y1)

(
Cv(x1,y1)

)
⊂ Int Cv(x,y)

and
∥∥DH̃−1

(x1,y1)(ξ
′, η′)

∥∥ ≥ 1
|a|2+1/2

‖(ξ′, η′)‖ for (ξ′, η′) ∈ Cv(x1,y1).

Proof. Let (ξ′, η′) ∈ Cv(x1,y1) and (ξ, η) = DH̃−1
(x1,y1)(ξ

′, η′). We need to show that

(ξ, η) ∈ Cv(x,y) so we compute as before

ξ′ = λ (1 + (q + 1)xq + ∂xga(x, y)) ξ + λ∂yga(x, y)η

η′ = ∂x(xha)(x, y)ξ + (µ+ ∂y(xha)(x, y)) η

and estimate

|ξ′| >
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| −Ma|x|2q+2|η|

|η′| < Na|ξ|+ (|µ|+Na) |η|.
Since (ξ′, η′) belongs to the vertical cone at (x1, y1), we also know that

|ξ′| < |x1|2q|η′| < |x|2q|1 + xq + ga(x, y)/x|2q|η′| < |x|2qM2q
1 |η′|,

where M1 is the supremum of |1 + xq + ga(x, y)/x| on the repelling sectors W− of the
tubular neighborhood B, that is

M1 := sup
(x,y)∈W−, |a|<δ

∣∣1 + xq + ga(x, y)/x
∣∣. (41)

Clearly M1 > 0. In fact we could take a constant M1 > 1 because Re(xq) > ε1|x|q in
the repelling sectors W−. By combining these inequalities we get
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| −Ma|x|2q+2|η| < M2q

1 Na|x|2q|ξ|+M2q
1 (|µ|+Na)|x|2q|η|.
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After regrouping the terms, we obtain

|ξ| < A2

A1
|x|2q|η|

where A1 and A2 are defined as follows

A1 := |1 + (q + 1)xq| − (m+M2q
1 Na)|x|2q

A2 := M2q
1 (|µ|+Na) +Ma|x|2.

Since x is chosen from the repelling sectors we have |1 + (q+ 1)xq|−m|x|2q > 1 + ε1|x|q.
The bounds Na, Ma and the eigenvalue µ all depend on a, and they tend to 0 as a→ 0,
so for |a| small we can assume that A1 >

2
3 and A2 <

1
3 . Hence (ξ, η) ∈ Int Cv(x,y).

We will now show that inside the vertical cones, DH̃−1 is expanding with respect to
the Euclidean metric. We have

|η′| < Na|ξ|+ (|µ|+Na) |η| < Na
A2

A1
|x|2q|η|+ (|µ|+Na) |η|

<

(
1

2
Na|x|2q + |µ|+Na

)
|η| <

(
|µ|+ 3

2
Na

)
|η|,

since |x| < ρ < 1. We obtain |η| > 1
|µ|+ 3

2
Na
|η′|. For a sufficiently small we can assume

that Na < 1/3, therefore |η| > 1
|µ|+1/2 |η′| = 1

|a|2+1/2
|η′|.

Since (ξ, η) and (ξ′, η′) belong to vertical cones, we have ‖(ξ, η)‖ = max(|ξ|, |η|) = |η|
and ‖(ξ′, η′)‖ = max(|ξ|′, |η′|) = |η′|, hence DH̃−1 expands in the vertical cones with a
factor strictly greater than 1. �

The vertical cones that we have introduced in Definition 9.1, are taken with respect
to the Euclidean metric, in the normalized coordinates around the local stable manifold
of the semi-parabolic fixed point.

Definition 9.3. Let Cv,B(x,y) := Dφ−1
a

(
Cvφa(x,y)

)
and Ch,B(x,y) := Dφ−1

a

(
Chφa(x,y)

)
denote the

pull-back of the vertical cone Cvφa(x,y) and respectively of the horizontal cone Chφa(x,y)

defined in 9.1, from the normalized coordinates Dρ × Dr into B, by the change of
coordinate function φa.

On the set V , outside of a small neighborhood Dρ′′(q0)×Dr of the local stable manifold
W s
loc(qa) of the semi-parabolic fixed point qa, we will use a product metric µU × µE of

the Poincaré metric µU of the set U and the Euclidean metric µE on the vertical disk
Dr. We will also define vertical and horizontal cones with respect to the product metric
and show invariance under DH−1, respectively under DH.

Let us notice first that p : U ′ → U is a covering map, hence a local isometry from the
set U ′ endowed with the Poincaré metric of U ′ to the set U endowed with the Poincaré
metric of U . Since U ′ is contained in U , the inclusion map is contracting with respect
to the Poincaré metrics of U ′ and U . Therefore, if we consider x ∈ U ′ and ξ a complex
tangent vector, then

µU (p(x), p′(x)ξ) = µU ′(x, ξ) > µU (x, ξ), (42)
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hence the polynomial p is expanding with respect to the Poincaré metric of U . The
boundaries of the sets U and U ′ touch at the parabolic fixed point q0, so there is no
constant of uniform expansion. However, the set U ′ − Dρ′′(q0) is compactly contained
in U , therefore there exists a constant k0 > 1 such that

µU
(
p(x), p′(x)ξ

)
> k0 · µU (x, ξ), for all x ∈ U ′ − Dρ′′(q0). (43)

The constant k0 from inequality 43 is just lim inf
x∈U ′−Dρ′′ (q0)

ρU (p(x))|p′(x)|
ρU (x) , where ρU is the

density function of the Poincaré metric µU , that is ρU is a positive continuous function
such that

µU (x, ξ) = ρU (x)|ξ|, for all x ∈ U and ξ ∈ TxU.
By inequality 42, we know that k0 ≥ 1. Suppose by contradiction that k0 = 1. There

exists a sequence of points {xn}n≥1 in U ′ −Dρ′′(q0) such that ρU (p(xn))|p′(xn)|
ρU (xn) → 1. The

sequence xn is bounded, therefore there exists a convergent subsequence xnk → x∗,
where x∗ belongs to the closure of U ′ − Dρ′′(q0). However, the limit point x∗ cannot
belong to the part of the boundary of U ′−Dρ′′(q0) given by ∂U ′−Dρ′′(q0), because the
latter is compactly contained in U , so ρU (x∗) is finite. However p(∂U ′−Dρ′′(q0)) ⊂ ∂U ,
so the Poincaré metric of ρU (p(x∗)) would be infinite. Note also that |p′(x∗)| is different
from 0, as the closure of U ′ does not contain the critical point 0 of the polynomial p.

This contradicts the fact that lim
k→∞

ρU (p(xnk ))|p′(xnk )|
ρU (xnk ) = 1. The only possibility left is that

x∗ belongs to U ′, but then, by inequality 42 we know that ρU (p(x∗))|p′(x∗)| > ρU (x∗).
In conclusion k0 must also be strictly greater than 1.

Lastly, we also make the observation that on the set U ′−Dρ′′(q0), the Poicaré metric
µU is bounded above and below by the Euclidean metric, that is, there exist two positive
constants m1 and m2 such that m1 < ρU (x) < m2 for any x ∈ U ′ − Dρ′′(q0).

Definition 9.4. Let τ < 1 to be chosen later. Define the vertical cone at a point (x, y)
from the set U ′ × Dr − Dρ′′(q0)× Dr to be

Cv,P(x,y) =
{

(ξ, η) ∈ T(x,y)U
′ × Dr, µU (x, ξ) < τ |η|

}
.

Define the horizontal cone at a point (x, y) from the set U ′ × Dr − Dρ′′(q0)× Dr as

Ch,P(x,y) =
{

(ξ, η) ∈ T(x,y)U
′ × Dr, µU (x, ξ) > |η|

}
.

Proposition 9.5 (Vertical cones). Consider (x, y) and (x′, y′) in U ′×Dr−Dρ′′(q0)×Dr
such that H(x′, y′) = (x, y). Then

DH−1
(x,y)

(
Cv,P(x,y)

)
⊂ Int Cv,P(x′,y′)

and
∥∥DH−1

(x,y)(ξ, η)
∥∥ ≥ 1

|a|‖(ξ, η)‖ for (ξ, η) ∈ Cv(x,y).

Proof. Let (ξ, η) ∈ Cv(x,y) and denote by (ξ′, η′) = DH−1
(x,y)(ξ, η). Since

(
x′, y′

)
=

(
y

a
,
x− p(y/a)− a2w

a

)
and DH−1

(x,y) =

[
0 1

a
1
a −2y

a3

]
,
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we can compute ξ′ = 1
aη and η′ = 1

a

(
ξ − 2x′

a η
)

. The vector (ξ, η) belongs to the vertical

cone, so µU (x, ξ) = ρU (x)|ξ| < τ |η|. This implies

|ξ| < τ

m1
|η|. (44)

We can evaluate

µU (x′, ξ′) = ρU (x′)
|η|
|a| ≤

m2

|a| |η|. (45)

Next, we compute using inequality 44

|η′| > 1

|a|

∣∣∣∣ξ −
2x′

a
η

∣∣∣∣ >
1

|a|

( |2x′|
|a| −

τ

m1

)
|η|. (46)

The point x′ belongs to the set U ′. The set U ′ does not contain a neighborhood of the
critical point 0 of the polynomial p. Hence there exists a lower bound r1 > 0 such that
r1 < |2x′|. Choose a small, so r1

|a| − τ
m1

> max
{

2m2
τ , 1

}
. By combining Equations 45

and 46 we get µU (x′, ξ′) < τ
2 |η|. Therefore we have shown the invariance of vertical

cones DH−1
(x,y)

(
Cv,P(x,y)

)
⊂ Int Cv,P(x′,y′).

