Problem of the Month
 April 2006
 Solution by Itamar Gal

Problem:

There are three colleges in a town. Each college has n students. Any student of any college knows $n+1$ students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.

Solution:

First note that we can reformulate the problem as follows; consider a tri-partite graph of 3-n nodes $G_{n}:=K_{n, n, n}$ where each node has degree $n+1$. We want to show that this graph contains a K_{3} subgraph (3-cycle). Next we note that each node $v \varepsilon G_{n}$ has edges connecting it to one of two partite regions of G_{n}; we define a function $f(v)$ that maps each node $v \varepsilon G_{n}$ to the lesser of the two numbers of edges connecting v to a partite region (e.g. if v has i edges connected to nodes in region A and j edges connected to nodes in region B then $f(v)=\min \{i, j\})$. We also define the function $\sigma\left(G_{n}\right)$ which maps the graph G_{n} to the integer $\min \left\{\mathrm{f}(\mathrm{v}) \mid \mathrm{v} \varepsilon \mathrm{G}_{\mathrm{n}}\right\}$.

Notice that $\sigma\left(G_{n}\right)>0$ since each node has degree $n+1$ and each region contains n nodes; therefore each node must contain at least one node in each partite region (e.g. $\left.f(v)>0 \forall: v \varepsilon G_{n}\right)$. Now suppose that $\sigma\left(G_{n}\right)=k$ and choose a node $v 1$ in the partite region A such that $f(\mathrm{v} 1)=\mathrm{k}$. Let v 2 be one of the k nodes in the partite region B that share an edge with v 1 . We know that v 1 must share an edge with $\mathrm{n}-\mathrm{k}+1$ nodes in region C and that v 2 must share an edge with at least k nodes in region C . But $(\mathrm{n}-\mathrm{k}+1)+\mathrm{k}=\mathrm{n}+1$ and there are only n nodes in region C , therefore there must be some node v 3 in region C that shares an edge with both v 1 and v 2 so that $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ form a 3 -cycle. .

