
On the work of Igor Frenkel

Introduction
by Pavel Etingof

Igor Frenkel is one of the leading representation theorists and mathe-
matical physicists of our time. Inspired by the mathematical philosophy
of Herman Weyl, who recognized the central role of representation the-
ory in mathematics and its relevance to quantum physics, Frenkel made
a number of foundational contributions at the juncture of these fields.
A quintessential mathematical visionary and romantic, he has rarely fol-
lowed the present day fashion. Instead, he has striven to get ahead of
time and get a glimpse into the mathematics of the future – at least a
decade, no less. In this, he has followed the example of I. M. Gelfand,
whose approach to mathematics has always inspired him. He would often
write several foundational papers in a subject, and then leave it for the
future generations to be developed further. His ideas have sometimes
been so bold and ambitious and so much ahead of their time that they
would not be fully appreciated even by his students at the time of their
formulation, and would produce a storm of activity only a few years later.
And, of course, as a result, many of his ideas are still waiting for their
time to go off.

This text is a modest attempt by Igor’s students and colleagues of vari-
ous generations to review his work, and to highlight how it has influenced
in each case the development of the corresponding field in subsequent
years.

1 Contributions of Igor Frenkel to the rep-

resentation theory of affine Lie algebras

by Alistair Savage and Anthony Licata

Among infinite-dimensional Lie algebras, it is the theory of affine Lie
algebras that is the richest and most well understood. Igor Frenkel’s
contributions to this subject are both numerous and diverse, and his are
among the deepest and most fundamental developments in the subject.
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These contributions began in his 1980 Yale University thesis, the core
of which was later published in the paper [Fth]. In his thesis, Frenkel
adapts the orbital theory of A. A. Kirillov to the setting of affine Lie
algebras, giving, in particular, a formula for the characters of irreducible
highest weight representations in terms of orbital integrals. The technical
tools required for Frenkel’s orbital theory include a tremendous amount of
interesting mathematics, including “the Floquet theory of linear differen-
tial equations with periodic coefficients, the theory of the heat equation
on Lie groups, the theories of Gaussian and Wiener measures, and of
Brownian motion.” (Quote from the MathSciNet review of [Fth]). Thus
Frenkel’s thesis gives one of the early examples of a central theme in the
theory of affine Lie algebras, namely, the rich interaction between their
representation theory and the rest of mathematics.

A fundamental contribution of Frenkel to infinite-dimensional repre-
sentation theory came in his joint paper with Kac [FK80]. In this paper,
the authors formally introduced vertex operators into mathematics, and
used them to give an explicit construction of the basic level one irreducible
representation of a simply-laced affine Lie algebra. (A very similar con-
struction was given independently around the same time by Segal [S]). In
important earlier work, Lepowsky-Wilson [LW] gave a twisted construc-

tion of the basic representation for ŝl2, and this twisted construction
was then generalized to other types by Kac-Kazhdan-Lepowsky-Wilson
[KKLW]. Vertex operators themselves had also been used earlier in the
dual resonance models of elementary particle physics. But it was the
ground-breaking paper of Frenkel and Kac that developed their rigorous
mathematical foundation, and established a direct link between vertex
operators and affine Lie algebras. Thus began the mathematical subject
of vertex operator algebras, a subject which has had profound influence
on areas ranging from mathematical physics to the study of finite simple
groups. Frenkel also gave closely related spinor constructions of funda-
mental representations of affine Lie algebras of other types in [FPro].

Another important example of Frenkel’s work at the interface of affine
Lie algebras and mathematical physics is his work on the boson-fermion
correspondence [Fre81]. In the course of establishing an isomorphism
between two different realizations of simply-laced affine Lie algebras, he
realized that his result could be reformulated in the language of quantum
field theory, implying an equivalence of physical models known to physi-
cists as the boson-fermion correspondence. This paper was the first on
the connection between infinite dimensional Lie algebras and 2d confor-
mal field theory. Also, in [FF85], Feingold and Frenkel obtained bosonic
and fermionic constructions of all classical affine Lie algebras. Further re-
lated but independently important developments appeared in [Fre85] and
in [Flr], where Frenkel established what is now known as level-rank duality
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for representations of affine Lie algebras of type A, and obtained upper
bounds for root multiplicities for hyperbolic Kac-Moody algebras apply-
ing the no-ghost theorem from physics. In another paper with Feingold,
[FF83], Frenkel suggested a relation between hyperbolic Kac-Moody al-
gebras and Siegal modular forms, which was further studied in the works
of Borcherds and Gritsenko-Nikulin.

