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HOLOMORPHIC DYNAMICS IN PARADISE

Figure 14. A fundamental domain for the action of the modular
group PSL(2,Z) on the hyperbolic plane H2

R and the
corresponding tessellation .
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Since the time of Carl Friedrich Gauss one of the most
fascinating and important objects in mathematics is the
modular group and its action on the upper half-plane of
complex numbers.

SL(2,Z) :=

{(
a b
c d

)
: a,b, c,d ∈ Z,ad − bc = 1

}
z 7→ az + b

cz + d
PSL(2,Z) = SL(2,Z)/{I,−I}

.
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Complex Modular Group

The modular group can be shown to be generated by the two
transformations

T : z 7→ −1/z

S : z 7→ z + 1

so that every element in the complex modular group can be
represented (in a non-unique way) by the composition of
powers of T and of S.

Geometrically, T represents inversion in the unit circle followed
by reflection with respect to the origin, while S represents a unit
translation to the right.
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The generators T and S obey the relations T 2 = I and
(TS)3 = I and it can be shown that these are a complete set of
relations, so the modular group has the following presentation:

{T ,S | T 2 = I, (TS)3 = I}

PSL(2,Z) ∼= Z2 ? Z3
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Figure 14. A fundamental domain for the action of the modular
group PSL(2,Z) on the hyperbolic plane H2

R and the
corresponding tessellation .
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Let

H = {x0 + x1i + x2j + x3k : xn ∈ R, n = 0,1,2,3}

i2 = j2 = k2 = −1, ij = −ji = k.

be the division algebra of the quaternions.
Then H is can be identified in the natural way with R4.

We define the hyperbolic half-space H1
H := {q ∈ H : <(q) > 0}.
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Definition

Let H1
H be the half-space model of the one-dimensional

quaternionic hyperbolic space

H1
H := {q ∈ H : <(q) > 0}.

It can be identified with the hyperbolic space of dimension four
H4
R:

H1
H
∼= H4

R = {(x0, x1, x2, x3) ∈ R4 : x0 > 0}

with the element of hyperbolic metric given by
(ds)2 = (dx0)2+(dx1)2+(dx2)2+(dx3)2

x2
0

where s measures length
along a parametrized curve
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Definition

For any A =

(
a b
c d

)
∈ GL(2,H), the associated real analytic

function

FA : H ∪ {∞} → H ∪ {∞}

defined by
FA(q) = (aq + b) · (cq + d)−1 (1)

is called the linear fractional transformation associated to A. We
set FA(∞) =∞ if c = 0, FA(∞) = ac−1 if c 6= 0 and
FA(−c−1d) =∞.
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Let F := {FA : A ∈ GL(2,H)} the set of linear fractional
transformations.
Since H×H = H2 :=

{
(q0,q1) : q0, q1 ∈ H

}
as a real vector

space is R8, the group GL(2,H) can be thought as a subgroup
of GL(8,R). Using this identification we define:

Definition

Let SL(2,H) := SL(8,R) ∩GL(2,H) be the special linear group
and

PSL(2,H) := SL(2,H)/{±I},

where I denotes the identity matrix, the projective special
linear group.
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Theorem

The set F is a group with respect to the composition operation
and the map

Φ : GL(2,H)→ F

defined as Φ(A) = FA is a surjective group antihomomorphism
with ker(Φ) = {tI : t ∈ R \ {0}}. Furthermore, the restriction
of Φ to the special linear group SL(2,H) is still surjective and
has kernel {±I}.
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Let B denote the open unit ball in H andMB the set of linear
transformations that leave invariant B or Möbius
transformations. This is the set

MB := {F ∈ F : F (B) = B}.

H =

(
1 0
0 −1

)
and

Sp(1,1) := {A ∈ GL(2,H) : t ĀHA = H}.
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There is an interesting characterization of these Möbius
transformations:

Theorem
Given A ∈ GL(2,H), then the linear fractional transformation
FA ∈MB if and only if there exist u, v ∈ ∂B, q0 ∈ B (i.e.,
|u| = |v | = 1 and |q0| < 1) such that

FA(q) = v(q− q0)(1− q0q)−1u (2)

for q ∈ B. In particular, the antihomomorphism Φ can be
restricted to a surjective group antihomomorphism
Φ : Sp(1,1)→MB whose kernel is {±I}.
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Proposition

The Poincaré distance dB given by:

4|dq|2

(1− |q|2)2

in B is invariant under the action of the groupMB of Möbius
transformations.
In other words: MB = Isom+

dB
(B).
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The compactification Ĥ := H ∪ {∞} of H can be identified with
S4 via the stereographic projection. The elements ofMB act
conformally on the 4-sphere with respect to the standard metric
and they also preserve orientation and preserve the unit ball.
Therefore we conclude that

MB ⊂ Conf+(S4),

where Conf+(S4) is the group of conformal and
orientation-preserving diffeomorphisms of the 4-sphere S4. As
a differentiable manifold, Conf+(S4) is diffeomorphic to
SO(5)× H5

R with H5
R = {(x1, x2, x3, x4, x5) ∈ R5 : x1 > 0}, so

Conf+(S4) has real dimension 15.
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Let us give a different description of this group. We recall that
S4 can be thought of as being the projective quaternionic line
P1
H
∼= S4. This is the space of right quaternionic lines in H2, i.e.,

subspaces of the form

Lq := {(q1λ,q2λ, ) : λ ∈ H} , (q1,q2) ∈ H2 \ {(0,0)}.

We recall that H2 is a right module over H and the action of
GL(2,H) on H2 commutes with multiplication on the right, i.e.
for every λ ∈ H and A ∈ GL(2,H) one has,

ARλ = RλA

where Rλ is the multiplication on the right by λ ∈ H. Thus
GL(2,H) carries right quaternionic lines into right quaternionic
lines, and in this way an action of GL(2,H) on P1

H
∼= S4 is

defined.
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Any FA ∈ F lifts canonically to an automorphism F̃A of P3
C, the

complex projective 3-space and the map Ψ : FA 7→ F̃A injects F
into the complex projective group PSL(4,C) := SL(4,C)/{±I}.

