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Say what this is really doing. Define pullback map. De-
fine forgetful map.

What do we know about it?

Local Result.
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Say what this is really doing. Define pullback map. De-
fine forgetful map.

What do we know about it?
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~ := [id] 2 DefBA(f)

maps [�] in TB to [�] in TA

�f : [�] 7! [ ]

A ✓ P1 finite set, containing at least 3 points

TA := classes of � : P1 ! P1 where �1 ⇠ �2 if

there is µ 2 Aut(P1) so that

�1 = µ � �2 on P , and

�1 is isotopic to µ � �2 rel P .

TA is a complex manifold of dimension |A|� 3

What are we gonna say about the Lattès maps?

f : (P1, A) ! (P1, B)

• 3 6 |A|, |B| < 1

• B contains the critical values of f ,

• B contains A

TB

�f

((

�A,B
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DefBA(f) := {⌧ 2 TB | �f (⌧) = �B
A (⌧)}.

DefBA(f)
� � // TB

�f

((

�A,B

66 TA

Say what this is really doing. Define pullback map. De-
fine forgetful map.

What do we know about it?

Local Result.

(nonempty)

A ✓ B

�A,B maps the class of � in TB to the class

(S2, A)

f
✏✏

 
// (P1, (A))

F
✏✏

(S2, B)
�
// (P1,�(B))

DefBA(f) := {⌧ 2 TB | �f (⌧) = �A,B(⌧)}

A,B ✓ S2

A ✓ B
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combinatorially equivalent if

A,B ✓ S2 finite

3 6 |A|, |B|, |A0|, |B0| < 1

f : (X,A) ! (Y,B)

map of pairs

TA := classes of � : S2 ! P1 where �1 ⇠ �2 if
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A ✓ P1 finite set, containing at least 3 points
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Say what this is really doing. Define pullback map. Define forgetful
map.

What do we know about it?

Local Result.

(nonempty)

Theorem 1 (A. Epstein). Let f : (P1, A) ! (P1, B) be a rational map
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Say what this is really doing. Define pullback map. Define
forgetful map.

What do we know about it?

Local Result.

(nonempty)

Theorem 1 (A. Epstein). Let f : (P1
, A) ! (P1

, B) be a

rational map that is not of Lattès type. The deformation space

DefBA(f) is a complex analytic submanifold of TB of dimension

|B � A|.

In the case whereA = B, Thurston proved it is connected.

Thurston: If A = B, then Def is connected. (proven by
Thusrston, and then generalized by TL, X, Cui)

We will give an example where it has infinitely many con-
nected components.

State main theorem.

Mention the related result of Tanya, Nikita, and Jeremy.
Same set of examples. This was also studied in Mary Rees’
work. Mention Jack’s work.

Idea. Let D0 be the connected component containing the
basepoint. Compare the stabilizer of D0 with the stabilizer of
the whole space. Conencted i↵ E = S. In fact, the number of
connected components is equal to the index of Ef in Sf .

What are our groups?

show a picture of per4(0).

this has 4 punctures. per4(0)⇤ has 10=6+4 punctures. the 6
is from the di↵erent maps where the other critical value is in
the cycle. there are 4 punctures.

so we can introduce this.

what do the punctures correspond to

Mention Tan Lei at the end, and share the memory of Ban↵,
how we were talking with Bill, and he mentioned that there
was still a big picture of the shape of rational maps that was
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tè
s
ty
p
e.

T
h
en

D
ef

B A
(f
)
is
a
co
m
p
le
x

an
al
y
ti
c
su
b
m
an

if
ol
d
of

T B
of

d
im

en
si
on

|B
�
A
|.

T
h
e
o
r
e
m
.
If
A

=
B
,
D
ef

B B
(f
)
6=

;
if
an

d
on

ly
if
th
er
e
ar
e

n
o
ob

st
ru
ct
in
g
m
u
lt
ic
u
rv
es

fo
r
f
:
(S

2
,B

)
!

(S
2
,B

).

T
h
e
o
r
e
m
.
If
A

=
B
,
th
en

D
ef

B A
(f
)
is
co
n
n
ec
te
d
.

D
ef

B A
(f
)
6=

;
if
an

d
on

ly
if

f
:
(S

2
,A

)
!

(S
2
,B

)
is

co
m
b
in
at
or
ia
ll
y
eq
u
iv
al
en
t
to

a
ra
ti
on

al
m
ap

�
f
:
[�
]
7!

[ 
]

A
✓

B

�
A
,B

m
ap

s
th
e
cl
as
s
of
�
in

T B
to

th
e
cl
as
s
of
�
in

T A

(S
2
,A

)

f ✏✏

 
// (
P1

, 
(A

))

F ✏✏

(S
2
,B

)
�
// (
P1

,�
(B

))

D
ef

B A
(f
)
:=

{⌧
2
T B

|�
f
(⌧
)
=
�
A
,B
(⌧
)}

A
,B

✓
S
2

�|A =  |A and

� is isotopic to  rel A.