Inequality 46 shows that |η′| > 1
|a| |η|, so DH−1 is expanding in the vertical cones.

Since ‖(ξ, η)‖ = max(µU (x, ξ), |η|) = |η| and ‖(ξ′, η′)‖ = max(µU (x′, ξ′), |η′|) = |η′|, we
obtain ‖(ξ′, η′)‖ > 1

|a|‖(ξ, η)‖, as claimed. �

Remark 9.6. The scalar 0 < τ < 1 in the definition of the vertical cone will typically

be chosen less than
(ρ

2

)2q
, so that on a neighborhood of the boundary of B, the vertical

cones Cv,P(x,y) from Definition 9.4 are contained in the interior of the pull-back cones Cv,B(x,y)

from Definition 9.3. In this way we can assure that DH−1
(x,y)

(
Cv,P(x,y)

)
⊂ Int Cv,B(x′,y′).

To fully show the invariance of the two types of vertical cones under DH−1, we have
one more case to cover.

Proposition 9.7. Let (x′, y′) ∈ B′ and (x, y) ∈ B such that H(x′, y′) = (x, y). Then

DH−1
(x,y)

(
Cv,B(x,y)

)
⊂ Int Cv,P(x′,y′).

Proof. Consider (ξ, η) ∈ Cv,B(x,y) and (ξ′, η′) = DH−1
(x,y)(ξ, η). We have to show that

µU (x′, ξ′) < τ |η′|. Let (x̃, ỹ) = φa(x, y) and (ξ̃, η̃) = Dφa|(x,y)(ξ, η). By Definition 9.3,

the vector (ξ, η) belongs to the vertical cone Cv,B(x,y) if and only if |ξ̃| < |x̃|2q|η̃|. The

change of coordinate φa(x, y) is holomorphic with respect to a and it is O(a) close to
(φ(x), y), therefore there exists κφ > 0 such that when a is small we have |ξ| < κφ|η|.

By using the same computations as in Proposition 9.5 we obtain η′ = 1
a

(
ξ − 2x′

a η
)

and ξ′ = 1
aη and we have estimates analogous to relations 45 and 46:

µU (x′, ξ′) = ρU (x′)|ξ′| < m2

|a| |η| (47)

|η′| >
1

|a|

( |2x′|
|a| |η| − |ξ|

)
>

1

|a|

(
r1

|a| − κφ
)
|η|. (48)
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Therefore, to show that µU (x′, ξ′) < τ |η′| all we need to know is that m2 < τ
(
r1
|a| − κφ

)
,

which is obviously true when a is small. �

Proposition 9.8 (Horizontal cones). Let (x, y) and (x′, y′) in (U ′ − Dρ′′(q0)) × Dr
such that H(x, y) = (x′, y′). Then

DH(x,y)

(
Ch,P(x,y)

)
⊂ Int Ch,P(x′,y′)

and
∥∥DH(x,y)(ξ, η)

∥∥ ≥ k · ‖(ξ, η)‖ for (ξ, η) ∈ Ch,P(x,y), where k > 1 is a constant that

depends on the polynomial p which has a parabolic fixed point at q0.

Proof. Let (ξ, η) ∈ Ch,P(x,y) and (ξ′, η′) = DH(x,y)(ξ, η). We show that (ξ′, η′) ∈ Int Ch,P(x′,y′)

and µU (x′, ξ′) > k · µU (x, ξ). Since

(
x′, y′

)
=
(
p(x) + a2w + ay, ax

)
and DH(x,y) =

[
2x a
a 0

]
,

we can compute ξ′ = 2xξ + aη and η′ = aξ. The vector (ξ, η) belongs to the horizontal
cone at (x, y), so

|η| < µU (x, ξ) = ρU (x)|ξ| < m2|ξ|. (49)

We evaluate

µU (x′, ξ′) = ρU
(
p(x) + a2w + ay

)
|2xξ + aη|. (50)

The density function ρU of the Poincaré metric is bounded above and below on the
set U ′′ := U ′ − Dρ′′(q0) since we removed a disk around the fixed point q0, where the
boundaries of U ′ and U touch. Since ρU is C∞-smooth on U ′′, its derivative ρ′U is also
bounded. There exists a constant cU ′′ > 0 such that

∣∣ρU
(
p(x) + a2w + ay

)
− ρU (p(x))

∣∣
|a| ≤ |aw + y| · sup

U ′′
ρ′U ·

ρU (p(x))

inf
U ′′
ρU

< cU ′′ · ρU (p(x)) . (51)

By 43, the polynomial p is expanding on U ′ − Dρ′′(q0) with respect to the Poincaré
metric µU , that is there exists a constant k0 > 1 such that

ρU (p(x)) |p′(x)ξ| > k0 · ρU (x)|ξ|. (52)

The set U ′ avoids a uniform neighborhood of the critical point 0, so there exists as
before r1 such that 0 < r1 < |2x| for any x ∈ U ′. We now turn back to relation 50.
Using 51, 52 and 49 one gets

µU (x′, ξ′) > (1− cU ′′ |a|) · ρU (p(x)) |2xξ| · |2xξ + aη|
|2xξ|

> (1− cU ′′ |a|) · k0 · ρU (x)|ξ| ·
(

1− |a| |η||2x||ξ|

)

> k0 · (1− cU ′′ |a|) ·
(

1− |a|m2

r1

)
· ρU (x)|ξ|. (53)
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The constant k0 is strictly bigger than 1. The factors 1 − c|a| and 1 − |a|m2
r1

can be

made arbitrarily close to 1 by reducing |a| < δ. Let δ be sufficiently small so that

k := k0 · (1− cU ′′δ) ·
(

1− δm2

r1

)
> 1. (54)

When |a| < δ, relation 53 gives

µU (x′, ξ′) > k · ρU (x)|ξ| = k · µU (x, ξ) (55)

which proves that DH expands in the horizontal cones. Also from relation 53 we infer
that

|a| · µU (x′, ξ′) > k · ρU (x)|aξ| > k ·m1 · |η′| (56)

which proves that DH(x,y)

(
Ch,P(x,y)

)
⊂ Int Ch,P(x′,y′), so the horizontal cones are invariant

under DH for a small. �

If both types of horizontal cones are defined at some point (x, y) ∈ V , we cannot

say in general that one is contained in the other, i.e. Ch,P(x,y) ⊂ C
h,B
(x,y) or Ch,B(x,y) ⊂ C

h,P
(x,y).

However, since the derivative of the Hénon map contracts the vertical component of

tangent vectors by a factor of a, we can assume that DH(x,y)

(
Ch,P(x,y)

)
⊂ Int Ch,B(x′,y′) and

DH(x,y)

(
Ch,B(x,y)

)
⊂ Int Ch,P(x′,y′) whenever both types of cones are defined at (x, y) and/or

at (x′, y′) = H(x, y).

10. Distance between vertical-like curves

In this section we work entirely in the normalized coordinates from Theorem 6.2. The
notion of vertical-like curves translates as follows

Definition 10.1. We will call an analytic curve γ ⊂ Dρ × Dr vertical-like if γ is the
graph of an analytic function φ : Dr → Dρ, and for all points (x, y) on γ, the tangent
vectors (ξ, η) to γ at (x, y) belong to the vertical cone Cv(x,y) from Definition 9.1.

Let us now consider two vertical-like curves in the same repelling sector of Dρ × Dr,
that are entirely contained in the escaping set U+. Denote these vertical curves

f1(z) = (ϕ1(z), z) and f2(z) = (ϕ2(z), z).

Let g1(Dr) be the image under H̃−1 of f1(Dr), contained inside Dρ×Dr. More precisely,

H̃−1(f1(Dr)) ∩ (Dρ × Dr),

is a vertical-like fiber, that we can describe as the graph of an analytic function

g1(z) = (ϕ′(z), z), where ϕ′ : Dr → Dρ.

Similarly, let g2(Dr) be H̃−1(f2(Dr))∩(Dρ×Dr) reparametrized by the second coordinate
g2(z) = (ϕ′′(z), z). Notice that g1(Dr) and g2(Dr) are vertical-like curves (by Proposition
9.2), both contained in some other repelling sector of Dρ × Dr and in U+.
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Much like in the hyperbolic setting, we would like to show that H̃ expands the
horizontal distance between vertical-like curves. We will measure the horizontal distance
with respect to the standard Euclidean metric on Dρ × Dr. Define

d(f1, f2) = ‖ϕ1 − ϕ2‖ = sup
z∈Dr
|ϕ1(z)− ϕ2(z)|

Notice that this distance between vertical-like curves is just the distance between the
parametrizing functions ϕ1 and ϕ2 with respect to the sup-norm.