MB ⊂ PSL(2,H) := SL(2,H)/{tI, t 6= 0} ' Conf+(S4).
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Poincaré extension to the fifth dimension.

As we have seen before the quaternionic projective line P1
H can

be identified with the unit sphere S4 in R5 and therefore S4 is
the boundary of the closed unit ball D5 ⊂ R5. As usual, we
identify the interior of D5 with the real hyperbolic 5-space H5

R.
Since PSL(2,H) acts conformally on S4 ∼= P1

H, by Poincaré
Extension Theorem each element γ ∈ PSL(2,H) extends
canonically to a conformal diffeomorphism of D5 which
restricted to H5

R is an orientation preserving isometry γ̃ of the
open 5-disk B5 with the Poincaré’s metric.
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Reciprocally, any orientation preserving isometry of H5
R extends

canonically to the ideal boundary R4 ∪ {∞} as an element of
PSL(2,H). Thus the map γ 7→ γ̃ is an isomorphism and
PSL(2,H) = Isom+H5

R.

This is the connection between twistor spaces, conformal
geometry, hyperbolic geometry in 5-dimensions and
complex Kleinian groups.
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Isometries in the half-space H1
H.

Consider H1
H be the half-space model of the one-dimensional

quaternionic hyperbolic space

H1
H := {q ∈ H : <(q) > 0}.

Via the Cayley transformation Ψ : B→ H1
H defined as

Ψ(q) = (1 + q)(1− q)−1 one can show explicitely that the unit
ball B of H is diffeomorphic to H1

H and introduce a Poincaré
distance in H1

H in such a way that the Cayley transformation
Ψ : B→ H1

H is an isometry; moreover the Poincaré distance in
H1
H is invariant under the action of the group ΨMBΨ−1 which is

denoted by MH1
H
.
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Since the unit ball B in H can be identified with the lower
hemisphere of S4 and any transformation FA ∈MB is conformal
and preserves orientation, we conclude that (see also [?, ?])

MB ' Conf+(H1
H)

where Conf+(H1
H) represents the group of conformal

diffeomorphisms orientation–preserving of the half-space
model H1

H.

Definition

LetMH1
H

the subgroup of PSL(2,H) whose elements are
associated to invertible linear fractional transformations which
preserve H1

H.
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According to Lars V. Ahlfors it was Karl Theodor Vahlen who
iintroduces in 1901 the idea of using the Clifford numbers to
define Möbius groups of 2 by 2 matrices with entries in the
Clifford numbers (Clifford matrices) acting on hyperbolic
spaces. In 1984 Ahlfors pushes forward the idea of Vahlen and
considers groups of 2 by 2 Clifford matrices and gives the
necessary and sufficient conditions to leave invariant a
half-space and the corresponding hyperbolic metric. In
particular in dimension 4 he gives conditions on 2 by 2 Clifford
matrices with entries in the quaternions H to induce Möbius
transformations which act as orientation-preserving isometries
of a half-space of H with its Poincaré metric.
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In 2009 Cinzia Bisi and Graziano Gentili reformulate the
conditions of Ahlfors and reduce it to a single relation in the
quaternionic setting:

ĀtKA = K

where A is a 2 by 2 matrix with entries in H and K =

(
0 1
1 0

)
and Āt is the transpose of the quaternionic conjugate of A.
We remark that the (BG) conditions are equivalent to Ahlfors’
conditions but they are much simpler, very efficient and useful.
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Proposition

[Conditions (BG)] The subgroupMH1
H

can be characterized as
the group induced by matrices which satisfy one of the following
(equivalent) conditions:



{
A =

(
a b
c d

)
a,b, c,d ∈ H : A

t
KA = K

}
with K =

(
0 1
1 0

)
{

A =

(
a b
c d

)
: <(ac) = 0, <(bd) = 0, bc + da = 1

}
{

A =

(
a b
c d

)
: <(cd) = 0, <(ab) = 0, ad + bc = 1

}
.

a,b, c,d ∈ H
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Definition

The group of invertible linear transformations satisfying (BG)
conditions consists of orientation preserving hyperbolic
isometries of H1

H, therefore it be denoted Isom+(H1
H); however,

in analogy with the previous notations, we will also called it the
Möbius group of H1

H and we denote alternatively this group as
MH1

H
:= ΨMBΨ−1.

Moreover, we have Isom(H1
H) = MH1

H
, where Isom(H1

H) is the
full group of isometries of H1

H.
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Remark
The groupMH1

H
acts by orientation-preserving conformal

transformations on the sphere at infinity of the hyperbolic
4-space defined as follows

S3 = ∂H1
H := {q ∈ H : <(q) = 0} ∪ {∞}.

In other wordsMH1
H
∼= Conf+(S3).
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Groups which are generalizations of the Picard and modular
groups have been considered before by C. Maclachlan, P.L.
Waterman and N.J. Wielenberg and N. W. Johnson and A. I.
Weiss in particular the group corresponding to the Lipschitz
integers is considered and a fundamental domain of this group
is described.
Ruth Kellerhalls using quaternions, describes the Margulis
decomposition of non compact 5-dimensional hyperbolic
manifolds of finite volume and gives estimates of the minimal
length of closed geodesics.
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The affine subgroup A(H) of the isometries of H1
H

Consider now the affine subgroup A(H) of PSL(2,H) consisting
of transformations which are induced by matrices of the form(

λa b
0 λ−1a

)
i.e. q 7→ ((λa)q + b)(λ−1a)−1

with |a| = 1, λ > 0 and <(ba) = 0. Such matrices satisfy (BG)
conditions of Proposition 1 and therefore are inMH1

H
.

Alberto Verjovsky Modular groups



We enumerate some properties of A(H) in the next proposition.

Proposition

The group A(H) is
1 the maximal subgroup ofMH1

H
which fixes the point at

infinity.
2 a Lie group of real dimension 7 and
3 a conformal group. This is each matrix in A(H) acts as a

conformal transformation on the hyperplane at infinity ∂H1
H.

