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Abstract

We show that repelling periodic points are landing points of periodic rays for exponen-
tial maps whose singular value has bounded orbit. For polynomials with connected Julia
sets, this is a celebrated theorem by Douady, for which we present a new proof. In both
cases we also show that points in hyperbolic sets are accessible by at least one and at most
finitely many rays. For exponentials this allows us to conclude that the singular value
itself is accessible.
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1 Introduction

Let f : C→ C be an entire function. Then the dynamical plane C splits into two completely
invariant subsets, the Fatou set F(f), on which the dynamics is stable, and its complement,
the Julia set J(f), on which the dynamics is chaotic. More precisely, the Fatou set is defined
as

F(f) := {z ∈ C : {fn} is normal in a neighborhood of z } .

Another important role is played by the escaping set

I(f) := {z ∈ C : fn(z)→∞ as n→∞}.

In this paper, we will consider the case in which f is either a polynomial or a complex
exponential map ez + c. For polynomials, I(f) ⊂ F(f), while for exponentials I(f) ⊂ J(f)
(see [BR], [ELy]). However, in both cases the escaping set can be described as an uncountable
collection of injective curves, called dynamic rays or just rays, which tend to infinity on one
side and are equipped with some symbolic dynamics (see Sections 2 and 3).

For a polynomial of degree D with connected Julia set, I(f) is an open topological disk
centered at infinity, and the dynamics of f on I(f) is conjugate to the dynamics of zD on
C \ D via the Böttcher map. In this case, dynamic rays are defined simply as preimages of
straight rays under the Böttcher map, and the symbolic dynamics on them is inherited from
the symbolic dynamics of zD on the unit circle S1 (see e.g. [Mi]). For exponentials, we refer
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the reader to [SZ1] and to Section 3 of this paper. A ray is called periodic if it is mapped to
itself under some iterate of the function.

It is important to understand the interplay between the rays and the set of non-escaping
points. A ray gs is said to land at a point z if gs \ gs = {z}; conversely, a point is accessible
if it is the landing point of at least one ray.

Ideally, like for hyperbolic maps (in both polynomial and exponential setting), every ray
lands and every non-escaping point in the Julia set is accessible. One weaker, but very
relevant, question to ask is whether all periodic rays land and whether all repelling/parabolic
periodic points are accessible by periodic rays. By the Snail Lemma (see e.g. [Mi]) if a
periodic ray lands it has to land at a repelling or parabolic periodic point.

Periodic rays are known to land in both the polynomial and the exponential case (for the
latter, see [Re1]), unless one of their forward images contains the singular value.

The question whether repelling periodic points are accessible is harder and still open in the
exponential case; in this paper, we give a positive answer to this problem for an exponential
map f(z) = ez + c whose postsingular set

P(f) :=
⋃
n>0

fn(c)

is bounded. Observe that in this case the singular value is non-recurrent, i.e. c /∈ P(f).

Theorem A. Let f be either a poynomial or an exponential map, with bounded postsingular
set; then any repelling periodic point is the landing point of at least one and at most finitely
many dynamic rays, all of which are periodic of the same period.

For polynomials with connected Julia set, all repelling periodic points are known to be
accessible by a theorem due to Douady (see [Hu]). Another proof due to Eremenko and Levin
can be found in [ELv]: their proof covers also the case in which the Julia set is disconnected.
However, neither proof can be generalized to the exponential family, because both use in an
essential way the fact that the basin of infinity is an open set. Our proof of Theorem A also
gives a new proof in the polynomial setting (see Section 2).

Our second result is about accessibility of hyperbolic sets. A forward invariant compact
set Λ is called hyperbolic (with respect to the Euclidean metric) if there exist k ∈ N and η > 1
such that |(fk)′(x)| > η for all x ∈ Λ, k > k.

Theorem B. Let f be either a polynomial or an exponential map, with bounded postsingular
set. Then any point that belongs to a hyperbolic set is accessible.

Theorem B for polynomials is a special case of Theorem C in [Pr]. Under an additional
combinatorial assumption (only needed for polynomials) we also show that there are only
finitely many rays landing at each point belonging to a hyperbolic set (see Propositions 2.11
and 4.13). This is a new result also in the polynomial case.

For an exponential map with bounded postsingular set contained in the Julia set, the
postsingular set itself is hyperbolic (see [RvS], Theorem 1.2). We obtain hence as corollary
of Theorem B that every point in the postsingular set, and the singular value itself, are
accessible.
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Part of the importance of Theorem A is that it gives indirect insight on the structure
of the parameter plane. For example, for unicritical polynomials, it implies that there are
no irrational subwakes attached to hyperbolic components (see Section I.4 in [Hu], Theorem
4.1 in [S1]). The proof in [S1] is combinatorial and can be applied to the exponential family
(see Section 4.4). The results in this paper will also be used in [Be] to show rigidity for
non-parabolic exponential parameters with bounded postsingular set.

The structure of this article is as follows: in Section 2 we introduce some background about
polynomial dynamics; we then present the new proof of Douady’s theorem about accessibility
of repelling periodic points, followed by the proof of Theorem B in the polynomial case. The
proof in this paper only uses quite weak information about the structure of dynamic rays,
opening up this result to be generalized to other families of functions beyond the exponential
family. In Section 3 we recollect some facts on exponential dynamics, including existence and
properties of dynamic rays in this case. In Section 4 we state and prove Theorems A and B
in the exponential setting. More precisely, in Section 4.2 we make some estimates about the
geometry of rays near infinity that are needed to prove Theorems A and B for exponentials;
the proofs themselves are presented in Section 4.3.

We denote by `eucl(γ) the Euclidean length of a curve γ and by `Ω(γ) its hyperbolic length
in a region Ω admitting the hyperbolic metric with density ρΩ. A ball of radius r centered
at a point z is denoted by either Br(z) or B(z, r).
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2 Accessibility of repelling periodic orbits for polynomials
with connected Julia set

In this section we give a new proof of Douady’s theorem for polynomials with connected Julia
set, showing that any repelling periodic orbit is the landing point of finitely many periodic
rays.