Theorem 10.2. Let d(g1, g2) and d(f1, f2) be the horizontal distance between the vertical-
like curves g1, g2 and respectively f1, f2. Then

d(g1, g2) < Cd(f1, f2),

where C = C(f1, f2) < 1, so the normalized Hénon maps H̃ expands strictly the distance
between the vertical-like curves g1 and g2.

Proof. Let z ∈ Dr be arbitrarily chosen and denote by x′ = ϕ′(z), and x′′ = ϕ′′(z).
The points (x′, z) and (x′′, z) lie on the vertical-like curves g1 and g2.

(x1, y1)

(x2, y2)

(x3, y1)

(x2, y1)

(x′′, z)
(x′, z)

H̃

γ1

γ2

γ

g1 g2 f1 f2

Figure 7. Fibers g1, g2 and their image fibers f1, f2 under H̃.

Let (x1, y1) = H̃(x′, z) and (x2, y2) = H̃(x′′, z) be the corresponding points on f1

and f2. Let (x3, y1) = (ϕ2(y2), y2) be the point of intersection of the curve f2 with the
horizontal plane C× {y1}. Suppose without loss of generality that |x2| ≤ |x1|. Let

I(x1, x2) :=

∫ 1

0
|tx1 + (1− t)x2|qdt.

Lemma 10.3 (Step 1). We have

|x′ − x′′| <
(

1− ε1
2M q

1

I(x1, x2)

)
|x1 − x2|,

where the constant M1 is independent of a. The constant ε1 is given in Equation 23.
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Proof. Choose a straight line in the C× {y1} plane,

γ(t) = (xγ(t), y1), where xγ(t) = tx1 + (1− t)x2 and t ∈ [0, 1],

connecting the points (x1, y1) and (x2, y1). There exists a horizontal curve

γ1(t) : [0, 1]→ Dρ × {z}, γ1(t) = (xγ1(t), z),

connecting the points (x′, z) = γ1(0) and (x′′, z) = γ2(0) and such that the projection

of the curve γ2(t) := H̃(γ1(t)) on the plane C × {y1} is exactly the straight line γ(t).
Formally, if we define pr : Dρ×Dr → Dρ×{y1}, pr(x, y) = (x, y1), then pr(γ2(t)) = γ(t).

By Lemma 6.6, we know that DH̃ expands the horizontal length of vectors in W−, so

|γ′(t)| > C(xγ1(t))|γ′1(t)|.
We will compare the length of the curve γ1 with the length of γ. Note that γ(t) is a just
a horizontal line segment, hence |γ′(t)| = |x1−x2|, for all t ∈ [0, 1] and l(γ) = |x1−x2|.

l(γ1) =

∫ 1

0
|γ′1(t)|dt <

∫ 1

0

1

C(xγ1(t))
|γ′(t)|dt = |x1 − x2|

∫ 1

0

1

C(xγ1(t))
dt (57)

Recall from Equation 30 that C(x) := |1 + (q + 1)xq| −m|x|2q ≥ 1 + ε1|x|q. We have
C(x) > 1 for all (x, y) ∈W−. Since |x| < 1, we also have that

1

C(x)
≤ 1

1 + ε1|x|q
≤ 1− ε1

2
|x|q.

Recall also that for any t ∈ [0, 1]

xγ(t) = λxγ1(t) (1 + xγ1(t)q + ga(xγ1(t), z)/xγ1(t))

where
∣∣1 + xγ1(t)q + ga(xγ1(t), z)/xγ1(t)

∣∣ < M1, as in Equation 41. By combining these
estimates we obtain∫ 1

0

1

C(xγ1(t))
dt < 1− ε1

2

∫ 1

0
|xγ1(t)|qdt < 1− ε1

2M q
1

∫ 1

0
|xγ(t)|qdt

= 1− ε1
2M q

1

∫ 1

0
|tx1 + (1− t)x2|qdt.

Using that |x′ − x′′| ≤ l(γ1) and Equation 57 we get the desired inequality. �

Lemma 10.4 (Technical estimate). Let q ≥ 1 be a natural number and x1, x2 ∈ C
be two complex numbers, with |x2| ≤ |x1|. Then |x1|q ≤ 2(q + 1)I(x1, x2).

Proof. If x1 = 0 then x2 = 0 and we have equality. Otherwise, set x = x2/x1. Then
|x| ≤ 1 and we need to show that

1

2(q + 1)
≤

1∫

0

∣∣∣∣t
x2

x1
+ (1− t)

∣∣∣∣
q

dt =

1∫

0

|tx+ (1− t)|qdt.

For any t ∈ [0, 1] we have |tx + (1 − t)| ≥ |t|x| − (1 − t)| = |t(1 + |x|) − 1|. Let
u = t(1 + |x|)− 1. Then du = (1 + |x|)dt and

∫ 1

0
|t(1 + |x|)− 1|q dt =

1

|x|+ 1

∫ |x|

−1
|u|q du =

1

|x|+ 1

|x|q+1 + 1

q + 1
>

1

2(q + 1)
,
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since 0 ≤ |x| ≤ 1. �

Suppose for now that a is small enough such that Na <
1
8q . This is similar to what

we previously required for Na. In Equation 59 we will impose another bound for Na.

Lemma 10.5 (Step 2). |x2 − x3| < 4(q + 1)NaI(x1, x2)|x1 − x2|.

Proof. The geometric intuition behind the inequality is that the curve γ2 connecting
(x1, y1) and (x2, y2) becomes horizontal as a → 0, while the fibers f1 and f2 become
vertical. The rigorous proof is outlined below. From the proof of Proposition 6.8 it
follows that |y1 − y2| < Na|x1 − x2|, where Na → 0 as a→ 0. The curve

t→ (ϕ2(ty1 + (1− t)y2), ty1 + (1− t)y2) , t ∈ [0, 1]

is vertical-like so in particular the horizontal distance is smaller than the vertical distance
and

|ϕ2(ty1 + (1− t)y2)− ϕ2(y2)| < |ty1 + (1− t)y2 − y2| = t|y1 − y2|,
for t ∈ [0, 1]. Using ϕ2(y2) = x2 this gives

|ϕ2(ty1 + (1− t)y2)| < |x2|+ t|y1 − y2| < |x2|+ tNa|x1 − x2|.
Hence

|x2 − x3| ≤
1∫

0

∣∣∣∣
∂

∂t
ϕ2(ty1 + (1− t)y2)

∣∣∣∣ dt ≤
1∫

0

|y1 − y2| |ϕ2(ty1 + (1− t)y2)|2q dt

≤ |y1 − y2| (|x2|+Na|x1 − x2|)2q ≤ Na|x1 − x2| (|x2|+Na|x1 − x2|)2q .

Suppose without loss of generality that |x2| ≤ |x1| and |x1| < 1. From the technical
estimate Lemma 10.4 we get

|x2 − x3| < Na|x1 − x2|(1 + 2Na)
2q|x1|2q

< Na|x1 − x2|(1 + 2Na)
2q · 2(q + 1)I(x1, x2).

Since Na <
1
8q , we can use the following estimate

2(q + 1)(1 + 2Na)
2q < 2(q + 1)

(
1 +

1

4q

)2q

< 4(q + 1)

to get |x2 − x3| < 4(q + 1)NaI(x1, x2)|x1 − x2|. �

We now return to the proof of Theorem 10.2. We can use the triangle inequality in
the Dρ × {y1} disk to connect |x1 − x2| to the distance between the curves f1 and f2

|x1 − x2| − |x2 − x3| ≤ |x1 − x3| ≤ d(f1, f2).

In Step 2 we showed that |x2 − x3| < 4(q + 1)NaI(x1, x2)|x1 − x2|, so

(1− 4(q + 1)NaI(x1, x2)) |x1 − x2| < d(f1, f2).

Using the bound on |x1 − x2| from Step 1, we get that

|x′ − x′′| <
1− ε1

2Mq
1
I(x1, x2)

1− 4(q + 1)NaI(x1, x2)
d(f1, f2),
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where the quantity

C =
1− ε1

2Mq
1
I(x1, x2)

1− 4(q + 1)NaI(x1, x2)
< 1, (58)

for a small enough. Indeed, the constants q, ε1 and M1 are independent of the parameter
a whereas Na → 0 as a→ 0, so it can be made small enough so that

Na <
ε1

8(q + 1)M q
1

. (59)

The right hand side is a fixed constant, but this bound is not optimized. We get that

d(g1, g2) ≤ Cd(f1, f2),

where C < 1 depends on the distance between the curves and the y−axis. This depen-
dency is hidden in I(x1, x2). � of Theorem 10.2

11. The fixed point of a weakly contracting operator

In this section, we construct a function space F and a graph transform operator
F : F → F . We endow the space F with a metric induced by µ on the set V and show
that the operator F is strictly (but not strongly) contracting. The key ingredients will
be the invariance of vertical cones constructed in Section 9 under DH−1 and the weak
expansion of DH in the horizontal cones. We use a generalization of the Banach fixed
point theorem, due to Browder, to claim the existence of a unique fixed point f∗ of F .