A ✓ B A

0 ✓ B

0

'

A = {a1, . . . , an}

a1

✏✏

a2

✏✏

a3

✏✏

a4

✏✏

. . . an

✏✏
0 1 1 z1 . . . zn�3

cv(f) ✓ B

�|A =  |A and

� is isotopic to  rel A.

A ✓ B A

0 ✓ B

0

'

A = {a1, . . . , an}

a1

✏✏

a2

✏✏

a3

✏✏

a4

✏✏

. . . an

✏✏
0 1 1 z1 . . . zn�3

cv(f) ✓ B

�|A =  |A and

� is isotopic to  rel A.

A ✓ B A

0 ✓ B

0

'

A = {a1, . . . , an}

a1

✏✏

a2

✏✏

a3

✏✏

a4

✏✏

. . . an

✏✏
0 1 1 z1 . . . zn�3

DefBA(f)
� � // TB

�f

((

�A,B

66 TA

Say what this is really doing. Define pullback map. Define
forgetful map.

What do we know about it?

Local Result.

(nonempty)

Theorem 1 (A. Epstein). Let f : (P1
, A) ! (P1

, B) be a

rational map that is not of Lattès type. The deformation space

DefBA(f) is a complex analytic submanifold of TB of dimension

|B � A|.

In the case whereA = B, Thurston proved it is connected.
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work. Mention Jack’s work.

Idea. Let D0 be the connected component containing the
basepoint. Compare the stabilizer of D0 with the stabilizer of
the whole space. Conencted i↵ E = S. In fact, the number of
connected components is equal to the index of Ef in Sf .

What are our groups?

show a picture of per4(0).

this has 4 punctures. per4(0)⇤ has 10=6+4 punctures. the 6
is from the di↵erent maps where the other critical value is in
the cycle. there are 4 punctures.

so we can introduce this.

what do the punctures correspond to

Mention Tan Lei at the end, and share the memory of Ban↵,
how we were talking with Bill, and he mentioned that there
was still a big picture of the shape of rational maps that was
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A disconnected deformation space

dim(DefBA(f)) = 1 dim(TB) = 2 dim(TA) = 1

DefBA(f) is a 1-dimensional submanifold of TB which is
2-dimensional

A = {points in superattracting 4-cycle}

B = A [ {critical values of f}
Per4(0) := classes of maps with a superattracting cycle
of period 4.

Per4(0)
⇤ is the subset of hfi where the superattracting

cycle contains only one critical point of f

Theorem. (Hironaka - K.)
Let hfi 2 Per4(0)

⇤. Then DefBA(f) has infinitely many
connected components.

Theorem. (Epstein)
If f : (P1, A) ! (P1, B) is not a Lattès map, then DefBA(f)
is a smooth analytic submanifold of TB, of dimension
|B � A|.

Theorem. (Thurston; Bu↵, Cui, Tan Lei)
If A = B, then DefBA(f) is connected.

If A = B, then DefBA(f) = Fix(�f )

A = B

= Fix(�f )

DefBA(f) = {⌧ 2 TB | �f (⌧) = �B
A (f)}

If A = B, �B
A = id

~ := [id] 2 DefBA(f)

maps [�] in TB to [�] in TA

�f : [�] 7! [ ]

0
2 //1 // 1 // add ⇤ 2 // b

Theorem. (Firsova, Kahn, Selinger)
For hfi 2 Per4(0)

⇤, DefBA(f) is not contractible.
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Theorem. (Firsova, Kahn, Selinger)
For hfi 2 Per4(0)
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DefBA(f) is a 1-dimensional submanifold of TB which is 2-
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Tanya Firsova, Jeremy Kahn, and Nikita Selinger  
proved a related result

Per4(0) ✓ M2

Choose ~ 2 D.

D0 is connected component containing ~
E := {g 2 S | g · D0 = D0}

G := G1 \G2

D � � //

✏✏

TB

✏✏

D/S ⌘ q

##

� � // TB/S

✏✏

TB/G

✏✏
MB

D � � //

✏✏

TB

✏✏

D/S �
�

// TB/S

Let g 2 G1 \G2. TFAE:

(1) g 2 S

(2) g · D \D 6= ;

(3) g · D = D

TB
� //

✏✏

TA

✏✏

TB/G�

$$✏✏
MB MA

isomorphic to pure mapping

class group of (S2, A)

Modular group ModA

ModA is group the deck transformations, isomorphic to
pure mapping class group of (S2, A).