2.1 Setting

Let f be a polynomial of degree D with connected Julia set J(f) and filled Julia set K. As
K is full and contains more than one point, Ω = C \K is a domain that admits a hyperbolic
metric with some density ρΩ(z). Since f : C \ K → C \ K is a covering map, it locally
preserves the hyperbolic metric.

The Böttcher function B conjugates the dynamics of f on C\K to the dynamics of zD on
C \D. The preimage under B of the straight ray of angle s is called the dynamic ray of angle
s and is denoted by gs. We parametrize gs so that for a point with polar coordinates (s, et),
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gs(t) := B−1(s, et). The parameter t is called potential. Define the radial growth function as
F : t 7→ Dt. Then

f(gs(t)) = gσs(F (t)), (2.1)

where s is written in D-adic expansion and σ is the one-sided shift map. We put on the
sequences s = s0s1s2 . . . and s′ = s′0s

′
1s
′
2 . . . over D symbols the metric

|s− s′|D =
∑
i

|si − s′i|
Di

. (2.2)

The shift map σ is locally expansive by a factor D with respect to this metric.

A fundamental domain starting at t for a ray gs is the arc gs([t, F (t))), and is denoted by
It(gs).

The following lemma relates convergence of angles to convergence of dynamic rays, and
follows directly from the uniform continuity of the Böttcher function on compact sets.

Lemma 2.1. Let f be a polynomial of degree D. For each t∗, t
∗ > 0, the rays gsn(t) converge

uniformly to the ray gs(t) on [t∗, t
∗] as sn → s.

The next lemma gives a sufficient condition to determine when the limit dynamic ray
lands. Observe that the proof holds in both the polynomial and in the exponential cases.

Lemma 2.2. Let x0 ∈ C, t0 > 0, tm := F−m(t0). Also let gsn be a sequence of dynamic
rays such that sn → s, and such that Itm(gsn) ⊂ B(x0,

A
νm ) for some A > 0, ν > 1 and for all

n > Nm. Then gs lands at x0.

Proof. To show that gs lands at x0 it is enough to show that for each m,

Itm(gs) ⊂ B
(
x0,

A

νm

)
.

For any fixed m > 0, gsn → gs uniformly on [tm, tm−1] by Lemma 2.1. As Itm(gsn) is
eventually contained in B

(
x0,

A
νm

)
, taking the limit for n→∞ gives the claim.

The following lemma is a consequence of the fact that for points tending to the boundary
of a hyperbolic domain, the hyperbolic density tends to infinity.

Lemma 2.3. Let Ω ⊂ C be a hyperbolic region. Let γn : [0, 1]→ Ω be a family of curves with
uniformly bounded hyperbolic length and such that γn(0)→ ∂Ω. Then `eucl(γn)→ 0.

2.2 Proof of Theorem A in the polynomial case

In this section we give a proof of Theorem A in the polynomial case. Up to taking an iterate
of f , we can assume that the repelling periodic point in question is a repelling fixed point α.
Let µ > 1 be the modulus of its multiplier, and let L be a linearizing neighborhood for α.
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For the branch ψ of f−1 fixing α, it is easy to show using linearizing coordinates that there
exists a C > 0 such that

1

Cµn
< |(ψn)′(x)| < C

µn
. (2.3)

Before proceeding to the proof of Theorem A let us observe the following:

Proposition 2.4. The Euclidean length `eucl(It(gs)) tends to 0 uniformly in s as t→ 0.

Proof. By definition of fundamental domains and uniform continuity of the inverse of the
Böttcher map on compact sets, the Euclidean length `eucl(It(gs)), and hence the hyperbolic
length `Ω(It(gs)), are uniformly bounded for t in any compact interval [t−, t+]. So, by the
Schwarz Lemma, for any t∗ the arcs in the family {It(gs)}t<t∗ have uniformly bounded hyper-
bolic length. Since the inverse of the Böttcher map is proper, dist(gs(t), J(f))→ 0 uniformly
in s as t→ 0, hence by Lemma 2.3 `eucl{It(gs)} → 0 as t→ 0.

Theorem 2.5. Let f be a polynomial with connected Julia set, and let α be a repelling fixed
point for f . Then there is at least one dynamic ray gs landing at α.

Proof. Let U ′ ⊂ L be a neighborhood of α, and let U be its preimage under the inverse
branch ψ of f which fixes α. Let ε = inf

x∈∂U,x′∈∂U ′
|x− x′|. By Proposition 2.4, there exists tε

such that

`eucl(It(gs)) < ε for all s ∈ S1, t < tε. (2.4)

As α is in the Julia set, it is approximated by escaping points with arbitrary small potential
t, hence there exists a dynamic ray gs0 such that gs0(t0) belongs to U for some t0 < tε. By
(2.4), `eucl(It0(gs0)) ≤ ε, hence It0(gs0) ⊂ U ′ (See Figure 1).

ε

α

γ1

γ2

γ0

U

U ′
ψ

Figure 1: Construction of the curves γn in the proof of Theorem 2.5.

For any n > 0 let ψn be the branch of f−n fixing α, and let gsn be the ray containing
ψn(It0(gs0)). Let us define inductively a sequence of curves γn ⊂ gsn as

γ0 := It0(gs0)

γn := ψ(γn−1) ∪ It0(gsn).

We show inductively that the curves γn are well defined and satisfy the following properties:
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1. γn = gsn(tn, F (t0)), where tn := F−n(t0);

2. γn ⊂ U ′ for all n;

3. Itm(gsn) ⊂ B
(
α, C diamU ′

µm

)
, for all m ≤ n.

All properties are true for γ0, so let us suppose that they hold for γn−1 and show that they
also hold for γn. We have that

ψ(γn−1) = ψ(gsn−1(tn−1, F (t0))) = gsn(tn, t0)

by the functional equation (2.1) and by the definition of gsn . Also, ψ(γn−1) ⊂ U because by
the inductive assumption γn−1 ⊂ U ′ and ψ(U ′) = U . As `eucl(It0(gsn)) ≤ ε, and gsn(tn, t0) ⊂
U , we have that γn ⊂ U ′.

