Surfaces in the space of surfaces

Curtis McMullen
Harvard University
coauthors Mukamel and Wright

Dense plane in M^{3}

Planes in
compact hyperbolic manifolds

$$
f: \mathbb{H}^{2} \rightarrow M^{n}=\mathbb{H}^{n} / \Gamma
$$

Theorem (Shah, Ratner)
The closure of $f\left(\mathbb{H}^{2}\right)$ is a compact, immersed, totally geodesic submanifold N^{k} inside M^{n}.

Ex: $f: \mathbb{H}^{2} \rightarrow M^{3}$
$\operatorname{lm}(f)=$ a closed surface, or $\operatorname{Im}(f)$ is dense in M^{3}.

Example of a complex geodesic $f: \mathbb{H}^{2} \rightarrow M_{3}$

$\mathrm{f}(\mathrm{T})=\operatorname{Polygon}(\mathrm{T})$ /gluing $=$ genus $3 \mathrm{X}(\mathrm{T})$
$M M_{g}=$ moduli space of Riemann surfaces X of genus g

-- a complex variety, dimension $3 g-3$

Teichmüller metric

There exists a holomorphic, isometrically immersed

> complex geodesic

$$
f: \mathbb{H}^{2} \rightarrow \mathcal{M}_{g}
$$

through every point in every possible direction.
\square
$\mathrm{f}: \mathbb{H}^{2} \rightarrow \mathrm{M}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}} /$ Modg $_{g}$

Theorem (M, Eskin-Mirzakhani-Mohammadi, Filip)
The closure of $f\left(\mathrm{H}^{2}\right)$ is an algebraic
subvariety of moduli space.

Example: For $g=2$, the closure of $f\left(\mathbb{H}^{2}\right)$ can be a Teichmüller curve, a Hilbert modular surface, or the whole space.
The Hilbert modular surface is ruled, but not totally geodesic.

Totally geodesic subvarieties

$M_{g} \subset \mathbb{P}^{N}$ is a projective variety
Almost all subvarieties $\mathrm{V} \subset M_{g}$ are contracted.

PROBLEM
What are the totally geodesic* subvarieties

$$
V \subset M M_{g} ?
$$

(*Every complex geodesic tangent to V is contained in V .)


```
Known geodesic subvarieties in M}\mp@subsup{M}{g}{
```

I. Covering constructions

$\operatorname{Im}(f)=a$ totally geodesic subvariety

Example: $\tilde{M_{1,2}} \rightarrow M_{I, 3}$

II. Teichmüller curves

$\operatorname{Im}(f)=a$ totally geodesic curve

1st example of a Teichmüller surface

Theorem

There is a primitive, totally geodesic complex surface F (the flex locus)
properly immersed into $M_{1,3}$.

Complement

The universal cover of F is not isomorphic, as a complex manifold, to any $\tau_{\mathrm{g}, \mathrm{n}}$.

A new Teichmüller space?

Description of the Teichmüller surface

The flex locus $\mathrm{F} \subset \mathrm{M}_{1,3}$ is the set of

$$
(A, P) \text { in } M_{1,3}:
$$

\exists degree 3 map $\pi: A \rightarrow \mathbb{P}^{1}$ such that
(i) $P \sim Z=$ any fiber of π; and
(ii) $\mathrm{P} \subset$ cocritical points of π.

What is the dimension of F? Is Firreducible?

Proof that F does not exist

Let V be a totally geodesic hypersurface in $M M_{g}$. Given $[X]$ in V, let $q_{0}, \ldots q_{n}$ be a basis for $\left.Q(X)=T_{X}^{*} M\right]_{g}$.

Assume q_{0} generates the normal bundle to V .
Then the highly nonlinear condition:

$$
\int_{X} q_{0} \frac{\sum \bar{a}_{i} \bar{q}_{i}}{\left|\sum a_{i} q_{i}\right|}=0
$$

Is equivalent to a linear condition on (a_{i}) of the form

$$
\sum a_{i} b_{i}=0 .
$$

A treatise

1879

HIGHER PLANE CURVES:

```
intended as a sequel
```

A TREATISE ON CONIC SECTIONS.

GEORGE SALMON, D.D., D.C.L., LL.D., F.R.S.,

third edition.
7.7nblin:

Hodges, foster, and figais, grafton street,

The Cayleyan $=\{$ lines in $\operatorname{Pol}(S, A)$, some $S\}$

$\mathrm{CA} \xrightarrow{2} \mathrm{HA}$

cf. Lattès,Tate, Dabija and Jonsson, ...

```
The flex locus F \subset M M,3
```


is:

(A, P) in $\mathrm{M}_{1,3}$:
$P=$ double $(L) \cap A$, for some L in $C A$

$$
\mathrm{CA} \rightarrow \mathrm{~F} \rightarrow \mathrm{M}_{1}
$$

Corollary: F is 2 dimensional.

F is the set of codawn configurations $\{(\mathrm{A}, \mathrm{P})\}$

From ΩG to F

(X, ω) in $\Omega G \rightarrow(A, q)=\left(X / J, \omega^{2} / J\right)$
$\rightarrow(A, P=\operatorname{poles}(q))$ in F

G
 F

Corollary: F is totally geodesic

```
The gothic locus \OmegaG\subset \OmegaMM
```

$$
\Omega G=\left\{(X, \omega) \text { in } \Omega M_{4}(2,2,2):\right.
$$

(i) $\exists \mathrm{J}$ with $\mathrm{A}=\mathrm{X} / \mathrm{J}$ of genus I;
(ii) ω is odd for J;
(iii) \exists odd cubic map $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{B}$, genus I ;
(iv) $p(Z(w))=$ one point.

Theorem: $\Omega \mathrm{G}$ is an $\mathrm{SL}_{2}(\mathbb{R})$ invariant 4-manifold.

Known Teichmüller curves
M_{5} 第落

 M 2005

ouw-Möller 2006