0
2 //1 // 1 // 3

4dd ⇤ 2 // 121
96

A = {0, 1,1, 3/4} B = A [ {121/96}

Theorem. (Firsova, Kahn, Selinger)
For hfi 2 Per4(0)

⇤, DefBA(f) is not contractible.

dim(DefBA(f)) = 1 dim(TB) = 2 dim(TA) = 1

DefBA(f) is a 1-dimensional submanifold of TB which is 2-
dimensional

A = {points in superattracting 4-cycle}

B = A [ {critical values of f}
Per4(0) := classes of maps in M2 with a superattracting cycle
of period 4.

Per4(0)
⇤ is the subset of hfi where the superattracting cycle

contains only one critical point of f

Theorem. (H–K)
For hfi 2 Per4(0)

⇤, DefBA(f) has infinitely many connected
components.

Theorem. (Epstein)
If f : (P1

, A) ! (P1
, B) is not a Lattès map, then DefBA(f)

is a smooth analytic submanifold of TB, of dimension |B �
A|.

Theorem. (Thurston; Bu↵, Cui, Tan Lei)
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If A = B, then DefBA(f) = Fix(�f )
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= Fix(�f )
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Work of Mary Rees



Moduli space
MA := {injective ' : A ,! P1 up to postcomposition

with Möbius transformations}

f : (S2, A) ! (S2, B) is combinatorially equivalent to

a rational map

DefBA(f) 6= ;
if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map

If A = B, DefBA(f) = Fix(�f )

The following result is due to Epstein.

Theorem. Let f : (P1, A) ! (P1, B) be a rational map
which is not of Lattès type. Then DefBA(f) is a complex
analytic submanifold of TB of dimension |B � A|.

Theorem. If A = B, DefBB(f) 6= ; if and only if there are
no obstructing multicurves for f : (S2, B) ! (S2, B).

Theorem. If A = B, then DefBA(f) is connected.

DefBA(f) 6= ; if and only if
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with Möbius transformations}

MA is a complex manifold, isomorphic to

C|A|�3 � {finitely many hyperplanes}

f : (S2, A) ! (S2, B) is combinatorially equivalent to

a rational map

DefBA(f) 6= ;
if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map

If A = B, DefBA(f) = Fix(�f )

The following result is due to Epstein.

Theorem. Let f : (P1, A) ! (P1, B) be a rational map
which is not of Lattès type. Then DefBA(f) is a complex
analytic submanifold of TB of dimension |B � A|.

Theorem. If A = B, DefBB(f) 6= ; if and only if there are
no obstructing multicurves for f : (S2, B) ! (S2, B).

Theorem. If A = B, then DefBA(f) is connected.

DefBA(f) 6= ; if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map

�f : [�] 7! [ ]

A ✓ B

�A,B maps the class of � in TB to the class of � in TA

(S2, A)

f
✏✏

 
// (P1, (A))

F
✏✏

(S2, B)
�
// (P1,�(B))

TA

✏✏
MA

MA := {injective ' : A ,! P1 up to postcomposition
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with Möbius transformations}

MA is a complex manifold, isomorphic to

C|A|�3 � {finitely many hyperplanes}

f : (S2, A) ! (S2, B) is combinatorially equivalent to

a rational map

DefBA(f) 6= ;
if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map

If A = B, DefBA(f) = Fix(�f )

The following result is due to Epstein.

Theorem. Let f : (P1, A) ! (P1, B) be a rational map
which is not of Lattès type. Then DefBA(f) is a complex
analytic submanifold of TB of dimension |B � A|.

Theorem. If A = B, DefBB(f) 6= ; if and only if there are
no obstructing multicurves for f : (S2, B) ! (S2, B).

Theorem. If A = B, then DefBA(f) is connected.

DefBA(f) 6= ; if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map



The induced homomorphism

3. Generalities: maps, groups, connectivity

Let A,B ✓ S2 be finite sets containing at least 3 points.

3.1. Companion homomorphisms. Let � : TB ! TA be a holomorphic map, and consider
the group

G� := {g 2 ModB | there exists g0 2 ModA so that for all ⌧ 2 TB, �(g · ⌧) = g0 · �(⌧)}.

We define the companion homomorphism of � : TB ! TA to be

�� : G� ! ModA given by �� : g 7! g0.

The map �� is well-defined as ModA acts freely on TA. Moreover, the map � : TB ! TA

descends to a map

�0 : TB/G� ! MA.

3.2. Equalizers. Let �1, �2 : TB ! TA be two holomorphic maps, and let D be their equal-
izer D := {⌧ 2 TB | �1(⌧) = �2(⌧)}.
Consider their companion homomorphisms

�1 : G1 ! ModA and �2 : G2 ! ModA.

