A disconnected deformation space of rational maps

Eriko Hironaka
American Mathematical
Society

Sarah Koch
University of Michigan

Part II

Fix $\langle f\rangle \in \operatorname{Per}_{4}(0)^{*}$
Theorem: $\operatorname{Def}_{A}^{B}(f)$ has infinitely many components.
Recall

To prove the Theorem:
Enough to show that the index of $\mathrm{E}:=i_{*}\left(\pi_{1}(\mathcal{V}, \circledast \mathcal{V})\right)$ in S is infinite.

Picturing the subgroups:

$E \subseteq S \subseteq L \subseteq \operatorname{Mod}_{B}$

$$
\mathcal{T}_{B}
$$

$$
\mathcal{T}_{A}
$$

Represent $g \in \operatorname{Mod}_{B}$ as a path on \mathcal{T}_{B} emanating from the (canonical) basepoint $* f$ in $\operatorname{Def}_{A}^{B}(f)$

General Case: $g \in \operatorname{Mod}_{B}$

The red endpoint of g need not map to the same point or even in the same fiber over \mathcal{M}_{A}

Case: $g \in \mathrm{~L}$

\mathcal{T}_{B}
\mathcal{T}_{A}

The red endpoint maps under the two maps to points in the same fiber over \mathcal{M}_{A} as the image of $*_{f}$
Case: $g \in S$

$$
\mathcal{T}_{B} \quad \mathcal{T}_{A}
$$

Maps agree on endpoints of the path corresponding to g

Case: $g \in \mathrm{E}$

To compute E and S, we fix coordinates for \mathcal{W}

A

Coordinates for \mathcal{W} : Embed \mathcal{W} in $\mathcal{M}_{A} \times \mathcal{M}_{A}=\mathbb{C}^{2} \backslash \mathcal{L}$

Coordinates for \mathcal{W} : Embed in $\mathcal{M}_{A} \times \mathcal{M}_{A}=\mathbb{C}^{2} \backslash \mathcal{L}$

$$
\mathcal{L}=L_{x=0} \cup L_{x=1} \cup L_{y=0} \cup L_{y=1}
$$

Coordinates for \mathcal{W} : embed in $\mathcal{M}_{A} \times \mathcal{M}_{A}=\mathbb{C}^{2} \backslash \mathcal{L}$

$$
\mathcal{L}=L_{x=0} \cup L_{x=1} \cup L_{y=0} \cup L_{y=1}
$$

$$
\begin{aligned}
& \mathcal{W}=\mathbb{C}^{2} \backslash(\mathcal{L} \cup \mathcal{C}) \\
& \mathcal{V}=\{(x, y) \in \mathcal{W} \mid x=y\}
\end{aligned}
$$

What is S ?

What is S ?

Lemma For $\gamma \in \mathrm{L}$,
$\gamma \in \mathrm{S} \Leftrightarrow$
$\gamma=\xi \eta$: where
$\xi \in \operatorname{Im}\left(\pi_{1}\left(L_{1}\right)\right), \eta \in \operatorname{Im}\left(\pi_{1}\left(L_{2}\right)\right)$
and

$$
p_{1}(\eta)=p_{2}(\xi)
$$

What is S ?

Lemma For $\gamma \in \mathrm{L}$,
$\gamma \in \mathrm{S} \Leftrightarrow$
$\gamma=\xi \eta$: where
$\xi \in \operatorname{Im}\left(\pi_{1}\left(L_{1}\right)\right), \eta \in \operatorname{Im}\left(\pi_{1}\left(L_{2}\right)\right)$
and

$$
p_{1}(\eta)=p_{2}(\xi)
$$

Remark: it follows that
The subgroup S is not normal in L.

Simplify \mathcal{W}

Simplify \mathcal{W}

The map is surjective on fundamental groups

Simplify \mathcal{W}

The map is surjective on fundamental groups

Next
Mod out by the diagonal reflection and blow up a point

Simplify \mathcal{W}

$\pi_{1}(\mathcal{W}, \circledast \mathcal{V}) \rightarrow \pi_{1}(\widehat{W}) \xrightarrow{\omega} \pi_{1}(\bar{W}) \xrightarrow{\rho} \pi_{1}(\mathbb{C} \backslash\{0,1\})$
All these maps are surjective, so index of images of E in S stays the same or decreases.

Simplify \mathcal{W}

$\left.\omega\right|_{\widehat{V}}: \widehat{V} \rightarrow \bar{V} \quad$ is a homeomorphism
is a (degree 2) covering so injective on
$\bar{V} \rightarrow \mathbb{C}^{2} \backslash\{0,1\} \quad$ fundamental groups

This implies that nontrivial elements of the kernel of $\left(\rho \circ{ }^{\prime} \omega\right)_{*}$ cannot lie in the image of E in $\pi_{1}(\widehat{\mathcal{W}})$.

Simplify \mathcal{W}

Recall that to prove main theorem it is enough to find an infinite set of cosets of E in S .

We can do this explicitly:
Let $\gamma=\xi \eta$, where
$\xi \in \operatorname{Im}\left(\pi_{1}\left(L_{1}\right) \rightarrow \pi_{1}(\mathcal{W})\right)$,
(let ξ a loop on L encircling the intersections of L with the horizontal red lines)
$\omega_{*}(\xi)$ is nontrivial in $\pi_{1}(\overline{\mathcal{W}})$ and lies in the kernel of ρ_{*},
and $\eta=\delta_{*}(\xi)$ where δ is the symmetry across the diagonal $\mathrm{x}=\mathrm{y}$.
Then $\gamma \in \mathrm{S}$ and $\gamma^{n} \notin \mathrm{E}$ for all n . So $\gamma^{n} E$ form distinct cosets of E in S .

Summary: Fix $\langle f\rangle \in \operatorname{Per}_{4}(0)^{*}$
Theorem: $\operatorname{Def}_{A}^{B}(f)$ has infinitely many components.

We have exhibited an infinite set of cosets of E in S.
It follows that E has infinite index in S and hence
$\operatorname{Def}_{A}^{B}(f)$ has infinitely many connected components as claimed.

Thank you!

