The Secret Combinatorial Garden of Siegel

Rodrigo Pérez

IUPUI

Jackfest, Cancún, June 3, 2016

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Make the problem interesting: $\lambda=\mathrm{e}^{2 \pi \mathrm{i} \alpha}$, with $\alpha \notin \mathbb{Q}$.

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Make the problem interesting: $\lambda=\mathrm{e}^{2 \pi \mathrm{i} \alpha}$, with $\alpha \notin \mathbb{Q}$.
Can f be linearized? i.e., is there

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Make the problem interesting: $\lambda=\mathrm{e}^{2 \pi \mathrm{i} \alpha}$, with $\alpha \notin \mathbb{Q}$.
Can f be linearized? i.e., is there

$$
\varphi(z)=c_{1} z+c_{2} z^{2}+\ldots
$$

such that

$$
\varphi(\lambda z)=(f \circ \varphi)(z) \quad ?
$$

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Make the problem interesting: $\lambda=\mathrm{e}^{2 \pi \mathrm{i} \alpha}$, with $\alpha \notin \mathbb{Q}$.
Can f be linearized? i.e., is there

$$
\varphi(z)=c_{1} z+c_{2} z^{2}+\ldots
$$

such that

$$
\varphi(\lambda z)=(f \circ \varphi)(z) \quad ?
$$

(Can always rescale so that $c_{1}=1$)

Linearization

$$
f(z)=\lambda z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

(Can always rescale so that the radius of convergence of f is 1)

$$
f(0)=0, \quad f^{\prime}(0)=\lambda
$$

Make the problem interesting: $\lambda=\mathrm{e}^{2 \pi \mathrm{i} \alpha}$, with $\alpha \notin \mathbb{Q}$.
Can f be linearized? i.e., is there

$$
\varphi(z)=c_{1} z+c_{2} z^{2}+\ldots
$$

such that

$$
\varphi(\lambda z)=(f \circ \varphi)(z) \quad ?
$$

(Can always rescale so that $c_{1}=1$)

Hailed by a member of this audience as
"one of the landmark papers of the twentieth century."

Recursion

$$
\varphi(\lambda z)=(f \circ \varphi)(z)
$$

Recursion

$$
\begin{aligned}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}
\end{aligned}
$$

Recursion

$$
\begin{aligned}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \\
\sum_{k=2}^{\infty} c_{k}\left(\lambda^{k}-\lambda\right) z^{k} & =\sum_{r=2}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}
\end{aligned}
$$

$$
\left(\text { since } a_{1}=\lambda\right)
$$

Recursion

$$
\left.\begin{array}{rl}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \\
\sum_{k=2}^{\infty} c_{k}\left(\lambda^{k}-\lambda\right) z^{k} & =\sum_{r=2}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}
\end{array} \quad\left(\text { since } a_{1}=\lambda\right)\right)
$$

$c_{k}\left(\lambda^{k}-\lambda\right)$ is the sum of coefficients of all z^{k}-monomials present in the RHS

Recursion

$$
\begin{aligned}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \\
\sum_{k=2}^{\infty} c_{k}\left(\lambda^{k}-\lambda\right) z^{k} & =\sum_{r=2}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \quad
\end{aligned}
$$

$c_{k}\left(\lambda^{k}-\lambda\right)$ is the sum of coefficients of all z^{k}-monomials present in the RHS
The expression $a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}$ produces z^{k}-monomials exactly when $2 \leq r \leq k$, each term being of the form:

Recursion

$$
\begin{aligned}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \\
\sum_{k=2}^{\infty} c_{k}\left(\lambda^{k}-\lambda\right) z^{k} & =\sum_{r=2}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \quad
\end{aligned}
$$

$c_{k}\left(\lambda^{k}-\lambda\right)$ is the sum of coefficients of all z^{k}-monomials present in the RHS
The expression $a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}$ produces z^{k}-monomials exactly when $2 \leq r \leq k$, each term being of the form:

$$
\begin{aligned}
& a_{r} \cdot\left(c_{\ell_{1}} z^{\ell_{1}}\right) \cdot \ldots \cdot\left(c_{\ell_{r}} z^{\ell_{r}}\right) \quad\left(\text { with } \ell_{1}+\ldots+\ell_{r}=k\right) \\
= & a_{r} \cdot\left(c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right) \cdot z^{k}
\end{aligned}
$$

Recursion

$$
\left.\begin{array}{rl}
\varphi(\lambda z) & =(f \circ \varphi)(z) \\
\sum_{k=1}^{\infty} c_{k}(\lambda z)^{k} & =\sum_{r=1}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r} \\
\sum_{k=2}^{\infty} c_{k}\left(\lambda^{k}-\lambda\right) z^{k} & =\sum_{r=2}^{\infty} a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}
\end{array} \quad\left(\text { since } a_{1}=\lambda\right)\right)
$$

$c_{k}\left(\lambda^{k}-\lambda\right)$ is the sum of coefficients of all z^{k}-monomials present in the RHS
The expression $a_{r}\left(\sum_{\ell=1}^{\infty} c_{\ell} z^{\ell}\right)^{r}$ produces z^{k}-monomials exactly when $2 \leq r \leq k$, each term being of the form:

$$
\begin{aligned}
& a_{r} \cdot\left(c_{\ell_{1}} z^{\ell_{1}}\right) \cdot \ldots \cdot\left(c_{\ell_{r}} z^{\ell_{r}}\right) \quad\left(\text { with } \ell_{1}+\ldots+\ell_{r}=k\right) \\
= & a_{r} \cdot\left(c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right) \cdot z^{k} \\
& c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
\end{aligned}
$$

Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ.

Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ. But the power series for φ may still not converge. . .

Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ.
But the power series for φ may still not converge. . .
Missing: exponential rate of growth of the coefficient sequence $\left\{c_{k}\right\}$

Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ. But the power series for φ may still not converge. . .
Missing: exponential rate of growth of the coefficient sequence $\left\{c_{k}\right\}$
Siegel's strategy: Define sD-terms ${ }^{1} \varepsilon_{k}:=\frac{1}{\left|\lambda^{k+1}-\lambda\right|}=\frac{1}{\left|\lambda^{k}-1\right|}$ (note the index discrepancy).

[^0]
Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ.
But the power series for φ may still not converge. . .
Missing: exponential rate of growth of the coefficient sequence $\left\{c_{k}\right\}$
Siegel's strategy: Define sD-terms ${ }^{1} \varepsilon_{k}:=\frac{1}{\left|\lambda^{k+1}-\lambda\right|}=\frac{1}{\left|\lambda^{k}-1\right|}$ (note the index discrepancy).Then

$$
\widehat{c_{1}}:=1 \quad, \quad \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{\ell_{\ell_{r}}}\right)
$$

[^1]
Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ. But the power series for φ may still not converge. . .
Missing: exponential rate of growth of the coefficient sequence $\left\{c_{k}\right\}$
Siegel's strategy: Define sD-terms ${ }^{1} \varepsilon_{k}:=\frac{1}{\left|\lambda^{k+1}-\lambda\right|}=\frac{1}{\left|\lambda^{k}-1\right|}$ (note the index discrepancy).Then

$$
\widehat{c_{1}}:=1 \quad, \quad \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{\ell_{\ell_{r}}}\right)
$$

$$
\left|c_{k}\right| \leq \widehat{c_{k}} \quad\left(\text { recall }\left|a_{r}\right| \leq 1\right)
$$

[^2]
Triangle Inequality

$$
c_{1}=1 \quad, \quad c_{k}=\left(\frac{1}{\lambda^{k}-\lambda}\right) \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} a_{r} \cdot c_{\ell_{1}} \cdot \ldots \cdot c_{\ell_{r}}\right)
$$

This is a fully explicit (recursive) formula for the coefficients of φ. But the power series for φ may still not converge. . .
Missing: exponential rate of growth of the coefficient sequence $\left\{c_{k}\right\}$
Siegel's strategy: Define sD-terms ${ }^{1} \varepsilon_{k}:=\frac{1}{\left|\lambda^{k+1}-\lambda\right|}=\frac{1}{\left|\lambda^{k}-1\right|}$ (note the index discrepancy).Then

$$
\widehat{c_{1}}:=1 \quad, \quad \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{\ell_{\ell_{r}}}\right)
$$

$$
\left|c_{k}\right| \leq \widehat{c_{k}} \quad\left(\text { recall }\left|a_{r}\right| \leq 1\right)
$$

[^3]
Cauchy's Majorant Method

$$
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right)
$$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{\widehat{\ell}_{1}} \cdot \ldots \cdot \widehat{\iota_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1
\end{aligned}
$$

Cauchy's Majorant Method

$$
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{\ell_{1}} \cdot \ldots \cdot \widehat{\ell_{r}}\right)
$$

$$
\begin{aligned}
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1},
\end{aligned}
$$

Cauchy's Majorant Method

$$
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c \ell_{1}} \cdot \ldots \cdot \widehat{\ell_{\ell_{r}}}\right)
$$

$$
\begin{aligned}
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1} \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2},
\end{aligned}
$$

Cauchy's Majorant Method

$$
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c \ell_{1}} \cdot \ldots \cdot \widehat{\iota_{\ell_{r}}}\right)
$$

$$
\begin{aligned}
\widehat{c_{1}} & =1 \\
\widehat{c_{2}} & =\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
\widehat{c_{3}} & =\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2}, \\
\widehat{c_{4}} & =\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
& =\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2}, \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest?

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2} \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2} \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ $\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2} \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ
$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
$\tau_{k}:=\#\{$ sD-products counted with multiplicity $\}$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2} \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ
$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
$\tau_{k}:=\#\{$ sD-products counted with multiplicity $\} \quad\left(\right.$ e.g., $\left.\tau_{4}=4+2+1+3+1=11\right)$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2} \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ
$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
$\tau_{k}:=\#\{$ sD-products counted with multiplicity $\} \quad\left(\right.$ e.g., $\left.\tau_{4}=4+2+1+3+1=11\right)$
$\widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k}$

Cauchy's Majorant Method

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{1}}=1 \\
& \widehat{c_{2}}=\varepsilon_{1}\left(\left[\widehat{c_{1}} \widehat{c_{1}}\right]\right)=\varepsilon_{1}, \\
& \widehat{c_{3}}=\varepsilon_{2}\left(\left[\widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{2}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right)=2 \varepsilon_{2} \varepsilon_{1}+\varepsilon_{2}, \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=\underbrace{4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}} .
\end{aligned}
$$

$\widehat{c_{k}}$ is the sum of several products of SD-terms. Which one is largest? It depends on λ
$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
$\tau_{k}:=\#\{$ sD-products counted with multiplicity $\} \quad\left(\right.$ e.g., $\left.\tau_{4}=4+2+1+3+1=11\right)$
$\widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k} \quad \longleftarrow$ Find exponential bounds for both δ_{k} and $\tau_{k}!$

Diophantine vs Combinatorial

$$
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{\ell_{1}} \cdot \ldots \cdot \widehat{\ell_{\ell_{r}}}\right)
$$

\square

Diophantine vs Combinatorial

$$
\begin{aligned}
\widehat{c_{k}} & :=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
\widehat{c_{4}} & =\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
& =4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3}
\end{aligned}
$$

\square

Diophantine vs Combinatorial

$$
\begin{aligned}
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
\widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
=4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3} \\
\widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k}
\end{aligned}
$$

\square

Diophantine vs Combinatorial

$$
\begin{aligned}
\widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{1}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
\widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
=4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3} \\
\widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k}
\end{aligned}
$$

