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Introduction

We study the dynamical plane and the parameter space of complex
quartic polynomials Pab(z) = Pa(Pb(z)), where Pa(z) = az + z2.

In the real case, this family was introduced by Kot-Schaffer (1984).
They were motivated by the problem of getting some insight about
the growth of a population with two differentiated seasons of
reproduction. They supposed that each season the population
grew according to a logistic model. In this way, the annual
population is given by the composition of two quadratic maps.

They found conditions guaranteeing the existence of an attracting
cycle of period one or two, and how the bifurcation process is
generated in this quartic polynomial family.
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Introduction

Radulescu (2007), using bones and skeletons in the parameter
space (introduced by MacKay and Tresser for bimodal maps),
shows that the entropy is monotone through bones, and the
entropy level-sets in the parameter space are connected.

B-Castellanos-Falconi (2011) give conditions to have
renormalization, and prove that is possible to have coexistence of
regular dynamics (n,m) for all n,m ∈ N.
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Bones in a Quartic Family
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Renormalization in a Quartic Family
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Complex Quartic Family

Let Pold(C) be the set of polynomial maps of degree d ≥ 2. The
group G(C) of affine transformation acts on Pold(C) by
conjugation: g ∈ G(C) and P ∈ Pold(C) yield
g ◦ P ◦ g−1 ∈ Pold(C).

Two polynomials maps of Pold(C) are said to be holomorphically
conjugate if they belong to the same orbit. The quotient space of
Pold(C) under this action is denoted by

Md(C) = Pold(C)/G.

This is called the moduli space of holomorphic conjugacy classes.
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Symmetry Locus

Definition

An automorphism of a polynomial P ∈ Pold(C) is an affine map
ψ ∈ G(C) such that ψ ◦ P ◦ ψ−1 = P.

The collection Aut(P) of all automorphisms of P forms a finite
group which measures how much the action of G on Pd fails to be
free at P.

Definition

The set

Sd = {P ∈ Pold(C) : Aut(P) is non trivial }.

is called the symmetry locus
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G. Blé On a Quartic Polynomial Family



Symmetry Locus

Definition

An automorphism of a polynomial P ∈ Pold(C) is an affine map
ψ ∈ G(C) such that ψ ◦ P ◦ ψ−1 = P.

The collection Aut(P) of all automorphisms of P forms a finite
group which measures how much the action of G on Pd fails to be
free at P.

Definition

The set

Sd = {P ∈ Pold(C) : Aut(P) is non trivial }.

is called the symmetry locus
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Monic and Centered Polynomials

Any polynomial map P ∈ Pold(C) is affinely conjugate to one
which is monic and centered,

P(z) = zd + ad−2zd−2 + · · ·+ a1z + a0.

This normal form is unique up to conjugation by a (d − 1)-th root
of unity.

We denote by Pd , the set of all monic centered polynomials. It
forms a complex (d − 1) dimensional affine space Ad−1 with
coordinates (c0, c1, · · · , cd−2).

We can use Ad , as coordinate space for Md(C), although there
remains the ambiguity up to (d − 1)-th root of unity. The map
from Ad−1 to Pd is a (d − 1)-fold covering of Pd ramified along
the symmetry locus.
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Class under conjugacy

In P4, there are three polynomials in the same class under
conjugacy, and they are conjugate under the affine map
φ(z) = ωz , where ω is a cubic root of unity.

The polynomial

P(z) = z4 + a2z2 + a1z + a0

is conjugate by φ(z) to

Q(z) = z4 + a2ω
2z2 + a1z + a0ω.
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Holomorphic Index

Each P ∈ Pol4(C) has four fixed point z1, z2, z3, z4 ∈ C. We
denoted by µ1, µ2, µ3 and µ4 their respective multipliers. The
holomorphic index of a rational map R at a fixed point z0 ∈ C is
defined as

ι(R, z0) =
1

2πi

∮
dz

z − f (z)
,

where we integrate in a small loop in the positive direction around
z0.
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holomorphic Index

Milnor shows that the index has the following properties:

1 If z0 is a fixed point with multiplier µ 6= 1, then

ι(R, z0) =
1

1− µ
.

2 For any polynomial P which is not the identity map,∑
ζ∈C

ι(P, ζ) = 0,

where this summation is over all fixed points of P.
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Elementary Symmetric Functions

Let σ1, σ2, σ3 and σ4 be the elementary symmetric functions of
these multipliers.

