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Linearization

f (z) = λz + a2z2 + a3z3 + . . .

(Can always rescale so that the radius of convergence of f is 1)

f (0) = 0 , f ′(0) = λ

Make the problem interesting: λ = e2πiα, with α /∈ Q.

Can f be linearized? i.e., is there

ϕ(z) = c1z + c2z2 + . . .

such that

ϕ(λz) =
(
f ◦ ϕ

)
(z) ?

(Can always rescale so that c1 = 1)

(C. L. Siegel, 1942): �ite o�en!

Hailed by a member of this audience as

“one of the landmark papers of the twentieth century.”
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Recursion

ϕ(λz) =
(
f ◦ ϕ

)
(z)

∞∑
k=1

ck
(
λz
)k

=
∞∑
r=1

ar

(
∞∑
`=1

c`z`
)r

∞∑
k=2

ck
(
λk − λ

)
zk =

∞∑
r=2

ar

(
∞∑
`=1

c`z`
)r

(since a1 = λ)

ck
(
λk − λ

)
is the sum of coe�icients of all zk-monomials present in the RHS

The expression ar
(∑∞

`=1 c`z
`
)r

produces zk-monomials exactly when 2 ≤ r ≤ k,

each term being of the form:

ar · (c`1z
`1) · . . . · (c`r z

`r ) (with `1 + . . .+ `r = k)

= ar · (c`1 · . . . · c`r ) · z
k

ck =
(

1
λk−λ

)
·

(
k∑

r=2

∑
`1+...+`r=k

ar · c`1 · . . . · c`r

)
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Triangle Inequality

c1 = 1 , ck =
(

1
λk−λ

)
·

(
k∑

r=2

∑
`1+...+`r=k

ar · c`1 · . . . · c`r

)
This is a fully explicit (recursive) formula for the coe�icients of ϕ.

But the power series for ϕ may still not converge. . .
Missing: exponential rate of growth of the coe�icient sequence {ck}

Siegel’s strategy: Define sd-terms
1 εk :=

1
|λk+1−λ| =

1
|λk−1| (note the index

discrepancy).Then

ĉ1 := 1 , ĉk := εk−1 ·

(
k∑

r=2

∑
`1+...+`r=k

ĉ`1 · . . . · ĉ`r

)

|ck| ≤ ĉk (recall |ar | ≤ 1)

1

The audience is at liberty to decide whether sd stands for “Small Denominator” or “Siegel Disk”.
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ĉ`1 · . . . · ĉ`r
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Cauchy’s Majorant Method

ĉk := εk−1 ·

(
k∑

r=2

∑
`1+...+`r=k

ĉ`1 · . . . · ĉ`r

)

ĉ1 = 1
ĉ2 = ε1

(
[ĉ1ĉ1]

)
= ε1 ,

ĉ3 = ε2
(
[ĉ1ĉ2 + ĉ2ĉ1] + [ĉ1ĉ1ĉ1]

)
= 2ε2ε1 + ε2 ,

ĉ4 = ε3
(
[ĉ1ĉ3 + ĉ2ĉ2 + ĉ3ĉ1] + [ĉ1ĉ1ĉ2 + ĉ1ĉ2ĉ1 + ĉ2ĉ1ĉ1] + [ĉ1ĉ1ĉ1ĉ1]

)
= 4ε3ε2ε1 + 2ε3ε2 + ε3ε1ε1 + 3ε3ε1 + ε3︸ ︷︷ ︸ .

ĉk is the sum of several products of sd-terms. Which one is largest? It depends on λ

δk :=max{product of sd-terms in ĉk}
τk :=#{sd-products counted with multiplicity} (e.g., τ4 = 4+ 2+ 1+ 3+ 1 = 11)

ĉk ≤ δk · τk ←− Find exponential bounds for both δk and τk !
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τk :=#{sd-products counted with multiplicity} (e.g., τ4 = 4+ 2+ 1+ 3+ 1 = 11)
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ĉk := εk−1 ·

(
k∑

r=2

∑
`1+...+`r=k
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[ĉ1ĉ2 + ĉ2ĉ1] + [ĉ1ĉ1ĉ1]
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ĉ2 = ε1

(
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)
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Pretend all εk are equal to 1