$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
The largest sD-product in $\widehat{c_{k}}$ appears in some product $\widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}$. Therefore it is the product of the largest sD-products in each of $\widehat{c_{\ell_{1}}}, \ldots, \widehat{c_{\ell_{r}}}$; i.e.
$\delta_{1}=1$
$\delta_{k}=\varepsilon_{k-1} \cdot \max _{\substack{\ell_{1}+\ldots+\ell_{r}=k \\ 2 \leq r \leq k}}\left\{\delta_{\ell_{1}} \cdot \ldots \cdot \delta_{\ell_{r}}\right\}$

Diophantine vs Combinatorial

$$
\begin{aligned}
& \widehat{c_{k}}:=\varepsilon_{k-1} \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}\right) \\
& \widehat{c_{4}}=\varepsilon_{3}\left(\left[\widehat{c_{1}} \widehat{c_{3}}+\widehat{c_{2}} \widehat{c_{2}}+\widehat{c_{3}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{2}}+\widehat{c_{1}} \widehat{c_{2}} \widehat{c_{1}}+\widehat{c_{2}} \widehat{c_{1}} \widehat{c_{1}}\right]+\left[\widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}} \widehat{c_{1}}\right]\right) \\
&=4 \varepsilon_{3} \varepsilon_{2} \varepsilon_{1}+2 \varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{1} \varepsilon_{1}+3 \varepsilon_{3} \varepsilon_{1}+\varepsilon_{3} \\
& \widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k}
\end{aligned}
$$

$\delta_{k}:=\max \left\{\right.$ product of sD-terms in $\left.\widehat{c_{k}}\right\}$
The largest sD-product in $\widehat{c_{k}}$ appears in some product $\widehat{c_{\ell_{1}}} \cdot \ldots \cdot \widehat{c_{\ell_{r}}}$. Therefore it is the product of the largest sD-products in each of $\widehat{c_{\ell_{1}}}, \ldots, \widehat{c_{\ell_{r}}}$; i.e.
$\delta_{1}=1$
$\delta_{k}=\varepsilon_{k-1} \cdot \max _{\substack{\ell_{1}+\ldots+\ell_{r}=k \\ 2 \leq r \leq k}}\left\{\delta_{\ell_{1}} \cdot \ldots \cdot \delta_{\ell_{r}}\right\}$
$\tau_{k}:=\#\{$ sD-products (w/multiplicity) $\}$

Pretend all ε_{k} are equal to 1

$$
\tau_{1}=1
$$

$$
\tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

$$
\sum_{k=2}^{\infty} \tau_{k} \cdot 1 \cdot z^{k}=\sum_{r=2}^{\infty}\left(\sum_{\ell=1}^{\infty} \tau_{\ell} \cdot z^{\ell}\right)^{r}
$$

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

$$
\sum_{k=2}^{\infty} \tau_{k \cdot 1} \cdot z^{k}=\sum_{r=2}^{\infty}\left(\sum_{\ell=1}^{\infty} \tau_{\ell} \cdot z^{\ell}\right)^{r}
$$

i.e., $y(z):=\sum_{\ell=1}^{\infty} \tau_{\ell} z^{\ell}$ satisfies

$$
y(z)=z+\sum_{r=2}^{\infty} y^{r}=z+\frac{y^{2}}{1-y}
$$

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

$$
\sum_{k=2}^{\infty} \tau_{k \cdot 1} \cdot z^{k}=\sum_{r=2}^{\infty}\left(\sum_{\ell=1}^{\infty} \tau_{\ell} \cdot z^{\ell}\right)^{r}
$$

i.e., $y(z):=\sum_{\ell=1}^{\infty} \tau_{\ell} z^{\ell}$ satisfies

$$
y(z)=z+\sum_{r=2}^{\infty} y^{r}=z+\frac{y^{2}}{1-y}
$$

so

$$
y(z)=\frac{1+z-\sqrt{1-6 z+z^{2}}}{4}
$$

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

$$
\sum_{k=2}^{\infty} \tau_{k} \cdot 1 \cdot z^{k}=\sum_{r=2}^{\infty}\left(\sum_{\ell=1}^{\infty} \tau_{\ell} \cdot z^{\ell}\right)^{r}
$$

i.e., $y(z):=\sum_{\ell=1}^{\infty} \tau_{\ell} z^{\ell}$ satisfies

$$
y(z)=z+\sum_{r=2}^{\infty} y^{r}=z+\frac{y^{2}}{1-y}
$$

SO

$$
y(z)=\frac{1+z-\sqrt{1-6 z+z^{2}}}{4}
$$

with radius of convergence $(3-\sqrt{8})$ (smallest root of $1-6 z+z^{2}$).

Schröder numbers

(or how to deal with the τ_{k})

$$
\tau_{1}=1, \quad \tau_{k}=1 \cdot\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	3	11	45	197	903	4279

$$
\sum_{k=2}^{\infty} \tau_{k} \cdot 1 \cdot z^{k}=\sum_{r=2}^{\infty}\left(\sum_{\ell=1}^{\infty} \tau_{\ell} \cdot z^{\ell}\right)^{r}
$$

i.e., $y(z):=\sum_{\ell=1}^{\infty} \tau_{\ell} z^{\ell}$ satisfies

$$
y(z)=z+\sum_{r=2}^{\infty} y^{r}=z+\frac{y^{2}}{1-y}
$$

SO

$$
y(z)=\frac{1+z-\sqrt{1-6 z+z^{2}}}{4}
$$

with radius of convergence $(3-\sqrt{8})$ (smallest root of $1-6 z+z^{2}$).

$$
\tau_{k} \approx(3+\sqrt{8})^{k}
$$

Siegel's Subtle Estimate

(or how to deal with the δ_{k})

Siegel's Subtle Estimate
(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of sD-terms becomes factorial. . .

