### Perturbations of maps tangent to $z \mapsto \bar{z}$

#### Xavier Buff (joint work with Araceli Bonifant and John Milnor)

Institut de Mathématiques de Toulouse

#### June 2, 2016

Bonifant-Buff-Milnor Perturbations of maps tangent to  $z \mapsto \overline{z}$ 

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

### Local anti-holomorphic dynamics

- $f: (X, x) \rightarrow (X, x)$  is a anti-holomorphic germ fixing  $x \in X$ .
- D<sub>x</sub>f : T<sub>x</sub>X → T<sub>x</sub>X is an anti-C-linear map; it has two eigenvalues ρ ≥ 0 and −ρ ≤ 0.
- $f^{\circ 2}$  is holomorphic; it fixes x with multiplier  $\rho^2 \ge 0$ .

### Local anti-holomorphic dynamics

- $f: (X, x) \rightarrow (X, x)$  is a anti-holomorphic germ fixing  $x \in X$ .
- D<sub>x</sub>f : T<sub>x</sub>X → T<sub>x</sub>X is an anti-C-linear map; it has two eigenvalues ρ ≥ 0 and −ρ ≤ 0.
- $f^{\circ 2}$  is holomorphic; it fixes *x* with multiplier  $\rho^2 \ge 0$ .

An example: the tricorn family.

- $P_c(z) = \bar{z}^2 + c$ .
- x is a fixed point of P<sub>c</sub>.



### Germs tangent to $z \mapsto \bar{z}$

We are interested in the case  $\rho = 1$ .

- $D_x f : T_x X \to T_x X$  is conjugate to  $\mathbb{C} \ni z \mapsto \overline{z} \in \mathbb{C}$ .
- $D_x f$  fixes a line  $\Delta_x \subset T_x X$ .
- $f^{\circ 2}$  has *m* attracting axes and *m* repelling axes.

#### Lemma

 $\Delta_x$  is a union of attracting and/or repelling axes for  $f^{\circ 2}$ .



### Germs tangent to $z \mapsto \bar{z}$

We are interested in the case  $\rho = 1$ .

- $D_x f : T_x X \to T_x X$  is conjugate to  $\mathbb{C} \ni z \mapsto \overline{z} \in \mathbb{C}$ .
- $D_x f$  fixes a line  $\Delta_x \subset T_x X$ .
- $f^{\circ 2}$  has *m* attracting axis and *m* repelling axis.

#### Lemma

 $\Delta_x$  is a union of attracting and/or repelling axis for  $f^{\circ 2}$ .



### Germs tangent to $z \mapsto \bar{z}$

We are interested in the case  $\rho = 1$ .

- $D_x f : T_x X \to T_x X$  is conjugate to  $\mathbb{C} \ni z \mapsto \overline{z} \in \mathbb{C}$ .
- $D_x f$  fixes a line  $\Delta_x \subset T_x X$ .
- $f^{\circ 2}$  has *m* attracting axis and *m* repelling axis.

#### Lemma

 $\Delta_x$  is a union of attracting and/or repelling axis for  $f^{\circ 2}$ .



### The tricorn family

- $P_c(z) = \overline{z}^2 + c.$
- *x* is periodic of odd period *p* for  $P_c$  and  $f := P_c^{\circ p}$ .
- The number of attracting petals is either m = 1 or m = 2.
- If *m* = 1, then Δ<sub>x</sub> is the union of the attracting direction and the repelling direction.

ヘロン 人間 とくほ とくほ とう

3

### The tricorn family

- $P_c(z) = \overline{z}^2 + c.$
- *x* is periodic of odd period *p* for  $P_c$  and  $f := P_c^{\circ p}$ .
- The number of attracting petals is either m = 1 or m = 2.
- If *m* = 1, then Δ<sub>x</sub> is the union of the attracting direction and the repelling direction.

#### Lemma

If m = 2, then  $\Delta_x$  is the union of the two repelling directions.





