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Spaces

Polycm
3 denotes the moduli space of critically marked complex

cubic polynomials f : C→ C.

Elements of Polycm
3 are affine conjugacy classes of triples (f , c0, c1)

where:

• f is a cubic polynomial and,
• Crit(f) = {c0, c1} is a complete list of all the critical points
of f in C.

(f , c0, c1) and (g, ω0, ω1) are in the same conjugacy class if there
exists A : C→ C affine such that:

• A ◦ f = g ◦ A ,
• for i = 0, 1 we have ωi = A(ci).
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Affine algebraic sets

Polycm
3 is an affine algebraic surface:

Polycm
3 is isomorphic to the quotient of C2 3 (a, v) by the

involution (a, v)↔ (−a,−v) with unique fixed point (0, 0).

Family of monic cubic with critical points ±a:

Pa,v : z 7→ (z − a)2(z + 2a) + v

Pa,v(z) = −P−a.−v(−z).
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Periodic critical point

The curve Sn of period n is formed by all conjugacy classes
[f , c0, c1] ∈ Polycm

3 such that:
c0 has period exactly n under f .

Theorem (Milnor)

Sn ⊂ Polycm
3 is a smooth affine algebraic curve.

Compare with Epstein.
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Is Sn connected?
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S1 ≡ C

S2 ≡ C
×

S3 ≡ C \ {p1, . . . , p5}

S4 is connected (Bonifant-Milnor) of genus 6 and 14
punctures.
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Global Topology

Euler characteristic

Bonifant, K. ,Milnor (2010): for n ≥ 2 the Euler characteristic
is Sn is

(2 − n)ν3(n)

6
where ν3(n) is the number of period n periodic points of a
generic cubic polynomial.

What is the Euler characteristic of the smooth compactification of
Sn?

Requires to compute the number Np of punctures.
(Algorithms by De Marco-Schiff (2010) based on De
Marco-Pilgrim (2010 approx).)
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Dichotomy

The connectedness locus

C(Sn) =
{
[f , c0, c1] ∈ Sn | fk (c1) 6→ ∞

}
is compact.

The escape locus

E(Sn) =
{
[f , c0, c1] ∈ Sn | fk (c1)→ ∞

}
is open and every connected component is unbounded.
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Escape regions

A escape region U is a connected component of E(Sn):

All dynamical systems in U are hyperbolic polynomials with
disconnected Julia set.

U is conformally isomorphic to punctured disk.

There are at most ν3(n)/3 escape regions counting
multiplicities

n 1 2 3 4 5

ν3(n) 3 6 24 72 240
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Basic observations

Fix n ≥ 2.

If R is a connected component of Sn,
then R contains escape regions.

To prove that Sn is connected is sufficient to show that:

if U and U′ are escape regions of Sn then,

there exists a path contained in Sn joining U and U′.
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Dynamics on escape regions: itinerary

D0

D1
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c1

f(c1)

For fk (z) 6→ ∞, define

itin(z) := (i0, i1, i2, . . . ) ∈ {0, 1}N.

where, for all k ≥ 0
fk (z) ∈ Dik .
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Dynamics on a escape regionU: kneading word

The itinerary of c0 is independent of [f , c0, c1] ∈ U.

The first n symbols of the itinerary of f(c0) form the kneading
word of U:

κ(U) = i1i2 . . . in−10

where ij = 0 or 1.

There exists one and only one escape region U with such that:

κ(U) = 1n−10.
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Strategy

Join all escape regions U to U? where κ(U?) = 1n−10.

If
κ(U) , 1n−10,

then join U to U′ such that:

κ(U′) has more 1’s than κ(U).
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Spaces of topological maps

Let B be the space of degree 3 topological branched coverings

F : C→ C

with marked branched points ∞, c0 and c1 such that:

F(∞) = ∞ and F is locally 3-to-1 around ∞,

c0 is of period n under F ,

F(c1) is not in the periodic orbit of c0.

Let B be the space of affine conjugacy classes of (F , c0, c1).
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Rees Polynomial Theorem

Sn minus a finite set is contained in B.

Theorem (Rees)

If (Ft )t∈[0,1] is a path in B such that F0 and F1 belong to Sn,

then there exists a path (pt )t∈[0,1] homotopic in B to (Ft )t∈[0,1]
rel endpoints such that:

pt ∈ Sn for all t ∈ [0, 1].
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Aim: change symbol 0 to 1

Given f ∈ U such that

κ(U) = i1 . . . im−10im+1 . . . in−10

construct a path (Ft ) from F0 = f to F1 ∈ U
′ with

κ(U′) = i1 . . . im−11im+1 . . . in−10.

c0
c1

f(c1)

fm(c0)
c′0 c′1

F1(c
′
1)

Fm
1 (c′0)

Ft
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Twisting and c-equivalence

The path (Ft ) is obtained by concatenation of:

(1) A twisting path from f to g1.

g1 will be a topological branched covering

(2) A Cui-Tan combinatorial equivalence path from g1 to F1.

F1 will be a cubic polynomial
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Semi-rational maps

Consider a branched covering F : C→ C.

PF = {Fn(c) : n > 0, c branched point of F}.

We say that F : C→ C is a semi-rational map if the following
statements hold:

I The set of accumulation points P′F of PF is finite or empty.

I If P′F , ∅, then F is holomorphic in a neighborhood of P′F .

I Every periodic orbit in P′F is either attracting or
superattracting.

Example:
g1 = T−1

1 ◦ f .
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Cui-Tan equivalence

Let G1 and G2 be two semi-rational maps.

We say that G1 and G2 are c-equivalent, if there exist
homeomorphisms ϕ and ψ such that:

C
G1
−−−−−→ Cyψ yϕ

C
G2
−−−−−→ C.

where:

I ϕ is isotopic to ψ relative to U1 ∪ PG1 .

I ϕ is holomorphic in neighborhood U1 of P′G1
.
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No Thurston obstruction

Lemma (à la Levy)

If g1 is a semi-rational map such that:

(g1, c0, c1) ∈ B ,

gn
1(c1)→ ∞,

then g1 has no Thurston obstructions.
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Summary

We found a path Ft such that:

c0
c1

f(c1)

fm(c0)
c′0 c′1

F1(c
′
1)

Fm
1 (c′0)

Ft
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Thank you!

Happy Birthday Jack!