We define the equalizer S := {g 2 G1 \ G2 | �1(g) = �2(g)} and emphasize that even if D
is empty, this group is well-defined.
For the remainder of this section, suppose that D 6= ;.
It follows immediately that S preserves D. The following proposition is a direct conse-

quence of the definitions, and the fact that ModA acts freely on TA.

Proposition 3.1. Let g 2 G1 \G2. The following are equivalent:

(1) g 2 S,
(2) g · D \D 6= ;, and
(3) g · D = D.

3.3. Quotients. For notation, set L := G1 \G2, and W := TB/L. The space W is canoni-
cally determined by the constructions above, and it comes equipped with two natural maps

p1 := �0
1 � q1 : W ! MA and p2 := �0

2 � q2 : W ! MA

where qi : W ! TB/Gi is the covering map induced by L ✓ Gi. It follows from the definitions
that the image of D in W is a subset of the equalizer

{w 2 W | p1(w) = p2(w)}.(1)

Proposition 3.2. The natural map D/S ! W is an embedding.

Proof. If ⌧, ⌧ 0 2 D map to the same point in W , then there is some g 2 L = G1 \G2 so that
⌧ 0 = g · ⌧ . By Proposition 3.1, g 2 S, so the map D/S ! W is injective. ⇤

Corollary 3.3. The space D is a regular cover of its image in W.
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with Möbius transformations}

MA is a complex manifold, isomorphic to

C|A|�3 � {finitely many hyperplanes}

f : (S2, A) ! (S2, B) is combinatorially equivalent to

a rational map

DefBA(f) 6= ;
if and only if

f : (S2, A) ! (S2, B) is combinatorially equivalent to a
rational map

If A = B, DefBA(f) = Fix(�f )

The following result is due to Epstein.

3. Generalities: maps, groups, connectivity

Let A,B ✓ S2 be finite sets containing at least 3 points.

3.1. Companion homomorphisms. Let � : TB ! TA be a holomorphic map, and consider
the group

G� := {g 2 ModB | there exists g0 2 ModA so that for all ⌧ 2 TB, �(g · ⌧) = g0 · �(⌧)}.

We define the companion homomorphism of � : TB ! TA to be

�� : G� ! ModA given by �� : g 7! g0.

The map �� is well-defined as ModA acts freely on TA. Moreover, the map � : TB ! TA

descends to a map

�0 : TB/G� ! MA.

3.2. Equalizers. Let �1, �2 : TB ! TA be two holomorphic maps, and let D be their equal-
izer D := {⌧ 2 TB | �1(⌧) = �2(⌧)}.
Consider their companion homomorphisms

�1 : G1 ! ModA and �2 : G2 ! ModA.

We define the equalizer S := {g 2 G1 \ G2 | �1(g) = �2(g)} and emphasize that even if D
is empty, this group is well-defined.
For the remainder of this section, suppose that D 6= ;.
It follows immediately that S preserves D. The following proposition is a direct conse-

quence of the definitions, and the fact that ModA acts freely on TA.

Proposition 3.1. Let g 2 G1 \G2. The following are equivalent:

(1) g 2 S,
(2) g · D \D 6= ;, and
(3) g · D = D.

3.3. Quotients. For notation, set L := G1 \G2, and W := TB/L. The space W is canoni-
cally determined by the constructions above, and it comes equipped with two natural maps

p1 := �0
1 � q1 : W ! MA and p2 := �0

2 � q2 : W ! MA

where qi : W ! TB/Gi is the covering map induced by L ✓ Gi. It follows from the definitions
that the image of D in W is a subset of the equalizer

{w 2 W | p1(w) = p2(w)}.(1)

Proposition 3.2. The natural map D/S ! W is an embedding.

Proof. If ⌧, ⌧ 0 2 D map to the same point in W , then there is some g 2 L = G1 \G2 so that
⌧ 0 = g · ⌧ . By Proposition 3.1, g 2 S, so the map D/S ! W is injective. ⇤

Corollary 3.3. The space D is a regular cover of its image in W.

4

3. Generalities: maps, groups, connectivity

Let A,B ✓ S2 be finite sets containing at least 3 points.

3.1. Companion homomorphisms. Let � : TB ! TA be a holomorphic map, and consider
the group

G� := {g 2 ModB | there exists g0 2 ModA so that for all ⌧ 2 TB, �(g · ⌧) = g0 · �(⌧)}.

We define the companion homomorphism of � : TB ! TA to be

�� : G� ! ModA given by �� : g 7! g0.

The map �� is well-defined as ModA acts freely on TA. Moreover, the map � : TB ! TA

descends to a map

�0 : TB/G� ! MA.