Lemma 11.1. Let (x, y) ∈ V ∩U+ and (x′, y′) = H−1(x, y). If |y′| < r then (x′, y′) ∈ V .

Proof. The point (x′, y′) is in U+ ∪ J+ hence it cannot lie in the sets that have been
removed from Dr × Dr when constructing the set V as they belong to the interior of
K+, as shown in Lemmas 7.1 and 6.6.

If (x, y) is in V , then it belongs to W−B , W−B′ or (U ′−Dρ′(q0))×Dr. In the first case,

if (x, y) belongs to the repelling sectors W−B , then (x′, y′) ∈ W−B ∪W−B′ ⊂ V . In the

last two cases, if (x, y) belongs to W−B′ or (U ′ − Dρ′(q0)) × Dr, then for a chosen small
enough, we can assume that the disk of radius 2r|a| around x is contained in U . The
point (x′, y′) = 1

a

(
y, x− p(y/a)− a2w

)
belongs to V because |y′| < r (by hypothesis)

and y/a ∈ U ′. We can use the inequality |x−p(y/a)−a2w| < r|a| to show that y/a ∈ U ′.
Indeed, since a is chosen small enough so that the disk of radius r|a| + |w||a|2 < 2r|a|
around x is still in U , it follows that p(y/a) ∈ U , hence y/a ∈ U ′. Then (x′, y′) ∈ U ′×Dr
and (x′, y′) ∈ U+ ∪ J+, hence (x′, y′) belongs to V . �

Definition 11.2. Let L = {(f(z), z), z ∈ Dr} ⊂ V , be the graph of an analytic function
f : Dr → Dr. The analytic curve L ⊂ V is vertical-like, if the following conditions are
met. Choose (x, y) ∈ L and (ξ, η) a tangent vector to L at (x, y). If (x, y) ∈ B,

then (ξ, η) belongs to the pull-back vertical cone Cv,B(x,y) described in Definition 9.3 using

Definition 9.1. If (x, y) is outside B′′ then (ξ, η) belongs to the vertical cone Cv,P(x,y)

described in Definition 9.4.

Lemma 11.3. Let L be a vertical-like curve in V ∩ (U+ ∪ J+). Then H−1(L) ∩ V is
the union of two vertical-like curves L1 and L2.
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Proof. Since the curve L is vertical-like, it is the graph of a holomorphic function
f : Dr → Dr, with |f ′(z)| < 1. Hence L = {(f(z), z), z ∈ Dr}. Then

H−1(L) =
{(
z/a, (f(z)− p(z/a)− a2w)/a

)
, z ∈ Dr

}

is an analytic curve whose horizontal folding points cannot belong to V . Suppose there
is a folding point inside V . By construction of V , the first coordinate z/a of the folding
point must be bounded away from 0 (independent of a). It follows that the equation
f ′(z) − 2z/a2 = 0 cannot have solutions inside Dr, as (2/a) · (z/a) gets arbitrarily
large when a is small enough, whereas f ′(z) remains bounded, because the curve is
vertical-like.

Therefore the degree of the projection of H−1(L) ∩ V on the second coordinate is
constant. It is easy to see that the degree is 2, by looking at the number of intersections
ofH−1(L) with the x-axis. The curve L is vertical-like in V , hence it intersectsH(x-axis)
in exactly two points. Then H−1(L) intersects the x-axis in two points.

Thus H−1(L)∩C×Dr is a union of two analytic curves L1 and L2. By Lemma 11.1,
L1 and L2 are contained in V , hence H−1(L)∩V is the union of two analytic curves L1

and L2.
Let us make one more remark about L1 and L2. Since L is a vertical like disk in

U+, its projection on the first coordinate is almost constant and bounded away from
0, the critical point of p. Let ∆ be the image of the projection on the first coordinate.
There are two holomorphic branches p1 and p2 of p−1 defined on ∆. Let now (f(z), z)
be any point of L such that H−1(f(z), z) ∈ V . By Lemma 11.1 it suffices to check that
the condition |(f(z)− p(z/a)− a2w)/a| < r is met. This condition means exactly that
z/a is O(a) close to either p1(f(z)) or p2(f(z)). The curves L1 and L2 correspond to
different choices of the branch of p−1.

By Lemmas 9.2 and 9.5, the curves L1 and L2 are vertical-like, so they are graphs of
functions on Dr. The projection pr2 : L1 → Dr, pr2(x, y) = y is a degree one covering
map, hence by the Implicit Function Theorem, L1 is the graph of a holomorphic function
x = φ(y). The map φ must also be injective, as the projection on the first coordinate
pr1 : L1 → U ′, pr1(x, y) = x is injective. �

Choose R > 2 as in the construction of the neighborhood U of the Julia set Jp from
Equation 36 and define the sequence of equipotentials γn : R/Z → C of the parabolic
polynomial p,

γn+1(t) = Φp

(
R1/2n+1

e2πit
)

= p−1(γn(2t)), (60)

where Φp is the inverse Böttcher isomorphism of p 1. Note that γ−1(R/Z) ⊂ ∂U and
γ0(R/Z) ⊂ ∂U ′.
Definition 11.4. Let f0 : S1 × Dr → ∂V be the function f0(t, z) = (γ0(t), z). The
image of f0 is the outer boundary of V and it is contained in the escaping set U+.

We will construct a sequence of pull-backs of the map f0 under the Hénon map.
This choice of f0 will simplify the computations from Section 12 where we establish the
conjugacy of the Hénon map to a model map. For the definition of the function space
we could start with any function f0 : S1×Dr → U+∩V , f0(t, z) = (φt(z), z), continuous
with respect to t and analytic with respect to z such that φt(Dr) is a vertical-like disk
and t 7→ φt(0) is homotopic to γ0(t).
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Definition 11.5. Consider the space of functions:

F =
{
fn : S1 × Dr → V | f0(t, z) = (γ0(t), z), fn(t, z) = F ◦ fn−1(t, z) for n ≥ 1

}
,

where the graph transform F : F → F is defined as

F (f) = f̃ ,

where f̃
∣∣
t×Dr is the conformal map of the component ofH−1 (f(2t× Dr))∩V “homotopic

to” f0(t × Dr), normalized via the Implicit Function Theorem (the projection on the
second coordinate).

On the function space F we consider the metric

d(f, g) = sup
t∈S1

sup
z∈Dr

dµ (f(t, z), g(t, z)) .

where dµ (f(t, z), g(t, z)) is the infimum of the length of horizontal rectifiable paths
τ : [0, 1] → V with τ(0) = f(t, z) and τ(1) = g(t, z). The length is measured with
respect to µ, which is defined in Section 8. Note that dµ is a metric.

We will begin by describing the function space F and showing how the function f1 is
constructed. Proposition 11.7 explains the construction of the graph-transform F and
describes the main properties of the functions from the space F .

For any fixed t ∈ S1, the set f0(2t × Dr) is a vertical disk. By Lemma 11.3, the
preimage H−1(f0(2t × Dr)) ∩ V is a disjoint union of two vertical-like disks (as shown
in Figure 8) that we would like to label as t and t+ 1/2.

y = −aw

(p(x1), ax1)

(p(x2), ax2)

p(x1) = p(x2)

y

x1 x2

Figure 8. The preimage of a fiber of f0 in the neighborhood V .
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The preimage H−1(γ0(2t), z) = (z/a, (γ0(2t)− p(z/a)− a2w)/a) belongs to V if and
only if the second component belongs to Dr. The inequality |γ0(2t)−p(z/a)−a2w| < r|a|
implies that the first coordinate z/a is O(a) close to one of the two preimages of γ0(2t)
under the polynomial p.

Denote by Ct and Ct+1/2 the components of H−1 ◦ f0(2t × Dr) ∩ V that cross the
horizontal axis y = −aw at (γ1(t),−aw), and respectively at (γ1(t+ 1/2),−aw).

Notice that pr2 : Ct → Dr, pr2(x, z) = z is a degree one covering map, hence, by the
Implicit Function Theorem, Ct is the graph of a holomorphic function x = φt(z). Let
us define a new function f1 : S1 × Dr → V as f1(t, z) := (φt(z), z).

Remark 11.6. f1 is homotopic to f0 by construction, since γ1(t) and p−1(γ0(2t)) are
homotopic. Moreover, since a is small, f1(S1 × Dr) and f0(S1 × Dr) are disjoint.

Proposition 11.7. The map F : F → F is well defined. Choose any function f ∈ F .
For any t ∈ S1, f(t × Dr) is a vertical-like disk parametrized by the second coordinate.
There exists ϕt : Dr → Dr analytic with respect to z and a and continuous with respect
to t such that f(t, z) = (ϕt(z), z).