If x ∈ Itm(gsn) for m ≤ n, then x = ψmy for some y ∈ It0(gsn−m) ⊂ U ′, hence by (2.3)
we have

|x− α| ≤ C|y − α|
µm

≤ C diamU ′

µm
,

proving Property 3.

As the sequence {sn} of angles of the rays gsn is contained in S1, there is a subsequence
converging to some angle s. As the Julia set is connected, no singular value is escaping, hence
the ray gs of angle s is well defined for all potentials t > 0. Landing of gs at α follows from
Property 3 together with Lemma 2.2.

To prove periodicity of the landing ray constructed in Theorem 2.5 we use the following
lemma about rotation sets.

Lemma 2.6 (Rotation sets). Let A ⊂ S1 be closed and forward invariant under the shift
map σ : θ 7→ Dθ. If σ|A is homeomorphism, then A is finite.

Proof. Note that σ−1|A is a locally contracting homeomorphism and that such homeomor-
phisms do not exist on infinite compact spaces.

Proposition 2.7. Any dynamic ray gs obtained from the construction of Theorem 2.5 is
periodic.

Proof. Let B := {sn} be the set of addresses of the rays ψn(gs0) constructed in the proof of
Theorem 2.5, and A be their limit set defined as

A := {s ∈ S1 : snk
→ s for snk

∈ B, nk →∞}.

The set A is closed and forward invariant by definition. Also σ|A is injective because the
local dynamics near α is injective, and by Theorem 2.5 any of the limiting rays gs lands at
α. Surjectivity follows from the fact that if s ∈ A, there is a sequence snk

→ s, hence for any
limit point s̃ of the sequence snk+1, σs̃ = s. The claim then follows from Lemma 2.6.

The next lemma can be found in [Mi], Lemma 18.12; the proof holds also in the exponential
case thanks to Remark 3.3.
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Lemma 2.8. If a periodic ray lands at a repelling periodic point z0, then only finitely many
rays land at z0, and these rays are all periodic of the same period.

Corollary 2.9. All the rays landing at a repelling fixed point are periodic.

This concludes the proof of Theorem A in the polynomial case.

2.3 Proof of Theorem B in the polynomial case

In this subsection we prove Theorem B in the polynomial case and we show that under an
additional combinatorial condition, every point in a hyperbolic set is the landing point of
only finitely many dynamic rays.

Proof of Theorem B. Up to taking an iterate of f , we can assume that there is a δ-neighborhood
U of Λ such that |f ′(x)| > η > 1 for all x ∈ U .

Fix some x0 in Λ, and let us construct a dynamic ray landing at x0. Let xn := fn(x0),
B′n := Bδ(xn), Bn := Bδ/η(xn). Observe that for each n there is a branch ψ of f−1 such that
ψ(B′n) ⊂ Bn−1. We refer to ψm as the composition of such branches, mapping xn to xn−m.
Let ε := δ− δ/η, and let tε be such that the length of fundamental domains starting at t < tε
is smaller than ε (see Proposition 2.4). Let us define a family of rays to which we will apply
the construction of Theorem 2.5.

Let t0 < tε be such that each Bn contains a point of potential t0. For each n, let Axn be
the family of angles s such that gs(t0) ∈ Bn. Observe that by Proposition 2.4, and because
dist(∂Bn, ∂B

′
n) > ε, It0(gs) ⊂ B′n for any s ∈ Axn . For each s ∈ Axn , denote by ψm∗ gs the ray

to which ψm(gs)(t0) belongs to (see Figure 2). Let tn := F−n(t0); following the construction
of Theorem 2.5, we obtain that

(ψm∗ gs)(tm, F (t0)) ⊂ B′n−m for any s ∈ Axn .

Also,

Itm(ψn∗ gs) ⊂ B
(
x0,

δ

ηm

)
for m ≤ n, s ∈ Axn . (2.5)

By (2.5) and Lemma 2.2, any sequence of rays gsn such that σnsn ∈ Axn has a subsequence
that converges to a ray landing at x0.

If we assume f to be a unicritical polynomial satisfying some combinatorial conditions,
we can show that there are only finitely many rays landing at each x ∈ Λ. We say that two
points z1, z2 are combinatorially separated if there is a curve Γ formed by two dynamic rays
landing together such that z1, z2 belong to different components of C \ Γ.

Remark 2.10. By the cyclic order at infinity, two dynamic rays of angles s, s′ can land
together only if |s− s′|D ≤ 1/D; otherwise, the two dynamic rays of angles s+ 1/D, s′+ 1/D
(obtained from the dynamic rays of angles s, s′ through a rotation of angle 2π/D) would
intersect them, giving a contradiction.
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xn−1

xn

ψ

x0

ψn
Bn

B′n

B′n−1

B′0

Figure 2: Construction of landing rays for the hyperbolic set Λ.

Proposition 2.11. Let f(z) = zD + c be a unicritical polynomial of degree D, and let
Λ be a hyperbolic set. Suppose moreover that either 0 is accessible or that any x ∈ Λ is
combinatorially separated from 0. Then there are only finitely many dynamic rays landing at
each x ∈ Λ.

Proof. For x ∈ Λ, let Ax be the set of addresses of the rays landing at x. By Theorem B, each
Ax is non empty. Near x, f is locally a homeomorphism, so the set Ax is mapped bijectively to
the set Af(x) by the shift map σ and there is a well defined inverse σ−1 : Af(x) → Ax. Because
σ is locally expansive by the factor D, uniform continuity of σ−1 would give local contraction
for σ−1 by the factor 1/D. Suppose that σ−1 is not uniformly continuous on {Ax}x∈Λ. Then
there is a sequence of points xn ∈ Λ, and two sequences of angles an,an

′ ∈ Af(xn) such that
|an − an

′|D → 0, but |σ−1an − σ−1an
′|D → k/D with some integer k ∈ [1, D− 1]. In fact, by

Remark 2.10, k = 1. Call sn, sn
′ the angles σ−1an, σ

−1an
′, and assume for definiteness that

sn < sn
′. By the D-fold symmetry of the Julia set, the rays of angles sn + j/D, sn

′+ j/D for
j = 1 . . . D − 1 also land together at the points e2πi/Dxn (see Figure 3).