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of sD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of sD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\lambda^{q}\left(\lambda^{p-q}-1\right)=\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right)
$$

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of sD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\begin{gathered}
\lambda^{q}\left(\lambda^{p-q}-1\right)=\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right) \\
\left|\lambda^{p-q}-1\right| \leq\left|\lambda^{p}-1\right|+\left|\lambda^{q}-1\right|
\end{gathered}
$$

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of SD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\begin{aligned}
\lambda^{q}\left(\lambda^{p-q}-1\right) & =\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right) \\
\left|\lambda^{p-q}-1\right| & \leq\left|\lambda^{p}-1\right|+\left|\lambda^{q}-1\right| \\
\varepsilon_{p-q}^{-1} & \leq \varepsilon_{p}^{-1}+\varepsilon_{q}^{-1} \leq 2\left(\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\}\right)^{-1}
\end{aligned}
$$

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of SD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\begin{aligned}
\lambda^{q}\left(\lambda^{p-q}-1\right) & =\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right) \\
\left|\lambda^{p-q}-1\right| & \leq\left|\lambda^{p}-1\right|+\left|\lambda^{q}-1\right| \\
\varepsilon_{p-q}^{-1} & \leq \varepsilon_{p}^{-1}+\varepsilon_{q}^{-1} \leq 2\left(\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\}\right)^{-1} \\
\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\} & \leq 2 \varepsilon_{p-q} \leq 2^{\nu+1}(p-q)^{\nu}
\end{aligned}
$$

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of SD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\begin{aligned}
\lambda^{q}\left(\lambda^{p-q}-1\right) & =\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right) \\
\left|\lambda^{p-q}-1\right| & \leq\left|\lambda^{p}-1\right|+\left|\lambda^{q}-1\right| \\
\varepsilon_{p-q}^{-1} & \leq \varepsilon_{p}^{-1}+\varepsilon_{q}^{-1} \leq 2\left(\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\}\right)^{-1} \\
\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\} & \leq 2 \varepsilon_{p-q} \leq 2^{\nu+1}(p-q)^{\nu}
\end{aligned}
$$

"This simple remark is the main argument of the whole proof." (Siegel)

Siegel's Subtle Estimate

(or how to deal with the δ_{k})
Diophantine Condition: $\varepsilon_{k} \leq(2 k)^{\nu}$, for some $\nu \geq 1$.
Not good: a large product of sD-terms becomes factorial. . .
Siegel's philosophy: "Once an sd-term is large, it takes several steps before another SD-term can have comparable size"

$$
\begin{aligned}
\lambda^{q}\left(\lambda^{p-q}-1\right) & =\left(\lambda^{p}-1\right)-\left(\lambda^{q}-1\right) \\
\left|\lambda^{p-q}-1\right| & \leq\left|\lambda^{p}-1\right|+\left|\lambda^{q}-1\right| \\
\varepsilon_{p-q}^{-1} & \leq \varepsilon_{p}^{-1}+\varepsilon_{q}^{-1} \leq 2\left(\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\}\right)^{-1} \\
\min \left\{\varepsilon_{p}, \varepsilon_{q}\right\} & \leq 2 \varepsilon_{p-q} \leq 2^{\nu+1}(p-q)^{\nu}
\end{aligned}
$$

"This simple remark is the main argument of the whole proof." (Siegel)

Lemma
Given $r+1$ indices $k_{0}>\ldots>k_{r} \geq 1$, the following holds:

$$
\prod_{p=0}^{r} \varepsilon_{k_{p}}<\left(2^{2 \nu+1}\right)^{r+1} \cdot k_{0}^{\nu} \prod_{p=1}^{r}\left(k_{p-1}-k_{p}\right)^{\nu}
$$

Consequences

Consequences

$$
f(z)=\lambda z+z^{2} \quad, \quad\left(\lambda=\mathrm{e}^{(1+\sqrt{5}) \pi \mathrm{i}} \Rightarrow \nu=1\right)
$$

Consequences

$$
f(z)=\lambda z+z^{2} \quad, \quad\left(\lambda=\mathrm{e}^{(1+\sqrt{5}) \pi \mathrm{i}} \Rightarrow \nu=1\right)
$$

Radius of convergence $\geq(3-\sqrt{8}) / 2^{5 \nu+1} \approx 0.00268$

Consequences

$$
f(z)=\lambda z+z^{2} \quad, \quad\left(\lambda=\mathrm{e}^{(1+\sqrt{5}) \pi \mathrm{i}} \Rightarrow \nu=1\right)
$$

Radius of convergence $\geq(3-\sqrt{8}) / 2^{5 \nu+1} \approx 0.00268$

-0.57

Consequences

$$
f(z)=\lambda z+z^{2} \quad, \quad\left(\lambda=\mathrm{e}^{(1+\sqrt{5}) \pi \mathrm{i}} \Rightarrow \nu=1\right)
$$

Radius of convergence $\geq(3-\sqrt{8}) / 2^{5 \nu+1} \approx 0.00268$

$$
\left|c_{k}\right| \leq \widehat{c_{k}} \leq \delta_{k} \cdot \tau_{k}
$$

Back to Schröder

$$
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right)
$$

Back to Schröder

$$
\begin{gathered}
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
\begin{array}{c|cccccccc}
\\
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279
\end{array}
\end{gathered}
$$

Back to Schröder

$$
\begin{gathered}
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
\begin{array}{|c|cccccccc}
\\
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279 \\
\hline
\end{array}
\end{gathered}
$$

When $k=4$:
abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d,((ab)c)d

Back to Schröder

$$
\begin{gathered}
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
\begin{array}{c|cccccccc}
\\
\hline k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279 \\
\hline
\end{array}
\end{gathered}
$$