Proof. We have F ◦ f0(t, z) = f1(t, z). Assume by induction that the functions
fn−1, fn : S1 × Dr → V , fn(t, z) = (ϕnt (z), z), fn−1(t, z) = (ϕn−1

t (z), z) have been
constructed for n ≥ 1 and let us show how to define fn+1.

For each t ∈ S1, H−1(fn(2t × Dr)) ∩ V is a union of two vertical like disks in U+,
Ct and Ct+1/2. A choice of labeling is involved and we will first explain how this is
done. Intuitively we would like to label by t the disk which is closer to fn(t × Dr)
and by t + 1/2 the disk which is closer to fn((t + 1/2) × Dr). Let (x1,−aw) and
(x2,−aw) be the two intersection points of H−1(fn(2t × Dr)) with the axis y = −aw.
The points (p(x1), ax1) and (p(x2), ax2) belong to fn(2t × Dr) and we would like to
label them. The disk fn−1(2t×Dr) contains two labeled points bnt = H(fn(t,−aw)) and
bnt+1/2 = H(fn(t+1/2,−aw)). Let p1 and p2 be two holomorphic branches of p such that

p1 ◦p(ϕnt (−aw)) = ϕnt (−aw) and p2 ◦p(ϕnt+1/2(−aw)) = ϕnt+1/2(−aw). If p1 ◦p(x1) = x1

then we label the point (p(x1), ax1) as bn+1
t and the component of H−1(fn(2t×Dr))∩V

that intersects the axis y = −aw at (x1,−aw) as Ct. Otherwise, if p2 ◦ p(x1) = x1, we
label it as Ct+1/2.

As before, the projection on the second coordinate pr2 : Ct → Dr, pr2(x, z) = z is a
degree one covering map, hence, by the Implicit Function Theorem, Ct is the graph of
a holomorphic function x = ϕn+1

t (z). Let then fn+1 be defined as

fn+1(t, z) := (ϕn+1
t (z), z).

It is also easy to see that ϕn+1
t is injective, by the definition of H−1. The function fn+1

is holomorphic with respect to z and a and continuous with respect to t. �

Proposition 11.8. The operator F : F → F is a strict contraction.

d(F (f), F (g)) < d(f, g), for any f, g ∈ F .

The proof is an immediate consequence of the following proposition.
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Proposition 11.9. Let f, g ∈ F and t ∈ S1. Then

d (F ◦ f(t× Dr), F ◦ g(t× Dr)) < C(f, g, t) · d (f(2t× Dr), g(2t× Dr)) ,
where C(f, g, t) is a contraction factor which depends on the fibers f(t×Dr) and g(t×Dr)
and 0 ≤ C(f, g, t) < 1.

Proof. The delicate case is when the curves enter B′′ and come close to W s
loc(qa). By

Theorem 8.7, case (b), the derivative of the Hénon map still expands in the horizontal
direction but the expansion factor goes to 1 as we approach the stable manifold. This
case has already been carefully analyzed in Section 10.

The case where the curves are outside of a small neighborhood of the local stable
manifold W s

loc(qa) can be treated as in the hyperbolic setting, because by Theorem
8.7 the derivative of the Hénon map expands in the horizontal direction with a fixed
expansion factor, independent of a.

Suppose that the fibers f(2t×Dr), g(2t×Dr), F ◦ f(t×Dr), F ◦ g(t×Dr) belong to
V −B = (U ′ − Dρ′(q0))× Dr. We show that there exists a constant C < 1 such that

sup
z∈Dr

dµ (F ◦ f(t, z), F ◦ g(t, z)) ≤ C sup
z∈Dr

dµ (f(2t, z), g(2t, z)) . (61)

Recall that f(2t×Dr), g(2t×Dr), F ◦f(t×Dr) and F ◦g(t×Dr) are vertical-like disks
parametrized by the second coordinate. There exists conformal maps ϕ1, ϕ2 : Dr → U ′

such that F ◦ f(t, z) = (ϕ1(z), z) and F ◦ g(t, z) = (ϕ2(z), z). Let z be any point in Dr.
Denote by x′ = ϕ1(z), x′′ = ϕ2(z). Then (x1, y1) = H(x′, z) = (p(x′) + az + a2w, ax′)
and (x2, y2) = H(x′′, z) = (p(x′′) + az + a2w, ax′′). Finally, denote by (x3, y1) the
intersection point of the vertical-like curve g(2t×Dr) with the horizontal line C×{y1}.
The configuration is the same as in Figure 7 (fibers named f and g here correspond to
f1 and g1 on the picture).

Let γ be any horizontal curve in V between the point (x1, y1) on the curve f(2t×Dr)
and the point (x2, y1). There exists a horizontal curve γ1 in V between the point (x′, z)
on the curve F ◦f(t×Dr) and (x′′, z) on the curve F ◦g(t×Dr) such that γ2 = H(γ1) is a
curve inside the parabola H(C×z) linking (x1, y1) to (x2, y2) such that its projection on
the plane C× y1 is exactly the curve γ. The curves γ, γ1 and γ2 are just local variables
here.

The Hénon map expands the length of horizontal vectors, therefore by Definition 8.3
and Proposition 9.8 there exists k > 1 such that

µP (γ2(s), γ′2(s)) > kµP (γ1(s), γ′1(s)), for any s ∈ [0, 1].

Notice also that the tangent vector γ′2(s) belongs to the horizontal cone at γ2(s), so in
particular, µP is just the Poincaré metric of the projection on the first coordinate, so

µP (γ1(s), γ′1(s)) = µP (γ(s), γ′(s)) = µU (pr1(γ(s)), pr1(γ′(s))).

After passing to the infimum after the length of all horizontal curves γ we conclude that

dµ((x1, y1), (x2, y1)) > kdµ((x′, z), (x′′, z)),

where the distance is measured with respect to the Poincaré metric of U.
Let ψ : Dr → g(2t×Dr) be the conformal isomorphism which parametrizes the fiber.

Then ψ(ax′) = (x3, y1) and ψ(ax′′) = (x2, y2). The fiber is vertical-like, therefore

dµ((x2, y1), (x3, y1)) ≤ τ |ax′ − ax′′|
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The points x′ and x′′ are in U ′−Dρ′(q0) which is compactly contained in U , so we have

m1|x′ − x′′| ≤ dµ((x′, z), (x′′, z)) ≤ m2|x′ − x′′|.
In conclusion we have dµ((x2, y1), (x3, y1)) ≤ |a| τm1

dµ((x′, z), (x′′, z)). By the triangle
inequality it follows that

dµ((x1, y1), (x2, y1))− dµ((x2, y1), (x3, y1)) ≤ dµ((x1, y1), (x3, y1))

≤ sup
z∈Dr

dµ(f(2t, z), g(2t, z)).

So by combining the previous inequalities we get

dµ((x′, z), (x′′, z)) ≤ 1

(k − |a| τm1
)

sup
z∈Dr

dµ(f(2t, z), g(2t, z))

The expansion factor k is strictly bigger than 1, so when a is small, C := (k− |a| τm1
)−1

is a contraction factor strictly less than 1, which gives inequality 61. �

Theorem 11.10 (Contracting map). There exists a monotonically increasing and
right continuous function h : [0,∞)→ [0,∞) such that h(s) < s for each s > 0 and

d (F (f), F (g)) ≤ h (d(f, g)) ,

for any f, g ∈ F .

Proof. Let h : [0,∞)→ [0,∞) be

h(s) := sup
f,g∈F ,t∈S1

d(f(2t×Dr),g(2t×Dr))≤s

d(F ◦ f(t× Dr), F ◦ g(t× Dr)).

It is easy to see that h is increasing and that h(0) = 0. Moreover, by definition

d (F (f), F (g)) ≤ h (d(f, g)) ,

for any f, g ∈ F .
By Proposition 11.9 we know that

d (F ◦ f(t× Dr), F ◦ g(t× Dr)) < C(f, g, t)d (f(2t× Dr), g(2t× Dr)) , (62)

where 0 ≤ C(f, g, t) < 1 is the contraction factor. It follows that h(s) ≤ s for all s ≥ 0.
This right-hand limit h(s+) := limδ↘0 h(s + δ) exists everywhere since the function h
is monotonically increasing. We want to show that h(s+) < s for all s > 0.

Suppose that h(s+) = s for some s > 0. Let (δn)n≥1 be a strictly decreasing sequence
of positive numbers converging to 0. For each n there exists fibers fn, gn and a tn ∈ S1

such that

d (F ◦ fn(tn × Dr), F ◦ gn(tn × Dr)) > h(s+ δn)− δn (63)

and where d (fn(2tn × Dr), gn(2tn × Dr)) ≤ s + δn. This follows from the definition of
h(s+ δn) as a supremum. In view of relation 62 we get that

h(s+ δn)− δn < d (F ◦ fn(tn × Dr), F ◦ gn(tn × Dr))
< Cnd (fn(2tn × Dr), gn(2tn × Dr)) ≤ Cn(s+ δn) < s+ δn,
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where Cn := C(fn, gn, tn) is a number as in Equation 62 above, with 0 ≤ Cn < 1 for
every n ≥ 1. Dividing both sides by s+ δn and passing to the limit as n→∞ yields

h(s+)

s
= 1 ≤ lim

n→∞
Cn ≤ 1.