Therefore A(H) is the group of conformal and orientation
preserving transformation acting on the space of pure
imaginary quaternions at infinity which can be identified
with R3 so that this group is isomorphic to the conformal
group Conf+(R3).
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Iwasawa decomposition of the isometries of H1
H

In analogy with the complex and real case, we can state a
generalization of Iwasawa decomposition for any element of
MH1

H
as follows

Proposition

Every element ofMH1
H

i.e., elements in PSL(2,H) which
satisfies (BG) conditions and which is represented by the

matrix M =

(
a b
c d

)
can be written in a unique way as follows

M =

(
λ 0
0 λ−1

)(
1 ω
0 1

)(
α β
β α

)
, (3)

with λ > 0, <(ω) = 0, |α|2 + |β|2 = 1 and <(αβ) = 0.
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Definition

A Lipschitz quaternion (or Lipschitz integer) is a quaternion
whose components are all integers. The ring of all Lipschitz
quaternions H(Z) is the subset of quaternions with integer
coefficients:

H(Z) := {a + bi + cj + dk ∈ H : ,a,b, c,d ∈ Z}

This is a subring of the ring of Hurwitz quaternions:
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Hur(Z) :={
a + bi + cj + dk ∈ H : a,b, c,d ∈ Z or a,b, c,d ∈ Z +

1
2

}
.

Indeed it can be proven that Hur(Z) is closed under quaternion
multiplication and addition, which makes it a subring of the ring
of all quaternions H.
As a group, Hur(Z) is free abelian with generators
1/2(1 + i + j + k), i, j,k. Therefore Hur(Z) forms a lattice in R4.
This lattice is known as the F4 lattice since it is the root lattice
of the semisimple Lie algebra F4. The Lipschitz quaternions
H(Z) form an index 2 sublattice of Hur(Z) and it is a subring of
the ring of quaternions.
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Quaternionic Translations
The quaternionic modular groups.

In this section we investigate a class of linear transformations
which will play a crucial role in the definition of the quaternionic
modular groups.
A translation τω : H1

H → H1
H is the transformation defined as

q 7→ q + ω which is a hyperbolic isometry in H1
H. Then it is a

transformation associated to the matrix
(

1 ω
0 1

)
∈MH1

H
, i.e.

<(ω) = 0.
In what follows we consider translations where ω is the
imaginary part of a Lipschitz or Hurwitz integer. We remark that
the imaginary part of a Lipschitz integer is still a Lipschitz
integer but the imaginary part of a Hurwitz integer is not
necessarily a Hurwitz integer.
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Definition

An imaginary Lipschitz quaternion (or imaginary Lipschitz
integer) is the imaginary part of a Lipschitz quaternion, a
quaternion whose real part is 0 and the others components are
all integers. The set of all imaginary Lipschitz quaternions is

=H(Z) = {bi + cj + dk ∈ H : b, c,d ∈ Z} .

Definition

Let T=H(Z) be the abelian group of translations by the imaginary
Lipschitz group =H(Z), i.e. such that q 7→ q + ω,
ω = n2i + n3j + n4k where the n’s are all integers; equivalently
q 7→ q + ω belongs to T=H(Z) if and only if ω ∈ =H(Z). This is

T=H(Z) :=

{(
1 ω
0 1

)
∈ GL(2,H) : <(ω) = 0

}
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The group T=H(Z) acts freely on H1
H as a representation of the

abelian group with 3 free generators Z⊕ Z⊕ Z. A fundamental
domain is the following set
{q = x0 + x1i + x2j + x3k ∈ H1

H : |xn| ≤ 1/2, n = 1, · · · ,3}.
This set is referred as the chimney. It has two ends, one of
finite volume which is asymptotic at the point at infinity. The
other end has infinite volume, it is called a hyperbolic trumpet.
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Inversion
Let

T (q) = q−1 =
q
|q|2

.

Clearly T is a linear fractional transformation of H1
H and its

representative matrix is
(

0 1
1 0

)
.
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The only fixed point of T in H1
H is 1 since the other fixed point of

T in H is −1 which is not in H1
H. Furthermore T is an isometric

involution ∗ of H1
H because it satisfies (BG) conditions of

Proposition 1. In particular T is an inversion on S3 which
becomes the antipodal map on any copy of S2 obtained as
intersection of S3 with a plane perpendicular to the real axis.
Finally, this isometry T leaves invariant the hemisphere (which
is a hyperbolic 3-dimensional hyperplane)
Π := {q ∈ H1

H : |q| = 1}. The only fixed point of T in H1
H is 1

and all other points in H1
H are periodic of period 2.

∗In the following sense; T sends every point of a hyperbolic geodesic
parametrized by arc length γ(s), passing through 1 at time 0 (i.e. such that
γ(0) = 1), to its opposite γ(−s). In other words, T is a hyperbolic symmetry
around 1.
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Definition

Let
C =

{q = x0+x1i+x2j+x3k ∈ H1
H : |q| = 1, |xn| ≤ 1/2, n = 1, · · · ,3}.

Then, C is a regular hyperbolic cube in Π. The 8 points of the
form 1

2 ±
1
2 i± 1

2 j± 1
2k, are the vertices of C and in particular

they are periodic of period 2 for T . These eight points are
Hurwitz units (but not Lipschitz units).
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Figure 1. Schematic picture of the chimney which is the
fundamental domain of the parabolic group T=H(Z) (generated

by the translations τi, τj and τk), the polytope P and the
polytope P and its inversion T (P). The horizontal plane

represents the purely imaginary quaternions that forms the
ideal boundary ∂H1

H and above it the open half-space of
quaternions with positive real part H1

H.

Alberto Verjovsky Modular groups



Composition of translations and inversion

We observe that if τω(q) := q + ω, ω ∈ H, then Lω := τωT has
as corresponding matrix(

ω 1
1 0

)
=

(
1 ω
0 1

)(
0 1
1 0

)
;

similarly Rω := T τω has as corresponding matrix(
0 1
1 ω

)
=

(
0 1
1 0

)(
1 ω
0 1

)
.