When $k=4$:
abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d,((ab)c)d der
Now specialize to quadratic $f(z)$: only binary τ-products appear:

$$
\tau_{k}=\sum_{r=1}^{k-1} \tau_{r} \tau_{k-r}
$$

Back to Schröder

$$
\begin{gathered}
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
\begin{array}{c|cccccccc}
\\
\hline k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279 \\
\hline
\end{array}
\end{gathered}
$$

When $k=4$:
abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d,((ab)c)d der
Now specialize to quadratic $f(z)$: only binary τ-products appear:

$$
\tau_{k}=\sum_{r=1}^{k-1} \tau_{r} \tau_{k-r}
$$

The number of sD-products in the linearization coefficients is now Catalan

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	2	5	14	42	132	429

Back to Schröder

$$
\begin{gathered}
\tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
\begin{array}{c|cccccccc}
\\
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279 \\
\hline
\end{array}
\end{gathered}
$$

When $k=4$:

Now specialize to quadratic $f(z)$: only binary τ-products appear:

$$
\tau_{k}=\sum_{r=1}^{k-1} \tau_{r} \tau_{k-r}
$$

The number of sD-products in the linearization coefficients is now Catalan

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	2	5	14	42	132	429

Back to Schröder

$$
\begin{aligned}
& \tau_{1}=1, \quad \tau_{k}=\left(\sum_{r=2}^{k} \sum_{\ell_{1}+\ldots+\ell_{r}=k} \tau_{\ell_{1}} \cdot \ldots \cdot \tau_{\ell_{r}}\right) \\
& \begin{array}{|c|cccccccc|}
\hline k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\tau_{k} & 1 & 1 & 3 & 11 & 45 & 197 & 903 & 4279 \\
\hline
\end{array}
\end{aligned}
$$

When $k=4$:

Now specialize to quadratic $f(z)$: only binary τ-products appear:

$$
\tau_{k}=\sum_{r=1}^{k-1} \tau_{r} \tau_{k-r}
$$

The number of sD-products in the linearization coefficients is now Catalan

k	1	2	3	4	5	6	7	8
τ_{k}	1	1	2	5	14	42	132	429

When $k=4$:

$$
((\mathrm{ab}) \mathrm{c}) \mathrm{d},(\mathrm{a}(\mathrm{bc})) \mathrm{d},(\mathrm{ab})(\mathrm{cd}), \mathrm{a}((\mathrm{bc}) \mathrm{d}), \mathrm{a}(\mathrm{~b}(\mathrm{~cd}))
$$

Unravel the combinatorics

(joint with M. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

Unravel the combinatorics

(joint with \mathcal{M}. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

Unravel the combinatorics

(joint with \mathcal{M}. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
\begin{aligned}
& \quad a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r} \\
& a_{1}=X
\end{aligned}
$$

Unravel the combinatorics

(joint with \mathcal{M}. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
\begin{aligned}
& \quad a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r} \\
& a_{1}=X \\
& a_{2}=X\left[\binom{1}{1} a_{1}\right]=\binom{1}{1} X^{2},
\end{aligned}
$$

Unravel the combinatorics

(joint with \mathcal{M}. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

$$
\begin{aligned}
& a_{1}=X \\
& a_{2}=X\left[\binom{1}{1} a_{1}\right]=\binom{1}{1} X^{2}, \\
& a_{3}=X\left[\binom{2}{1} a_{2}\right]=\binom{2}{1}\binom{1}{1} X^{3},
\end{aligned}
$$

Unravel the combinatorics

(joint with M. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

$$
\begin{aligned}
& a_{1}=X \\
& a_{2}=X\left[\binom{1}{1} a_{1}\right]=\binom{1}{1} X^{2}, \\
& a_{3}=X\left[\binom{2}{1} a_{2}\right]=\binom{2}{1}\binom{1}{1} X^{3}, \\
& a_{4}=X\left[\binom{2}{2} a_{2}+\binom{3}{1} a_{3}\right]=\binom{2}{2}\binom{1}{1} X^{3}+\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{4}
\end{aligned}
$$

Unravel the combinatorics

(joint with \mathcal{M}. Aspenberg) The coefficients of the inverse linearization map φ^{-1} are given by the recursion

$$
a_{n}=\varepsilon_{n-1} \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

To understand the combinatorial structure of this equation, study instead the companion sequence

$$
a_{n}=X \cdot \sum_{r=\left\lceil\frac{n}{2}\right\rceil}^{n-1}\binom{r}{n-r} a_{r}
$$

$$
\begin{aligned}
a_{1} & =X \\
a_{2} & =X\left[\binom{1}{1} a_{1}\right]=\binom{1}{1} X^{2}, \\
a_{3} & =X\left[\binom{2}{1} a_{2}\right]=\binom{2}{1}\binom{1}{1} X^{3}, \\
a_{4} & =X\left[\binom{2}{2} a_{2}+\binom{3}{1} a_{3}\right]=\binom{2}{2}\binom{1}{1} X^{3}+\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{4} \\
a_{5} & =X\left[\binom{3}{2} a_{3}+\binom{4}{1} a_{4}\right]= \\
& =\binom{3}{2}\binom{2}{1}\binom{1}{1} X^{4}+\binom{4}{1}\binom{2}{2}\binom{1}{1} X^{4}+\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{5}
\end{aligned}
$$

Binomial decomposition

$$
a_{5}=\binom{3}{2}\binom{2}{1}\binom{1}{1} X^{4}+\binom{4}{1}\binom{2}{2}\binom{1}{1} X^{4}+\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{5}
$$

Binomial decomposition

$$
a_{5}=\binom{3}{2}\binom{2}{1}\binom{1}{1} X^{4}+\binom{4}{1}\binom{2}{2}\binom{1}{1} X^{4}+\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{5}
$$

Given n, every sequence $b_{s+1}, b_{s}, \ldots, b_{1}$ satisfying

$$
n=b_{s+1} \succ b_{s} \succ \ldots \succ b_{1}=1
$$

(here, $a \succ b$ means $2 b \geq a>b$. In particular, $b_{2} \succ b_{1}=1$ forces $b_{2}=2$)