Altogether, these D pairs of dynamic rays divide C into D+ 1 connected component. Let Vn
be the one that contains the critical point 0. Since for each i we have:

(sn
′ + j/D)− (sn + j/D)→ 1/D as n→∞,

we conclude that

(sn + (j + 1)/D)− (sn
′ + j/D)→ 0 as n→∞. (2.6)

Let Q =
⋂
Vn. Then 0 ∈ Q by definition, and Q ∩ Λ 6= ∅ because Λ is compact and

Vn ∩ Λ 6= ∅ for all n. Let z ∈ Q ∩ Λ. By (2.6), there are exactly D limiting rays entering Q.
By symmetry, if these rays land, they either all land at 0, or they land at D different points
belonging to some orbit of the 2π/D-rotation. This gives an immediate contradiction with
either of our assumptions:
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xn
0
Vn

sn

s′n
sn + 1/D s′n + 1/D

Figure 3: Illustration to the proof of Proposition 2.11 for D = 3; the region Vn is shaded in gray.

• Since there are no pairs of rays which could separate 0 from points of Q, the point z ∈ Λ
is not combinatorially separated from 0, giving a contradiction with the first assumption;

• In the case when 0 is accessible, this implies that no other accessible point can belong to
Q; in particular z ∈ Λ is not accessible, contradicting Theorem B.

So, there exists an ε > 0 such that if a,a′ ∈ Af(x) and |a− a′|D < ε then

|σ−1a− σ−1a′|D <
1

D
|a− a′|D. (2.7)

Now fix a point x0 ∈ Λ, and consider a finite cover of S1 by ε-balls, say N balls. In particular,
for any n, Axn is covered by N balls of radius ε. By (2.7), their n-th preimages have diameter
ε/Dn and cover Ax. Passing to the limit, we conclude that Ax contains at most N points.

3 Dynamic rays in the exponential family

For the remaining two sections, f(z) = ez+c will be an exponential function, and J(f) will be
its Julia set. Any two exponential maps whose singular values differ by 2πi are conformally
conjugate, so we can assume −π ≤ Im c < π.

Let arg(z) be defined on C \ R− so as to take values in (−π, π), and let

R := {z ∈ C : Im z = Im c, Re z ≤ Re c}.

.

We define a family {Ln} of inverse branches for f(z) = ez + c on C \R as

Ln(w) := log |w − c|+ i arg(w − c) + 2πin.

Observe that Ln maps C \R biholomorphically to the strip

Sn := {z ∈ C : 2πn− π < Im z < 2πn+ π}.
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Observe also that

|(Ln)′(w)| = 1

|w − c|
.

Dynamic rays have been first introduced by Devaney and Krych in [DK] (with the name
hairs) and studied for example in [BDGHHR]. A full classification of the set of escaping
points in terms of dynamic rays has been then completed by Schleicher and Zimmer in [SZ1].
For points whose iterates never belong to R, we can consider itineraries with respect to the
partition of the plane into the strips {Sn}, i.e.

itin(z) = s0s1s2 . . . if and only if f j(z) ∈ Ssj .

For a point z whose itinerary with respect to this partition exists, we refer to it as the address
of z. By construction, addresses are sequences in ZN.

We use the function F : t 7→ et − 1 to model real exponential growth. According to
the construction, addresses of points cannot have entries growing faster than iterates of the
exponential function. A sequence s = s0s1s2 . . . is called exponentially bounded if there exists
x ∈ R such that |2πsj | < F j(x) ∀j ≥ 0.

This growth condition turns out to be not only necessary but also sufficient (see [SZ1]),
so that any sequence s contained in the set

S := {s ∈ ZN : s is exponentially bounded}

is realized as address of some point z (see Theorem 3.1 below).

An address is called periodic if it is a periodic sequence, preperiodic if it is a preperiodic
sequence. We consider the set S with the lexicographic order and the weak* topology.

If s = s0s1s2 . . . , let ‖s‖∞ = sup
i
|si|/2π. We call s bounded if ‖s‖∞ < ∞. For j ∈ Z and

s ∈ S, js stands for the sequence js0s1s2 . . ..

Given an external address s we define its minimal potential

ts := inf

{
t > 0 : lim sup

k→∞

|sk|
F k(t)

= 0

}
.

Observe that if s is bounded, ts = 0.

Definition, existence and properties of dynamic rays for the exponential family are sum-
marized in the following theorem ([SZ1], Proposition 3.2 and Theorem 4.2; the quantitative
estimates are taken from Proposition 3.4).

Theorem 3.1 (Existence of dynamic rays). Let f(z) = ez + c be an exponential map such
that c is non-escaping, and K be a constant such that |c| ≤ K. Let s = s0s1s2 . . . ∈ S be an
address satisfying the condition |sk| < AF (k)(x) for any k ≥ 1, with A ≥ 1/2π, x ≥ 0. Then
there exists a unique maximal injective curve gs : (ts,∞) → C consisting of escaping points
such that

(1) gs(t) has address s for t > x+ 2 log(K + 3);

(2) f(gs(t)) = gσs(F (t));
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(3) |gs(t)− 2πis0 − t− ts| ≤ 2e−t(K + 2 + 2π|s1|+ 2πAC) for large t,
and for a universal constant C.

The curve gs is called the dynamic ray of address s. As for polynomials, a dynamic ray
is periodic or preperiodic if and only if its address is a periodic or preperiodic sequence
respectively. Like before, the fundamental domain starting at t for gs is defined as the arc
It(gs) := gs(t, F (t)).

Remark 3.2. If s is bounded, property (1) holds for t > 2 log(K + 3). Moreover, gs(t) is
approximately straight, i.e. |g′s(t)− 1| < C(K, ts) for large t, so C(K, ts) does not depend on
s if s is bounded (see Proposition 4.6 in [FS]). It then follows from the asymptotic estimates
in Theorem 3.1 that for any t there exists B(t) such that

`eucl(It(gs)) ≤ B(t, ‖s‖)) ∼ et − t. (3.1)

Remark 3.3. The addresses of two rays gs, gs′ landing together cannot differ by more than
one in any entry. Otherwise, by the asymptotic estimates in Theorem 3.1, the curve Γ =
gs ∪ gs′ would intersect its translate by 2πi.

