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Problem:

Find the minimum and the maximum possible area of the polygon A1B2B1A2C1C2 over
all locations of the smaller triangle A2B2C2 inside the bigger triangle A1B1C1.

Solution:
Note: throughout this solution, let (A1..An) denote the area of polygon A1..An, for

brevity.
Let P denote A1B2B1A2C1C2, the polygon in consideration. Let a1 be the length of

A1C1, let a2 be the length of A2C2,
Part1: Minimization problem.
From the way P was constructed it folows that it cannot be self-intersecting. Hence the

lower bound for the area of P is the area of A2B2C2. We shall now show that this lower
bound is attainable.

Indeed, let us place A2B2C2 so that its orthocenter coincides with the one of A1B1C1.
We then are able to rotate A2B2C2 so that angles ∠B2A1C2, ∠C2C1A2, ∠A2B1B2 dminish
to zero and (P ) = (A2B2C2). This intuitive approach, nevertheless, is not a proof; to show
that such position is obtainable, we consider the following situation (see Figure 1):

Let three cevians B1K1, A1K2, C1K3 intersect at points A′
2, B

′
2, C

′
2 and be such that

A1K1 = C1K2 = B1K3 = x. It is clear, by symmetry, that the trinagle A′
2B

′
2C

′
2 is equilat-

eral. Also ∠B′
2A1C

′
2 = ∠C ′

2C1A
′
2 = ∠A′

2B1B
′2 = 0. It is also clear that A′

2B
′
2, the length

of side of the smaller trinangle, depends on the value of x only. Let a denote length A′
2B

′
2,

then a = f(x), a continuous function of x. We observe that f(0) = a, and f(a/2) = 0. By
Intermediate Value Theorem we conclude that for all posssible y, 0 ≤ y ≤ a, there is at leat
one value of x such that f(x) = y.

Now let’s get back to the original problem. We have shown that for all values of a2 it
is possible to draw three cevians so that the triangle formed by their intersection will be an
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Figure 1: Minimizing position

equilateral traingle with sidelength a2. Therefore, there will always be some position and
rotation of A2B2C2 inside A1B1C1 such that ∠B2A1C2 = ∠C2C1A2 = ∠A2B1B2 = 0 and
(P ) = (A2B2C2).

Answer: min(P ) = (A2B2C2)
Part 2:Maximization problem
The proof will procced as follows: first, we show that (P ) is invariant for all translations

of A2B2C2; second, we maximize (P ) by choosing corresponding rotation; and then we shall
find the numerical value of max(P ).

Lemma 1:(P ) depends only on rotation of A2B2C2, and is not changed no matter how
A2B2C2 is translated inside A1B1C1.

Proof: Let B2C2 make angle α with A1C1. By symmetry, other sides of A2B2C2 will
make the same angle with corresponding sides of A1B1C1 (See Figure 2).

Figure 2: Some rotation of A2B2C2 Figure 3: Proof of Lemma 1

Now let O be the orthocenter of A2B2C2. Let us draw altitudes ON1, ON2, ON3 and
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C2M1, A2M2, B2M3 onto A1C1, C1B1, B1A1, correspondingly.
We first observe that ON1 + ON2 + ON3 = (A1B1C1)

a1
and is therefore invariant. Indeed,

(A1B1C1) = (A1OC1) + (C1OB1) + (B1OA1) = a1(ON1 +ON2 +ON3) Secondly, we observe
that C2M1 + A2M2 + B2M3 = ON1 + ON2 + ON3 − c, where c = g(α). This follows
from the fact that C2M1 = ON1 − OC2(sin(α + π

6
)); using symmetry we conclude that

g(α) = 3(OC2)(sin(α + π
6
)).

(Note that since O is the orthocenter of A2B2C2, rotation will not affect lengths of
altitudes from O.)

Now we use the fact that (P ) = (A1B1C1) − a1

2
(C2M1 + A2M2 + B2M3). From this we

have: (P ) = (A1B1C1)− a1

2
(ON1 + ON2 + ON3) + a1

2
(g(α)) = a1

2
(g(α)).

This proves Lemma 1.
Now we are facing a simple maximization problem: we have to maximize (P ) = 3

2
a1(OC2)(sin(α+

π
6
)). Clearly, if a2 ≤ a1

2
, then maximum exists and is obtainable at α = π

2
− π

6
= π

3
. This value

of α is obtainable, for if we place A2B2C2 inside A1B1C1 so that their orthocenters coin-
cide, the circumcircle of A2B2C2 will be entirely inside A1B1C1. Geometrically, let O be the
common orthocenter of both triangles, and let A1O,B1O, C1O intersect B1C1, C1A1, A1B1

at K3, K2, K1 correspondingly (See Figure 4). Then

a2 ≤
a1

2
⇔ OA2 ≤

OA1

2
⇒ OA2 ≤ OK1,

which implies that we can vary the angle of rotation α without restrictions.

Figure 4: Rotation is unrestricted

In such case, max(P ) = 3a1(OC2). Using simple euclidian geomery, we establish that

OC2 = 2
3

√
3

2
a2 = a2√

3
. Therefore, max(P ) = a1a2

√
3

2
if a2 ≤ a1

2
.

However, this must not necesserily be the case; it may happen that a2 > a1

2
. We find

max(P ) in this case by observing that the upper bound of (P ) is (A1B1C1) (since P lies
entirely within A1B1C1) and showing that this upper bound is obtainable.

Consider Figure 5. Let us place A2, B2, C2 on sides of A1B1C1 so that A1B2 = C1C2 =
B1A2 = x. Then A2B2C2 is an eqilateral triangle, and a2 = (A2B2) = f(x), a continuous
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Figure 5: Upper bound reached

function of x. Note that (P ) = (A1B1C1) in such position of A2B2C2. Now since f(x) is
strictly decreasing on [0, a1

2
) and is symmetric around a1

2
, we conclude that min(f(x)) =

f(a1

2
) = a1

2
and max(f(x)) = f(0) = a1. By Intermediate Value Theorem, f(x) takes all

values in [a1

2
, a1] We have therefore shown that for all y in [a1

2
, a1], if a2 = y, then the upper

bound (P ) = (A1B1C1) is reachable by placing vertices of A2B2C2 on sides of A1B1C1. Now
our solution is complete.

Answer:

max(P ) =

{
a1a2

√
3

2
= (A1C1)(A2C2)

√
3

2
, if a2 ≤ a1

2

(A1B1C1), if a2 > a1

2
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