Binomial decomposition

$$
a_{5}=\binom{3}{2}\binom{2}{1}\binom{1}{1} X^{4}+\binom{4}{1}\binom{2}{2}\binom{1}{1} X^{4}+\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{5}
$$

Given n, every sequence $b_{s+1}, b_{s}, \ldots, b_{1}$ satisfying

$$
n=b_{s+1} \succ b_{s} \succ \ldots \succ b_{1}=1
$$

(here, $a \succ b$ means $2 b \geq a>b$. In particular, $b_{2} \succ b_{1}=1$ forces $b_{2}=2$)
will contribute the following monomial to a_{n} :

$$
\binom{b_{s}}{b_{s+1}-b_{s}} \cdots\binom{b_{1}}{b_{2}-b_{1}} X^{s+1}
$$

so that a_{n} is the sum of all such contributions.

Binomial decomposition

$$
a_{5}=\binom{3}{2}\binom{2}{1}\binom{1}{1} X^{4}+\binom{4}{1}\binom{2}{2}\binom{1}{1} X^{4}+\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} X^{5}
$$

Given n, every sequence $b_{s+1}, b_{s}, \ldots, b_{1}$ satisfying

$$
n=b_{s+1} \succ b_{s} \succ \ldots \succ b_{1}=1
$$

(here, $a \succ b$ means $2 b \geq a>b$. In particular, $b_{2} \succ b_{1}=1$ forces $b_{2}=2$)
will contribute the following monomial to a_{n} :

$$
\binom{b_{s}}{b_{s+1}-b_{s}} \cdots\binom{b_{1}}{b_{2}-b_{1}} X^{s+1}
$$

so that a_{n} is the sum of all such contributions.
Q: What do the binomials count?

Filling seq.	\# of descents	contribution
11111	0	X^{6}
11115	0	X^{6}
11121	1	$X^{5}(1+X)$
11321	2	$X^{4}(1+X)^{2}$
12142	2	$x^{4}(1+X)^{2}$
12214	1	$X^{5}(1+X)$
12345	0	X^{6}

For $n=6$ there are 5! sequences: 8 with two descents, 70 with one descent, and 42 with none:

$$
\begin{aligned}
a_{6} & =8 X^{4}+86 X^{5}+120 X^{6} \\
& =\left(8 X^{4}+16 X^{5}+8 X^{6}\right)+70 X^{5}+112 X^{6} \\
& =8 X^{4}(1+X)^{2}+70 X^{5}(1+X)+42 X^{6}(1+X)^{0}
\end{aligned}
$$

- $x>0$: Highest degree coefficient is factorial, and therefore a_{n} grows super-exponentially
- $\underline{x<-1}$: All terms have same sign and will not cancel. Therefore a_{n} grows super-exponentially
- $x=-1$: Only non-zero term comes from sequences without descents. These are classically counted by Catalan numbers

$$
x \in(-1,0) ?
$$

Define $S_{n}(r)=$ sum of monomial contributions from sequences that end in r.

$$
a_{n}=\sum_{j=1}^{n-1} S_{n}(j)
$$

By induction

$$
S_{n+1}(r)=X \sum_{j=1}^{r} S_{n}(j)+(1+X) \sum_{j=r+1}^{n-1} S_{n}(j) \quad(1 \leq r \leq n-2)
$$

There is no descent at the last position, so the last two terms are given by

$$
S_{n+1}(n-1)=S_{n+1}(n)=X \sum_{j=1}^{n-1} S_{n}(j)
$$

To simplify notation, define $Y=(1+X)$

Analysis. . . finally!

Define $S_{n}(r)=$ sum of monomial contributions from sequences that end in r.

$$
a_{n}=\sum_{j=1}^{n-1} S_{n}(j)
$$

By induction

$$
S_{n+1}(r)=X \sum_{j=1}^{r} S_{n}(j)+Y \sum_{j=r+1}^{n-1} S_{n}(j) \quad(1 \leq r \leq n-2)
$$

There is no descent at the last position, so the last two terms are given by

$$
S_{n+1}(n-1)=S_{n+1}(n)=X \sum_{j=1}^{n-1} S_{n}(j)
$$

Analysis. . . finally! (2)

$$
\begin{equation*}
S_{n+1}(r)=X \sum_{j=1}^{r} S_{n}(j)+Y \sum_{j=r+1}^{n-1} S_{n}(j) \quad(1 \leq r \leq n-2) \tag{1}
\end{equation*}
$$

For every n we have a string of $n-1$ values. Collect them into a vector and rescale:

$$
s_{n}:=\left[S_{n}(1) /(n-2)!, \ldots, S_{n}(n-1) /(n-2)!\right]^{\perp} \in \mathbb{R}^{n-1}
$$

Consider the $n \times(n-1)$ matrix A_{n} whose (i, j)-entry is X if $i \geq j$, and Y otherwise. Then (1) becomes

$$
s_{n+1}=\left(A_{n} \cdot s_{n}\right) /(n-1)
$$

Let $E_{n}: \mathbb{R}_{n-1} \longrightarrow L^{2}[0,1]$ map the standard basis vector e_{j} to the characteristic function of the interval $\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right)$

- The vector s_{n} maps to the function $E_{n}\left(s_{n}\right)$ such that $E_{n}\left(s_{n}\right)(u)=\frac{S_{n}(j)}{(n-2)!}$ whenever $u \in\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right)$
- A_{n} embeds as a linear operator $A_{n}: L^{2}[0,1] \longrightarrow L^{2}[0,1]$ so that (1) becomes

$$
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
$$

Restate

$$
\begin{gathered}
a_{n}=(n+1)!\int_{0}^{1} s_{n}(v) \mathrm{d} v \\
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
\end{gathered}
$$