σ1 = µ1 + µ2 + µ3 + µ4,
σ2 = µ1µ2 + µ1µ3 + µ1µ4 + µ2µ3 + µ2µ4 + µ3µ4,
σ3 = µ1µ2µ3 + µ1µ2µ4 + µ1µ3µ4 + µ2µ3µ4,
σ4 = µ1µ2µ3µ4.

4− 3σ1 + 2σ2 − σ3 = 0.
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Elementary Symmetric Functions and Parameters

Let
P(z) = z4 + a2z2 + a1z + a0,

be a monic centered polynomial in Pd .

σ1 = 12− 8a1

σ2 = 4a3
2 − 16a0a2 + 18a2

1 − 60a1 + 48
σ4 = 16a0a4

2 + 4a1a3
2(2− a1) + 16a0a2(9a2

1 − 18a1 + 8)+
−27a4

1 + 108a3
1 − 144a2

1 + 64a1 + 256a3
0.
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Parameters and Elementary Symmetric Functions

Solving the parameters ai ’s in term of σi s

a2 = r ,

a1 =
3

2
− σ1

8
,

a0 =
128r 3 + 24σ1 + 9σ2

1 − 32σ2 − 48

512r
,
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Parameters and Elementary Symmetric Functions

where r is a root of the quadratic polynomial
(Fujimura-Nishizawa-2005):

P2(z) = A2(σ1, σ2, σ4)z2 + A1(σ1, σ2, σ4)z + A0(σ1, σ2, σ4), (1)

and

A2 = 262144(σ1 − 4)2,
A1 = 1024σ1

(
1280− 576σ1 + 27σ3

1 − 144σ1σ2 + 384σ2

)
+1024

(
128σ2

2 − 256σ2 − 512σ4 − 768
)
,

A0 =
(
24σ1 + 9σ2

1 − 32σ2 − 48
)3
.
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Parameters and Elementary Symmetric Functions

There is a natural projection Ψ4 : M4(C)→ C3, defined by

Ψ4 (pa2,a1,a0(z)) = (σ1, σ2, σ4)

From the quadratic poynomial P2, we have that

1 A2 = 0 if and only if σ1 = 4,

2 A2 = A1 = 0 if and only if σ1 = 4 and σ4 =
(σ2 − 4)2

4
.

3 if σ1 = 4 and σ4 =
(σ2 − 4)2

4
, then A0 = (192− 32σ2)3.
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Exceptional Set

The set E4 = {(4, z ,
(z − 4)2

4
) ∈ C3 : z ∈ C} is called the

exceptional set for the quartic polynomial family. It is a complex
curve in C3.

Proposition

Ψ4(M4(C)) = C3 \ E4.
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Symmetry Locus

Proposition

A P ∈ Pol4(C) is in the symmetry locus S4 in C3 if and only if it is
conjugate to a polynomial map in the normal form

P̃a1(z) = z4 + a1z , with a1 ∈ C.

Moreover,

Aut(P̃a1) = {ψ(z) = ωz : ω is a cubic root of unity}

Proposition

The symmetry locus S4 in the parameter space C3 is given by the
complex curve γ : C→ C3, defined as

γ(s) =

(
c ,

3(3s − 4)(s + 4)

32
,
−(3s − 4)3(s − 12)

4096

)
.

G. Blé On a Quartic Polynomial Family



Symmetry Locus

Proposition

A P ∈ Pol4(C) is in the symmetry locus S4 in C3 if and only if it is
conjugate to a polynomial map in the normal form

P̃a1(z) = z4 + a1z , with a1 ∈ C.

Moreover,

Aut(P̃a1) = {ψ(z) = ωz : ω is a cubic root of unity}

Proposition

The symmetry locus S4 in the parameter space C3 is given by the
complex curve γ : C→ C3, defined as

γ(s) =

(
c ,

3(3s − 4)(s + 4)

32
,
−(3s − 4)3(s − 12)

4096

)
.
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Quartic Polynomials

In the quadratic polynomials Pol2(C), we have the family of monic
centered polynomials Pc(z) = z2 + c, c ∈ C, which fixes the
critical point, and the family Pλ(z) = λz + z2, λ ∈ C, which has a
fixed point in zero. For any parameter c ∈ C, there are two
parameters λ1 and λ2, such that Pλ1 , Pλ2 and Pc are affinely
conjugated. We denote by Pc2c1 = Pc2 ◦ Pc1
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Quartic Polynomials

1 The quartic polynomial

Pλ2λ1 = λ1λ2z + λ2z2 + λ2
1z2 + 2λ1z3 + z4

is conjugated to the monic centered polynomial

Q(z) = z4 + (λ2 −
λ2

1

2
)z2 +

λ1(λ3
1 − 4λ1λ2 + 8)

16
,

by the affine map ψ(z) = z − λ1

2
.