The following continuity lemma holds, and will play the role of Lemma 2.1 for the expo-
nential family. A proof can be found in [Re3]; we will use the formulation from [Re2], Lemma
4.7).

Lemma 3.4 (Convergence of rays). Let f be an exponential map, {sn} be a sequence of
exponentially bounded addresses, sn → s ∈ S such that tsn → ts. Then gsn → gs uniformly
on [t∗,∞) for all t∗ > ts.

Remark 3.5. A family of addresses which is uniformly bounded by a constant M can be
equivariantly embedded in S1 by identifying angles with their 2M + 1-adic expansion. The
embedding is monotonic and the dynamics of the shift map on the addresses is conjugate
to the dynamics of z2M+1 on S1. If a repelling periodic point z0 is the landing point of a
periodic dynamic ray gs with ‖s‖ < M , by Remark 3.3 the address of any other ray landing
at z0 is bounded by M + 1. The proof of Lemma 2.8 only uses local dynamics and the fact
that the set of angles of rays landing at z0 is equivariantly embedded in S1, hence holds also
in the exponential case.

4 Accessibility for exponential parameters with bounded postsin-
gular set

4.1 Statement of theorems and some basic facts

From now on we will consider an exponential function f with bounded postsingular set, which
implies that the singular value is non-recurrent; this excludes the presence of Siegel disks (see
Corollary 2.10, [RvS]). The strategy used for the proof of Theorem A and B for polynomials
can be extended to the exponential family to prove the following theorems.
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Theorem 4.1 (Accessibility of periodic orbits for non-recurrent parameters). Let f be an
exponential map with bounded postsingular set; then any repelling periodic point is the landing
point of at least one and at most finitely many dynamic rays, all of which are periodic of the
same period.

Corollary 4.2. For Misiurewicz parameters, the postsingular periodic orbit and hence the
singular value are accessible.

For hyperbolic, parabolic and Misiurewicz parameters Theorem 4.1 has been previously
proven in [SZ2].

Theorem 4.3 (Accessibility of hyperbolic sets). Let f be an exponential map with bounded
postsingular set, and Λ be a hyperbolic set. Then any point in Λ is accessible; moreover, the
dynamic rays landing at x ∈ Λ all have uniformly bounded addresses.

Remark 4.4. The family of rays constructed in Theorem 4.3 form a lamination. Continuity
of the family of rays on compact sets is a consequence of Lemma 3.4. Continuity up to the
endpoints follows from the estimates in (4.7).

We also prove that there are only finitely many rays landing at each x ∈ Λ (see Proposi-
tion 4.13).

Proposition 4.5. Let f be an exponential map with bounded postsingular set, and Λ be a
hyperbolic set. Then there are only finitely many dynamic rays landing at each x ∈ Λ, and
this number of rays is bounded.

In the case in which the postsingular set is bounded and contained in the Julia set, Rempe
and van Strien ([RvS], Theorem 1.2) have shown that it is hyperbolic (see also [MS], Theorem
3, for a different perspective). Together with Theorem 4.3, this implies accessibility of the
postsingular set.

Corollary 4.6. Let f be an exponential map with bounded postsingular set; then any point
in the postsingular set is accessible.

Like in the polynomial case, the strategy is to first prove a uniform bound on the length of
fundamental domains IT (ga) for some fixed T and some specific family of addresses, then to
translate this into a uniform shrinking for fundamental domains It(ga) as t→ 0, and finally
to study the local dynamics near a repelling periodic orbit. The main difficulties compared to
the polynomial case are to find an analogue of Proposition 2.4, and to show that the dynamic
rays obtained by pullbacks near the repelling fixed point have uniformly bounded addresses.

In the following, let P(f) be the postsingular set, and Ω := C \P(f). As P(f) is forward
invariant, Ω is backward invariant, i.e. f−1(Ω) ⊂ Ω.

Proposition 4.7. If P(f) is bounded, Ω is connected.

Proof. As P(f) is bounded, there are no Siegel disks, hence either J(f) = C or f is parabolic
or hyperbolic. In the last two cases P(f) is a totally disconnected set and the claim follow. If
J(f) = C, consider the connected components Vi of Ω; as P(f) is bounded, there is only one
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unbounded Vi. On the other side, by density of escaping points, each Vi contains escaping
points; as dynamic rays are connected sets, each Vi has to be unbounded, hence there is a
unique connected component.

As Ω is connected, and omits at least three points because c cannot be a fixed point, it
admits a well defined hyperbolic density ρΩ. As P(f) is bounded, we have

lim
|z|→∞

ρΩ(z)

ρeucl(z)
= 0. (4.1)

4.2 Bounds on fundamental domains for exponentials

In this section we prove a uniform bound on the length of fundamental domains for an
appropriate family of dynamic rays (Proposition 4.11).

Proposition 4.8 (Bounded fundamental domains for exponentials). Let gs̃ be a dynamic ray
with bounded address and let C be a positive constant. Let

A := {a ∈ S : σm(a) = s̃ for some m ≥ 0},

and let {ga}a∈A be the collection of pullbacks of gs̃. Then there exists T such that for all
t > T,a ∈ A:

(P1) If a = am...a2a1s̃, then ga(t) = Lam ◦ · · · ◦ La1gs̃(Fm(t));

(P2) Re ga(t) > C;

(P3) `eucl(It(ga)) ≤ B(t), with B(t) independent of a.

Proposition 4.8 is a consequence of the following proposition.

Proposition 4.9 (Branches of the logarithm). Fix ε, C > 0. Let gs̃ be a dynamic ray with
bounded address. Then there exists T > 0 such that for any m > 0, for any z = gs̃(t) with
t > Fm(T ) and for any finite sequence am . . . a1 we have the following two properties:

(1m) ReLam ◦ · · · ◦ La1(z)− Re c ≥ ReLm0 (z)− Re c− ε/2 > C

(2m) |Lam ◦ · · · ◦ La1(z)− c| ≥ |Lm0 (z)− c| − ε.

