November Problem of the Month

November 2005 Solution by Said Amghibech

Notation: If $\overrightarrow{A_1B_1}$ and $\overrightarrow{A_2B_2}$ are two vectors, then $\overrightarrow{A_1B_1} \wedge \overrightarrow{A_2B_2}$ denotes their vector product.

Let O_2 be the incenter of the triangle $A_2B_2C_2$, $\|\cdot\|$ be the Euclidean norm. Remark that the area of the polygon $A_1O_2B_1B_2$ is given by

$$Area(A_1O_2B_1) - Area(A_1B_2B_1) = \frac{1}{2} \|\overrightarrow{A_1B_1} \wedge \overrightarrow{O_2B_2}\|.$$

By using the same argument to the polygons $O_2B_1A_2C_1$ and $O_2C_1C_2A_1$, and the fact that $\|\overrightarrow{A_1B_1} \wedge \overrightarrow{O_2B_2}\| = \|\overrightarrow{B_1C_1} \wedge \overrightarrow{O_2A_2}\| = \|\overrightarrow{C_1A_1} \wedge \overrightarrow{O_2C_2}\|$ we get

$$Area(A_1B_2B_1A_2C_1C_2) = \frac{3}{2} \|\overrightarrow{A_1B_1} \wedge \overrightarrow{O_2B_2}\|$$

Thus $Area(A_1B_2B_1A_2C_1C_2)$ is maximal if and only if (O_2B_2) is orthogonal to (A_1B_1) . Then the maximum possible area of the polygon $A_1B_2B_1A_2C_1C_2$ is

$$\frac{\sqrt{3}}{2} \|\overrightarrow{A_1 B_1}\| \| \overrightarrow{A_2 B_2} \|.$$

If $A_1B_1 \leq 2A_2B_2$, then the maximum is the area of the big triangle.

Also $Area(A_1B_2B_1A_2C_1C_2)$ is minimal if and only if the "angle" between (O_2B_2) and (A_1B_1) is $\pi/6$. Then the minimum possible area of the polygon $A_1B_2B_1A_2C_1C_2$ is

$$\frac{\sqrt{3}}{4} \|\overrightarrow{A_1 B_1}\| \| \overrightarrow{A_2 B_2} \|$$

Said Amghibech Quebec Canada