Cubic polynomials with one periodic critical point: irreducibility

Jan Kiwi
P.U.C., Chile

joint with Matthieu Arfeux, Stony Brook University.

North-American Workshop in Holomorphic Dynamics
Celebrating John Milnor's 85th. birthday
Cancun, May 31, 2016

Spaces

Poly ${ }_{3}^{c m}$ denotes the moduli space of critically marked complex cubic polynomials $f: \mathbb{C} \rightarrow \mathbb{C}$.

Spaces

Poly ${ }_{3}^{c m}$ denotes the moduli space of critically marked complex cubic polynomials $f: \mathbb{C} \rightarrow \mathbb{C}$.

Elements of Poly ${ }_{3}^{c m}$ are affine conjugacy classes of triples (f, c_{0}, c_{1}) where:

- f is a cubic polynomial and,
- $\operatorname{Crit}(f)=\left\{c_{0}, c_{1}\right\}$ is a complete list of all the critical points of f in \mathbb{C}.

Spaces

Poly ${ }_{3}^{c m}$ denotes the moduli space of critically marked complex cubic polynomials $f: \mathbb{C} \rightarrow \mathbb{C}$.

Elements of Poly ${ }_{3}^{c m}$ are affine conjugacy classes of triples $\left(f, c_{0}, c_{1}\right)$ where:

- f is a cubic polynomial and,
- $\operatorname{Crit}(f)=\left\{c_{0}, c_{1}\right\}$ is a complete list of all the critical points of f in \mathbb{C}.
(f, c_{0}, c_{1}) and ($g, \omega_{0}, \omega_{1}$) are in the same conjugacy class if there exists $A: \mathbb{C} \rightarrow \mathbb{C}$ affine such that:
- $A \circ f=g \circ A$,
- for $i=0,1$ we have $\omega_{i}=A\left(c_{i}\right)$.

Affine algebraic sets

Poly $_{3}^{\mathrm{cm}}$ is an affine algebraic surface:

Affine algebraic sets

Poly ${ }_{3}^{c m}$ is an affine algebraic surface:
Poly ${ }_{3}^{c m}$ is isomorphic to the quotient of $\mathbb{C}^{2} \ni(a, v)$ by the involution $(a, v) \leftrightarrow(-a,-v)$ with unique fixed point $(0,0)$.

Affine algebraic sets

Poly $_{3}^{c m}$ is an affine algebraic surface:
Poly ${ }_{3}^{c m}$ is isomorphic to the quotient of $\mathbb{C}^{2} \ni(a, v)$ by the involution $(a, v) \leftrightarrow(-a,-v)$ with unique fixed point $(0,0)$.

Family of monic cubic with critical points $\pm a$:

Affine algebraic sets

Poly $_{3}^{c m}$ is an affine algebraic surface:
Poly ${ }_{3}^{c m}$ is isomorphic to the quotient of $\mathbb{C}^{2} \ni(a, v)$ by the involution $(a, v) \leftrightarrow(-a,-v)$ with unique fixed point $(0,0)$.

Family of monic cubic with critical points \pm a:

$$
P_{a, v}: z \mapsto(z-a)^{2}(z+2 a)+v
$$

Affine algebraic sets

Poly ${ }_{3}^{\mathrm{cm}}$ is an affine algebraic surface:
Poly ${ }_{3}^{c m}$ is isomorphic to the quotient of $\mathbb{C}^{2} \ni(a, v)$ by the involution $(a, v) \leftrightarrow(-a,-v)$ with unique fixed point $(0,0)$.

Family of monic cubic with critical points \pm a:

$$
\begin{gathered}
P_{a, v}: z \mapsto(z-a)^{2}(z+2 a)+v \\
P_{a, v}(z)=-P_{-a,-v}(-z)
\end{gathered}
$$

Periodic critical point

The curve \mathcal{S}_{n} of period n is formed by all conjugacy classes $\left[f, c_{0}, c_{1}\right] \in$ Poly $_{3}^{c m}$ such that:
> c_{0} has period exactly n under f.

Periodic critical point

The curve \mathcal{S}_{n} of period n is formed by all conjugacy classes $\left[f, c_{0}, c_{1}\right] \in$ Poly $_{3}^{c m}$ such that:
c_{0} has period exactly n under f.

Theorem (Milnor)
$\mathcal{S}_{n} \subset$ Poly $_{3}^{c m}$ is a smooth affine algebraic curve.