Restate

$$
\begin{gathered}
a_{n}=(n+1)!\int_{0}^{1} s_{n}(v) \mathrm{d} v \\
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
\end{gathered}
$$

The kernel α_{n} is a piecewise constant function whose value at

$$
(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right) \text { is }
$$

Restate

$$
\begin{gathered}
a_{n}=(n+1)!\int_{0}^{1} s_{n}(v) \mathrm{d} v \\
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
\end{gathered}
$$

The kernel α_{n} is a piecewise constant function whose value at

$$
(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right) \text { is }
$$

$$
\alpha_{n}(u, v)=\left\{\begin{array}{ll}
X & \text { if } i \geq j \\
Y & \text { otherwise }
\end{array} \quad \text { (i.e., equal to }\left(A_{n}\right)_{i, j}\right)
$$

Restate

$$
\begin{gathered}
a_{n}=(n+1)!\int_{0}^{1} s_{n}(v) \mathrm{d} v \\
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
\end{gathered}
$$

The kernel α_{n} is a piecewise constant function whose value at

$$
(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right) \text { is }
$$

$$
\alpha_{n}(u, v)=\left\{\begin{array}{ll}
X & \text { if } i \geq j \\
Y & \text { otherwise }
\end{array} \quad \text { (i.e., equal to }\left(A_{n}\right)_{i, j}\right)
$$

To prove $\left\{a_{n}\right\}$ grows super-exponentially we need to find a sequence n_{k} so the exponential rate of decay of $\int s_{n_{k}}$ is bounded from below

Kernels

$$
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
$$

For $(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right)$:

$$
\alpha_{n}(u, v)= \begin{cases}X & \text { if } i \geq j \\ Y & \text { otherwise }\end{cases}
$$

Kernels

$$
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
$$

For $(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right)$:

$$
\alpha_{n}(u, v)= \begin{cases}X & \text { if } i \geq j \\ Y & \text { otherwise }\end{cases}
$$

Limit operator: $T: L^{2}[0,1] \longrightarrow L^{2}[0,1]$ given by

$$
(T f)(u)=\int_{0}^{1} \kappa(u, v) \cdot f(v) \mathrm{d} v
$$

with kernel

$$
\kappa(u, v)= \begin{cases}X & \text { if } u \geq v \\ Y & \text { otherwise }\end{cases}
$$

Kernels

$$
E_{n}\left(s_{n+1}\right)(u)=\left[A_{n} s_{n}\right](u)=\int_{0}^{1} \alpha_{n}(u, v) \cdot E_{n}\left(s_{n}\right)(v) \mathrm{d} v
$$

For $(u, v) \in\left[\frac{i-1}{n}, \frac{i}{n}\right) \times\left[\frac{j-1}{n-1}, \frac{j}{n-1}\right)$:

$$
\alpha_{n}(u, v)= \begin{cases}X & \text { if } i \geq j \\ Y & \text { otherwise }\end{cases}
$$

Limit operator: $T: L^{2}[0,1] \longrightarrow L^{2}[0,1]$ given by

$$
(T f)(u)=\int_{0}^{1} \kappa(u, v) \cdot f(v) \mathrm{d} v
$$

with kernel

$$
\kappa(u, v)= \begin{cases}X & \text { if } u \geq v \\ Y & \text { otherwise }\end{cases}
$$

Lemma T is the limit of $\left\{A_{n}\right\}$ in the operator norm:

$$
\left\|T-A_{n}\right\|_{2} \leq \frac{1}{\sqrt{n}}
$$

Eigenstuff for T

$$
(T f)(u)=X \int_{0}^{u} f(v) \mathrm{d} v+Y \int_{u}^{1} f(v) \mathrm{d} v
$$

Eigenstuff for T

$$
(T f)(u)=X \int_{0}^{u} f(v) \mathrm{d} v+Y \int_{u}^{1} f(v) \mathrm{d} v
$$

Eigenvalues:

$$
\lambda_{m}=\frac{-1}{\log \left|\frac{X}{Y}\right|+(2 m+1) \pi \mathrm{i}} \quad(m \in \mathbb{Z})
$$

Eigenstuff for T

$$
(T f)(u)=X \int_{0}^{u} f(v) \mathrm{d} v+Y \int_{u}^{1} f(v) \mathrm{d} v
$$

Eigenvalues:

$$
\lambda_{m}=\frac{-1}{\log \left|\frac{X}{Y}\right|+(2 m+1) \pi \mathrm{i}} \quad(m \in \mathbb{Z})
$$

Eigenfunctions:

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

Eigenstuff for T

$$
(T f)(u)=X \int_{0}^{u} f(v) \mathrm{d} v+Y \int_{u}^{1} f(v) \mathrm{d} v
$$

Eigenvalues:

$$
\lambda_{m}=\frac{-1}{\log \left|\frac{X}{Y}\right|+(2 m+1) \pi \mathrm{i}} \quad(m \in \mathbb{Z})
$$

Eigenfunctions:

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

With the correct (weighted) norm

$$
\langle f, g\rangle:=\int_{0}^{1}\left\|\frac{X}{Y}\right\|^{-2 v} f(v) \bar{g}(v) \mathrm{d} v
$$

the family of eigenfunctions forms an orthonormal basis for $L^{2}[0,1]$

Real eigenspace

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

Note that for $m \geq 0$ the pair of functions $f_{(m+1)}, f_{m}$ are complex conjugate and their eigenvalues have the same magnitude. As a consequence, a convenient basis for the subspace $L_{\Omega}^{2}[0,1] \subset L^{2}[0,1]$ of real-valued functions is

Real eigenspace

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

Note that for $m \geq 0$ the pair of functions $f_{(m+1)}, f_{m}$ are complex conjugate and their eigenvalues have the same magnitude. As a consequence, a convenient basis for the subspace $L_{\mathbb{R}}^{2}[0,1] \subset L^{2}[0,1]$ of real-valued functions is

$$
\left\{\left|\frac{X}{Y}\right|^{u} \cos ((2 m+1) \pi u),\left|\frac{X}{Y}\right|^{u} \sin ((2 m+1) \pi u)\right\}_{m \geq 0}
$$