Therefore Rω is represented by interchanging the elements on
the diagonal of the matrix which represents Lω. In the following
table, we list the matrices associated to iterates of Lω with
suitable choices of ω.
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Table

ω = ±i or ω = ±j or ω = ±k ω = ±i± j or ω = ±i± k ω = ±i± j± k
or ω = ±j± k

ω2 = −1 ω2 = −2 ω2 = −3

L2
ω =

(
0 ω
ω 1

)
L2
ω =

(
−1 ω
ω 1

)
L2
ω =

(
−2 ω
ω 1

)

L3
ω =

(
ω 0
0 ω

)
L3
ω =

(
0 −1
−1 ω

)
L3
ω =

(
−ω −2
−2 ω

)

L4
ω =

(
−1 ω
ω 0

)
L4
ω =

(
−1 0
0 −1

)
L4
ω =

(
1 −ω
−ω −2

)

L5
ω =

(
0 −1
−1 ω

)
L5
ω =

(
0 1
1 −ω

)

L6
ω =

(
−1 0
0 −1

)
L6
ω =

(
1 0
0 1

)
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We can see that the order of Lω depends on ω; in particular,
each of the six transformations Lω with ω = ±i,±j,±k, has
order 6 but when restricted to the plane H1

C or more generally
Sω := {q = x1 + xii + xjj + xkk ∈ H1

H : xα = 0 if α 6= ω,0}, with
ω = i, j,k has order 3. Furthermore q0 ∈ H is a fixed point for
Lω = τωT with ω = 0,±i,±j,±k, if and only if q0 is a root of
q2 − ωq− 1 = 0. In the same way q0 is a fixed point for
Rω = T τω with ω = 0,±i,±j,±k, if and only if q0 is a root of
q2 + qω − 1 = 0. Briefly, if ω = ±i,±j,±k, the only fixed point of
Lω in H1

H is
√

3
2 + ω

2 and the only fixed point of Rω is
√

3
2 −

ω
2 .
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The Lipschitz Quaternionic modular group

We are now in the position of introducing the following:

Definition

The Lipschitz quaternionic modular group is the group
generated by the inversion T and the translations T=H(Z). It will
be denoted by PSL(2,L).

Remark
The group PSL(2,L) is a discrete subgroup of
MH1

H
⊂ PSL(2,H). It is important to emphasize that the

Lipschitz quaternionic modular group PSL(2,L) is a proper
subgroup of PSL(2,H(Z)); indeed, the subgroup generated by
(proper) translations and by the inversion T in H1

H has elements
which are represented by matrices with Lipschitz integers as
entries, but in general an arbitrary element in PSL(2,H(Z))
does not satisfy (BG) conditions and therefore it does not
preserve H1

H.
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Lipschitz unitary and affine subgroups of
PSL(2,L).

Let Lu the group (of order 8) of Lipschitz units

Lu := {±1, ±i, ±j,±k : i2 = j2 = k2 = ijk = −1}.

This group is the quaternion group which is a non-abelian group
of order eight. Moreover, its elements are the 8 vertices of a
16-cell in the 3-sphere S3 and the 8 barycentres of the faces of
its dual polytope which is a hypercube also called 8-cell.

Definition

The subgroup U(L) of PSL(2,L) whose elements are the 4
diagonal matrices

Du :=

(
u 0
0 u

)
with u a Lipschitz unit is called Lipschitz unitary group.
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The Lipschitz unitary group U(L) is isomorphic to the so called
Klein group of order 4 which is Z/2Z⊕ Z/2Z, since ij = k.
Moreover, we observe that the action on H1

H of the
transformation associated to Du, where u = i, j or k is for
conjugation and sends a quaternion q ∈ H1

H to uqu−1. It acts
as a rotation of angle π with axis the hyperbolic 2-plane
completely geodesic

Su = {x + yu : x , y ∈ R, x > 0}.
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Definition

The Lipschitz affine subgroup (or the Lipschitz parabolic
subgroup) A(L) is the group generated by the unitary group
U(L) and the group of translations T=H(Z). This is

A(L) := 〈U(L), T=H(Z)〉.

Equivalently

A(L) =

{(
u ub
0 u

)
: u ∈ Lu, <(b) = 0

}
(4a)

=

{(
u bu
0 u

)
: u ∈ Lu, <(b) = 0

}
. (4b)
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Remark
The Lipschitz affine subgroup A(L) is the maximal Lipschitz
parabolic subgroup of PSL(2,L). Moreover
A(L) ⊂ PSL(2,L) ∩ A(H). Furthermore, for every x0 > 0 this
subgroup leaves invariant the horospheres
{q ∈ H1

H : <(q) = x0} and also the horoballs
{q ∈ H1

H : <(q) > x0}.
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Since ij = k, it is generated by hyperbolic isometries associated
to the three matrices(

i 0
0 i

)
,

(
j 0
0 j

)
,

(
1 u
0 1

)
,

where u = i, j and k.

Remark

The transformation represented by the matrix
(

u 0
0 u

)
is a

rotation of angle π which keeps fixed each point of the plane Su
(the “axis of rotation”). The composition of such rotation and
the inversion T leads to a transformation represented by the

matrix
(

0 u
u 0

)
with u = i, j,k. For these transformations the

plane Su, with u = i, j,k is invariant. Both rotations and
inversion composed with a rotation of the plane leave invariant
the hyperbolic hyperplane Π and have 1 as a fixed point.
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The Hurwitz modular group and its unitary and
affine subgroups.