Periodic critical point

The curve \mathcal{S}_{n} of period n is formed by all conjugacy classes $\left[f, c_{0}, c_{1}\right] \in$ Poly $_{3}^{c m}$ such that: c_{0} has period exactly n under f.

Theorem (Milnor)

$$
\mathcal{S}_{n} \subset \text { Poly }_{3}^{\mathrm{cm}} \text { is a smooth affine algebraic curve. }
$$

Compare with Epstein.

Question

Milnor asked:
Is \mathcal{S}_{n} connected?

Question

Milnor asked:
Is \mathcal{S}_{n} connected?

Theorem (Arfeux and K.)
\mathcal{S}_{n} is connected.

Low periods

Low periods

$$
\mathcal{S}_{1} \equiv \mathbb{C}
$$

Low periods

$$
\mathcal{S}_{1} \equiv \mathbb{C}
$$

$$
S_{2} \equiv \mathbb{C}^{\times}
$$

Low periods

$$
\mathcal{S}_{1} \equiv \mathbb{C}
$$

$$
\mathcal{S}_{2} \equiv \mathbb{C}^{\times}
$$

$$
\mathcal{S}_{3} \equiv \mathbb{C} \backslash\left\{p_{1}, \ldots, p_{5}\right\}
$$

Low periods

$\mathcal{S}_{1} \equiv \mathbb{C}$
$\mathcal{S}_{2} \equiv \mathbb{C}^{\times}$
$\mathcal{S}_{3} \equiv \mathbb{C} \backslash\left\{p_{1}, \ldots, p_{5}\right\}$
\mathcal{S}_{4} is connected (Bonifant-Milnor) of genus 6 and 14 punctures.

Global Topology

Global Topology

Euler characteristic

Global Topology

Euler characteristic
Bonifant, K. ,Milnor (2010): for $n \geq 2$ the Euler characteristic is \mathcal{S}_{n} is

$$
\frac{(2-n) v_{3}(n)}{6}
$$

where $\nu_{3}(n)$ is the number of period n periodic points of a generic cubic polynomial.

Global Topology

Euler characteristic
Bonifant, K. ,Milnor (2010): for $n \geq 2$ the Euler characteristic is \mathcal{S}_{n} is

$$
\frac{(2-n) v_{3}(n)}{6}
$$

where $\nu_{3}(n)$ is the number of period n periodic points of a generic cubic polynomial.

What is the Euler characteristic of the smooth compactification of \mathcal{S}_{n} ?

Global Topology

Euler characteristic
Bonifant, K. ,Milnor (2010): for $n \geq 2$ the Euler characteristic is \mathcal{S}_{n} is

$$
\frac{(2-n) v_{3}(n)}{6}
$$

where $\nu_{3}(n)$ is the number of period n periodic points of a generic cubic polynomial.

What is the Euler characteristic of the smooth compactification of \mathcal{S}_{n} ?

Requires to compute the number N_{p} of punctures. (Algorithms by De Marco-Schiff (2010) based on De Marco-Pilgrim (2010 approx).)

Dichotomy

The connectedness locus

$$
C\left(\mathcal{S}_{n}\right)=\left\{\left[f, c_{0}, c_{1}\right] \in \mathcal{S}_{n} \mid f^{k}\left(c_{1}\right) \nrightarrow \infty\right\}
$$

is compact.

Dichotomy

The connectedness locus

$$
C\left(\mathcal{S}_{n}\right)=\left\{\left[f, c_{0}, c_{1}\right] \in \mathcal{S}_{n} \mid f^{k}\left(c_{1}\right) \nrightarrow \infty\right\}
$$

is compact.
The escape locus

$$
\mathcal{E}\left(\mathcal{S}_{n}\right)=\left\{\left[f, c_{0}, c_{1}\right] \in \mathcal{S}_{n} \mid f^{k}\left(c_{1}\right) \rightarrow \infty\right\}
$$

is open and every connected component is unbounded.
\mathcal{S}_{1}

\mathcal{S}_{2}

\mathcal{S}_{3}

Escape regions

A escape region \mathcal{U} is a connected component of $\mathcal{E}\left(\mathcal{S}_{n}\right)$:

Escape regions

A escape region \mathcal{U} is a connected component of $\mathcal{E}\left(\mathcal{S}_{n}\right)$:
All dynamical systems in \mathcal{U} are hyperbolic polynomials with disconnected Julia set.