# The bifurcation locus for the family $(P_c(z) = \overline{z}^2 + c)_{c \in \mathbb{C}}$



Bonifant-Buff-Milnor Perturbations of maps tangent to  $z \mapsto \overline{z}$ 

프 🕨 🗆 프

### The parabolic locus

#### Question

What does the set of parameters  $c \in \mathbb{C}$  for which  $P_c$  has a parabolic periodic orbit of odd period p look like?

ヘロン 人間 とくほ とくほ とう

3

### The parabolic locus

#### Question

What does the set of parameters  $c \in \mathbb{C}$  for which  $P_c$  has a parabolic periodic orbit of odd period p look like?



For p = 1, the locus is the image of the circle C(0, 1/2) by the map  $z \mapsto c = z + \overline{z}^2$ .

#### Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a simple closed curve consisting of exactly 3 parabolic cusp points as well as 3 parabolic arcs, each connecting two parabolic cusps.



포에 세종에

#### Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a simple closed curve consisting of exactly 3 parabolic cusp points as well as 3 parabolic arcs, each connecting two parabolic cusps.



#### Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a simple closed curve consisting of exactly 3 parabolic cusp points as well as 3 parabolic arcs, each connecting two parabolic cusps.



#### Proposition (Bonifant-B-Milnor)

Arcs are smooth.

・ロト ・ 理 ト ・ ヨ ト ・

æ

#### Proposition (Bonifant-B-Milnor)

Arcs are smooth.

#### Proposition (Bonifant-B-Milnor)

If  $P_{c_0}$  has a parabolic point with odd period p and 1 attracting petal, there is a coordinate function  $u : (\mathbb{C}, c_0) \to (\mathbb{R}, 0)$  such that

- if u(c) = 0,  $P_c^{\circ 2p}$  has a multiple fixed point close to x;
- if  $u(c) \neq 0$ ,  $P_c^{\circ 2p}$  has two distinct fixed points close to *x*;
  - if u(c) > 0, they are fixed by P<sub>c</sub><sup>op</sup>, one is attracting, one is repelling;
  - if u(c) < 0, they form a repelling cycle of period 2 for  $P_c^{\circ p}$ .

ヘロト 人間 ト ヘヨト ヘヨト

### Local picture near a parabolic arc



### Local picture near a parabolic cusp

#### Proposition (Bonifant-B-Milnor)

Cusps are ordinary cusps.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

### Local picture near a parabolic cusp

#### Proposition (Bonifant-B-Milnor)

Cusps are ordinary cusps.

#### Proposition (Bonifant-B-Milnor)

If  $P_{c_0}$  has a parabolic point with odd period p and 2 attracting petal, there is coordinate system  $(u, v) : (\mathbb{C}, c_0) \to (\mathbb{R}^2, (0, 0))$  such that

- if u<sup>3</sup>(c) = v<sup>2</sup>(c), then P<sub>c</sub><sup>o2p</sup> has two distinct fixed points close to x; one is repelling and the other has multiplier 1; both are fixed by P<sub>c</sub><sup>op</sup>;
- if u<sup>3</sup>(c) ≠ v<sup>2</sup>(c), then P<sub>c</sub><sup>o2p</sup> has three distinct fixed points close to x;
  - if u<sup>3</sup>(c) > v<sup>2</sup>(c), they are fixed by P<sup>op</sup><sub>c</sub>; one is attracting and the other two are repelling;
  - if u<sup>3</sup>(c) < v<sup>2</sup>(c), one is repelling and fixed by P<sup>op</sup><sub>c</sub>; the other two are attracting and form a cycle of period 2 for P<sup>op</sup><sub>c</sub>.

### Local picture near a parabolic cusp



### Splitting of a multiple fixed point

- X is a Riemann surface.
- (*f<sub>λ</sub>* : X → X)<sub>λ∈Λ</sub> is a holomorphic family of holomorphic maps.
- $f_{\lambda_0}$  has a multiple fixed point *x* with multiplicity m + 1.
- As λ moves away from λ<sub>0</sub>, the fixed point splits into m + 1 fixed points x<sub>1</sub>(λ),..., x<sub>m+1</sub>(λ), counting multiplicities.