Thus limn→∞Cn exists and is equal to 1. However, this can only happen if for all
n ≥ n0 the fibers fn and gn belong to the normalizing tubular neighborhood of the
semi-parabolic fixed point and the distance between the fibers is measured in the Eu-
clidean metric (in fact the pull-back of the Euclidean metric under the normalizing
map). Otherwise, the contraction factor C(fn, gn, tn) is bounded by a uniform constant
K < 1.

The contraction factor Cn is constructed explicitly in Section 10. It is of the form

Cn =
1− αI(x1,n, x2,n)

1− βI(x1,n, x2,n)
,

where α, β are fixed constants with 0 < β < α. The numbers x1,n and x2,n are the x-
coordinates of two points that belong to the fibers fn(2tn×Dr), respectively gn(2tn×Dr).
Recall that I(x1,n, x2,n) =

∫ 1
0 |tx1,n + (1− t)x2,n|qdt. If Cn → 1 then I(x1,n, x2,n)→ 0.

In Lemma 10.4 we showed that I(x1,n, x2,n) ≥ 1
2(q+1) max(|x1,n|q, |x2,n|q), so x1,n → 0

and x2,n → 0. But then |x1,n − x2,n| → 0. It follows from Lemma 10.3 and the choice
of x1,n and x2,n that d (F ◦ fn(tn × Dr), F ◦ gn(tn × Dr))→ 0 as n→∞.

Passing to the limit in Equation 63 yields 0 ≥ h(s+) = s, thus s = 0. Contradiction!

Therefore h(s+) < s for all s > 0. The function h̃ : s 7→ h(s+) is continuous from the
right and verifies all properties of the function h. With a small abuse of notation we
will consider this as the function h from the hypothesis. �

Theorem 11.11 (Browder [Br]). Let (X, d) be a complete metric space and suppose
f : X → X satisfies

d(f(x), f(y)) < h(d(x, y)) for all x, y ∈ X,

where h : [0,∞)→ [0,∞) is increasing and continuous from the right such that h(s) < s
for all s > 0. Then f has a unique fixed point x∗ and fn(x)→ x∗ for each x ∈ X.

Proof. We will follow the proof from [KS]. For a fixed s > 0, the sequence (hn(s))n≥0

is monotone decreasing (not necessarily strictly) and bounded below, so it has a limit
as n→∞. Since h is continuous from the right, the sequence converges to a fixed point
of h. But 0 is the only fixed point of h, so hn(s)→ 0 for each s > 0.

Let x0 ∈ X be fixed and consider xn = fn(x0), n = 1, 2, . . .. We can show inductively
that d(xn, xn+1) < hn(d(x0, x1)) for all n ≥ 0. Passing to the limit, we get that

0 ≤ lim
n→∞

d(xn, xn+1) ≤ lim
n→∞

hn(d(x0, x1)) = 0.

Thus limn→∞ d(xn, xn+1) = 0. We now show that (xn)n≥1 is Cauchy. Let ε > 0. Since
ε−h(ε) > 0, we can choose n large enough so that d(xn, xn+1) < ε−h(ε). Consider the
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ball B(xn, ε) = {x ∈ X | d(xn, x) < ε} of radius ε around xn. Let z ∈ B(xn, ε). Then

d(xn, f(z)) ≤ d(xn, f(xn)) + d(f(xn), f(z))

≤ d(xn, xn+1) + h(d(xn, z))

≤ (ε− h(ε)) + h(ε) = ε.

In the last step, we have used the fact that h is increasing, so d(xn, z) < ε implies
h(d(xn, z)) ≤ h(ε). Therefore f : B(xn, ε) → B(xn, ε). It follows that d(xn, xn+m) < ε
for all m ≥ 0. Thus our sequence is Cauchy, hence convergent since X is complete. Let
limn→∞ f

n(x) = x∗ ∈ X. Then f(x∗) = x∗ since f is continuous. Uniqueness of x∗

follows from the contractive condition. �

A weaker version of this theorem was used in [DH] to prove local connectivity of the
Julia set of a parabolic polynomial. Note that for h(s) = Ks with 0 < K < 1, the
theorem reduces to the classical Banach fixed point theorem.

Let F be the completion of the space F in the d-metric defined above.

Proposition 11.12. The map F : F → F has a unique fixed point f∗.

Proof. The operator F is contracting in the metric defined on F . The existence and
uniqueness of a fixed point follows from the fixed point Theorem 11.11. �

The fixed point f∗ is a continuous surjection f∗ : S1 × Dr → J+ ∩ V . As defined in
Section 7 by V we denote the set V together with the local stable manifold W s

loc(qa)
and its preimage H−1(W s

loc(qa)) ∩B′, which are both in the boundary of V .

Proposition 11.13. Im(f∗) = J+ ∩ V .

Proof. By Lemma 7.3 we have J+ ∩ V =
⋂
n≥0H

−◦n(V ∩ U+). By construction,

f0(t, z) = (γ0(t), z), so f0(S1×Dr) is the outer boundary of V and is entirely contained
in U+. Moreover, f∗ was obtained as a limit of the functions fn : S1 × Dr → V , where
fn(S1×Dr) = H−1(fn−1(S1×Dr))∩ V , so fn(S1×Dr) is the outer boundary of the set⋂

0≤k≤nH
−◦k(V ∩ U+). Hence Im(f∗) =

⋂
n≥0H

−◦n(V ∩ U+). �

Proposition 11.14. The fixed point f∗ : S1 × Dr → J+ ∩ V has the form

f∗(t, z) = (ϕt(z), z),

where ϕt(z) is continuous with respect to t, holomorphic with respect to z and a.

Proof. The fixed point f∗(t, z) = (ϕt(z), z) is obtained as a uniform limit of the se-
quence (fn)n≥0, where f0(t, z) = (γ0(t), z) and fn(t, z) = F ◦n(f0)(t, z) = (ϕnt (z), z),
when n ≥ 1. Each function fn is continuous with respect to t and holomorphic with
respect to z and a and therefore f∗ is also continuous with respect to t and holomorphic
in z and a. Notice also that for any t ∈ S1, ϕnt (z) is injective when n ≥ 1, so ϕt(z) will
either be injective or constant by Hurwitz’s theorem. �



A STRUCTURE THEOREM FOR SEMI-PARABOLIC HÉNON MAPS 47

12. The conjugacy

In this section we analyze the properties of the fixed point f∗ in more detail and
construct the conjugacies to a unique model map.

Consider f∗(t, z) = (ϕt(z), z), where ϕt(z) is continuous with respect to t ∈ S1 and
analytic with respect to z ∈ Dr. Let σ : S1 × Dr → S1 × Dr

σ(t, z) = (2t, aϕt(z)) . (64)

For sufficiently small |a| > 0 the map σ is well-defined. We will see that is also open
and injective. Suppose the semi-parabolic Hénon map is written as in Equation 6. The
following theorem is an immediate consequence of our construction.

Theorem 12.1. Let p(x) = x2 + c0 be a polynomial with a parabolic fixed point of

multiplier λ = e2πip/q. There exists δ > 0 such that for all parameters (c, a) ∈ Pλ with
0 < |a| < δ the diagram

S1 × Dr
f∗−−−−→ J+ ∩ V

σ

y
yHc,a

S1 × Dr
f∗−−−−→ J+ ∩ V

commutes.

Proof. From the definition of f∗, we have that H ◦ f∗(t×Dr) is compactly contained
in f∗(2t× Dr). Thus we can write

H ◦ f∗(t, z) =
(
p(ϕt(z)) + a2w + az, aϕt(z)

)
= (ϕ2t(aϕt(z)), aϕt(z))= f∗ ◦ σ(t, z).

The last equality follows from f∗ ◦ σ(t, z) = f∗(2t, aϕt(z)) = (ϕ2t(aϕt(z)), aϕt(z)).
Therefore f∗ semiconjugates H on J+ ∩ V to σ on S1 × Dr, as claimed. �

Lemma 12.2. We have the following expansion for ϕt(z)

ϕt(z) = γ(t)− 1

p′(γ(t))
az +O(a2).