Escape regions

A escape region \mathcal{U} is a connected component of $\mathcal{E}\left(\mathcal{S}_{n}\right)$:
All dynamical systems in \mathcal{U} are hyperbolic polynomials with disconnected Julia set.
\mathcal{U} is conformally isomorphic to punctured disk.

Escape regions

A escape region \mathcal{U} is a connected component of $\mathcal{E}\left(\mathcal{S}_{n}\right)$:
All dynamical systems in \mathcal{U} are hyperbolic polynomials with disconnected Julia set.
\mathcal{U} is conformally isomorphic to punctured disk.
There are at most $\nu_{3}(n) / 3$ escape regions counting multiplicities

Escape regions

A escape region \mathcal{U} is a connected component of $\mathcal{E}\left(\mathcal{S}_{n}\right)$:
All dynamical systems in \mathcal{U} are hyperbolic polynomials with disconnected Julia set.
\mathcal{U} is conformally isomorphic to punctured disk.
There are at most $v_{3}(n) / 3$ escape regions counting multiplicities

n	1	2	3	4	5
$v_{3}(n)$	3	6	24	72	240

Basic observations

Fix $n \geq 2$.

Basic observations

Fix $n \geq 2$.

If \mathcal{R} is a connected component of \mathcal{S}_{n}, then \mathcal{R} contains escape regions.

Basic observations

Fix $n \geq 2$.

If \mathcal{R} is a connected component of \mathcal{S}_{n}, then \mathcal{R} contains escape regions.

To prove that \mathcal{S}_{n} is connected is sufficient to show that:

Basic observations

Fix $n \geq 2$.

If \mathcal{R} is a connected component of \mathcal{S}_{n}, then \mathcal{R} contains escape regions.

To prove that \mathcal{S}_{n} is connected is sufficient to show that:
if \mathcal{U} and \mathcal{U}^{\prime} are escape regions of \mathcal{S}_{n} then,

Basic observations

Fix $n \geq 2$.

If \mathcal{R} is a connected component of \mathcal{S}_{n}, then \mathcal{R} contains escape regions.

To prove that \mathcal{S}_{n} is connected is sufficient to show that:
if \mathcal{U} and \mathcal{U}^{\prime} are escape regions of \mathcal{S}_{n} then, there exists a path contained in \mathcal{S}_{n} joining \mathcal{U} and \mathcal{U}^{\prime}.

Dynamics on escape regions: itinerary

Dynamics on escape regions: itinerary

For $f^{k}(z) \nrightarrow \infty$, define

$$
\operatorname{itin}(z):=\left(i_{0}, i_{1}, i_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}} .
$$

where, for all $k \geq 0$

$$
f^{k}(z) \in D_{i_{k}} .
$$

Dynamics on a escape region \mathcal{U} : kneading word

Dynamics on a escape region \mathcal{U} : kneading word

The itinerary of c_{0} is independent of $\left[f, c_{0}, c_{1}\right] \in \mathcal{U}$.

Dynamics on a escape region \mathcal{U} : kneading word

The itinerary of c_{0} is independent of $\left[f, c_{0}, c_{1}\right] \in \mathcal{U}$.

The first n symbols of the itinerary of $f\left(c_{0}\right)$ form the kneading word of \mathcal{U} :

$$
\kappa(\mathcal{U})=i_{1} i_{2} \ldots i_{n-1} 0
$$

where $i_{j}=0$ or 1 .

Dynamics on a escape region \mathcal{U} : kneading word

The itinerary of c_{0} is independent of $\left[f, c_{0}, c_{1}\right] \in \mathcal{U}$.

The first n symbols of the itinerary of $f\left(c_{0}\right)$ form the kneading word of \mathcal{U} :

$$
\kappa(\mathcal{U})=i_{1} i_{2} \ldots i_{n-1} 0
$$

where $i_{j}=0$ or 1 .

There exists one and only one escape region \mathcal{U} with such that:

$$
\kappa(\mathcal{U})=1^{n-1} 0 .
$$

Strategy

Join all escape regions \mathcal{U} to \mathcal{U}_{\star} where $\kappa\left(\mathcal{U}_{\star}\right)=1^{n-1} 0$.