In analogy with the introduction of the unitary, affine and
modular groups in the Lipschitz integers setting we give the
following generalization

Definition

Let Hu be the group of Hurwitz units

Hu :=

{±1, ±i, ±j,±k,
1
2

(±1± i± j± k) : i2 = j2 = k2 = −1, ij = k}

where in 1
2(±1± i± j± k) all 16 possible combinations of signs

are allowed.
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This group is of order 24 and it is known as the binary
tetrahedral group. Its elements can be seen as the vertices of
the 24-cell. We recall that the 24-cell is a convex regular
4-polytope, whose boundary is composed of 24 octahedral
cells with six meeting at each vertex, and three at each edge.
Together they have 96 triangular faces, 96 edges, and 24
vertices. It is possible to give an (ideal) model of the 24-cell by
considering the convex hull (of the images) of the 24 unitary
Hurwitz numbers via the Cayley transformation
Ψ(q) = (1 + q)(1− q)−1.
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Definition

The subgroup U(H) of PSL(2,H) given by the 12 diagonal
matrices

Du :=

(
u 0
0 u

)
with u a Hurwitz unit is called Hurwitz unitary group.

The group U(H) is of order 12 and in fact it is isomorphic to the
group of orientation preserving isometries of the regular
tetrahedron. It clearly contains U(L) as a subgroup but is not
contained in the Lipschitz modular group PSL(2,L).
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Definition

The Hurwitz modular group is the group generated by the
inversion T , by the translations T=H(Z) and by the Hurwitz
unitary group U(H). It will be denoted by PSL(2,H).

Proposition

The group PSL(2,L) is a subgroup of index three of the group
PSL(2,H).

Proof.

This is so since the order of the group U(L) of transformations
induced by the diagonal matrices with entries in the Lipschitz
units is of index three in the group U(H) of transformations
induced by diagonal matrices with entries in the Hurwitz
units. �
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Definition

The Hurwitz affine subgroup (or the Hurwitz parabolic
subgroup) A(H) is the group generated by the unitary Hurwitz
group U(H) and the group of translations T=H(Z). Thus,

A(H) =

{(
u ub
0 u

)
: u ∈ Hu, <(b) = 0

}
(5a)

=

{(
u bu
0 u

)
: u ∈ Hu, <(b) = 0

}
. (5b)

Alberto Verjovsky Modular groups



It follows from the definition that PSL(2,L) ⊂ PSL(2,H). It is
worth observing here that using the Cayley transformations
Ψ(q) = (1 + q)(1− q)−1 one can represent the actions (in
terms of mutiplication/rotations) of the Hurwitz units on the
unitary sphere S3 as transformations of H1

H. Indeed, to any
such a transformation it is possible to associate one of the
following 24 matrices

Pu :=
1
2

(
u + 1 u− 1
u− 1 u + 1

)
∈ PSL(2,H)

(with u a Hurwitz unit); each of these matrices represents a
rotation around 1 given by the formula

q 7→ ((u + 1)q + u− 1)((u− 1)q + u + 1)−1. (6)
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This way of representing (the group of) Hurwitz units in terms of
matrices can be considered as a way to generalize Pauli
matrices. Let P(H) ⊂ PSL(2,H) be the group of order 24 of
rotations as in (6). This group is obviously isomorphic to Hu.
The orbit of 0 under the action of Hu on the boundary
∂H1

H ∪ {∞} are the vertices of the 24-cell and are the images
under the Cayley transformation of the Hurwitz units. Therefore
P(H) is a subgroup of the group of symmetries of the 24-cell.
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Definition

Let Û(L) and Û(H) be the isotropy subgroups of 1 in PSL(2,L)
and PSL(2,H), respectively. These subgroups are the maximal
subgroups which also preserve the cube C and the hyperplane
Π.
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Figure 13. The 24-cell {3,4,3}.
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Proposition

The groups Û(L) and Û(H) are the subgroups generated by T
and U(L) and T and U(H), respectively. We write

Û(L) = 〈T ,U(L)〉 and Û(H) = 〈T,U(H)〉.

Since T 2 = I and T commutes with all of the elements of U(L)
and U(L) we have:

Û(L) = Z/2Z⊕ U(L) and Û(H) = Z/2Z⊕ U(H).

Remark
The groups PSL(2,L) and PSL(2,H) are discrete and preserve
the half-space H1

H and the hyperbolic metric ds so they are
4-dimensional hyperbolic Kleinian groups in the sense of Henri
Poincaré.
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A quaternionic kaleidoscope.

We begin with the ideal convex hyperbolic polytope P with one vertex at infinity which is the intersection of the
half-spaces which contain 2 and which are determined by the following set of hyperbolic hyperplanes

Hyperplanes of the faces of P =



Π := {q ∈ H1
H : |q| = 1}

Π
− i

2
:= {q ∈ H1

H : q = x0 − 1
2 i + x2j + x3k, x0 > 0, x2, x3 ∈ R}

Π i
2

:= {q ∈ H1
H : q = x0 + 1

2 i + x2j + x3k, x0 > 0, x2, x3 ∈ R}

Π
− j

2
:= {q ∈ H1

H : q = x0 + x1i− 1
2 j + x3k, x0 > 0, x1, x3 ∈ R}

Π j
2

:= {q ∈ H1
H : q = x0 + x1i + 1

2 j + x3k, x0 > 0, x1, x3 ∈ R}

Π− k
2

:= {q ∈ H1
H : q = x0 + x1i + x2j− 1

2 k, x0 > 0, x1, x2 ∈ R}

Π k
2

:= {q ∈ H1
H : q = x0 + x1i + x2j + 1

2 k, x0 > 0, x1, x2 ∈ R}

Alberto Verjovsky Modular groups



Figure 14. A fundamental domain for the action of the modular
group PSL(2,Z) on the hyperbolic plane H2

R and the
corresponding tessellation .
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Figure 1. Schematic picture of the chimney which is the
fundamental domain of the parabolic group T=H(Z) (generated

by the translations τi, τj and τk), the polytope P and the
polytope P and its inversion T (P). The horizontal plane

represents the purely imaginary quaternions that forms the
ideal boundary ∂H1

H and above it the open half-space of
quaternions with positive real part H1

H.
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The polytope P is bounded by the hemisphere Π and the six
hyperplanes Πn (n = i