A priori, those fixed points do not depend holomorphically on  $\lambda$ .

#### Question

How can we study the splitting of those fixed points?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

•  $\zeta : (X, x) \to (\mathbb{C}, 0)$  is a local coordinate such that

$$\zeta \circ f = \zeta + \zeta^{m+1} + \mathcal{O}(\zeta^{2m+1}).$$

- $\beta(\lambda)$  is the barycenter of the points  $\zeta(x_i(\lambda))$ .
- for k ∈ [2, m + 1], σ<sub>k</sub>(λ) are the elementary symmetric functions of the differences ζ(x<sub>i</sub>(λ)) − β(λ).

#### Definition

The splitting of the fixed points is generic in the family  $(f_{\lambda})_{\lambda \in \Lambda}$  if the map  $\lambda \mapsto (\sigma_2(\lambda), \ldots, \sigma_{m+1}(\lambda))$  is a local submersion at  $\lambda_0$ .

イロン 不良 とくほう 不良 とうほ

### Complexification of the tricorn family

• 
$$X = \mathbb{C}_1 \sqcup \mathbb{C}_2$$
.

•  $\Lambda := \mathbb{C}^2$  and for  $\lambda := (c_1, c_2) \in \Lambda$ ,  $f_{\lambda} : X \to X$  is defined by

 $f_{\lambda}: \mathbb{C}_1 \ni z_1 \mapsto z_1^2 + c_2 \in \mathbb{C}_2$  and  $f_{\lambda}: \mathbb{C}_2 \ni z_2 \mapsto z_2^2 + c_1 \in \mathbb{C}_1$ .

• The tricorn family corresponds to the slice  $c_2 = \bar{c}_1$ .

#### Proposition

Assume  $f_{\lambda_0}^{\circ p}$  has a multiple fixed point. Then the splitting of the fixed point is generic in the family  $(f_{\lambda}^{\circ p})_{\lambda \in \Lambda}$ .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

### Complexification of the tricorn family

• 
$$X = \mathbb{C}_1 \sqcup \mathbb{C}_2$$
.

•  $\Lambda := \mathbb{C}^2$  and for  $\lambda := (c_1, c_2) \in \Lambda$ ,  $f_{\lambda} : X \to X$  is defined by

 $f_{\lambda}: \mathbb{C}_1 \ni z_1 \mapsto z_1^2 + c_2 \in \mathbb{C}_2$  and  $f_{\lambda}: \mathbb{C}_2 \ni z_2 \mapsto z_2^2 + c_1 \in \mathbb{C}_1$ .

• The tricorn family corresponds to the slice  $c_2 = \bar{c}_1$ .

#### Proposition

Assume  $f_{\lambda_0}^{\circ p}$  has a multiple fixed point. Then the splitting of the fixed point is generic in the family  $(f_{\lambda}^{\circ p})_{\lambda \in \Lambda}$ .

 The proof relies on the implicit function theorem. We need to identify the derivatives of the functions *σ<sub>k</sub>*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

### Complexification of the tricorn family

• 
$$X = \mathbb{C}_1 \sqcup \mathbb{C}_2$$
.

•  $\Lambda := \mathbb{C}^2$  and for  $\lambda := (c_1, c_2) \in \Lambda$ ,  $f_{\lambda} : X \to X$  is defined by

 $f_{\lambda}: \mathbb{C}_1 \ni z_1 \mapsto z_1^2 + c_2 \in \mathbb{C}_2$  and  $f_{\lambda}: \mathbb{C}_2 \ni z_2 \mapsto z_2^2 + c_1 \in \mathbb{C}_1$ .

• The tricorn family corresponds to the slice  $c_2 = \bar{c}_1$ .

#### Proposition

Assume  $f_{\lambda_0}^{\circ p}$  has a multiple fixed point. Then the splitting of the fixed point is generic in the family  $(f_{\lambda}^{\circ p})_{\lambda \in \Lambda}$ .

