November Problem of the Month

November 2005
Solution by Said Amghibech
Notation: If $\overrightarrow{A_{1} B_{1}}$ and $\overrightarrow{A_{2} B_{2}}$ are two vectors, then $\overrightarrow{A_{1} B_{1}} \wedge \overrightarrow{A_{2} B_{2}}$ denotes their vector product.

Let O_{2} be the incenter of the triangle $A_{2} B_{2} C_{2},\|\cdot\|$ be the Euclidean norm. Remark that the area of the polygon $A_{1} O_{2} B_{1} B_{2}$ is given by

$$
\operatorname{Area}\left(A_{1} O_{2} B_{1}\right)-\operatorname{Area}\left(A_{1} B_{2} B_{1}\right)=\frac{1}{2}\left\|\overrightarrow{A_{1} B_{1}} \wedge \overrightarrow{O_{2} B_{2}}\right\| .
$$

By using the same argument to the polygons $O_{2} B_{1} A_{2} C_{1}$ and $O_{2} C_{1} C_{2} A_{1}$, and the fact that $\left\|\overrightarrow{A_{1} B_{1}} \wedge \overrightarrow{O_{2} B_{2}}\right\|=\left\|\overrightarrow{B_{1} C_{1}} \wedge \overrightarrow{O_{2} A_{2}}\right\|=\left\|\overrightarrow{C_{1} A_{1}} \wedge \overrightarrow{O_{2} C_{2}}\right\|$ we get

$$
\operatorname{Area}\left(A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}\right)=\frac{3}{2}\left\|\overrightarrow{A_{1} B_{1}} \wedge \overrightarrow{O_{2} B_{2}}\right\| .
$$

Thus $\operatorname{Area}\left(A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}\right)$ is maximal if and only if $\left(O_{2} B_{2}\right)$ is orthogonal to $\left(A_{1} B_{1}\right)$. Then the maximum possible area of the polygon $A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}$ is

$$
\frac{\sqrt{3}}{2}\left\|\overrightarrow{A_{1} B_{1}}\right\|\left\|\overrightarrow{A_{2} B_{2}}\right\| .
$$

If $A_{1} B_{1} \leq 2 A_{2} B_{2}$, then the maximum is the area of the big triangle.
Also $\operatorname{Area}\left(A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}\right)$ is minimal if and only if the "angle" between $\left(O_{2} B_{2}\right)$ and $\left(A_{1} B_{1}\right)$ is $\pi / 6$. Then the minimum possible area of the polygon $A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}$ is

$$
\frac{\sqrt{3}}{4}\left\|\overrightarrow{A_{1} B_{1}}\right\|\left\|\overrightarrow{A_{2} B_{2}}\right\|
$$

[^0]
[^0]: Said Amghibech Quebec Canada