Proof. Consider the sequence fn(t, z) = F ◦n(f0)(t, z) = (ϕnt (z), z), for all n ≥ 1,
and f0(t, z) = (γ0(t), z). By construction we have that H ◦ fn+1(t × Dr) is compactly
contained in fn(2t× Dr), hence

H ◦ fn+1(t, z) =
(
p(ϕn+1

t (z)) + a2w + az, aϕn+1
t (z)

)
=
(
ϕn2t(aϕ

n+1
t (z)), aϕn+1

t (z)
)

and in particular
p(ϕn+1

t (z)) + a2w + az = ϕn2t(aϕ
n+1
t (z)). (65)

Consider the sequence of equipotentials γn(t) as defined in equation 60. Since the
Julia set Jp is connected, p′(γn(t)) does not vanish. Moreover, if p is parabolic, p′(γ(t))
does not vanish either, where γ is the Charatéodory loop of the parabolic polynomial
p. We have the following two relations

γn+1(t) = p−1(γn(2t))
(
p−1
)′

(γn(2t)) =
1

p′(γn+1(t))
.
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Note that for n = 0, p(ϕ1
t (z)) + a2w + az = γ0(2t) so for a sufficiently small the

following expansion holds

ϕ1
t (z) = p−1

(
γ0(2t)− az − a2w

)
= p−1(γ0(2t))−

(
p−1
)′

(γ0(2t))az +O(a2)

= γ1(t)− az

p′(γ1(t))
+O(a2).

We show by induction that for n ≥ 1

ϕnt (z) = γn(t)− az

p′(γn(t))
+O(a2).

Indeed, rearranging equation 65 yields

ϕn+1
t (z) = p−1

(
ϕn2t(aϕ

n+1
t (z))− az − a2w

)

= p−1

(
γn(2t)− a2ϕn+1

t (z)

p′(γn(2t))
− az +O(a2)

)
= p−1

(
γn(2t)− az +O(a2)

)

= p−1(γn(2t))−
(
p−1
)′

(γn(2t))az +O(a2) = γn+1(t)− az

p′(γn+1(t))
+O(a2).

Letting n→∞ we get the desired expansion for ϕt(z). �

In fact, since the polynomial p is quadratic, p′(γ(t)) is just 2γ(t) in the expansion of
ϕt(z).

Proposition 12.3. Let p be hyperbolic or parabolic. For sufficiently small |a| > 0 the
map σ is open and injective. Also σ(S1 × Dr) ⊂ S1 × D|a|r′, with r′ < r.

Proof. If p be hyperbolic or parabolic then there are no critical points in Jp and there
exists ε > 0 such that if ξ1 6= ξ2 ∈ Jp such that p(ξ1) = p(ξ2) then |ξ1 − ξ2| > ε. Thus
when p is hyperbolic or parabolic |γ(t)− γ(t+ 1/2)| > ε for t ∈ S1. From Lemma 12.2
there exists M > 0 such that |ϕt(z)− γ(t)| < |a|M for all t ∈ S1 and z ∈ Dr. Then for
|a| < ε

2M the map σ is injective. It is also open because locally it is a homeomorphism.
The Julia set Jp is inside a disk of radius 2 [Bu] so |γ(t)| < 2 and |φt(z)| < 2 + |a|M .
Since r > 3, we can easily find r′ < r such that the image of σ is inside S1 × D|a|r′ . �

Proposition 12.4. Consider f∗(t, z) = (ϕt(z), z) and suppose that f∗(t1, z1) = f∗(t2, z2)
for some t1, t2 ∈ S1 and z1, z2 ∈ Dr. Then ϕt1(z) = ϕt2(z) for all z ∈ Dr.

Proof. If f∗(t1, z1) = f∗(t2, z2) then (ϕt1(z1), z1) = (ϕt2(z2), z2), hence z1 = z2 and
ϕt1(z1) = ϕt2(z1). Denote by s : Dr → C the holomorphic function s(z) = ϕt1(z)−ϕt2(z)
and assume that s(z) has an isolated zero of order m at z1.

The functions ϕt1(z) and respectively ϕt2(z) were obtained as the limit of the uni-
formly convergent sequence of holomorphic functions ϕnt1(z) and respectively ϕnt2(z). By
Hurwitz’s theorem, there exists ρ > 0 such that for sufficiently large n > n0, the func-
tion ϕnt1(z)−ϕnt2(z) has exactly m zeros in the disk |z− z1| < ρ. This is a contradiction,
since by construction ϕnt1(z) 6= ϕnt2(z) for any n ≥ 0 and z ∈ Dr. Hence z1 cannot be an
isolated zero of the function s on Dr. It follows that s vanishes identically on Dr and so
ϕt1(z) = ϕt2(z) for all z ∈ Dr. �



A STRUCTURE THEOREM FOR SEMI-PARABOLIC HÉNON MAPS 49

The fixed point f∗(t, z) = (ϕt(z), z) depends on the parameter a. We will use the
notation f∗a (t, z) = (ϕt(z, a), z) whenever we want to stress out the dependence on a.
Let δ > 0 be chosen as in Theorem 12.1.

Proposition 12.5. Fix z ∈ Dr and a′ ∈ Dδ and assume that ϕt1(z, a′) = ϕt2(z, a′) for
some t1, t2 ∈ S1. Then ϕt1(z, a) = ϕt2(z, a) for any a with |a| < δ.

Proof. Let s : Dδ → Dr be the holomorphic function s(a) = ϕt1(z, a) − ϕt2(z, a).
Denote by sn the holomorphic functions sn(a) = ϕnt1(z, a)− ϕnt2(z, a).

For any n ≥ 0, and any a with |a| < δ, we have ϕnt1(z, a) 6= ϕnt2(z, a) by construction.
Therefore sn(a) 6= 0 for any n ≥ 0 and any a with |a| < δ.

The sequence sn converges uniformly to s on Dδ. By Hurwitz, s has either no zeros
on Dδ or vanishes identically on Dδ. Since we know that s(a1) = 0 it follows that s
vanishes identically, thus ϕt1(z, a) = ϕt2(z, a) for any a with |a| < δ. �

Proposition 12.6. Consider t1 6= t2 ∈ S1. The following statements are equivalent

a) f∗a (t1, z) = f∗a (t2, z) for some a with |a| < δ and some z ∈ Dr
b) f∗a (t1, z) = f∗a (t2, z) for any z ∈ Dr and for any a with |a| < δ
c) γ(t1) = γ(t2).

Proof. By Propositions 12.4 and 12.5 we know that if f∗a (t1, z) = f∗a (t2, z) for some
a with |a| < δ and some z ∈ Dr then f∗a (t1, z) = f∗a (t2, z) for any a ∈ Dδ and for any
z ∈ Dr. In particular when a = 0 we must have f∗0 (t1, z) = f∗0 (t2, z). This is equivalent
to (γ(t1), z) = (γ(t2), z), hence γ(t1) = γ(t2). �

On S1 we have a natural equivalence relation ∼p given by the Thurston lamination
of the polynomial p as follows: t1 ∼p t2 whenever γ(t1) = γ(t2). Then the set S1/∼p
is homeomorphic to Jp and the polynomial p acting on its Julia set Jp is topologically
conjugate to the angle doubling map on S1/∼p as in [Th] and [Th1].

This allows us to determine the equivalence classes of f∗. We define an equivalence
relation ∼ on S1 × Dr so that (t1, z) ∼ (t2, z) whenever γ(t1) = γ(t2). By Lemma 12.2
ϕt(z) can be written as

ϕt(z) = γ(t)− az

p′(γ(t))
+ a2β(t, z, a).

In view of Proposition 12.6 above, β(t1, z, a) = β(t2, z, a) whenever γ(t1) = γ(t2).
Clearly ∼ is closed. We would like to identify the quotient space S1×Dr/∼ with Jp×Dr
and the map σ on S1 × Dr defined in Equation 64 with a similar map σp acting on
Jp × Dr.

Consider a map σp : Jp × Dr → Jp × Dr of the form

σp(ζ, z) =

(
p(ζ), a

(
ζ − az

p′(ζ)
+ a2β

(
γ−1(ζ), z, a

)))
. (66)

It is well defined, in view of the discussion above.
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The map g : S1 × Dr/∼ → Jp × Dr, g(t, z) = (γ(t), z) is a homeomorphism which
makes the diagram

S1 × Dr/∼
g−−−−→ Jp × Dr

σ

y
yσp

S1 × Dr/∼
g−−−−→ Jp × Dr

(67)

commute. The conjugacy follows directly from the fact that p(γ(t)) = γ(2t).
The map σp on Jp × Dr has the form

σp(ζ, z) =

(
p(ζ), aζ − a2z

p′(ζ)
+O(a3)

)
.

and can be further conjugated to a solenoidal map

ψ(ζ, z) =

(
p(ζ), aζ − a2z

p′(ζ)

)
.

For |a| > 0 small enough σp and ψ are well-defined, open, and injective. Both maps
depend on a and we will use the notation ψa to mark the dependence of ψ on a, but we
will use ψ when there is no confusion. We will show in Lemma 12.8 that for 0 < |a| < δ
all ψa are conjugate to each other. Fix ε so that 0 < ε < δ. Then ψa and ψε are
conjugate and ψε does not depend on a.

Lemma 12.7. There is a homeomorphism h : Jp ×Dr → Jp ×Dr conjugating σp to ψ.