3.2. Equalizers. Let �1, �2 : TB ! TA be two holomorphic maps, and let D be their equal-
izer D := {⌧ 2 TB | �1(⌧) = �2(⌧)}.
Consider their companion homomorphisms

�1 : G1 ! ModA and �2 : G2 ! ModA.

We define the equalizer S := {g 2 G1 \ G2 | �1(g) = �2(g)} and emphasize that even if D
is empty, this group is well-defined.
For the remainder of this section, suppose that D 6= ;.
It follows immediately that S preserves D. The following proposition is a direct conse-

quence of the definitions, and the fact that ModA acts freely on TA.

Proposition 3.1. Let g 2 G1 \G2. The following are equivalent:

(1) g 2 S,
(2) g · D \D 6= ;, and
(3) g · D = D.

3.3. Quotients. For notation, set L := G1 \G2, and W := TB/L. The space W is canoni-
cally determined by the constructions above, and it comes equipped with two natural maps

p1 := �0
1 � q1 : W ! MA and p2 := �0

2 � q2 : W ! MA

where qi : W ! TB/Gi is the covering map induced by L ✓ Gi. It follows from the definitions
that the image of D in W is a subset of the equalizer

{w 2 W | p1(w) = p2(w)}.(1)

Proposition 3.2. The natural map D/S ! W is an embedding.

Proof. If ⌧, ⌧ 0 2 D map to the same point in W , then there is some g 2 L = G1 \G2 so that
⌧ 0 = g · ⌧ . By Proposition 3.1, g 2 S, so the map D/S ! W is injective. ⇤

Corollary 3.3. The space D is a regular cover of its image in W.

4



D � � // TB

�1

((

�2

66 TA

TB
� //

✏✏

TA

✏✏

TB/G�

$$✏✏
MB MA

isomorphic to pure mapping

class group of (S2, A)

Modular group ModA

ModA is group the deck transformations, isomorphic to
pure mapping class group of (S2, A).

[�]
_

✏✏

[�|A]

MA := {injective ' : A ,! P1 up to postcomposition
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~ := [id] 2 DefBA(f)

maps [�] in TB to [�] in TA

�f : [�] 7! [ ]

A ✓ P1 finite set, containing at least 3 points

TA := classes of � : P1 ! P1 where �1 ⇠ �2 if

there is µ 2 Aut(P1) so that

�1 = µ � �2 on P , and

�1 is isotopic to µ � �2 rel P .

TA is a complex manifold of dimension |A|� 3

What are we gonna say about the Lattès maps?

f : (P1, A) ! (P1, B)

• 3 6 |A|, |B| < 1

• B contains the critical values of f ,

• B contains A

TB
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�A,B

66 TA

TB

�f

((
TA

DefBA(f) := {⌧ 2 TB | �f (⌧) = �B
A (⌧)}.

DefBA(f)
� � // TB

�f

((
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66 TA

Say what this is really doing. Define pullback map. De-
fine forgetful map.

What do we know about it?

Local Result.

(nonempty)

3.4. Connectivity. We are ultimately interested in the question of connectivity of D =
DefBA(f). To this end, we continue gathering general results that will provide the arguments
required to establish Theorem 1.2.
Let ~ 2 D be a basepoint, and let D0 be the connected component of D containing ~.

We define the subgroup E ✓ S to be

E := {g 2 S | g · D0 = D0};
that is, E is the stabilizer of D0 in S. Clearly, D is connected if and only if E = S. In fact,
we can say more.

Proposition 3.4. If D/S is connected, there is a bijection between the connected components

of D and the (left) cosets of E in S.

For notation, define V to be the image of D in W ; it is homeomorphic to D/S by Propo-
sition 3.2.
The basepoint ~ 2 D determines basepoints in the other spaces:

~ 2 D/S, ~V 2 V ✓ W , ~B 2 MB, and ~A 2 MA.

Note that if V is disconnected, then clearly D is disconnected also. To simplify the arguments
that follow, we hereafter assume that V and (equivalently) D/S are connected. There is no
loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

ModB = ⇡1(MB,~B),

ModA = ⇡1(MA,~A),

L = ⇡1(W ,~V),

S = image of ⇡1(TB/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};
that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA,~A).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�f , �A,B : TB ! TA

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�f : Gf ! ModA and �A,B : GA,B ! ModA.

The group GA,B = ModB, and the homomorphism �A,B : ModB ! ModA is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group Gf and the homomorphism �f : Gf !

ModA, except for the fact that the group Gf contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
ModB [KPS], so Gf has finite index in ModB.
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we can say more.
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of D and the (left) cosets of E in S.
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sition 3.2.
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that follow, we hereafter assume that V and (equivalently) D/S are connected. There is no
loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
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The group GA,B = ModB, and the homomorphism �A,B : ModB ! ModA is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group Gf and the homomorphism �f : Gf !