δ1 = 1 τ1 = 1

δk = εk−1 ·max `1+...+`r=k
2≤r≤k

{δ`1 · . . . · δ`r} τk =

(
k∑

r=2

∑
`1+...+`r=k

τ`1 · . . . · τ`r

)



Diophantine vs Combinatorial
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ĉ`1 · . . . · ĉ`r
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ĉ4 = ε3
(
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Schröder numbers

(or how to deal with the τk)

τ1 = 1 , τk = 1·

(
k∑

r=2

∑
`1+...+`r=k

τ`1 · . . . · τ`r

)

k 1 2 3 4 5 6 7 8

τk 1 1 3 11 45 197 903 4279

∞∑
k=2

τk·1·zk =
∞∑
r=2

(
∞∑
`=1

τ` · z`
)r

i.e., y(z) :=
∑∞
`=1 τ`z

`
satisfies

y(z) = z +
∞∑
r=2

yr = z +
y2

1− y

so

y(z) =
1+ z −

√
1− 6z + z2

4
with radius of convergence (3−

√
8) (smallest root of 1− 6z + z2).

τk ≈ (3+
√
8)k
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Siegel’s Subtle Estimate

(or how to deal with the δk)

Diophantine Condition: εk ≤ (2k)ν , for some ν ≥ 1.

Not good: a large product of sd-terms becomes factorial. . .

Siegel’s philosophy: “Once an sd-term is large, it takes several steps before

another sd-term can have comparable size”

λq(λp−q − 1) =(λp − 1)− (λq − 1)

|λp−q − 1| ≤|λp − 1|+ |λq − 1|

ε−1
p−q ≤ε

−1
p + ε−1

q ≤ 2
(
min{εp, εq}

)−1

min{εp, εq} ≤2εp−q ≤ 2ν+1(p − q)ν

“This simple remark is the main argument of the whole proof.” (Siegel)

Lemma

Given r + 1 indices k0 > . . . > kr ≥ 1, the following holds:

r∏
p=0

εkp <
(
22ν+1)r+1 · kν0

r∏
p=1

(
kp−1 − kp

)ν
.
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Consequences

f (z) = λz + z2 ,
(
λ = e(1+

√
5)πi ⇒ ν = 1

)
Radius of convergence ≥ (3−

√
8)/25ν+1 ≈ 0.00268

-0.57 1.73

|ck| ≤ ĉk ≤ δk · τk
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Back to Schröder

τ1 = 1 , τk =

(
k∑

r=2

∑
`1+...+`r=k

τ`1 · . . . · τ`r

)

k 1 2 3 4 5 6 7 8

τk 1 1 3 11 45 197 903 4279

When k = 4:

abcd , (ab)cd , a(bc)d , ab(cd) , (ab)(cd) , a(bcd) , a(b(cd)) , a((bc)d) , (abc)d , (a(bc))d , ((ab)c)d

Now specialize to quadratic f (z): only binary τ -products appear:

τk =

k−1∑
r=1

τrτk−r

The number of sd-products in the linearization coe�icients is now Catalan

k 1 2 3 4 5 6 7 8

τk 1 1 2 5 14 42 132 429
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Unravel the combinatorics

(joint with M. Aspenberg) The coe�icients of the inverse linearization map ϕ−1
are

given by the recursion

an = εn−1 ·
n−1∑

r=d n2 e

(
r

n− r

)
ar

To understand the combinatorial structure of this equation, study instead the

companion sequence

an = X ·
n−1∑

r=d n2 e

(
r

n− r

)
ar

a1 = X

a2 = X
[(1

1

)
a1
]
=
(1
1

)
X 2 ,

a3 = X
[(2

1

)
a2
]
=
(2
1

)(1
1

)
X 3 ,

a4 = X
[(2

2

)
a2 +

(3
1

)
a3
]
=
(2
2

)(1
1

)
X 3 +

(3
1

)(2
1

)(1
1

)
X 4

a5 = X
[(3

2

)
a3 +

(4
1

)
a4
]
=

=
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2
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1
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)
X 4 +
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Binomial decomposition

a5 =
(3
2

)(2
1

)(1
1

)
X 4 +

(4
1

)(2
2

)(1
1

)
X 4 +

(4
1

)(3
1

)(2
1

)(1
1

)
X 5

Given n, every sequence bs+1, bs, . . . , b1 satisfying

n = bs+1 � bs � . . . � b1 = 1

(here, a � b means 2b ≥ a > b. In particular, b2 � b1 = 1 forces b2 = 2)

will contribute the following monomial to an:(
bs

bs+1 − bs

)
. . .

