Problem of the Month April 2006 Solution by Itamar Gal

Problem:

There are three colleges in a town. Each college has n students. Any student of any college knows n+1 students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.

Solution:

First note that we can reformulate the problem as follows; consider a tri-partite graph of 3-n nodes $G_n := K_{n,n,n}$ where each node has degree n+1. We want to show that this graph contains a K_3 subgraph (3-cycle). Next we note that each node ve G_n has edges connecting it to one of two partite regions of G_n ; we define a function f(v) that maps each node ve G_n to the lesser of the two numbers of edges connecting v to a partite region (e.g. if v has i edges connected to nodes in region A and j edges connected to nodes in region B then $f(v)=\min\{i,j\}$). We also define the function $\sigma(G_n)$ which maps the graph G_n to the integer min $\{f(v)|v \in G_n\}$.

Notice that $\sigma(\mathbb{G}_n) > 0$ since each node has degree n+1 and each region contains n nodes; therefore each node must contain at least one node in each partite region (e.g. $f(v)>0 \forall :v \in \mathbb{G}_n$). Now suppose that $\sigma(\mathbb{G}_n) = k$ and choose a node v1 in the partite region A such that f(v1)=k. Let v2 be one of the k nodes in the partite region B that share an edge with v1. We know that v1 must share an edge with n-k+1 nodes in region C and that v2 must share an edge with at least k nodes in region C. But (n-k+1)+k = n+1 and there are only n nodes in region C, therefore there must be some node v3 in region C that shares an edge with both v1 and v2 so that $\{v1,v2,v3\}$ form a 3-cycle.