- The proof relies on the implicit function theorem. We need to identify the derivatives of the functions *σ<sub>k</sub>*.
- From now on, we assume m = 2. We need to show that  $D_{\lambda_0}\sigma_2$  and  $D_{\lambda_0}\sigma_3$  are linearly independent.

표 · · · · · · · ·

## The tangent space to the family $(f_{\lambda}^{\circ p})_{\lambda \in \Lambda}$

• 
$$f := f_{\lambda_0}$$

• 
$$t \mapsto \lambda_t$$
 is a complex curve.

• 
$$\boldsymbol{\xi} := \frac{\mathrm{d}f_{\lambda_t}}{\mathrm{d}t}\Big|_{t=0}.$$

•  $\eta$  is the meromorphic vector field on X defined by

$$\mathrm{D}f\circ\eta=\boldsymbol{\xi}.$$

(個) (日) (日) (日)

### The tangent space to the family $(f_{\lambda}^{\circ p})_{\lambda \in \Lambda}$

• 
$$f := f_{\lambda_0}$$
.

• 
$$t \mapsto \lambda_t$$
 is a complex curve.

.

• 
$$\boldsymbol{\xi} := \frac{\mathrm{d}f_{\lambda_t}}{\mathrm{d}t}\Big|_{t=0}.$$

η is the meromorphic vector field on X defined by

$$\mathrm{D}f\circ\eta=\boldsymbol{\xi}.$$

• 
$$\boldsymbol{\xi}_{\boldsymbol{\rho}} := \frac{\mathrm{d}f_{\lambda_t}^{\circ \boldsymbol{\rho}}}{\mathrm{d}t}\Big|_{t=0}$$

•  $\eta_p$  is the meromorphic vector field on X defined by

$$\mathrm{D}f^{\circ p}\circ \eta_{p}=\xi_{p}.$$

個 とく ヨ とく ヨ とう

ъ

### The tangent space to the family $(f_{\lambda}^{\circ \rho})_{\lambda \in \Lambda}$

• 
$$f := f_{\lambda_0}$$
.

• 
$$t \mapsto \lambda_t$$
 is a complex curve.

• 
$$\boldsymbol{\xi} := \frac{\mathrm{d}f_{\lambda_t}}{\mathrm{d}t}\Big|_{t=0}.$$

η is the meromorphic vector field on X defined by

$$\mathrm{D}f\circ\eta=\boldsymbol{\xi}.$$

• 
$$\xi_{p} := \frac{d f_{\lambda t}^{op}}{d t} \Big|_{t=0}$$
.  
•  $\eta_{p}$  is the meromorphic vector field on *X* defined by

$$\mathrm{D}f^{\circ p} \circ \eta_{p} = \xi_{p}.$$

# Lemma $\eta_p = \eta + f^* \eta + \ldots + f^{\circ (p-1)^*} \eta.$

#### Proposition

Writing  $\eta_{
ho} = (h_0 + h_1 \zeta + \cdots) rac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

#### Proposition

Writing  $\eta_{
ho} = (h_0 + h_1 \zeta + \cdots) rac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

Proof.

• Set 
$$Q_t(\zeta) = -\sigma_3(\lambda_t) + \sigma_2(\lambda_t) \cdot \zeta + \zeta^3$$
, so that  
 $\zeta \circ f_{\lambda_t}^{\circ p} - \zeta = u_t(\zeta) \cdot Q_t(\zeta - \beta_t).$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

#### Proposition

Writing  $\eta_p = (h_0 + h_1\zeta + \cdots) \frac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

Proof.

• Set 
$$Q_t(\zeta) = -\sigma_3(\lambda_t) + \sigma_2(\lambda_t) \cdot \zeta + \zeta^3$$
, so that  
 $\zeta \circ f_{\lambda_t}^{\circ p} - \zeta = u_t(\zeta) \cdot Q_t(\zeta - \beta_t).$ 

Then,

$$\mathrm{d}\zeta\circ\boldsymbol{\xi}_{\boldsymbol{\rho}}=\dot{\boldsymbol{Q}}(\zeta)+\mathrm{O}(\zeta^2)=-\mathrm{D}_{\lambda_0}\sigma_3(\boldsymbol{\xi})+\mathrm{D}_{\lambda_0}\sigma_2(\boldsymbol{\xi})\cdot\zeta+\mathrm{O}(\zeta^2).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Proposition

Writing  $\eta_p = (h_0 + h_1\zeta + \cdots) \frac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

Proof.