Strategy

Join all escape regions \mathcal{U} to \mathcal{U}_{\star} where $\kappa\left(\mathcal{U}_{\star}\right)=1^{n-1} 0$.
If

$$
\kappa(\mathcal{U}) \neq 1^{n-1} 0,
$$

then join \mathcal{U} to \mathcal{U}^{\prime} such that:
$\kappa\left(\mathcal{U}^{\prime}\right)$ has more 1 's than $\kappa(\mathcal{U})$.

Spaces of topological maps

Let B be the space of degree 3 topological branched coverings

$$
F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}
$$

with marked branched points ∞, c_{0} and c_{1} such that:

$$
F(\infty)=\infty \text { and } F \text { is locally } 3 \text {-to-1 around } \infty,
$$

c_{0} is of period n under F,
$F\left(c_{1}\right)$ is not in the periodic orbit of c_{0}.

Spaces of topological maps

Let B be the space of degree 3 topological branched coverings

$$
F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}
$$

with marked branched points ∞, c_{0} and c_{1} such that:

$$
F(\infty)=\infty \text { and } F \text { is locally } 3 \text {-to-1 around } \infty,
$$ c_{0} is of period n under F,

$F\left(c_{1}\right)$ is not in the periodic orbit of c_{0}.

Let \mathcal{B} be the space of affine conjugacy classes of $\left(F, c_{0}, c_{1}\right)$.

Rees Polynomial Theorem

\mathcal{S}_{n} minus a finite set is contained in \mathcal{B}.

Rees Polynomial Theorem

\mathcal{S}_{n} minus a finite set is contained in \mathcal{B}.

Theorem (Rees)
If $\left(F_{t}\right)_{t \in[0,1]}$ is a path in \mathcal{B} such that F_{0} and F_{1} belong to \mathcal{S}_{n},

Rees Polynomial Theorem

\mathcal{S}_{n} minus a finite set is contained in \mathcal{B}.

Theorem (Rees)
If $\left(F_{t}\right)_{t \in[0,1]}$ is a path in \mathcal{B} such that F_{0} and F_{1} belong to \mathcal{S}_{n}, then there exists a path $\left(p_{t}\right)_{t \in[0,1]}$ homotopic in \mathcal{B} to $\left(F_{t}\right)_{t \in[0,1]}$ rel endpoints such that:

Rees Polynomial Theorem

\mathcal{S}_{n} minus a finite set is contained in \mathcal{B}.

Theorem (Rees)
If $\left(F_{t}\right)_{t \in[0,1]}$ is a path in \mathcal{B} such that F_{0} and F_{1} belong to \mathcal{S}_{n}, then there exists a path $\left(p_{t}\right)_{t \in[0,1]}$ homotopic in \mathcal{B} to $\left(F_{t}\right)_{t \in[0,1]}$ rel endpoints such that:

$$
p_{t} \in S_{n} \text { for all } t \in[0,1] \text {. }
$$

Aim: change symbol 0 to 1

Given $f \in \mathcal{U}$ such that

$$
\kappa(U)=i_{1} \ldots i_{m-1} 0 i_{m+1} \ldots i_{n-1} 0
$$

construct a path $\left(F_{t}\right)$ from $F_{0}=f$ to $F_{1} \in \mathcal{U}^{\prime}$ with

$$
\kappa\left(\mathcal{U}^{\prime}\right)=i_{1} \ldots i_{m-1} 1 i_{m+1} \ldots i_{n-1} 0 .
$$

Aim: change symbol 0 to 1

Given $f \in \mathcal{U}$ such that

$$
\kappa(U)=i_{1} \ldots i_{m-1} 0 i_{m+1} \ldots i_{n-1} 0
$$

construct a path $\left(F_{t}\right)$ from $F_{0}=f$ to $F_{1} \in \mathcal{U}^{\prime}$ with

$$
\kappa\left(\mathcal{U}^{\prime}\right)=i_{1} \ldots i_{m-1} 1 i_{m+1} \ldots i_{n-1} 0 .
$$

Twisting and c-equivalence

The path $\left(F_{t}\right)$ is obtained by concatenation of:

Twisting and c-equivalence

The path $\left(F_{t}\right)$ is obtained by concatenation of:
(1) A twisting path from f to g_{1}.

Twisting and c-equivalence

The path $\left(F_{t}\right)$ is obtained by concatenation of:
(1) A twisting path from f to g_{1}.
g_{1} will be a topological branched covering

Twisting and c-equivalence

The path $\left(F_{t}\right)$ is obtained by concatenation of:
(1) A twisting path from f to g_{1}.
g_{1} will be a topological branched covering
(2) A Cui-Tan combinatorial equivalence path from g_{1} to F_{1}.