Moreover,
|(Lam ◦ · · · ◦ La1)′(z)| ≤ |(Lm0 )′(z)|+ 2ε. (4.2)

Proof. Denote by 0m the finite sequence formed by m zeroes, and let

A′ = {a ∈ A : a = 0ms̃, m ∈ N}.

As ‖s̃‖∞ < M for some M , we have ‖a‖∞ < M for any a ∈ A′. It follows from (3) in
Theorem 3.1 that for any ε there exists Tε such that

|ga(t)− t| < ε (4.3)

13



for any a ∈ A′, t > Tε. By Remark 3.2, we have that

g0ms̃(t) = Lm0 gs̃(F
m(t)) for t ≥ 2 log(K + 3) (4.4)

and that

`eucl(It(ga)) < B(t) ∼ et − t ∀a ∈ A′. (4.5)

We first show that (1m) implies (2m), and then that (2m) implies (1m+1).

Let T be large enough, ε small. By (4.3) for t > T ,

ReLm0 (gs̃(F
m(t))) > T − ε > C + Re c for all m.

For m = 1, (11) holds because all preimages of a point are 2πi translate of each other, and
by (4.3).

Now let us show that (1m) implies (2m).

|Lm0 (z)− c| =
√
|ReLm0 (z)− Re c|2 + | ImLm0 (z)− Im c|2 ≤

≤ (ReLm0 (z)− Re c)

√
1 +

ε

|ReLm0 (z)− Re c|
≤

≤ ReLm0 (z)− Re c+
ε

2
≤ ReLam ◦ · · · ◦ La1(z)− Re c+ ε ≤

≤ |Lam ◦ · · · ◦ La1(z)− c|+ ε.

To show that (2m) implies (1m+1) for any m, observe that

ReLam+1 ◦ · · · ◦ La1(z) = log |Lam ◦ · · · ◦ La1(z)− c| ≥

≥ log(|Lm0 (z)− c| − ε) ≥ log |Lm0 (z)− c| − 2ε

|Lm0 (z)− c|
≥

≥ log |Lm0 (z)− c| − ε/2 = ReLm+1
0 (z)− ε/2 > C + Re c.

Equation (4.2) can be checked by direct computation using Property (2m).

Proof of Proposition 4.8. All addresses inA are bounded, so by Remark 3.2, ga(t) has address
a for t > 2 log(K+ 3), proving Property (P1). Take T such that Proposition 4.9 holds. From
Property (1m), Re ga(t) ≥ ReLm0 (gs(F

m(t)))− ε/2 > C + Re c proving Property (P2).

Finally, `eucl(It(ga)) ≤ B(t) for all a ∈ A′ by (4.5), so `eucl(It(ga)) ≤ B′(t) for all a ∈ A
and for some B′ by (4.2); property (P3) follows.

Let us now show that the length of fundamental domains It(ga) shrinks as t→ 0 for this
family of pullbacks. The next proposition follows from the classical shrinking lemma, see e.g.
[Ly], Proposition 3.
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Proposition 4.10 (Shrinking under inverse iterates). Let f be an exponential map, and
let U ⊂ J(f) be a simply connected domain not intersecting the postsingular set. Also, let
L ⊂ U , and K ⊂ C be compact sets, and let {f−mλ } be the family of branches of f−m such
that f−mλ (L) ∩K 6= ∅. Then

diam(f−mλ (L))→ 0 as m→∞

uniformly in λ.

Proof. As U is simply connected, and does not intersect the postsingular set, inverse branches
are well defined on U . Suppose by contradiction that there is ε > 0, mk →∞, and branches
f−mk
λk

of f−mk such that

(1) diameucl(f
−mk
λk

(L)) > ε for any mk, λk;

(2) f−mk
λk

(L) ∩K 6= ∅ for any mk, λk.

By normality of inverse branches, there is a subsequence converging to a univalent function
φ, which is non-constant by (1). By (2) there is a sequence of points {xk} ∈ L such that
f−mk
λk

(xk) ∈ K, and by compactness of K, the f−mk
λk

(xk) accumulate on some point y ∈ K.
As φ is not constant, there is a neighborhood V of y and infinitely many mk such that
fmk(V ) ⊂ L, contradicting the fact that y ∈ J(f).

Proposition 4.11 (Fundamental domains shrinking for exponentials). Let gs̃ be a dynamic
ray with bounded address, {ga}a∈A be its family of pullbacks as defined in Proposition 4.8.
Given an ε > 0 and a compact set K there exists tε = tε(K) such that `eucl(It(ga)) < ε
whenever t < tε and It(ga) ∩K 6= ∅.

Proof. Let C be such that the postsingular set does not intersect the right half plane

HC := {z ∈ C : Re z > C}.

Let T be as in Proposition 4.8 so that IT (ga) ⊂ HC for any a ∈ A. Inverse branches of
fn are well defined on the family {IT (ga)} because it is contained in a right half plane not
intersecting the postsingular set. The arcs {ga(T, F (T ))} have uniformly bounded Euclidean
length by (P3) in Proposition 4.8, so they have uniformly bounded hyperbolic length because
they are contained in HC and HC ∩ P(f) = ∅. Then by the Schwarz Lemma the hyperbolic
length of the arcs in the families {It(ga)}t<T is bounded uniformly as well; so there exists a
compact set K ′ such that It(ga) ⊂ K ′ whenever It(ga)∩K 6= ∅. By compactness of K ′ there
exists ε′ such that `eucl(γ) < ε for any curve γ ⊂ (K ′ ∩ Ω) with `Ω(γ) < ε′.