Real eigenspace

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

Note that for $m \geq 0$ the pair of functions $f_{(m+1)}, f_{m}$ are complex conjugate and their eigenvalues have the same magnitude. As a consequence, a convenient basis for the subspace $L_{\mathbb{R}}^{2}[0,1] \subset L^{2}[0,1]$ of real-valued functions is

$$
\left\{\left|\frac{X}{Y}\right|^{u} \cos ((2 m+1) \pi u),\left|\frac{X}{Y}\right|^{u} \sin ((2 m+1) \pi u)\right\}_{m \geq 0}
$$

The eigenfunctions f_{1} and f_{0} with largest eigenvalue λ span a complex two-dimensional subspace of $L^{2}[0,1]$. Let $E \subset L_{\mathbb{R}}^{2}[0,1]$ denote the real slice of this subspace generated by

$$
\left\{\left|\frac{X}{Y}\right|^{u} \cos (\pi u),\left|\frac{X}{Y}\right|^{u} \sin (\pi u)\right\}
$$

so that $L_{\mathbb{R}}^{2}[0,1]=E \oplus E^{\perp}$.

Real eigenspace

$$
f_{m}(u)=\left|\frac{X}{Y}\right|^{u} \mathrm{e}^{(2 m+1) \pi \mathrm{i} u} \quad(m \in \mathbb{Z})
$$

Note that for $m \geq 0$ the pair of functions $f_{(m+1)}, f_{m}$ are complex conjugate and their eigenvalues have the same magnitude. As a consequence, a convenient basis for the subspace $L_{\mathbb{R}}^{2}[0,1] \subset L^{2}[0,1]$ of real-valued functions is

$$
\left\{\left|\frac{X}{Y}\right|^{u} \cos ((2 m+1) \pi u),\left|\frac{X}{Y}\right|^{u} \sin ((2 m+1) \pi u)\right\}_{m \geq 0}
$$

The eigenfunctions f_{1} and f_{0} with largest eigenvalue λ span a complex two-dimensional subspace of $L^{2}[0,1]$. Let $E \subset L_{\mathbb{R}}^{2}[0,1]$ denote the real slice of this subspace generated by

$$
\left\{\left|\frac{X}{Y}\right|^{u} \cos (\pi u),\left|\frac{X}{Y}\right|^{u} \sin (\pi u)\right\}
$$

so that $L_{\mathbb{R}}^{2}[0,1]=E \oplus E^{\perp}$.
By Parseval's theorem we can define the angle θ_{n} by

$$
\sin \theta:=\frac{\left\|P^{\perp} s_{n}\right\|_{2}}{\left\|s_{n}\right\|_{2}}
$$

Intuitively, the closer θ_{n} is to 0 , the better s_{n} resembles a function in E.

Proof outline

Proof outline

Step 1: We use the shape properties of the sequence S_{n} to show that the angles θ_{n} are bounded away from $\pi / 2$.

Proof outline

Step 1: We use the shape properties of the sequence S_{n} to show that the angles θ_{n} are bounded away from $\pi / 2$.

Step 2: The sequence $\left\{\theta_{n}\right\}$ converges to 0 , so the functions s_{n} become progressively sinusoidal.

Proof outline

Step 1: We use the shape properties of the sequence S_{n} to show that the angles θ_{n} are bounded away from $\pi / 2$.

Step 2: The sequence $\left\{\theta_{n}\right\}$ converges to 0 , so the functions s_{n} become progressively sinusoidal.
Step 3: There is a sequence of indices $\left\{n_{k}\right\}$ such that $\left\{\left|a_{n_{k}}\right|\right\}$ is comparable to $\left\{\left\|s_{n_{k}}\right\|_{2}\right\}$. Meanwhile, $\left\|s_{n}\right\|_{2} \geq(\lambda-\varepsilon)^{n}$ for arbitrarily small ε, and the result follows

What next?

What next?

Discard the variable X and recover the original sD-terms.
Instead of a power of X, each filling sequence F contributes now a product of sD-terms that is determined by the set of descents of F

What next?

Discard the variable X and recover the original sD-terms.
Instead of a power of X, each filling sequence F contributes now a product of SD-terms that is determined by the set of descents of F

We classify filling sequences into exponentially many classes according to descent patterns

What next?

Discard the variable X and recover the original sD-terms.
Instead of a power of X, each filling sequence F contributes now a product of SD-terms that is determined by the set of descents of F

We classify filling sequences into exponentially many classes according to descent patterns

If done correctly, the contributions of filling sequences within each class will cancel when the rotation number of λ is bounded type.

What next?

Discard the variable X and recover the original sD-terms.
Instead of a power of X, each filling sequence F contributes now a product of sD-terms that is determined by the set of descents of F

We classify filling sequences into exponentially many classes according to descent patterns

If done correctly, the contributions of filling sequences within each class will cancel when the rotation number of λ is bounded type.

If done truly correctly, the cancellation within a class leaves a polynomially large contribution, and then we can estimate the correct rate of exponential growth of the coefficients a_{n} of φ^{-1}

Work in progress...

Thank You Jack!!

[^0]: ${ }^{1}$ The audience is at liberty to decide whether sD stands for "Small Denominator" or "Siegel Disk".

[^1]: ${ }^{1}$ The audience is at liberty to decide whether sd stands for "Small Denominator" or "Siegel Disk".

[^2]: ${ }^{1}$ The audience is at liberty to decide whether sd stands for "Small Denominator" or "Siegel Disk".

[^3]: ${ }^{1}$ The audience is at liberty to decide whether sD stands for "Small Denominator" or "Siegel Disk".

