A disconnected deformation space of rational maps

Eriko Hironaka American Mathematical Society

Sarah Koch University of Michigan

Part II

Fix
$$\langle f \rangle \in \operatorname{Per}_4(0)^*$$

Theorem: $Def_A^B(f)$ has infinitely many components.

To prove the Theorem:

Enough to show that the index of $\mathbf{E} := i_*(\pi_1(\mathcal{V}, \circledast_{\mathcal{V}}))$ in **S** is infinite.

Represent $g \in Mod_B$ as a path on \mathcal{T}_B emanating from the (canonical) basepoint *f in $Def_A^B(f)$

The red endpoint of g need not map to the same point or even in the same fiber over \mathcal{M}_A

The red endpoint maps under the two maps to points in the same fiber over \mathcal{M}_A as the image of *f

Maps agree on endpoints of the path corresponding to g

corresponding to g

To compute E and S, we fix coordinates for \mathcal{W}

A

Coordinates for \mathcal{W} : Embed \mathcal{W} in $\mathcal{M}_A \times \mathcal{M}_A = \mathbb{C}^2 \setminus \mathcal{L}$

$$\mathcal{W} \subset \mathcal{M}_A \times \mathcal{M}_A = (\mathbb{C} \setminus \{0,1\})^2$$

Coordinates for \mathcal{W} : Embed in $\mathcal{M}_A \times \mathcal{M}_A = \mathbb{C}^2 \setminus \mathcal{L}$ $\mathcal{L} = L_{x=0} \cup L_{x=1} \cup L_{y=0} \cup L_{y=1}$

What is S?

What is S?

Lemma For $\gamma \in L$, $\gamma \in S \iff$ $\gamma = \xi \eta$: where $\xi \in Im(\pi_1(L_1)), \eta \in Im(\pi_1(L_2))$ and

$$p_1(\eta) = p_2(\xi).$$

What is S?

Lemma For $\gamma \in L$, $\gamma \in S \iff$ $\gamma = \xi \eta$: where $\xi \in Im(\pi_1(L_1)), \eta \in Im(\pi_1(L_2))$ and $p_1(\eta) = p_2(\xi)$.

Remark: it follows that

The subgroup S is not normal in L.

Simplify \mathcal{W}

The map is surjective on fundamental groups

Simplify ${\mathcal W}$

The map is surjective on fundamental groups

Next

Mod out by the diagonal reflection and blow up a point

Simplify ${\mathcal W}$

$$\pi_1(\mathcal{W}, \circledast_{\mathcal{V}}) \to \pi_1(\widehat{W}) \xrightarrow{\omega} \pi_1(\overline{W}) \xrightarrow{\rho} \pi_1(\mathbb{C} \setminus \{0, 1\})$$

All these maps are surjective, so index of images of E in S stays the same or decreases.

Simplify \mathcal{W}

$$\begin{split} \omega|_{\widehat{V}}:\widehat{V}\to\overline{V} & \text{ is a homeomorphism} \\ \text{ is a (degree 2) covering so injective on} \\ \overline{V}\to\mathbb{C}^2\setminus\{0,1\} & \text{ fundamental groups} \end{split}$$

This implies that nontrivial elements of the kernel of $(\rho \circ \omega)_*$ cannot lie in the image of E in $\pi_1(\widehat{W})$.

Simplify \mathcal{W}

Recall that to prove main theorem it is enough to find an infinite set of cosets of E in S.

We can do this explicitly:

Let $\gamma = \xi \eta$, where $\xi \in \operatorname{Im}(\pi_1(L_1) \to \pi_1(\mathcal{W}))$, (let ξ a loop on L encircling the intersections of L with the horizontal red lines) $\omega_*(\xi)$ is nontrivial in $\pi_1(\overline{\mathcal{W}})$ and lies in the kernel of ρ_* , and $\eta = \delta_*(\xi)$ where δ is the symmetry across the diagonal x = y. Then $\gamma \in S$ and $\gamma^n \notin E$ for all n. So $\gamma^n E$ form distinct cosets of E in S. Summary: Fix $\langle f \rangle \in \operatorname{Per}_4(0)^*$

Theorem: $Def_A^B(f)$ has infinitely many components.

We have exhibited an infinite set of cosets of E in S.

It follows that E has infinite index in S and hence

 $Def_A^B(f)$ has infinitely many connected components as claimed.

Thank you!