Let D be a closed disk of sufficiently large radius such that `Ω(IT (ga)) < ε′ for any
fundamental domain with IT (ga) 6⊂ D. Such a disk exists because `eucl(IT (ga)) is bounded
for every a ∈ A by Proposition 4.8, and by the asymptotic estimates in (4.1). For any a ∈ A
such that IT (ga) ⊂ (D ∩HC), by Proposition 4.10 there is nε such that diameucl f

−n(L) < ε
for any n > nε, and the claim holds for any t < tε = F−nε(T ). For any a ∈ A such that
IT (ga) is not contained in D, `Ω(f−n(IT (ga))) < ε′ for any n ≥ 0 by the Schwarz Lemma,
hence for any such a, `eucl(f

−n(IT (ga)))) < ε whenever f−n(IT (ga))) ∩K 6= ∅.
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4.3 Proof of Accessibility Theorems

In this Section we prove Theorems 4.1 and 4.3. We start by proving Theorem 4.1.

Proof of Theorem 4.1. Let us first assume that the repelling periodic point under consider-
ation is a fixed point α. Let U,U ′, ψ and ε be as in the proof of Theorem 2.5. Let gs̃ be a
dynamic ray with bounded address, {ga}a∈A be its family of pullbacks and T be such that
Proposition 4.8 holds for C such that HC ∩ P(f) = ∅. By Proposition 4.11, for any t < tε,
and for any It(ga) intersecting K := U ′, we have that `(It(ga)) < ε.

Consider a dynamic ray gs0 such that gs0(t0) ∈ U for some t0 < tε. To show that such
a point exists, observe that for sufficiently large N0, fN0(U) ⊃ Itε(gs̃) 6= ∅, so there exists
y ∈ Itε(gs̃) such that f−N0(y) ∈ U giving the desired gs0(t0).

Now we can use the inductive construction from Theorem 2.5 to obtain a sequence of
dynamic rays gsn = ψn∗ (gs0) such that the arcs γn := gsn(tn, F (t0)) are well defined and
satisfy properties 1-3 in the proof of Theorem 2.5. In view of Lemma 2.2 it is only left
to show that the addresses sn obtained from the construction are uniformly bounded and
hence have a convergent subsequence. By construction, gsn(t0) ∈ U for each n. Let N be
such that FN (t0) > T . The set fN (U) is bounded, so there is some constant M such that
| Im z| < 2πM for any z ∈ fN (U). Let n > N ; because gsn(t0) ∈ U , gsn−N (FN (t0)) ∈ fN (U),
and the arc gsn−N (FN (t0),∞) is contained in a finite number of the strips Sn from the
partition in Section 3. So, by claim (P1) of Proposition 4.8, the first entry of the address
σNsn is bounded by M for all n > N , and ‖sn‖∞ is uniformly bounded.

In the case of a repelling periodic point of period p > 1, the construction can be repeated
using as fundamental domains the arcs between potential t0 and F p(t0).

The proof of periodicity of the landing rays is the same as the proof for polynomials, using
the fact that the family of addresses {sn} is uniformly bounded hence Lemma 2.8 holds by
Remark 3.5.

In order to prove Theorem 4.3, we need the proposition below.

Proposition 4.12. Let K be a compact set, gs0 be a dynamic ray with bounded address, A
as in Proposition 4.8, and A′ ⊂ A such that for any a ∈ A′:

(1) ga(t0) ∈ K for some t0, ∀a ∈ A′;

(2) If a 6= s0, a ∈ A′, then σa ∈ A′.

Then there exists M > 0 such that for all a ∈ A′, ‖a‖∞ < M .

Proof. Let T be as in Proposition 4.8, and let N be such that FN (t) > T . The set fN (K) is
compact, so there exists M ′ > ‖s0‖∞ such that | Im z| < 2πM ′ for all z ∈ fN (K). For any
a ∈ A′, ga(t0) ∈ K, so gσNa(FN (t0)) ∈ fN (K) and by Property (P1) in Proposition 4.8, the
first entry of σNa is bounded by M ′. From (2), we get that ‖σNa‖∞ < M ′ for any a ∈ A.

So any sequence {σNan} with an ∈ A′ admits a convergent subsequence, and by Lemma 3.4,
the corresponding rays converge uniformly on compact sets. Using (3.1) it follows that
`eucl(gσNa(FN (t0), F 2N (t0))) ≤ B for some B > 0, and for all a ∈ A′. Note that |(fN )′| is
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bounded on K, so there exists B′ > 0 such that `eucl(ga(t0, F
N (t0))) ≤ B′ for all a ∈ A′,

and the points ga(FN (t0)) are contained in finitely many of the strips Sn. By Property (P1)
in Proposition 4.8, the first entry of a is bounded by some M for all a ∈ A, and the claim
follows by (2).

Proof of Theorem 4.3. Up to taking an iterate of f , we can assume that there is a δ-neighborhood
U of Λ such that |f ′(x)| > η > 1 for all x ∈ U . Let gs̃ be a dynamic ray with bounded address,
{ga}a∈A its the family of pullbacks. For ε := δ − δ/η, let tε be such that `eucl(It(ga)) < ε for
a ∈ A and t < tε whenever It(ga) ∩ U 6= ∅ (see Proposition 4.11).

Let t0 < tε be such that for any x ∈ Λ, Bδ/η(x) contains ga(t0) for some a ∈ A depending

on x. To show that such a t0 exists, consider a finite covering D of Λ by balls of radius δ
3η . For

any D ∈ D, there is ND such that fND(D) ⊃ gs̃(0, tε), hence for each D there is some a ∈ A
such that ga(0, F−ND(tε)) ⊂ D. By letting N = maxND, we have that ga(0, F−N tε) ⊂ D for
any D, hence that each Bδ/η(x) contains ga(F−N (tε)) for some a ∈ A.

Now fix x0 in Λ, and let us construct a dynamic ray landing at x0. Let xn := fn(x0),
B′n := Bδ(xn), Bn := Bδ/η(xn). For each n there is a branch ψ of f−1 such that ψ(B′n) ⊂
Bn−1. Take a disk D ⊂ D containing some subsequence {xn}n∈N , and let s0 ∈ A be such
that gs0(t0) ∈ D. By Proposition 4.11, `eucl(It0(gs0)) < ε, so It0(gs0) ⊂ B′n for each n ∈ N .
For n ∈ N , let ψn be the branch of f−n mapping xn to x0; ψn can be extended analytically
to B′n and hence to It0(gs0). Let gsn be the sequence of rays containing ψn(gs0(t0)). Let
tn = F−n(t0). Following the inductive construction from the proof of Theorem 2.5, the arcs
gsn(tn, F (t0)) satisfy the following properties:

gsn(tn, F (t0)) ⊂ B′0 and (4.6)

Itm(gsn) ⊂ B
(
x0,

δ

ηm

)
for all n > m, n ∈ N . (4.7)

Let us now show that for some sufficiently large N and some M , ‖σNsn‖∞ ≤ M . Consider
the family of addresses sn constructed for x0 and the set

Ãx0 =
{
a ∈ S : a = σjsn for some j ≤ n and n ∈ N

}
.