2 ,−
i
2 ,

j
2 ,−

j
2 ,

k
2 ,−

k
2 ) that are orthogonal to

the ideal boundary and pass through the point at infinity that is
denoted by∞.
The only ideal vertex of P is the point at infinity. The (non ideal)
vertices of P are the eight points 1

2(1± i± j± k) which are the
vertices of the cube C ⊂ Π which was defined in subsection 3.2.
The politope P has seven 3-dimensional faces: one compact
cube C and six pyramids with one ideal vertex at∞ as their
common apex and the six squares of the cube C as their bases.
Moreover P has 20 2-dimensional faces (6 compact squares
and 12 triangles with one ideal vertex which is the point at
infinity) and 20 edges (12 compact and 8 which are asymptotic
to the point at infinity).
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The convex polytope P satisfies the conditions of the
Poincaré’s polyhedron theorem, therefore the group generated
by reflections on the faces of P is a discrete subgroup of
hyperbolic isometries of H1

H. We denote this subgroup by G(3).
The index-two subgroup generated by composition of an even
number of reflections has as fundamental domain the convex
polytope P ∪ T (P). This subgroup of PSL(2,H(Z)) which
consists of orientation-preserving isometries will denoted by
G(3)+. The polytope P can be tessellated by four copies of the
fundamental domain of the action of PSL(2,L) and by twelve
copies of the fundamental domain of the action of PSL(2,H) on
H1
H. The quotient space H1

H/G(3) is a quaternionic
kaleidoscope which is a good non-orientable orbifold.
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The orientable orbifold H1
H/G(3)+ is obtained from the double

pyramid P ∪ T (P) by identifying in pairs the faces with an ideal
vertex at infinity with corresponding faces with an ideal vertex at
zero. These 3-dimensional faces meet at the square faces of
the cube C in Π and they are identifying in pairs by a rotation of
angle 2π/3 around the hyperbolic plane that contains the
square faces. The underlying space is R4 and the singular
locus of OG(3)+

is a cube. This group is generated by the six
rotations of angle 2π/3 around the hyperbolic planes that
contain the square faces of the cube C.
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Fundamental domains of the quaternionic modular groups
PSL(2,L) and PSL(2,H).
We start from the following important lemma:

Lemma

Let γ ∈ PSL(2,H) satisfy (BG) conditions. If q ∈ H1
H, then

<(γ(q)) =
<(q)

|qc + d |2
(7)
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Proof.

We recall that if q ∈ H1
H the action of γ in H1

H is given by the rule

γ(q) = (aq + b)(cq + d)−1

= (aq + b)(qc + d)
( 1

|qc + d|2
)
.

Then:

<(γ(q)) =
<(aq + b)(q c + d) + (cq + d)(q a + b)

2|qc + d|2

=
|q|2ac + aqd + bqc + bd + |q|2ca + cqb + dqa + db

2|qc + d|2

=
<(bq c + aq d)

|qc + d|2
.

�
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Proof.

Let q = x + yI, where x > 0, y ∈ R and I2 = −1. Then q = x − yI and

<(γ(q)) =
<(b(x − yI)c + a(x + yI)d)

|qc + d|2

=
<(xbc − ybIc + xad + yaId)

|qc + d|2

=
x + <(−ybIc + yaId)

|qc + d|2

=
x − ybIc + ycIb + yaId − ydIa)

|qc + d|2

=
x + y(−bIc + cIb + aId − dIa)

|qc + d|2

�
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Proof.

On the other hand, since
(

a b
c d

)
∈ PSL(2,H) and

(
1 I
0 1

)
∈ PSL(2,H) and both satisfy (BG)

conditions, then (
a b
c d

)
·
(

1 I
0 1

)
=

(
a aI + b
c cI + d

)
∈ PSL(2,H)

and satisfies (BG) conditions. Therefore (BG) conditions imply:

(aI + b)(−Ic + d) + (cI + d)(−Ia + b) = 0,

Then,
−aI2c + aId − bIc + bd − cI2a + cIb − dIa + db = 0,

aId − dIa + cIb − bIc = 0.

Finally, we have

<(γ(q)) =
x

|qc + d|2
=

<(q)

|qc + d|2
.

�
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We notice that if one restricts the entries of the matrices to the
set H(Z) or Hur , then there are only a finite number of
possibilities for c and d in such a way that |qc + d | is less than
a given number; therefore we obtain the following important

Corollary

For every q ∈ H one has

sup
γ∈PSL(2,L)

<(γ(q)) <∞ and sup
γ∈PSL(2,H)

<(γ(q)) <∞.

This corollary is the key reason why the orbifolds H1
H/PSL(2,L)

and H1
H/PSL(2,H) are all of finite volume. See section 9. The

orbifolds H1
H/PSL(2,H(Z)) and H1

H/PSL(2,Hur(Z)) of the
actions of PSL(2,H(Z)) and PSL(2,Hur(Z)) on H5

R are of finite
volume by a similar inequality.
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Orbifolds and fundamental domains for
translations and for the inversion.

i

j

-k

Figure 3. Left: The action of U(L) on the cube C.
ÊRight: The two hyperbolic cubes C1 and C2 in C which are the

bases of a fundamental domain PL of PSL(2,L).

Alberto Verjovsky Modular groups



From the above considerations and taking into account the
actions of the generators and the affine group one can describe
the fundamental domains of PSL(2,L) and PSL(2,H)
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Fundamental domain of PSL(2,H)

i+j+k
2π/3

i+j+k

2π/3

π
i

π j

π

-k

i

j

-k

Figure 4. Left: The action of U(H) in the cube C.
Right: the bases of the fundamental domain of PSL(2,H). The
two hyperbolic pyramids P1 and P2 in C which are the bases of

a fundamental domain PH of PSL(2,H).
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A fundamental domain of PSL(2,L) as an ideal cone over a
rhombic hyperbolic dodecahedron We can describe another
fundamental domain of the modular group which is convex
using “cut and paste” techniques

Figure 6. A fundamental domain RL for PSL(2,L) can be
taken to be the pyramid over the rhombic dodecahedron R with

apex the point at infinity. A fundamental domain RH for
PSL(2,H) can be taken to be the pyramid over a third part of

the rhombic dodecahedron R.
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Geometric characterization of the quaternionic modular
groups
The following fundamental theorem gives the description of the
Lipschitz quaternionic modular group PSL(2,L) as the group of
quaternionic Möbius transformations whose entries are
Lipschitz integers and which also satisfy (BG) conditions.