ModA, except for the fact that the group Gf contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
ModB [KPS], so Gf has finite index in ModB.
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~ := [id] 2 DefBA(f)
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�f : [�] 7! [ ]

A ✓ P1 finite set, containing at least 3 points

TA := classes of � : P1 ! P1 where �1 ⇠ �2 if

there is µ 2 Aut(P1) so that

�1 = µ � �2 on P , and

�1 is isotopic to µ � �2 rel P .

TA is a complex manifold of dimension |A|� 3

What are we gonna say about the Lattès maps?
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• B contains the critical values of f ,
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Define

W := TB/Gf

V := the image of D/S in W

Then:

E = ⇡1(V ,~)

Strategy: compare E ✓ S in ⇡1(W ,~).

D/S maps to

the equalizer

of the two maps

TB/Gf ! MA

GA,B = ModB

Gf contains the liftable mapping classes

Let ~ 2 D

D0 := the component of D containing ~

E := {g 2 S | g · D0 = D0}

D is connected if and only if E = S

Proposition. If D/S is connected, then there is a bi-
jection between the connected components of D and the
cosets of E in S.

Per4(0) ✓ M2
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Choose ~ 2 D.

D0 is connected component containing ~

E := {g 2 S | g · D0 = D0}

G := G1 \G2

3.4. Connectivity. We are ultimately interested in the question of connectivity of D =
DefBA(f). To this end, we continue gathering general results that will provide the arguments
required to establish Theorem 1.2.
Let ~ 2 D be a basepoint, and let D0 be the connected component of D containing ~.

We define the subgroup E ✓ S to be

E := {g 2 S | g · D0 = D0};
that is, E is the stabilizer of D0 in S. Clearly, D is connected if and only if E = S. In fact,
we can say more.

Proposition 3.4. If D/S is connected, there is a bijection between the connected components

of D and the (left) cosets of E in S.

For notation, define V to be the image of D in W ; it is homeomorphic to D/S by Propo-
sition 3.2.
The basepoint ~ 2 D determines basepoints in the other spaces:

~ 2 D/S, ~V 2 V ✓ W , ~B 2 MB, and ~A 2 MA.

Note that if V is disconnected, then clearly D is disconnected also. To simplify the arguments
that follow, we hereafter assume that V and (equivalently) D/S are connected. There is no
loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

ModB = ⇡1(MB,~B),

ModA = ⇡1(MA,~A),

L = ⇡1(W ,~V),

S = image of ⇡1(TB/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};
that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA,~A).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�f , �A,B : TB ! TA

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�f : Gf ! ModA and �A,B : GA,B ! ModA.

The group GA,B = ModB, and the homomorphism �A,B : ModB ! ModA is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group Gf and the homomorphism �f : Gf !

ModA, except for the fact that the group Gf contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
ModB [KPS], so Gf has finite index in ModB.
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For our f : (P1, A) ! (P1, B),

~ = [id] 2 DefBA(f)
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S = ...

is the equalizer of induced maps on ⇡1

~ = [id] 2 D

A = B �f (g · ⌧) = g · �f (⌧)

W := TB/Gf

V := the image of D/S in W

A = B

Gf = liftables

D = DefBA(f)

Define

W := TB/Gf

V := the image of D/S in W

Then:

E = ⇡1(V ,~)

Strategy: compare E ✓ S in ⇡1(W ,~).

D/S maps to
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If A = B, �B
A = id
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A ✓ P1 finite set, containing at least 3 points

TA := classes of � : P1 ! P1 where �1 ⇠ �2 if

there is µ 2 Aut(P1) so that

�1 = µ � �2 on P , and

�1 is isotopic to µ � �2 rel P .

TA is a complex manifold of dimension |A|� 3

What are we gonna say about the Lattès maps?
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3.4. Connectivity. We are ultimately interested in the question of connectivity of D =
DefBA(f). To this end, we continue gathering general results that will provide the arguments
required to establish Theorem 1.2.
Let ~ 2 D be a basepoint, and let D0 be the connected component of D containing ~.

We define the subgroup E ✓ S to be

E := {g 2 S | g · D0 = D0};
that is, E is the stabilizer of D0 in S. Clearly, D is connected if and only if E = S. In fact,
we can say more.

Proposition 3.4. If D/S is connected, there is a bijection between the connected components

of D and the (left) cosets of E in S.

For notation, define V to be the image of D in W ; it is homeomorphic to D/S by Propo-
sition 3.2.
The basepoint ~ 2 D determines basepoints in the other spaces:

~ 2 D/S, ~V 2 V ✓ W , ~B 2 MB, and ~A 2 MA.