• Set 
$$Q_t(\zeta) = -\sigma_3(\lambda_t) + \sigma_2(\lambda_t) \cdot \zeta + \zeta^3$$
, so that  
 $\zeta \circ f_{\lambda_t}^{\circ p} - \zeta = u_t(\zeta) \cdot Q_t(\zeta - \beta_t).$ 

• Then,

$$\mathrm{d}\zeta\circ\boldsymbol{\xi}_{\boldsymbol{\rho}}=\dot{\boldsymbol{Q}}(\zeta)+\mathrm{O}(\zeta^{2})=-\mathrm{D}_{\lambda_{0}}\sigma_{3}(\boldsymbol{\xi})+\mathrm{D}_{\lambda_{0}}\sigma_{2}(\boldsymbol{\xi})\cdot\zeta+\mathrm{O}(\zeta^{2}).$$

• *f* is tangent to to the identity to order 2, so that  $d\zeta \circ \boldsymbol{\xi}_{\rho} = d(\zeta \circ f)(\boldsymbol{\eta}_{\rho}) = d\zeta(\boldsymbol{\eta}_{\rho}) + O(\zeta^{2}) = h_{0} + h_{1}\zeta + O(\zeta^{2}).$ 

#### Proposition

Writing  $\eta_p = (h_0 + h_1\zeta + \cdots) \frac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

Proof.

• Set 
$$Q_t(\zeta) = -\sigma_3(\lambda_t) + \sigma_2(\lambda_t) \cdot \zeta + \zeta^3$$
, so that  
 $\zeta \circ f_{\lambda_t}^{\circ p} - \zeta = u_t(\zeta) \cdot Q_t(\zeta - \beta_t).$ 

• Then,

$$\mathrm{d}\zeta\circ\boldsymbol{\xi}_{\boldsymbol{\rho}}=\dot{\boldsymbol{Q}}(\zeta)+\mathrm{O}(\zeta^{2})=-\mathrm{D}_{\lambda_{0}}\sigma_{3}(\boldsymbol{\xi})+\mathrm{D}_{\lambda_{0}}\sigma_{2}(\boldsymbol{\xi})\cdot\zeta+\mathrm{O}(\zeta^{2}).$$

• *f* is tangent to to the identity to order 2, so that  $d\zeta \circ \boldsymbol{\xi}_{\rho} = d(\zeta \circ f)(\boldsymbol{\eta}_{\rho}) = d\zeta(\boldsymbol{\eta}_{\rho}) + O(\zeta^{2}) = h_{0} + h_{1}\zeta + O(\zeta^{2}).$ 

#### Proposition

Writing  $\eta_p = (h_0 + h_1\zeta + \cdots) \frac{\mathrm{d}}{\mathrm{d}\zeta}$ , we have

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = h_1$$
 and  $D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -h_0$ .

Proof.

• Set 
$$Q_t(\zeta) = -\sigma_3(\lambda_t) + \sigma_2(\lambda_t) \cdot \zeta + \zeta^3$$
, so that  
 $\zeta \circ f_{\lambda_t}^{\circ p} - \zeta = u_t(\zeta) \cdot Q_t(\zeta - \beta_t).$ 

• Then,

$$\mathrm{d}\zeta\circ\boldsymbol{\xi}_{\boldsymbol{\rho}}=\dot{\boldsymbol{Q}}(\zeta)+\mathrm{O}(\zeta^{2})=-\mathrm{D}_{\lambda_{0}}\sigma_{3}(\boldsymbol{\xi})+\mathrm{D}_{\lambda_{0}}\sigma_{2}(\boldsymbol{\xi})\cdot\zeta+\mathrm{O}(\zeta^{2}).$$

• *f* is tangent to to the identity to order 2, so that  $d\zeta \circ \boldsymbol{\xi}_{\rho} = d(\zeta \circ f)(\boldsymbol{\eta}_{\rho}) = d\zeta(\boldsymbol{\eta}_{\rho}) + O(\zeta^{2}) = h_{0} + h_{1}\zeta + O(\zeta^{2}).$ 

#### Definition

A quadratic differential  $\boldsymbol{q}$  on X is a field of symmetric and bilinear forms.

