On cobordism of rational functions.

Carlos Cabrera

Unidad Cuernavaca Instituto de Matemáticas, UNAM

(Joint work with P. Makienko and G. Sienra.)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで

Problem

Problem

We try to associate three dimensional objects to rational maps in a way consistent with the conformal structure and, hopefully, with the dynamics.

イロン イヨン イヨン イヨン

3

Two basic examples.

The map $z \mapsto z^n$.

The Lattés family.

Geometric Extensions

Let S_1 and S_2 be two conformal orbifolds supported on the Riemann sphere such that

 $R: S_1 \rightarrow S_2$

is a holomorphic covering. Assume that there exist two Kleinian groups Γ_1 and Γ_2 with components W_1 and W_2 of the discontinuity sets $\Omega(\Gamma_1)$ and $\Omega(\Gamma_2)$, respectively, and

 $S_i = W_i / Stab_{W_i}(\Gamma_i).$

(日) (同) (E) (E) (E)

Assume that there exist $\alpha(R): W_1 \to W_2$ a Möbius map with

which induces a homomorphism from Γ_1 to Γ_2 . If $M_i := B^3 \cup \Omega(\Gamma_i)/\Gamma_i$. Then $\alpha(R)$ induces a unique Möbius morphism

$$\hat{R}: M_1 \to M_2.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへで

Poincaré extensions

Definition

If $\Omega(\Gamma_i)/\Gamma_i \cong S_i$, we call \tilde{R} the Poincaré extension of R.

Note that the degree is

$$deg(\tilde{R}) = [\Gamma_2 : \alpha(R)\Gamma_1\alpha(R)^{-1}].$$

In fact, $deg(R) \leq deg(\tilde{R})$ with equality when

 $Stab_{W_i}(\Gamma_i) = \Gamma_i.$

(日) (同) (E) (E) (E)

Geometric extension

Let $\phi_i : \partial M_i \to S_i$ be identification maps. Assume that there is a homeomorphic extension $\Phi_i : M_i \to \overline{B}^3$. Then the map $\Phi_2 \circ \tilde{R} \circ \Phi_1^{-1}$ is called *geometric* if and only if satisfies the following conditions.

- The sets Φ_i(M_i ∪ ∂M_i) are of the form B³ \ {∪γ_j} where each γ_j is either a geodesic or a family of finitely many geodesic rays with common starting point. There are no more than countably many curves γ_j.
- ② There exist a continuous extension, on all B^3 , which maps complementary geodesics to complementary geodesics.

Equivariance under Möbius actions

Let $A \subset Rat_d(\mathbb{C})$. Assume that there exist a map

$$Ext : A \rightarrow End(\bar{B}^3)$$

such that Ext(R) is an extension of R for every $R \in A$. Then for every pair of maps h, g in *Mob* we define

$$\widetilde{\textit{Ext}}(g \circ R \circ h) = \hat{g} \circ \textit{Ext}(R) \circ \hat{h}$$

where \hat{g} and \hat{h} are the classical Poincaré extensions of the maps g and h, respectively.

If Ext is a map from the Möbius bi-orbit of A to $End(\overline{B}^3)$, then we call Ext a conformally natural extension of A.

A list of desirable conditions

Geometric.

- **2** Same degree.
- Oynamical. These are extensions *Ext* such that *Ext*(*Rⁿ*) = *Ext*(*R*)ⁿ for *n* = 1, 2,
- Semigroup Homomorphisms. A stronger version of the previous property is to find semigroups S, of rational maps, for which there is an extension Ext defined in all S such that

$$Ext(R \circ Q) = Ext(R) \circ Ext(Q).$$

Equivariance under Möbius actions. When defined on saturated sets under the left and right actions of PSL(2, C).

Blaschke maps

A Blaschke map $B : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a rational map that leaves the unit disk Δ invariant. If d is the degree of B, then there exist $\theta \in [0, 2\pi]$ and d points $\{a_1, ..., a_d\}$ in Δ such that

$$B(z) = e^{i\theta} \left(rac{z-a_1}{1-ar{a}_1 z}
ight) \dots \left(rac{z-a_d}{1-ar{a}_d z}
ight)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

For the semigroup of Blaschke maps we have the following theorem:

Theorem

Let B be the semigroup of all Blaschke maps, then there exist an extension defined on B that satisfies conditions 1 to 4. This extension is conformally natural with respect to $PSL(2, \mathbb{R})$.

Theorem

Let S be a subsemigroup of Blaschke maps, then the extension above restricted on S is conformally natural with respect to all Möbius transformations if and only if S does not intersect the Möbius bi orbit of maps of the form $z \mapsto z^n$.

Motivation

Given Fuchsian uniformizations Γ_1 and Γ_2 for $R: S_1 \rightarrow S_2$, then we get another rational map Q^* induced by the action on the complement of the unit disk such that we have the following diagram commutes:

Э

This construction motivates the following definition.

Definition

Two rational maps $R: S_1 \to S_2$ and $\tilde{R}: \tilde{S}_1 \to \tilde{S}_2$ are *cobordant* if:

There are geometrically finite Kleinian groups Γ₁ and Γ₂ such that B³ ∪ Ω(Γ₁)/Γ₁ = M₁ and B³ ∪ Ω(Γ₂)/Γ₂ = M₂ so the following diagram commutes:

・ロン ・回 と ・ ヨ と ・ ヨ と

• $\partial M_1 = S_1 \sqcup \tilde{S}_1$, $\partial M_2 = S_2 \sqcup \tilde{S}_2$.

 The restriction of \(\mathcal{R}\) to the boundaries S₁ and \(\tilde{S}_1\) belong to the same conformal class of R and \(\tilde{R}\), respectively.

Cobordism is an equivalence relation.

We say that two branched coverings R and Q, of the Riemann sphere onto itself, are *Hurwitz equivalent* if there are quasiconformal homeomorphisms ϕ and ψ , making the following diagram commutative

Given a rational map R, the Hurwitz space H(R) is the set of all rational maps Q that are Hurwitz equivalent to R. The topology we are considering on H(R) is the compact-open topology.

We say that two branched coverings R and Q, of the Riemann sphere onto itself, are *Hurwitz equivalent* if there are quasiconformal homeomorphisms ϕ and ψ , making the following diagram commutative

Given a rational map R, the Hurwitz space H(R) is the set of all rational maps Q that are Hurwitz equivalent to R. The topology we are considering on H(R) is the compact-open topology.

イロト イポト イヨト イヨト

Theorem

If R_1 and R_2 are Hurwitz equivalent, then $R_1(z) \sim_{cob} \bar{R}_2(\bar{z})$.

Cobordisms of families of rational functions

Once we have considered cobordisms of two maps, we can define cobordisms of finite family of rational maps as shown in the following image:

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Given a finite family of Riemann surfaces of finite type $\{S_1, S_2, ..., S_n\}$, then there exist Riemann surface S_0 and a Kleinian group Γ such that

$$\Omega(\Gamma)/\Gamma = S_0 \sqcup S_1 \sqcup \ldots \sqcup S_n.$$

In fact, it is possible to find a group Γ without extra components. What can we say about rational maps?

Theorem

Given a finite family of rational maps $\{R_1, ..., R_n\}$, then there exist a finite collection of rational maps $\{Q_1, ..., Q_m\}$ such that the extended collection $\{Q_1, ..., Q_m, R_1, ..., R_n\}$ forms a family of cobordant rational maps.