Note that if V is disconnected, then clearly D is disconnected also. To simplify the arguments
that follow, we hereafter assume that V and (equivalently) D/S are connected. There is no
loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

ModB = ⇡1(MB,~B),

ModA = ⇡1(MA,~A),

Gf = ⇡1(W ,~V),

S = image of ⇡1(TB/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};
that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA,~A).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�f , �A,B : TB ! TA

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�f : Gf ! ModA and �A,B : GA,B ! ModA.

The group GA,B = ModB, and the homomorphism �A,B : ModB ! ModA is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group Gf and the homomorphism �f : Gf !

ModA, except for the fact that the group Gf contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
ModB [KPS], so Gf has finite index in ModB.
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What are we gonna say about the Lattès maps?

f : (P1, A) ! (P1, B)

• 3 6 |A|, |B| < 1

• B contains the critical values of f ,
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cycle contains only one critical point of f
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⇤, DefBA(f) has infinitely many con-
nected components.
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If f : (P1, A) ! (P1, B) is not a Lattès map, then DefBA(f)
is a smooth analytic submanifold of TB, of dimension
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A = B

= Fix(�f )

DefBA(f) = {⌧ 2 TB | �f (⌧) = �B
A (f)}

The group L = Gf , and the group S is the equalizer of �f and �A,B. The spaceW = TB/L,
and there are induced maps

p1 = �0
f : W ! MA and p2 = (�A,B)

0 � q : W ! MA

where q : W ! MB is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefBA(f). We have:

• the space V is the image of DefBA(f) in W , and it is contained in the equalizer of
p1, p2 : W ! MA,

• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA,~A),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)⇤. For these examples, the space V
is connected (see Corollary 4.3). We will then show that E has infinite index in S, thereby
establishing Theorem 1.2 with Proposition 3.4.

4. The proof of Theorem 1.2

Let f : (P1, A) ! (P1, B) represent an element of Per4(0)⇤. In Proposition 4.2, we will show

V = {w 2 W | p1(w) = p2(w)},

and we will show that V is connected. By Proposition 3.4, DefBA(f) is then connected if and
only if S = E, or if and only if

⇡1 (Equalizer(p1, p2)) = Equalizer((p1)⇤, (p2)⇤).

In other words, the connectivity of DefBA(f) is equivalent to the statement:

the fundamental group of the equalizer of the projections is equal to the equal-

izer of the projections on fundamental groups.

By conjugating with a Möbius transformation, we may suppose that f has a superattracting
cycle of the form

0
2
//1 // 1 // a

dd

(2)

As evident by the work that follows, our results hold for any map f representing an element
of Per4(0)⇤ with appropriately defined sets A and B. For the sake of presentation however,
we will work with a concrete example, so that in our coordinates the basepoint ~V 2 R. We
will work with

f : P1 ! P1 given by f : z 7! (4z � 3)(z + 2)

4z2
.

The map f has a superattracting cycle of the form in Line (2) for a = 3/4. The critical
points of f are {0, 12/5}, and the critical values of f are {1, 121/96}. Define the set A =
{0, 1,1, 3/4}, and the set B = A [ {121/96}. By Theorem 1.1, DefBA(f) is a 1-dimensional
submanifold of a 2-dimensional Teichmüller space TB. The space TA is 1-dimensional. We
compute the spaces W and V for this particular f .
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We set our coordinates before doing computations. Given [↵] 2 MA and [�] 2 MB, let ⌫↵
and ⌫� be Möbius transformations such that ⌫↵ � ↵ and ⌫� � � are the identity on {0, 1,1}.
Then we define coordinates:

MA ! C� {0, 1}
[↵] 7! x := (⌫↵ � ↵)(3/4),

and

MB ! C2 � {y = 0, y = 1, y = z, z = 0, z = 1}
[�] 7! (y, z) := ((⌫� � �)(3/4), (⌫� � �)(121/96)).

4.1. The space W. reference the above blue, basepoint
By Theorem 2.6 in [K], a point in W consists of (x, y, z, F ) where F is a rational map

F : (P1, {0, 1,1, x}) ! (P1, {0, 1,1, y, z})
satisfying the combinatorial conditions below, where the marked points are distinct:

0

2

✏✏

1

✏✏

1

✏✏

x

✏✏

⇤
2

✏✏

1 1 y 0 z

that is, 0 is a critical point of F , cv(F ) = {1, z}, and
F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.

As can easily be verified, such a rational map F : P1 ! P1 must be of the following form:

F (t) =
(x� t)(�tx+ y + t+ x� 1)

(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (2) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! MA, and q : W ! MB are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤
7
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B = A [ {critical values of f}
Per4(0) := classes of maps in M2 with a superattracting
cycle of period 4.