(
b1

b2 − b1

)
X s+1

so that an is the sum of all such contributions.

Q: What do the binomials count?
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Filling seq. # of descents contribution

11111 0 X 6

11115 0 X 6

11121 1 X 5(1+ X)
11321 2 X 4(1+ X)2

12142 2 x4(1+ X)2

12214 1 X 5(1+ X)
12345 0 X 6

For n = 6 there are 5! sequences: 8 with two descents, 70 with one descent, and 42

with none:

a6 =8X 4 + 86X 5 + 120X 6

=(8X 4 + 16X 5 + 8X 6) + 70X 5 + 112X 6

=8X 4(1+ X)2 + 70X 5(1+ X) + 42X 6(1+ X)0

I x > 0: Highest degree coe�icient is factorial, and therefore an grows

super-exponentially

I x < −1: All terms have same sign and will not cancel. Therefore an grows

super-exponentially

I x = −1: Only non-zero term comes from sequences without descents. These

are classically counted by Catalan numbers

x ∈ (−1, 0) ?



Analysis. . . finally!

Define Sn(r) = sum of monomial contributions from sequences that end in r .

an =
n−1∑
j=1

Sn(j)

By induction

Sn+1(r) = X
r∑

j=1

Sn(j) + (1+ X)
n−1∑

j=r+1

Sn(j) (1 ≤ r ≤ n− 2)

There is no descent at the last position, so the last two terms are given by

Sn+1(n− 1) = Sn+1(n) = X
n−1∑
j=1

Sn(j)

To simplify notation, define Y = (1+ X)
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Analysis. . . finally! (2)

Sn+1(r) = X
r∑

j=1

Sn(j) + Y
n−1∑

j=r+1

Sn(j) (1 ≤ r ≤ n− 2) (1)

For every n we have a string of n− 1 values. Collect them into a vector and rescale:

sn := [Sn(1)/(n− 2)!, . . . , Sn(n− 1)/(n− 2)!]⊥ ∈ Rn−1

Consider the n× (n− 1) matrix An whose (i, j)-entry is X if i ≥ j, and Y
otherwise. Then (1) becomes

sn+1 = (An · sn)/(n− 1)

Let En : Rn−1 −→ L2[0, 1] map the standard basis vector ej to the characteristic

function of the interval

[ j−1
n−1 ,

j
n−1

)
I The vector sn maps to the function En(sn) such that En(sn)(u) = Sn(j)

(n−2)!

whenever u ∈
[ j−1
n−1 ,

j
n−1

)
I An embeds as a linear operator An : L2[0, 1] −→ L2[0, 1] so that (1) becomes

En(sn+1)(u) = [Ansn](u) =
∫ 1

0
αn(u, v) · En(sn)(v) dv



Restate

an = (n+ 1)!
∫ 1

0
sn(v) dv

En(sn+1)(u) = [Ansn](u) =
∫ 1

0
αn(u, v) · En(sn)(v) dv

The kernel αn is a piecewise constant function whose value at

(u, v) ∈
[ i−1

n ,
i
n

)
×
[

j−1
n−1 ,

j
n−1

)
is

αn(u, v) =

{
X if i ≥ j
Y otherwise

(
i.e., equal to (An)i,j

)
.