If  $\eta$  and  $\theta$  are two vector fields on X, then

•  $\boldsymbol{q}(\boldsymbol{\eta}, \boldsymbol{\theta}) : X \to \mathbb{C}$  is a function,

• 
$$oldsymbol{q}(oldsymbol{\eta},oldsymbol{ heta})=oldsymbol{q}(oldsymbol{ heta},oldsymbol{\eta})$$
 and

• 
$$\boldsymbol{q} \cdot \boldsymbol{\eta} := \boldsymbol{q}(\boldsymbol{\eta}, \cdot)$$
 is a 1-form on X.

In particular, we can consider the residue

 $\operatorname{res}(\boldsymbol{q}\cdot\boldsymbol{\eta},\boldsymbol{x}).$ 

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For  $j \in [0, p]$ , set

$$x_j := f^{\circ j}(x)$$
 and  $\zeta_j := \zeta \circ f^{\circ (p-j)}$ 

For  $k \in \{1, 2\}$ , let  $\boldsymbol{q}_k$  be the meromorphic quadratic differential on *X*:

- which is holomorphic outside the cycle,
- whose polar part at  $x_j$  is that of  $d\zeta_i^2/\zeta_j^k$  and
- which has at most triple poles at infinity.

通 とう ほう う ほうし

For  $j \in [0, p]$ , set

$$x_j := f^{\circ j}(x)$$
 and  $\zeta_j := \zeta \circ f^{\circ (p-j)}$ 

For  $k \in \{1, 2\}$ , let  $\boldsymbol{q}_k$  be the meromorphic quadratic differential on *X*:

- which is holomorphic outside the cycle,
- whose polar part at  $x_j$  is that of  $d\zeta_i^2/\zeta_i^k$  and
- which has at most triple poles at infinity.

#### Proposition

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = \sum_{j=1}^{p} \operatorname{res}(\boldsymbol{q}_2 \cdot \boldsymbol{\eta}, \boldsymbol{x}_j).$$
$$D_{\lambda_0}\sigma_3(\boldsymbol{\xi}) = -\sum_{j=1}^{p} \operatorname{res}(\boldsymbol{q}_1 \cdot \boldsymbol{\eta}, \boldsymbol{x}_j)$$

### **Pushing-forward**

•  $f: X \setminus \{0_1, 0_2\} \rightarrow X \setminus \{c_1, c_2\}$  is a covering of degree 2.

• the push-forward f<sub>\*</sub> q is defined by

$$f_*oldsymbol{q} := \sum_g g^*oldsymbol{q}$$

where g ranges among the inverse branches of f.

(雪) (ヨ) (ヨ)

3

### Pushing-forward

- $f: X \setminus \{0_1, 0_2\} \rightarrow X \setminus \{c_1, c_2\}$  is a covering of degree 2.
- the push-forward f<sub>\*</sub> q is defined by

$$f_*oldsymbol{q} := \sum_g g^*oldsymbol{q}$$

where g ranges among the inverse branches of f.