Theorem
Any element in PSL(2,H(Z)) which satisfies (BG) conditions
belongs to the quaternionic modular group PSL(2,L).

Proof.

Let A ∈ PSL(2,H(Z)) satisfy (BG) conditions. Let q = A(1) and
S ∈ PSL(2,L) be such that p := S(q) ∈ P. Then (SA)(1) = p
and it follows that SA ∈ A(L). Hence A ∈ A(L) ⊂ PSL(2,L).

�
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This theorem completely characterizes the group of Möbius
transformations with entries in the Lipschitz integers which
preserve the hyperbolic half-space H1

H.
This proof can be adapted verbatim to prove the following
Theorem which characterizes PSL(2,H):

Theorem
Any element in PSL(2,Hur) which satisfies (BG) conditions
belongs to the quaternionic modular group PSL(2,H).
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Coxeter decomposition of the fundamental
domains.

The polytope P is a Coxeter polytope i.e. the angles between
its faces called dihedral angles are submultiples of π. The
geometry of the hyperbolic tessellation of H1

H that is generated
by reflections on the sides of P is codified by these angles. We
denote this tessellation of H1

H by Y. In order to understand it we
will consider another tessellation of H1

H, which is a refinement
based on a barycentric decomposition of Y and whose cells all
are isometric to a fixed hyperbolic 4-simplex which we denote
by ∆L. This model simplex ∆L is a Coxeter simplex with one
ideal vertex.
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It is important for us to describe the groups PSL(2,L) and
PSL(2,H) as Coxeter subgroups of rotations of the symmetries
of the tessellation generated by hyperbolic reflections of ∆L.
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A

B

C

D

i

j

-k

Figure 8. The Coxeter decomposition into 48 tetrahedra of a
cube in the Euclidean 3-space.
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The Euclidean tetrahedron ∆e
L is the standard Coxeter’s

3-simplex 4(4,3,4). The Euclidean tessellation whose cells
are isometric copies of the tetrahedron with Coxeter symbol
4(4,3,4) is the refinament obtained by means of the
barycentric subdivision of the classic tessellation by cubes of
the Euclidean 3-space whose Schläfli symbol is {4,3,4}. Each
cube is divided into 48 tetrahedra of type 4(4,3,4). The
Schläfli symbol of a cube is {4,3}. This symbol means that the
faces of a cube are squares with Schläfli symbol {4} and that
the link of each vertex is an equilateral triangle with Schläfli
symbol {3}. The symbol of the tessellation {4,3,4} of the
Euclidean 3-space means that the 3-dimensional cells are
cubes with Schläfli symbol {4,3} and that the link or verticial
figure of each vertex in the tessellation {4,3,4} is an
octahedron with Schläfli symbol {3,4}.
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We can compute the dihedral angles of 4(4,3,4) by means of
{4,3,4}.
In short, we list the 10 dihedral angles of ∆L:

∠BCD = π/3, ∠AC∞ = π/2, ∠ABD = π/2,
∠AB∞ = π/4, ∠BD∞ = π/2, ∠ABC = π/2,
∠AD∞ = π/3, ∠BC∞ = π/2, ∠ACD = π/2.
∠CD∞ = π/4,
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Definition

Let Γ{3,4,3,4} be the hyperbolic Coxeter group generated by
reflections on the sides of ∆L. This group is a hyperbolic
Kleinian group.

The polytope P is the union of the 6× 8 = 48 simplexes
asymptotic at∞ and isometric to ∆L which have bases
contained in the cube C. The Lipschitz fundamental domain PL
is obtained as the union of 6× 2 = 12 simplexes asymptotic at
∞ and isometric to ∆L with bases in the two cubes C1 and C2.
The Hurwitz modular domain PH is obtained as the union of 4
simplexes asymptotic at∞ and isometric to ∆L since PSL(2,L)
is a subgroup of index 3 of PSL(2,H).
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Finally, applying 24× 48 = 1152 elements of the group Γ{3,4,3,4}
to ∆L we obtain an union of isometric copies of P that forms a
right-angled 24-cell which is a cell of the regular hyperbolic
honeycomb {3,4,3,4}. See figure 13. There are 24 octahedra
in the boundary of the 24-cell and there are 48 simplexes
congruent to ∆L over each one of the octahedrons. The
non-compact, right-angled hyperbolic 24-cell has finite volume
equal to 4π2/3.
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We can summarize these previous results in the following
theorem

Theorem
The Coxeter group Γ{3,4,3,4} of finite covolume contains as
subgroups the quaternionic modular groups PSL(2,L) and
PSL(2,H). We have PSL(2,L) ⊂ PSL(2,H) ⊂ Γ{3,4,3,4}.
We have the following indices:

[Γ{3,4,3,4} : PSL(2,H)] = 4,
[Γ{3,4,3,4} : PSL(2,L)] = 12 and
[PSL(2,H) : PSL(2,L)] = 3.
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|Volumes of the fundamental domains

The Coxeter decomposition of the 24-cell implies that the group
of symmetries (both orientation-preserving and
orientation-reversing) of the 24-cell is of order 24× 48 = 1152.
With the action of these 1152 symmetries the 24-cell can be
divided into 1152 congruent simplexes where each of them is
congruent to ∆L. One knows from [?] that the volume of the
hyperbolic right-angled 24-cell is 4π2/3, therefore the volume of
∆L is (4π2/3) divided by 1152, this is (π2/864). Then, we have
the following proposition

Proposition

The volume of PL is 12(π2/864) = π2/72 and the volume of PH
is 4(π2/864) = π2/216.
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Figure 9. Schematic 3-dimensional version: the hyperbolic
tessellation {3,4,4} . This figure is courtesy of Roice Nelson
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Algebraic presentation of the Lipschitz modular
group PSL(2,L)