Proof. We first show that there exists a homeomorphism

h : Jp × Dr − σp(Jp × Dr)→ Jp × Dr − ψ(Jp × Dr)
which is the identity on the outer boundary Jp × ∂Dr and given by the formula

h(ζ, z) = ψ ◦ σ−1
p (ζ, z)

on the inner boundary σp(Jp × ∂Dr). Define the space H of fiber homeomorphisms

Jp × Dr − σp(Jp × Dr)→ Jp × Dr − ψ(Jp × Dr)
that agree with h on the boundary as a fiber bundle over Jp. Let ζ ∈ Jp and let Hζ
be the fiber above ζ in H. We know that |p′(ζ)| = 2|ζ| is bounded above and below
since Jp does not contain the critical point of p. The fiber above ζ in the range of the

homeomorphism h is a disk of radius r with two disjoint disks of radius r|a|2
2|ζ| removed,

that is
Dr −

⋃

ξ∈p−1(ζ)

D r|a|2
2|ζ|

(aξ).

There are d such disks removed if the polynomial has degree d. Similarly, the fiber above
ζ in the domain is the disk Dr with two disjoint simply connected domains removed.

These are topological disks of center aξ +O(a3) and radius at most r|a|2
2|ζ| +O(|a|3), for

all ξ ∈ p−1(ζ).
In Hζ we consider only those fiber homeomorphisms h′ which agree with h on the

boundary and which move all points by at most O(|a|3). Since the term O(|a|3) is

much smaller compared to r|a|2
2|ζ| when a is small, there are no Dehn twists created as
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ζ moves on Jp. Therefore all such homeomorphisms are homotopic and this defines a
preferred class of homeomorphisms. Note that Hζ is not empty. Furthermore, Hζ is
contractible. This argument is in the same spirit as Lemma 6.8 in [HOV2] and follows
from a theorem of Hamstrom [Ham] (which states that if S is a compact surface with
nonempty boundary – in our case a disk with two disjoint disks removed – then the
components of the group of homeomorphisms which are the identity on the boundary
are contractible).
H is a locally trivial fiber bundle over Jp, with contractible fibers. A fiber bundle

with contractible fibers over a paracompact base has a continuous section. Hence there
exists a map s : Jp → H, s(ζ) = hζ , which associates to each ζ a homeomophism hζ , so
that the choice is continuous with respect to ζ. Set h to be s. We now extend h on the
inner levels by the dynamics, so we are able to construct a homeomorphism

h : Jp × Dr −
⋂

n≥0

σ◦np (Jp × Dr)→ Jp × Dr −
⋂

n≥0

ψ◦n(Jp × Dr)

which conjugates σp to ψ. Furthermore, we extend to the Cantor set (in each fiber) by
continuity. �

Lemma 12.8. There exists a homeomorphism ha,ε : Jp×Dr → Jp×Dr conjugating ψa
to ψε.

Proof. We need to consider the space of homeomorphisms H and construct a preferred
class of homeomorphisms. The proof is the same as the proof of Lemma 12.7 above.
The same idea was also used in Lemma 5.5 from [R]. �

Consider the linear change of variables (ζ, z) 7→ (ζ, az). For |a| > 0 this conjugates
ψa : Jp × Dr → Jp × Dr to a map ψ′a : Jp × Dr′ → Jp × Dr′ , where r′ = r/|a| and

ψ′a(ζ, z) =

(
p(ζ), ζ − a2z

p′(ζ)

)
. (68)

Similarly ψε is conjugate to ψ′ε. Note that all these maps depend on the polynomial
p. When p is hyperbolic, Lemma 12.8 is Proposition 6.13 from [HOV2], and as we
have seen, the situation is not very different when p is parabolic. The map ψ′ε is the
same model map that was used in [HOV2] in understanding Hénon maps that are small
perturbations of hyperbolic polynomials.

We now have all the ingredients to complete the proof of the theorems described in
the introduction.

Proof of Theorem 1.1. The proof follows directly from Theorem 12.1 and from
Lemma 12.7. �

Based on the construction of the set V from Section 7, the Julia set J of the Hénon
map is J =

⋂
n≥0H

◦n(J+ ∩ V ). Let Σ :=
⋂
n≥0 σ

◦n(S1 × Dr). Then Σ is a (dyadic)

solenoid for 0 < |a| < δ and in view of Theorem 12.1, Proposition 12.6 and the above dis-
cussion, we can present J as a quotiented solenoid, J ' Σ/∼. Therefore J is connected.
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More directly, we can regard J as

J '
⋂

n≥0

ψ◦nε (Jp × Dr).

Proof of Theorem 1.2. The proof follows directly from the model of J described
above and Corollary 12.9.1 below. �

Theorem 12.9. Let p(x) = x2 + c0 be a polynomial with a parabolic fixed point of

multiplier λ = e2πip/q. There exists δ > 0 such that for all parameters (c, a) ∈ Pλ with
0 < |a| < δ there exists a homeomorphism g∗ which is continuous with respect to ζ and
analytic in a and z and which makes the diagram

Jp × Dr
g∗−−−−→ J+ ∩ V

σp

y
yHc,a

Jp × Dr
g∗−−−−→ J+ ∩ V

commute.

Proof. The homeomorphism g∗ is a composition between f∗ and the inverse of the
homeomorphism g defined above, in Equation 67. The map σp is given in Equation 66. �

Corollary 12.9.1. The Julia set J equals J∗, the closure of the saddle periodic points.

Proof. The Julia set J is homeomorphic to a quotiented solenoid. Since the periodic
points are dense in the solenoid, we get that J is the closure of the periodic points of the
Hénon map. Let xa ∈ J be a periodic point of period k of the Hénon map Ha, different
from the semi-parabolic fixed point qa. The periodicity of xa induces a periodicity on
the disks that foliate Jp × Dr, namely there exists a periodic point ζ ∈ Jp, p◦k(ζ) = ζ

of the parabolic polynomial p such that xa ∈ g∗(ζ × Dr) and σ◦kp (ζ × Dr) is compactly
contained inside ζ × Dr. Note that ζ 6= q0, where q0 is the parabolic fixed point of p.
The conjugacy map g∗(ζ, z) is holomorphic with respect to z, so the stable multipliers
of the Hénon map coincide with the stable multipliers of the map

σp(ζ, z) =

(
p(ζ), aζ − a2z

p′(ζ)
+O(a3)

)
.

Let λs/u be the eigenvalues of DH◦kxa . Then λs = O(a2k) and λu = (p◦n)′(ζ) + O(a).

The function g∗ is holomorphic with respect to a, so the disks that foliate J+ ∩ V
move holomorphically with a. The point xa moves holomorphically with a and we have
xa → ζ as a→ 0.

The polynomial Julia set Jp is the closure of the repelling periodic points [M]. By
the Fatou-Shishikura inequality [S], a polynomial of degree d ≥ 2 has at most d − 1
non-repelling cycles. Since p is quadratic and has a parabolic fixed point q0, all other
periodic cycles are repelling. Therefore |(p◦n)′(ζ)| > 1. Clearly, when a is small, |λu| > 1
and |λs| < 1, so the periodic point xa is a saddle point of the Hénon map.
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Let δ be as in Theorem 1.1. We show that the periodic point xa is saddle. It is easy
to see that |λs| < 1, so we only need to show that |λu| > 1. Assume that |λu| = 1 for
some parameter a0 with 0 < |a0| < δ. Then we can perturb a0 so that |λu| becomes
strictly smaller than 1. Otherwise 1/|λu| would have a local maximum at a0, which is
not possible. Thus we can find a parameter a close to a0 for which xa is a sink, and as
such it must belong to the interior of K+ and not to J+; contradiction. It follows that
all periodic points are saddles, except the semi-parabolic fixed point, hence J = J∗. �

13. Conclusions

Let Pnλ be the set of parameters (c, a) ∈ C2 for which the Hénon map Hc,a has a cycle

of period n with one multiplier λ a root of unity. In other words, the nth iterate H◦nc,a of
the Hénon map has a fixed point q such that its derivative DH◦nc,a(q) has eigenvalues λ

and µ = (−1)na2n/λ.
When n = 1 the curve P1

λ is just the curve Pλ from Equation 2 which has a nice global
characterization. We also have a nice description for n = 2. However, when n ≥ 3, it
is hard to give an explicit formula for the curve Pnλ . In any case, Pnλ is an algebraic set
that intersects the parametric line a = 0 in a discrete set of points. Suppose that (c0, 0)
is such a point of intersection, then c = c(a) is locally a function of the parameter a
when (c, a) ∈ Pnλ and |a| < δ is sufficiently small. The results stated in Section 1 hold
for small perturbations inside the curve Pnλ of the quadratic polynomial x 7→ x2 + c0

with a parabolic n-cycle of multiplier λ.
The technique presented in this paper and the results from Section 1 can also be easily

generalized to Hénon maps that are small perturbations (inside appropriate algebraic
sets analogous to the curves Pnλ ) of a polynomial p of degree d ≥ 2 whose critical points
are attracted either to attractive or parabolic fixed points (or cycles). The local model

space for J+ is Jp × Dr and the model map acting on it is ψ(ξ, z) =
(
p(ξ), aξ − a2z

p′(ξ)

)
.

The map ψ is again well defined because the Julia set Jp contains no critical points.
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