2 If c1 =
λ2

2
− λ2

1

4
and c2 =

λ1

2
− λ2

2

4
, then Pc2c1(z) = Q(z).
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Quartic Polynomials

Pc2c1(z) and Pλ2λ1(z) are conjugated to

P(z) = z4 + A2z2 + A0.

We denote this family by P.

Ψ4 sends this family to the subspace {(12, σ2, σ4) ∈ C3}.

We denote by Perk(µ) the set of P ∈ P such that P has a periodic
orbit of period k and multiplier µ.
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G. Blé On a Quartic Polynomial Family



Quartic Polynomials

Pc2c1(z) and Pλ2λ1(z) are conjugated to

P(z) = z4 + A2z2 + A0.

We denote this family by P.

Ψ4 sends this family to the subspace {(12, σ2, σ4) ∈ C3}.

We denote by Perk(µ) the set of P ∈ P such that P has a periodic
orbit of period k and multiplier µ.
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Quartic Polynomials

Remark

If P ∈ P, then it has three critical points, c̃0 = 0, c̃1 =

√
−A2

2

and c̃2 = −
√
−A2

2
. But, P has at most two different dynamics,

since P(c̃1) = P(c̃2) and these two critical points define a same
dynamic for P.

The Per1(0) is defined in three cases, each one of them is
determined by the polynomials fixing c̃j , for j = 0, 1, 2.
If c̃0 = 0 is fixed, we have the following quartic family

Pa(z) = z4 + az2.
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Connectedness Locus for Pa(z) = z4 + az2
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Connectedness Locus for Pa(z) = z4 + az2 +
(a
2

)2

+

√
−a
2
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Connectedness Locus for Pa(z) = z4 + az2 +
(a
2

)2

−
√
−a
2

G. Blé On a Quartic Polynomial Family



Julia Sets

We denote by ca =
√
−a
2 the free critical point and

va = Pa(ca) = −a2

4 .
The filled Julia set Ka consists of the non escaping points, that is,

Ka = {z ∈ C : {Pn
a (z)} is bounded }.

And the Julia set Ja is its boundary.
Let C be the connectedness locus of this family, i.e.

C = {a ∈ C : Ka is connected}
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Julia Sets

We can partition the plane in two loci: C and its complement C∞
which consist of the parameters a such that the critical point ca is
attracted by infinity. Moreover, the connectedness locus C can be
partitioned in hyperbolic components which are given by the
hyperbolic parameters.

W =
{

a ∈ C : ca ∈ B̃a

}
,

where B̃a is the basin of attraction of zero.
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Böttcher’s Coordinate

Remark

Int(Ka) 6= ∅, for all a ∈ C because B̃a ⊂ Ka.

We denote by Ba the immediate basin of 0. In particular, if c̃1 /∈ Ba

then the map Pa|Ba is conjugated to z2 on D, else Ba = B̃a.

By Böttcher’s Theorem, there are conformal isomorphisms
φ∞a : U∞a → V∞a , φ0

a : U0
a → V 0

a , such that,

φ∞a ◦ Pa = (φ∞a )4 on U∞a and φ0
a ◦ Pa =

(
φ0
a

)2
, on U0

a ,

with φ∞a tangent to identity near to infinity. And φ0
a tangent to az

near to 0.
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Symmetries

Let τ(z) = e
2πi

3 z and σ(z) = z . In the family Pa, the rotation τ is
a conformal conjugation between two polynomials Pa and Pa′ .
Explicitly we have that Pa(τz) = τPτa(z). Moreover, Pa is
conjugated to Pa by σ. Hence, we have that a “fundamental
domain” for the family Pa is

D =

{
a ∈ C : 0 ≤ arg(a) ≤ 1

6

}
.