Theorem

The group PSL(2,L) has the following finite presentation:

PSL(2,L) =
〈
T , τi, τj, τk |RL

〉
,

where RL is the set of relations:
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Theorem

RL :=



T 2, [τi : τj], [τi : τk], [τk : τj],

(τiT )6, (τjT )6, (τkT )6,

(τiτjT )4, (τiτkT )4, (τjτkT )4,

(τiτjτkT )6,

(τiT )3 (τjT )3 (τkT )3, (τiT )3 (τkT )3 (τjT )3,

[(τiT )3 : T ], [(τjT )3 : T ], [(τkT )3 : T ],

[(τiT )3 : τi], [(τjT )3 : τj], [(τkT )3 : τk],

(τuT )3τw(τuT )3τw,where u 6= w are units in the set {i, j, k}.

Alberto Verjovsky Modular groups



Theorem
The group PSL(2,H) has the following finite presentation:

PSL(2,H) =
〈
T , τi, τj, τk,Dω1 ,Dωi ,Dωj ,Dωk |RH

〉
,

where RH is the set of relations:
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Theorem

RH :=



T 2, [τi : τj], [τi : τk], [τk : τj],

(τiT )6, (τjT )6, (τkT )6,

(τiτjT )4, (τiτkT )4, (τjτkT )4,

(τiτjτkT )6,

(τiT )3 (τjT )3 (τkT )3, (τiT )3 (τkT )3 (τjT )3,

[(τiT )3 : T ], [(τjT )3 : T ], [(τkT )3 : T ],

[(τiT )3 : τi], [(τjT )3 : τj], [(τkT )3 : τk],

DuτwDuτw,where u 6= w are units in the set {i, j, k}

[Dω1 : T ], [Dωi : T ], [Dωj : T ], [Dωk : T ],

(Dω1 )3, (Dωi )3, (Dωj )3, (Dωk )3,

Dω1 DiDωi DjDωk Dk,

DkDωk DiD
−1
ωj

DjDω1 ,

DiDωk DjDωi DkDωj ,

DjD
−1
ωj

DkDωi DiDω1 .
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π

Figure 11. The unitary groups in the Cayley graphs of the
quaternionic modular groups PSL(2,L) and PSL(2,H). The
edges in red correspond to elements of order two and the

edges in green correspond to elements of order three.
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The volume of an orbifold is the same as the volume of its
fundamental domain. Then we had computed
Vol(O4

L) = 3Vol(O4
H) in the section 7.1. This is related to the

Gauss-Bonnet-Euler theorem for orbifolds.
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Selberg’s covers and examples of hyperbolic
4-manifolds

By a Selberg cover we mean a covering space which is a
manifold which corresponds to a torsion-free and finite-index
subgroup. We have already remarked that the group PSL(2,L)
is a subgroup of the symmetries of the honeycomb {3,4,3,4}.
This is a corollary of the previousresults. Then the fundamental
domain PL of the group PSL(2,L) is commensurable with a
hyperbolic regular right–angled convex cell {3,4,3} of the
honeycomb {3,4,3,4} ). In other words, there is a finite
subdivision of PL and {3,4,3} by congruent polyhedrons. The
24 vertices of this {3,4,3} are:

0,∞,±i,±j,±k,±i± j± k,
1
2

(±i± j± k). (8)
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The Selberg’s theorem says that there exist smooth cover
hyperbolic 4-manifolds of the orbifolds O4

L and O4
H.

Proposition

The minimal orders of Selberg covers of O4
L and O4

H are of
orders 96 and 288, respectively.
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In 1999, J. Ratcliffe and T. Tschantz found 1171 noncompact
hyperbolic 4-manifolds which have Euler characteristic 1 by
side-pairings in a fundamental region {3,4,3} of the
honeycomb {3,4,3,4}. In 2004, D. Ivansić showed that the
nonorientable 4-manifold numbered 1011 in the Ratcliffe and
Tschantz’s list, this is, the 4-manifold M1011 with the biggest
order of their symmetry groups, is the complement of five
Euclidean 2-torus in a closed 4-manifold with fundamental
group isomorphic to Z/2Z. Moreover, the orientable double
cover M̃1011 is a complement of five 2-torus in the 4-sphere. In
2008 Ivansić showed that this 4-sphere has the same topology
of the standard differentiable 4-sphere and not of an exotic
4-sphere. In his doctoral thesis J.P. Díaz provides diagrams of
this link to give an explicit model of the isotopy class of the link.

Alberto Verjovsky Modular groups



We now recall the beautiful construction of a complete,
nonorientable hyperbolic 4-manifold of finite volume with six
cusps whose cross sections are S1 × K2, where K2 is the Klein
bottle. Let us consider the open unit ball B4 in H with the
Poincaré metric. Let C24 denote the 24-cell whose vertices are
the Hurwitz unit as seen before. There are 24 faces which are
regular ideal hyperbolic octahedrons. Given a face F there is
an opposite face −F which is the face diametrically opposite to
F (the image under multiplication by -1). One identifies F with
−F by a composition which consists of a reflection with respect
to the hyperplane which contains F followed by multiplication by
-1. This composition is an orientation-reversing hyperbolic
isometry which sends C24 onto a contiguous cell of the
honeycomb determined by the 24-cell. This pairing of each
face with its opposite has the effect of creating a nonsingular,
nonorientable, hyperbolic manifold with 6 cusps. We can take
the orientable double covering.
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In 2005, Ratcliffe, Tschantz and Ivansić showed that there is a
dozen of examples of non-orientable hyperbolic 4-manifolds
from this list whose orientable double covers are complements
of five or six Euclidean surfaces (tori and Klein bottles) in the
4-sphere.
Ratcliffe showed that three of these dozen complements can be
used to construct aspheric 4-manifolds that are homology
spheres by means of Dehn’s fillings.
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HAPPY 85th BIRTHDAY PROFESSOR JOHN MILNOR!
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