Problem of the Month

November 2005
Solution by Roman Kogan
rkogan@ic.webmail.sunysb.edu

Problem:

Find the minimum and the maximum possible area of the polygon $A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}$ over all locations of the smaller triangle $A_{2} B_{2} C_{2}$ inside the bigger triangle $A_{1} B_{1} C_{1}$.

Solution:

Note: throughout this solution, let $\left(A_{1} . . A_{n}\right)$ denote the area of polygon $A_{1} . . A_{n}$, for brevity.

Let P denote $A_{1} B_{2} B_{1} A_{2} C_{1} C_{2}$, the polygon in consideration. Let a_{1} be the length of $A_{1} C_{1}$, let a_{2} be the length of $A_{2} C_{2}$,

Part1: Minimization problem.
From the way P was constructed it folows that it cannot be self-intersecting. Hence the lower bound for the area of P is the area of $A_{2} B_{2} C_{2}$. We shall now show that this lower bound is attainable.

Indeed, let us place $A_{2} B_{2} C_{2}$ so that its orthocenter coincides with the one of $A_{1} B_{1} C_{1}$. We then are able to rotate $A_{2} B_{2} C_{2}$ so that angles $\angle B_{2} A_{1} C_{2}, \angle C_{2} C_{1} A_{2}, \angle A_{2} B_{1} B 2$ dminish to zero and $(P)=\left(A_{2} B_{2} C_{2}\right)$. This intuitive approach, nevertheless, is not a proof; to show that such position is obtainable, we consider the following situation (see Figure 1):

Let three cevians $B_{1} K_{1}, A_{1} K_{2}, C_{1} K_{3}$ intersect at points $A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}$ and be such that $A_{1} K_{1}=C_{1} K_{2}=B_{1} K_{3}=x$. It is clear, by symmetry, that the trinagle $A_{2}^{\prime} B_{2}^{\prime} C_{2}^{\prime}$ is equilateral. Also $\angle B_{2}^{\prime} A_{1} C_{2}^{\prime}=\angle C_{2}^{\prime} C_{1} A_{2}^{\prime}=\angle A_{2}^{\prime} B_{1} B^{\prime} 2=0$. It is also clear that $A_{2}^{\prime} B_{2}^{\prime}$, the length of side of the smaller trinangle, depends on the value of x only. Let a denote length $A_{2}^{\prime} B_{2}^{\prime}$, then $a=f(x)$, a continuous function of x. We observe that $f(0)=a$, and $f(a / 2)=0$. By Intermediate Value Theorem we conclude that for all posssible $y, 0 \leq y \leq a$, there is at leat one value of x such that $f(x)=y$.

Now let's get back to the original problem. We have shown that for all values of a_{2} it is possible to draw three cevians so that the triangle formed by their intersection will be an

Figure 1: Minimizing position
equilateral traingle with sidelength a_{2}. Therefore, there will always be some position and rotation of $A_{2} B_{2} C_{2}$ inside $A_{1} B_{1} C_{1}$ such that $\angle B_{2} A_{1} C_{2}=\angle C_{2} C_{1} A_{2}=\angle A_{2} B_{1} B 2=0$ and $(P)=\left(A_{2} B_{2} C_{2}\right)$.

Answer: $\min (P)=\left(A_{2} B_{2} C_{2}\right)$
Part 2:Maximization problem
The proof will procced as follows: first, we show that (P) is invariant for all translations of $A_{2} B_{2} C_{2}$; second, we maximize (P) by choosing corresponding rotation; and then we shall find the numerical value of $\max (P)$.

Lemma 1: (P) depends only on rotation of $A_{2} B_{2} C_{2}$, and is not changed no matter how $A_{2} B_{2} C_{2}$ is translated inside $A_{1} B_{1} C_{1}$.

Proof: Let $B_{2} C_{2}$ make angle α with $A_{1} C_{1}$. By symmetry, other sides of $A_{2} B_{2} C_{2}$ will make the same angle with corresponding sides of $A_{1} B_{1} C_{1}$ (See Figure 2).

Figure 2: Some rotation of $A_{2} B_{2} C_{2}$

Figure 3: Proof of Lemma 1

Now let O be the orthocenter of $A_{2} B_{2} C_{2}$. Let us draw altitudes $O N_{1}, O N_{2}, O N_{3}$ and
$C_{2} M_{1}, A_{2} M_{2}, B_{2} M_{3}$ onto $A_{1} C_{1}, C_{1} B_{1}, B_{1} A_{1}$, correspondingly.
We first observe that $O N_{1}+O N_{2}+O N_{3}=\frac{\left(A_{1} B_{1} C_{1}\right)}{a_{1}}$ and is therefore invariant. Indeed, $\left(A_{1} B_{1} C_{1}\right)=\left(A_{1} O C_{1}\right)+\left(C_{1} O B_{1}\right)+\left(B_{1} O A_{1}\right)=a_{1}\left(O N_{1}+O N_{2}+O N_{3}\right)$ Secondly, we observe that $C_{2} M_{1}+A_{2} M_{2}+B_{2} M_{3}=O N_{1}+O N_{2}+O N_{3}-c$, where $c=g(\alpha)$. This follows from the fact that $C_{2} M_{1}=O N_{1}-O C_{2}\left(\sin \left(\alpha+\frac{\pi}{6}\right)\right)$; using symmetry we conclude that $g(\alpha)=3\left(O C_{2}\right)\left(\sin \left(\alpha+\frac{\pi}{6}\right)\right)$.
(Note that since O is the orthocenter of $A_{2} B_{2} C_{2}$, rotation will not affect lengths of altitudes from O.)