Twisting and c-equivalence

The path $\left(F_{t}\right)$ is obtained by concatenation of:
(1) A twisting path from f to g_{1}.
g_{1} will be a topological branched covering
(2) A Cui-Tan combinatorial equivalence path from g_{1} to F_{1}.
F_{1} will be a cubic polynomial

Extended Green line and twisting loop

Twisting path from f to g_{1}

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Twisting path from f to g_{1}

$$
[0,1] \ni s \mapsto T_{s}^{-1} \circ f \in B .
$$

Dynamical plane of $g_{1}=T_{1}^{-1} \circ f$

"Green lines of $g_{1} "$

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

We say that $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a semi-rational map if the following statements hold:

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

We say that $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a semi-rational map if the following statements hold:
> The set of accumulation points P_{F}^{\prime} of P_{F} is finite or empty.

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

We say that $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a semi-rational map if the following statements hold:
> The set of accumulation points P_{F}^{\prime} of P_{F} is finite or empty.

- If $P_{F}^{\prime} \neq \emptyset$, then F is holomorphic in a neighborhood of P_{F}^{\prime}.

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

We say that $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a semi-rational map if the following statements hold:

- The set of accumulation points P_{F}^{\prime} of P_{F} is finite or empty.
- If $P_{F}^{\prime} \neq \emptyset$, then F is holomorphic in a neighborhood of P_{F}^{\prime}.
- Every periodic orbit in P_{F}^{\prime} is either attracting or superattracting.

Semi-rational maps

Consider a branched covering $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.

$$
P_{F}=\overline{\left\{F^{n}(c): n>0, c \text { branched point of } F\right\}} .
$$

We say that $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a semi-rational map if the following statements hold:

- The set of accumulation points P_{F}^{\prime} of P_{F} is finite or empty.
- If $P_{F}^{\prime} \neq \emptyset$, then F is holomorphic in a neighborhood of P_{F}^{\prime}.
- Every periodic orbit in P_{F}^{\prime} is either attracting or superattracting.
Example:

$$
g_{1}=T_{1}^{-1} \circ f .
$$

Cui-Tan equivalence

Let G_{1} and G_{2} be two semi-rational maps.

Cui-Tan equivalence

Let G_{1} and G_{2} be two semi-rational maps.
We say that G_{1} and G_{2} are c-equivalent, if there exist homeomorphisms φ and ψ such that:

$$
\begin{array}{ll}
\overline{\mathbb{C}} \xrightarrow{G_{1}} & \overline{\mathbb{C}} \\
\downarrow \psi & \\
\downarrow & \\
\overline{\mathbb{C}} \xrightarrow{G_{2}} & \downarrow \\
\overline{\mathbb{C}} .
\end{array}
$$

where:

Cui-Tan equivalence

Let G_{1} and G_{2} be two semi-rational maps.
We say that G_{1} and G_{2} are c-equivalent, if there exist homeomorphisms φ and ψ such that:

$$
\begin{array}{ll}
\overline{\mathbb{C}} \xrightarrow{G_{1}} & \overline{\mathbb{C}} \\
\left.\right|_{\psi} & \\
& \\
\hline
\end{array}
$$

where:

- φ is isotopic to ψ relative to $\overline{U_{1}} \cup P_{G_{1}}$.

Cui-Tan equivalence

Let G_{1} and G_{2} be two semi-rational maps.
We say that G_{1} and G_{2} are c-equivalent, if there exist homeomorphisms φ and ψ such that:

$$
\begin{array}{ll}
\overline{\mathbb{C}} \xrightarrow{G_{1}} & \overline{\mathbb{C}} \\
\left.\right|_{\psi} & \\
& \\
\hline
\end{array}
$$

where:

- φ is isotopic to ψ relative to $\overline{U_{1}} \cup P_{G_{1}}$.
$\triangleright \varphi$ is holomorphic in neighborhood U_{1} of $P_{G_{1}}^{\prime}$.

Cui-Tan equivalence path

Theorem (Cui and Tan)
Let $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a semi-rational map.
F is c-equivalent to a rational map R
if and only if
F has no Thurston obstruction.