Per4(0)
⇤ is the subset of hfi where the superattracting

cycle contains only one critical point of f

Theorem. (Hironaka - K.)
For hfi 2 Per4(0)

⇤, DefBA(f) has infinitely many con-
nected components.

Theorem. (Epstein)
If f : (P1, A) ! (P1, B) is not a Lattès map, then DefBA(f)
is a smooth analytic submanifold of TB, of dimension
|B � A|.

Theorem. (Thurston; Bu↵, Cui, Tan Lei)
If A = B, then DefBA(f) is connected.

If A = B, then DefBA(f) = Fix(�f )

A = B

= Fix(�f )

DefBA(f) = {⌧ 2 TB | �f (⌧) = �B
A (f)}

The group L = Gf , and the group S is the equalizer of �f and �A,B. The spaceW = TB/L,
and there are induced maps

p1 = �0
f : W ! MA and p2 = (�A,B)

0 � q : W ! MA

where q : W ! MB is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefBA(f). We have:

• the space V is the image of DefBA(f) in W , and it is contained in the equalizer of
p1, p2 : W ! MA,

• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA,~A),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)⇤. For these examples, the space V
is connected (see Corollary 4.3). We will then show that E has infinite index in S, thereby
establishing Theorem 1.2 with Proposition 3.4.

4. The proof of Theorem 1.2

Let f : (P1, A) ! (P1, B) represent an element of Per4(0)⇤. In Proposition 4.2, we will show

V = {w 2 W | p1(w) = p2(w)},

and we will show that V is connected. By Proposition 3.4, DefBA(f) is then connected if and
only if S = E, or if and only if

⇡1 (Equalizer(p1, p2)) = Equalizer((p1)⇤, (p2)⇤).

In other words, the connectivity of DefBA(f) is equivalent to the statement:

the fundamental group of the equalizer of the projections is equal to the equal-

izer of the projections on fundamental groups.

By conjugating with a Möbius transformation, we may suppose that f has a superattracting
cycle of the form

0
2
//1 // 1 // a

dd

(2)

As evident by the work that follows, our results hold for any map f representing an element
of Per4(0)⇤ with appropriately defined sets A and B. For the sake of presentation however,
we will work with a concrete example, so that in our coordinates the basepoint ~V 2 R. We
will work with

f : P1 ! P1 given by f : z 7! (4z � 3)(z + 2)

4z2
.

The map f has a superattracting cycle of the form in Line (2) for a = 3/4. The critical
points of f are {0, 12/5}, and the critical values of f are {1, 121/96}. Define the set A =
{0, 1,1, 3/4}, and the set B = A [ {121/96}. By Theorem 1.1, DefBA(f) is a 1-dimensional
submanifold of a 2-dimensional Teichmüller space TB. The space TA is 1-dimensional. We
compute the spaces W and V for this particular f .
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We set our coordinates before doing computations. Given [↵] 2 MA and [�] 2 MB, let ⌫↵
and ⌫� be Möbius transformations such that ⌫↵ � ↵ and ⌫� � � are the identity on {0, 1,1}.
Then we define coordinates:

MA ! C� {0, 1}
[↵] 7! x := (⌫↵ � ↵)(3/4),

and

MB ! C2 � {y = 0, y = 1, y = z, z = 0, z = 1}
[�] 7! (y, z) := ((⌫� � �)(3/4), (⌫� � �)(121/96)).

4.1. The space W. reference the above blue, basepoint
By Theorem 2.6 in [K], a point in W consists of (x, y, z, F ) where F is a rational map

F : (P1, {0, 1,1, x}) ! (P1, {0, 1,1, y, z})
satisfying the combinatorial conditions below, where the marked points are distinct:

0

2

✏✏

1

✏✏

1

✏✏

x

✏✏

⇤
2

✏✏

1 1 y 0 z

that is, 0 is a critical point of F , cv(F ) = {1, z}, and
F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.

As can easily be verified, such a rational map F : P1 ! P1 must be of the following form:

F (t) =
(x� t)(�tx+ y + t+ x� 1)

(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (2) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! MA, and q : W ! MB are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤
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(x, y) (y, z) x

V = Equalizer(p, q)

S = Equalizer(p⇤, q⇤)

p : W ! MA, and q : W ! MA

W := TB/Gf

V := image of D/S in W

For our f : (P1
, A) ! (P1

, B),

~ = [id] 2 D

D/S is connected

Compare S and E in ⇡1(W ,~V)

S = ...

is the equalizer of induced maps on ⇡1

~ = [id] 2 D

A = B �f (g · ⌧) = g · �f (⌧)

W := TB/Gf

V := the image of D/S in W

A = B

Gf = liftables

D = DefBA(f)

Define

W := TB/Gf

V := the image of D/S in W

Then:

E = ⇡1(V ,~)
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