Now we use the fact that $(P)=\left(A_{1} B_{1} C_{1}\right)-\frac{a_{1}}{2}\left(C_{2} M_{1}+A_{2} M_{2}+B_{2} M_{3}\right)$. From this we have: $(P)=\left(A_{1} B_{1} C_{1}\right)-\frac{a_{1}}{2}\left(O N_{1}+O N_{2}+O N_{3}\right)+\frac{a_{1}}{2}(g(\alpha))=\frac{a_{1}}{2}(g(\alpha))$.

This proves Lemma 1.
Now we are facing a simple maximization problem: we have to maximize $(P)=\frac{3}{2} a_{1}\left(O C_{2}\right)(\sin (\alpha+$ $\left.\frac{\pi}{6}\right)$). Clearly, if $a_{2} \leq \frac{a_{1}}{2}$, then maximum exists and is obtainable at $\alpha=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$. This value of α is obtainable, for if we place $A_{2} B_{2} C_{2}$ inside $A_{1} B_{1} C_{1}$ so that their orthocenters coincide, the circumcircle of $A_{2} B_{2} C_{2}$ will be entirely inside $A_{1} B_{1} C_{1}$. Geometrically, let O be the common orthocenter of both triangles, and let $A_{1} O, B_{1} O, C_{1} O$ intersect $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ at K_{3}, K_{2}, K_{1} correspondingly (See Figure 4). Then

$$
a_{2} \leq \frac{a_{1}}{2} \Leftrightarrow O A_{2} \leq \frac{O A_{1}}{2} \Rightarrow O A_{2} \leq O K_{1}
$$

which implies that we can vary the angle of rotation α without restrictions.

Figure 4: Rotation is unrestricted
In such case, $\max (P)=3 a_{1}\left(O C_{2}\right)$. Using simple euclidian geomery, we establish that $O C_{2}=\frac{2}{3} \frac{\sqrt{3}}{2} a_{2}=\frac{a_{2}}{\sqrt{3}}$. Therefore, $\max (P)=a_{1} a_{2} \frac{\sqrt{3}}{2}$ if $a_{2} \leq \frac{a_{1}}{2}$.

However, this must not necesserily be the case; it may happen that $a_{2}>\frac{a_{1}}{2}$. We find $\max (P)$ in this case by observing that the upper bound of (P) is $\left(A_{1} B_{1} C_{1}\right)$ (since P lies entirely within $A_{1} B_{1} C_{1}$) and showing that this upper bound is obtainable.

Consider Figure 5. Let us place A_{2}, B_{2}, C_{2} on sides of $A_{1} B_{1} C_{1}$ so that $A_{1} B_{2}=C_{1} C_{2}=$ $B_{1} A_{2}=x$. Then $A_{2} B_{2} C_{2}$ is an eqilateral triangle, and $a_{2}=\left(A_{2} B_{2}\right)=f(x)$, a continuous

Figure 5: Upper bound reached
function of x. Note that $(P)=\left(A_{1} B_{1} C_{1}\right)$ in such position of $A_{2} B_{2} C_{2}$. Now since $f(x)$ is strictly decreasing on $\left[0, \frac{a_{1}}{2}\right)$ and is symmetric around $\frac{a_{1}}{2}$, we conclude that $\min (f(x))=$ $f\left(\frac{a_{1}}{2}\right)=\frac{a_{1}}{2}$ and $\max (f(x))=f(0)=a_{1}$. By Intermediate Value Theorem, $\mathrm{f}(\mathrm{x})$ takes all values in $\left[\frac{a_{1}}{2}, a_{1}\right]$ We have therefore shown that for all y in $\left[\frac{a_{1}}{2}, a_{1}\right]$, if $a_{2}=y$, then the upper bound $(P)=\left(A_{1} B_{1} C_{1}\right)$ is reachable by placing vertices of $A_{2} B_{2} C_{2}$ on sides of $A_{1} B_{1} C_{1}$. Now our solution is complete.

Answer:

$$
\max (P)= \begin{cases}a_{1} a_{2} \frac{\sqrt{3}}{2}=\left(A_{1} C_{1}\right)\left(A_{2} C_{2}\right) \frac{\sqrt{3}}{2}, & \text { if } a_{2} \leq \frac{a_{1}}{2} \\ \left(A_{1} B_{1} C_{1}\right), & \text { if } a_{2}>\frac{a_{1}}{2}\end{cases}
$$