Cui-Tan equivalence path

Theorem (Cui and Tan)
Let $F: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a semi-rational map.
F is c-equivalent to a rational map R
if and only if
F has no Thurston obstruction.

In this case, R is unique up to Möbius conjugacy.

No Thurston obstruction

Lemma (à la Levy)
If g_{1} is a semi-rational map such that:

$$
\begin{aligned}
& \left(g_{1}, c_{0}, c_{1}\right) \in B, \\
& g_{1}^{n}\left(c_{1}\right) \rightarrow \infty,
\end{aligned}
$$

then g_{1} has no Thurston obstructions.

Cui-Tan equivalence path: from g_{1} to F_{1}

Cui-Tan equivalence path: from g_{1} to F_{1}

The endpoint $g_{1} \in B$ of the twisting path is semi-rational.

Cui-Tan equivalence path: from g_{1} to F_{1}

The endpoint $g_{1} \in B$ of the twisting path is semi-rational.
Thus, g_{1} is c-equivalent to $F_{1} \in \mathcal{S}_{n}$ (by Cui-Tan):

$$
F_{1}=\varphi \circ g_{1} \circ \psi^{-1} .
$$

Cui-Tan equivalence path: from g_{1} to F_{1}

The endpoint $g_{1} \in B$ of the twisting path is semi-rational.
Thus, g_{1} is c-equivalent to $F_{1} \in \mathcal{S}_{n}$ (by Cui-Tan):

$$
F_{1}=\varphi \circ g_{1} \circ \psi^{-1} .
$$

Equivalence path from g_{1} to F_{1} :

Cui-Tan equivalence path: from g_{1} to F_{1}

The endpoint $g_{1} \in B$ of the twisting path is semi-rational.
Thus, g_{1} is c-equivalent to $F_{1} \in \mathcal{S}_{n}$ (by Cui-Tan):

$$
F_{1}=\varphi \circ g_{1} \circ \psi^{-1} .
$$

Equivalence path from g_{1} to F_{1} :
(1) Post-composition by isotopy from $\mathrm{id}_{\mathbb{C}}$ to $\psi^{-1} \circ \varphi$ relative to $\overline{U_{\infty}} \cup P_{g_{1}}$:

$$
g_{1} \rightarrow \psi^{-1} \circ \varphi \circ g_{1}=\psi^{-1} \circ F_{1} \circ \psi .
$$

Cui-Tan equivalence path: from g_{1} to F_{1}

The endpoint $g_{1} \in B$ of the twisting path is semi-rational.
Thus, g_{1} is c-equivalent to $F_{1} \in \mathcal{S}_{n}$ (by Cui-Tan):

$$
F_{1}=\varphi \circ g_{1} \circ \psi^{-1} .
$$

Equivalence path from g_{1} to F_{1} :
(1) Post-composition by isotopy from $\mathrm{id}_{\mathbb{C}}$ to $\psi^{-1} \circ \varphi$ relative to $\overline{U_{\infty}} \cup P_{g_{1}}$:

$$
g_{1} \rightarrow \psi^{-1} \circ \varphi \circ g_{1}=\psi^{-1} \circ F_{1} \circ \psi .
$$

(2) Conjugacy by isotopy of ψ with id $_{\mathbb{C}}$:

$$
\psi^{-1} \circ F_{1} \circ \psi \rightarrow F_{1} .
$$

Kneading of F_{1}

$$
\psi: P_{g_{1}} \rightarrow P_{F_{1}} \text { is a conjugacy. }
$$

Kneading of F_{1}

$$
\psi: P_{g_{1}} \rightarrow P_{F_{1}} \text { is a conjugacy. }
$$

The image of the "Green lines of g_{1} " hitting c_{1} under ψ are the Green lines of F_{1} hitting $\psi\left(c_{1}\right)$, modulo isotopy rel $P_{g_{1}}$.

Kneading of F_{1}

$$
\psi: P_{g_{1}} \rightarrow P_{F_{1}} \text { is a conjugacy. }
$$

The image of the "Green lines of g_{1} " hitting c_{1} under ψ are the Green lines of F_{1} hitting $\psi\left(c_{1}\right)$, modulo isotopy rel $P_{g_{1}}$.

Summary

We found a path F_{t} such that:

Remarks

Remarks

Dynatomic curves.

Remarks

Dynatomic curves.
Explicit paths in \mathcal{S}_{n}.

Thank you!

Happy Birthday Jack!