By definition, if a ∈ Ãx0 then σa ∈ Ãx0 unless a = s0, and for each a ∈ Ãx0 , ga(t0) ∈ U . It
follows by Proposition 4.12 that ‖a‖∞ < M for all a ∈ Ãx0 . In particular, ‖sn‖∞ < M , and
there is a limiting address s such that gs lands at xN by Lemma 2.2. By finiteness of D, there
exists M ′ > 0 such that the addresses of all rays coming from the construction and landing
at x ∈ Λ are bounded by M ′. Finally, the addresses of any two rays landing together cannot
differ by more than one in any entry (see Remark 3.3), so the address of any dynamic ray (not
necessarily coming from this construction) landing at any x ∈ Λ is bounded by M ′ + 1.

Let us conclude by showing that also in the exponential case, there are only finitely many
rays landing at each point in a hyperbolic set.

Proposition 4.13. Let f be an exponential map with bounded postsingular set, and Λ be a
hyperbolic set. Then there are only finitely many dynamic rays landing at each x ∈ Λ.
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Proof. For x ∈ Λ, letAx be the set of addresses of the rays landing at x. By Theorem 4.3, each
Ax is non-empty. Since the local dynamics near x is bijective, the set Ax is mapped bijectively
to the set Af(x) by the shift map σ, so there is a well defined inverse σ−1 : Af(x) → Ax. By
Theorem 4.3, the norm of the addresses belonging to the set Ax is bounded by a constant
M , so the addresses in Ax can be set in correspondence with sequences over D = 2M + 1
symbols and embedded in S1 preserving the dynamics. In the metric of (2.2), Remark 3.3
implies that for two dynamic rays gs, gs′ landing together |s−s′|D < 1/D. In the same metric,
σ is locally expansive by the factor D, so uniform continuity of σ−1 : Af(x) → Ax would give
local contraction for σ−1 by the factor 1/D.

Assume by contradiction that there is a sequence of points xn ∈ Λ, and two sequences of
angles an,an

′ ∈ Af(xn) such that |an − an
′|D → 0, but |σ−1an − σ−1an

′|D → 1/D .

Assume for definiteness that a′n < an; by the contradiction assumption, and by 2πi
periodicity of the dynamical plane, the dynamic rays of addresses jan and (j + 1)a′n land
together for all j ∈ Z. These pairs of rays divide C into infinitely many regions one of which
contains a left half plane, and which we call Vn (see Figure 4).

y ∈ Λ

js̃

(j − 1)s̃

(j − 2)s̃

Vn

s̃

janc

ja′n

(j − 1)an

(j − 1)a′n

(j − 2)an

f−1(xn)

Figure 4: Illustration to the proof of Proposition 4.13. The rays are labeled by their addresses. The
region Vn is shaded.

Let Q =
⋂
Vn. Then Q∩Λ 6= ∅ because Λ is compact and Vn∩Λ 6= ∅ for all n. Let z ∈ Q∩Λ.

Because |an − a′n|D → 0, liman = lima′n = a for some a, and

lim ja′n = lim jan = ja. (4.8)

It follows that no dynamic rays can intersect Q except for the dynamic rays of address ja,
j ∈ N. However, by Corollary 4.6 the singular value is accessible by some dynamic ray gs̃.
Its countably many preimages gjs̃ intersect any left half plane: it follows that s̃ = a and that
none of the dynamic rays of address ja is landing. This contradicts the fact that Λ ∩Q 6= ∅
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and that points in Λ are accessible by Theorem 4.3. So there exists an ε > 0 such that if
a,a′ ∈ Af(x) and |a− a′| < ε then

|σ−1a− σ−1a′|D <
1

D
|a− a′|D. (4.9)

Now fix a point x0 ∈ Λ, and consider a finite cover of S1 by ε-balls, say N0 balls. In particular,
for any n, Axn is covered by N0 balls of radius ε. By (4.9), their n-th preimages have diameter
ε/Dn and cover Ax. Passing to the limit, we conclude that Ax contains at most N0 points.

4.4 A remark about parabolic wakes

Theorem 4.1 implies that non-recurrent parameters with bounded post-singular set always
belong to parabolic wakes (see [Re1], Proposition 4 and 5, for the definition of parabolic
wakes and the relation between parabolic wakes and landing of rays in the dynamical plane;
see also [RS1]).

There is a combinatorial proof of this fact (see e.g. in [S1]) which can be adapted to the
exponential case once Theorem 4.1 is known.

Corollary 4.14 (Corollary of Theorem 4.1). A non-recurrent parameter c with bounded
postsingular set for the exponential family is contained in a parabolic wake attached to the
boundary of the period one hyperbolic component W0.

Sketch of proof. Let c0 ∈W0 be a hyperbolic parameter with an attracting fixed point α(c0).
Observe that for any fixed address s, the ray gc0s lands at a fixed point zs(c0). Let γ be a
curve joining c to c0 such that all zs(c0) can be continued analytically together with their
landing rays. Call α(c) the analytic continuation along γ of the attracting fixed point α(c0),
zs(c) the analytic continuation of zs(c0). Suppose that c does not belong to any parabolic
wake attached to W0. By Theorem A, α(c) is the landing point of at least one periodic ray,
which is necessarily fixed (otherwise, there would be at least two periodic rays landing at
α(c) determining a parabolic wake). But this gives a contradiction, because for any fixed
address s the fixed ray gcs lands at the point zs(c) 6= α(c).
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