To prove {an} grows super-exponentially we need to find a sequence nk so the

exponential rate of decay of

∫
snk is bounded from below
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Kernels

En(sn+1)(u) = [Ansn](u) =
∫ 1

0
αn(u, v) · En(sn)(v) dv

For (u, v) ∈
[ i−1

n ,
i
n

)
×
[

j−1
n−1 ,

j
n−1

)
:

αn(u, v) =

{
X if i ≥ j
Y otherwise

Limit operator: T : L2[0, 1] −→ L2[0, 1] given by

(Tf )(u) =
∫ 1

0
κ(u, v) · f (v) dv

with kernel

κ(u, v) =

{
X if u ≥ v
Y otherwise

Lemma T is the limit of {An} in the operator norm:

‖T − An‖2 ≤ 1√
n



Kernels

En(sn+1)(u) = [Ansn](u) =
∫ 1

0
αn(u, v) · En(sn)(v) dv

For (u, v) ∈
[ i−1

n ,
i
n

)
×
[

j−1
n−1 ,

j
n−1

)
:

αn(u, v) =

{
X if i ≥ j
Y otherwise

Limit operator: T : L2[0, 1] −→ L2[0, 1] given by

(Tf )(u) =
∫ 1

0
κ(u, v) · f (v) dv

with kernel

κ(u, v) =

{
X if u ≥ v
Y otherwise

Lemma T is the limit of {An} in the operator norm:

‖T − An‖2 ≤ 1√
n



Kernels

En(sn+1)(u) = [Ansn](u) =
∫ 1

0
αn(u, v) · En(sn)(v) dv

For (u, v) ∈
[ i−1

n ,
i
n

)
×
[

j−1
n−1 ,

j
n−1

)
:

αn(u, v) =

{
X if i ≥ j
Y otherwise

Limit operator: T : L2[0, 1] −→ L2[0, 1] given by

(Tf )(u) =
∫ 1

0
κ(u, v) · f (v) dv

with kernel

κ(u, v) =

{
X if u ≥ v
Y otherwise

Lemma T is the limit of {An} in the operator norm:

‖T − An‖2 ≤ 1√
n



Eigenstu� for T

(Tf )(u) = X
∫ u

0
f (v) dv + Y

∫ 1

u
f (v) dv

Eigenvalues:

λm =
−1

log
∣∣ X
Y

∣∣+ (2m+ 1)πi
(m ∈ Z)

Eigenfunctions:

fm(u) =
∣∣ X
Y

∣∣ue(2m+1)πiu (m ∈ Z)

With the correct (weighted) norm

〈f , g〉 :=
∫ 1

0
‖ XY ‖

−2vf (v)g(v) dv

the family of eigenfunctions forms an orthonormal basis for L2[0, 1]
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Real eigenspace

fm(u) =
∣∣ X
Y

∣∣ue(2m+1)πiu (m ∈ Z)

Note that for m ≥ 0 the pair of functions f(m+1), fm are complex conjugate and

their eigenvalues have the same magnitude. As a consequence, a convenient basis

for the subspace L2R[0, 1] ⊂ L2[0, 1] of real-valued functions is

{∣∣ X
Y

∣∣u cos((2m+ 1)πu),
∣∣ X
Y

∣∣u sin((2m+ 1)πu)
}
m≥0

The eigenfunctions f1 and f0 with largest eigenvalue λ span a complex

two-dimensional subspace of L2[0, 1]. Let E ⊂ L2R[0, 1] denote the real slice of this

subspace generated by {∣∣ X
Y

∣∣u cos(πu), ∣∣ XY ∣∣u sin(πu)}
so that L2R[0, 1] = E ⊕ E⊥.

By Parseval’s theorem we can define the angle θn by

sin θ: =
‖P⊥sn‖2
‖sn‖2

Intuitively, the closer θn is to 0, the be�er sn resembles a function in E.
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Proof outline

Step 1: We use the shape properties of the sequence Sn to show that the angles θn are

bounded away from π/2.

Step 2: The sequence {θn} converges to 0, so the functions sn become progressively

sinusoidal.

Step 3: There is a sequence of indices {nk} such that {|ank |} is comparable to

{‖snk‖2}. Meanwhile, ‖sn‖2 ≥ (λ− ε)n for arbitrarily small ε, and the result

follows
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What next?

Discard the variable X and recover the original sd-terms.

Instead of a power of X , each filling sequence F contributes now a product of

sd-terms that is determined by the set of descents of F

We classify filling sequences into exponentially many classes according to descent

pa�erns

If done correctly, the contributions of filling sequences within each class will cancel

when the rotation number of λ is bounded type.

If done truly correctly, the cancellation within a class leaves a polynomially large

contribution, and then we can estimate the correct rate of exponential growth of

the coe�icients an of ϕ−1

Work in progress...
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Thank You Jack‼