Remark

The sets C, W and H∞, admit the maps σ and τ as symmetries.
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Symmetries

Proposition

The set H∞ is a connected component of hyperbolic parameters
and W0 is exactly

W0 = {a ∈ C : ca ∈ Ba} .

Wk = {a ∈ C : Pk
a (va) ∈ Ba and Pk−1

a (va) /∈ Ba}.

Remark

W = ∪k≥0Wk .
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Hyperbolic Components

Proposition

The component H∞ and any connected component of W are
simply connected.

We denote by Ψ0 :W0 → D and Ψ∞ :W∞ → C \ D, the
conformal representation tangent to the identity at 0 and ∞,
respectively.

Proposition

The set Wk is invariant by the complex involution σ and the
rotation τ.
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Hyperbolic Components

Proposition

Ψw (σa) = σΨw (a) and Ψw (τa) = τΨw (a), for w = 0 or ∞.

If ρ = e
πi
3 , then the line R+ρ cut C in a connected set.

Consequently, τk(R+ρ) ∩ C, is connected for k = 1, 2.

Wk ∩ R+ is connected.
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G. Blé On a Quartic Polynomial Family



Böttcher Maps

Proposition

If a and τa are in C \ R−, then the Böttcher maps satisfy the
following relation:

σ
(
φwσ(a)(σ(z))

)
= φwa (z) = κw (a)φwτa(

z

τ
),

with w ∈ {0,∞}, κ∞(a) = τ and κ0(a) =
λ(a)

τλ(τa)
. Moreover the

rays at parameter a, τa and σ(a) satisfy the relations:

Rw
σ(a)(t) = σ(Rw

a (−t)) and Rw
τa(t) = τRw

a (t + tw (a)),

where tw (a) = arg(κw (a)).
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Hyperbolic Components

Theorem

The map Φ∞ : W∞ → C \ D defined as

Φ∞(a) = φ∞a (va)

is a holomorphic covering map.

Proposition

The map
Φ0(a) = φ0

a(va)

is well defined on W0 \ R−.
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Hyperbolic Components

Theorem

Let U be a connected component of Wk with k > 0 included in
C \ R−. The map ΦU : U → D defined as

ΦU (a) = φ0
a

(
Pk
a (va)

)
is a conformal isomorphism.
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Green’s Function

The Green function is defined on U∞a as

G∞a (z) = log |φ∞a (z)|.

The equipotential of level r > 0, Ew
a , for w = 0,∞ is the curve

(Gw
a )−1(r). A ray Rw

a (t), of angle t ∈ R/Z is (φwa )−1(R+e2πit).
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External Rays

Proposition

Let a0 ∈ C, w = 0, or ∞, and t ∈ Q/Z. If the ray Rw
a0

lands, then
it lands at an eventually periodic point which is repelling or
parabolic.

Theorem

Let a ∈ C be a parameter such that Ja is connected. For every
eventually periodic point of Pa that is repelling or parabolic, there
exists a rational angle t such that R∞a lands at this point.

Theorem

The boundary of every connected component of W is a Jordan
curve.
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Julia Sets

The quartic polynomial

Pλ2λ1 = λ1λ2z + λ2z2 + λ2
1z2 + 2λ1z3 + z4

is conjugated to the monic centered polynomial

Q(z) = z4 + (λ2 −
λ2

1

2
)z2 +

λ1(λ3
1 − 4λ1λ2 + 8)

16
.

We have at least three different pairs (λj1, λ
j
2), such that

P
λj2λ

j
1

= Pλk2λk1
, for j , k = 1, 2, 3.

If λj = e2πθj and θj ∈ R/Z, for j = 1, 2, then zero is an indifferent
point for Pλ1 , Pλ2 and Pλ2λ1 .
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(a) P(z) = z4 + (
√
−2 + 1)z2 + 1

7

(b) 0.29252+0.08038i (c) 1.03955+1.4377i
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(d) P(z) = z4 + (
√
−2 + 1)z2 + 1

7

(e) -1.49644+2.71284i (f) -1.56008-
2.64540i
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(g) P(z) = z4 + (
√
−2 + 1)z2 + 1

7

(h) 0.26051-1.48545i (i) -0.06934+1.02723i
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(j) P(z) = z4 + (
√
−2 + 1)z2 +