 The polar part of *q*<sub>1</sub> and *q*<sub>2</sub> along the cycle are invariant, so that

$$\nabla_f \boldsymbol{q}_1 := \boldsymbol{q}_1 - f_* \boldsymbol{q}_1$$
 and  $\nabla_f \boldsymbol{q}_2 := \boldsymbol{q}_2 - f_* \boldsymbol{q}_2$ 

belong to

$$\operatorname{Vect}\left(\frac{\mathrm{d} z_1^2}{z_1-c_1},\frac{\mathrm{d} z_2^2}{z_2-c_2}\right)$$

(日本) (日本) (日本)

3

### The derivative $\overline{D}_{\lambda_0}\sigma_k$

#### Proposition

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = \operatorname{res}(\nabla_f \boldsymbol{q}_2 \cdot \boldsymbol{\xi}(0_1), f(0_1)) + \operatorname{res}(\nabla_f \boldsymbol{q}_2 \cdot \boldsymbol{\xi}(0_2), f(0_2)).$$

#### and

$$\mathbf{D}_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = -\operatorname{res}(\nabla_f \boldsymbol{q}_1 \cdot \boldsymbol{\xi}(\boldsymbol{0}_1), f(\boldsymbol{0}_1)) - \operatorname{res}(\nabla_f \boldsymbol{q}_1 \cdot \boldsymbol{\xi}(\boldsymbol{0}_2), f(\boldsymbol{0}_2)).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

### The derivative $\overline{D}_{\lambda_0}\sigma_k$

#### Proposition

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = \operatorname{res}(\nabla_f \boldsymbol{q}_2 \cdot \boldsymbol{\xi}(0_1), f(0_1)) + \operatorname{res}(\nabla_f \boldsymbol{q}_2 \cdot \boldsymbol{\xi}(0_2), f(0_2)).$$

#### and

$$D_{\lambda_0}\sigma_2(\boldsymbol{\xi}) = -\operatorname{res}(\nabla_f \boldsymbol{q}_1 \cdot \boldsymbol{\xi}(\boldsymbol{0}_1), f(\boldsymbol{0}_1)) - \operatorname{res}(\nabla_f \boldsymbol{q}_1 \cdot \boldsymbol{\xi}(\boldsymbol{0}_2), f(\boldsymbol{0}_2)).$$

Proof.

$$-\operatorname{res}(\nabla_{f} \boldsymbol{q}_{2} \cdot \boldsymbol{\xi}(0_{1}), f(0_{1})) = -\operatorname{res}(f_{*} \boldsymbol{q}_{2} \cdot \boldsymbol{\xi}(0_{1}), f(0_{1}))$$
$$= -\operatorname{res}(\boldsymbol{q}_{2} \cdot \boldsymbol{\eta}, 0_{1})$$
$$= \sum_{j=1}^{p} \operatorname{res}(\boldsymbol{q}_{2} \cdot \boldsymbol{\eta}, x_{j}).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### Injectivity of $\nabla_f$

To prove that  $D_{\lambda_0}\sigma_2$  and  $D_{\lambda_0}\sigma_3$  are linearly independent, it is enough to prove that  $\nabla_f \boldsymbol{q}_1$  and  $\nabla_f \boldsymbol{q}_2$  are linearly independent.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

To prove that  $D_{\lambda_0}\sigma_2$  and  $D_{\lambda_0}\sigma_3$  are linearly independent, it is enough to prove that  $\nabla_f \boldsymbol{q}_1$  and  $\nabla_f \boldsymbol{q}_2$  are linearly independent.

#### Lemma (Epstein)

 $\nabla_f$  is injective on  $\operatorname{Vect}(\boldsymbol{q}_1, \boldsymbol{q}_2)$ .

Proof. The proof relies on the Contraction Principle: if *V* is compactly contained in  $\mathbb{C} \setminus \langle x \rangle$ , then

$$\int_{V} |f_*\boldsymbol{q}| = \int_{V} \left| \sum_{g} g^* \boldsymbol{q} \right| \leq \int_{V} \sum_{g} |g^* \boldsymbol{q}| = \sum_{g} \int_{V} g^* |\boldsymbol{q}| = \int_{f^{-1}(V)} |\boldsymbol{q}|.$$

ヘロン 人間 とくほ とくほ とう

ъ

# The bifurcation locus for the family $(\lambda z+z^2+10z^3)_{\lambda\in\mathbb{C}}$



### Happy Birthday Jack

Bonifant-Buff-Milnor Perturbations of maps tangent to  $z \mapsto \overline{z}$