1

7

(k) 0.94341-1.30777i (l) 0.58987+0.18044i

Figure: Conjunto de Julia llenoG. Blé On a Quartic Polynomial Family



(a) P(z) = z4 + (−2.108893535 +
.3570353803i)z2 + 0.09068800125− .2909712453i

(b) 3.27449-.13815i (c) 3.24272-0.09533i
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(d) P(z) = z4 + (−2.108893535 +
.3570353803i)z2 + 0.09068800125− .2909712453i

(e) -1.59397+0.34655i (f) -.89857-.19536i
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(g) P(z) = z4 + (−2.108893535 +
.3570353803i)z2 + 0.09068800125− .2909712453i

(h) -1.95833+0.16343i (i) -.20471+0.03696i
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(j) P(z) = z4+(−2.108893535+.3570353803i)z2+
0.09068800125− .2909712453i

(k) 0.27780-.37184i (l) -2.13943+0.25373i

Figure: Conjunto de Julia lleno
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(a) P(z) = z4 +(1.133545861−1.631833500i)z2 +
0.7465710888e − 1 + .1052770533i

(b) 0.35423+0.48025i (c) 1.08096-1.46171i
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(d) P(z) = z4 +(1.133545861−1.631833500i)z2 +
0.7465710888e − 1 + .1052770533i

(e) 0.28484+0.39480i (f) 1.09617-1.51937i
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(g) P(z) = z4 +(1.133545861−1.631833500i)z2 +
0.7465710888e − 1 + .1052770533i

(h) .9114+1.98533i (i) -.42184+0.17774i
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(j) P(z) = z4 + (1.133545861− 1.631833500i)z2 +
0.7465710888e − 1 + .1052770533i

(k) -1.55054-2.86039i (l) -1.75529+2.80334i

Figure: Conjunto de Julia lleno
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(a) P(z) = z4 +(e2iπ(
√

5
2
− 1

3
)− 1

2
(e2iπ(

√
5

2
− 1

2
))2)z2 +

1
16
e2iπ(

√
5

2
− 1

2
)((e

2iπ(

√
5

2
− 1

2
)
)3−4e

2iπ(

√
5

2
− 1

2
)
e

2iπ(

√
5

2
− 1

3
)
+8)

(b) -.73736-.6754i (c) 0.21630-.97632iG. Blé On a Quartic Polynomial Family



(d) P(z) = z4 +(e2iπ(
√

5
2
− 1

3
)− 1

2
(e2iπ(

√
5

2
− 1

2
))2)z2 +

1
16
e2iπ(

√
5

2
− 1

2
)((e

2iπ(

√
5

2
− 1

2
)
)3−4e

2iπ(

√
5

2
− 1

2
)
e

2iπ(

√
5

2
− 1

3
)
+8)

(e) 2.26957+0.90870i (f) 2.33520+0.58796iG. Blé On a Quartic Polynomial Family



(g) P(z) = z4 +(e2iπ(
√

5
2
− 1

3
)− 1

2
(e2iπ(

√
5

2
− 1

2
))2)z2 +

1
16
e2iπ(

√
5

2
− 1

2
)((e

2iπ(

√
5

2
− 1

2
)
)3−4e

2iπ(

√
5

2
− 1

2
)
e

2iπ(

√
5

2
− 1

3
)
+8)

(h) 0.01563+1.90357i (i) -1.63907-1.44463iG. Blé On a Quartic Polynomial Family



(j) P(z) = z4 + (e2iπ(
√

5
2
− 1

3
) − 1

2
(e2iπ(

√
5

2
− 1

2
))2)z2 +

1
16
e2iπ(

√
5

2
− 1

2
)((e

2iπ(

√
5

2
− 1

2
)
)3−4e

2iπ(

√
5

2
− 1

2
)
e

2iπ(

√
5

2
− 1

3
)
+8)

(k) -1.54784-2.13678i (l) -.91242+1.83300i

Figure: Conjunto de Julia lleno
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(a)

(b) − i
√

3
2

+ 1
2
+ i +

√
3 (c) 1

2
− i + i

√
3

2
+
√
3
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(d)

(e) − i
√

3
2
−
√
3 + 1

2
− i (f) 1

2
+ i + i

√
3

2
−
√
3
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(g)

(h) − 1
2
+ i
√

3
2

(i) − 1
2
− i
√

3
2

Figure: Conjunto de Julia llenoG. Blé On a Quartic Polynomial Family
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Thanks

Happy Birthday Jack
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