The relevance of affine Lie algebras and their representation theory
was highlighted by Frenkel in his invited address, entitled “Beyond affine
Lie algebras”, at the 1986 ICM in Berkeley ([FBa]). Since then, his
foundational work in and around the subject of affine Lie algebras has
been extremely influential in other areas, perhaps most notably in vertex
algebra theory, in the representation theory of quantum groups, and in
geometric representation theory and categorification. Frenkel’s work on
affine Lie algebras comprises his first major contributions to mathematics,
and the fundamental nature of this work has been repeatedly confirmed
by the relevance of affine Lie algebras and their representation theory in
both mathematics and mathematical physics.

2 Igor Frenkel’s work on the quantum Knizhnik-

Zamolodchikov equations

by Pavel Etingof

In 1984 Knizhnik and Zamolodchikov studied the correlation functions
of the Wess-Zumino-Witten (WZW) conformal field theory, and showed
that they satisfy a remarkable holonomic system of differential equations,
now called the Knizhnik-Zamolodchikov (KZ) equations. Soon afterwards
Drinfeld and Kohno proved that the monodromy representation of the
braid group arising from the KZ equations is given by the R-matrices of
the corresponding quantum group, and Schechtman and Varchenko found
integral formulas for solutions of the KZ equations. At about the same
time, Tsuchiya and Kanie proposed a mathematically rigorous approach
to the WZW correlation functions, by using intertwining operators be-
tween a Verma module over an affine Lie algebra and a (completed) tensor
product of a Verma module with an evaluation module:

Φ(z) : Mλ,k −→ Mµ,k⊗̂V (z).

Namely, they proved that highest matrix elements of products of such
operators (which are the holomorphic parts of the correlation functions of
the WZW model) satisfy the KZ equations. This construction can be used
to derive the Drinfeld-Kohno theorem, as it interprets the monodromy
of the KZ equations in terms of the exchange matrices for intertwining
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operators Φ(z), which are twist equivalent (in an appropriate sense) to
the R-matrices of the quantum group.

This set the stage for the pioneering paper by I. Frenkel and N.
Reshetikhin [FR], which was written in 1991 (see also the book [EFK]
based on lectures by I. Frenkel, which contains a detailed exposition of
this work). In this groundbreaking work, Frenkel and Reshetikhin pro-
posed a q-deformation of the theory of WZW correlation functions, KZ
equations, and their monodromy, and, in effect, started the subject of
q-deformed conformal field theory, which remains hot up to this day 1.
Namely, they considered the intertwining operators Φ(z) for quantum
affine algebras, and showed that highest matrix elements of their prod-
ucts, 〈Φ1(z1)....Φn(zn)〉, satisfy a system of difference equations, which
deform the KZ equations; these equations are now called the quantum
KZ equations. They also showed that the monodromy of the quantum
KZ equations is given by the exchange matrices for the quantum inter-
twining operators, which are elliptic functions of z, and suggested that
such matrices should give rise to ”elliptic quantum groups”.

This work had a strong influence on the development of representration
theory in the last 20 years, in several directions.

First of all, the quantum KZ equations arose in several physical con-
texts (e.g., form factors of F. Smirnov, or solvable lattice models consid-
ered by Jimbo, Miwa, and their collaborators).

Also, Felder, Tarasov, and Varchenko, building on the work of Mat-
suo, generalized the Schectman-Varchenko work to the q-case, and found
integral formulas for solutions of the quantum KZ equations.

At about the same time, G. Felder proposed the notion of elliptic
quantum groups based on the dynamical Yang-Baxter equation, which
is satisfied by the exchange matrices. This theory was further developed
by Felder, Tarasov, and Varchenko, and also by Etingof-Varchenko, who
proposed a theory of dynamical quantum groups and dynamical Weyl
groups (generalizing to the q-case the theory of Casimir connections).

Another generalization of the quantum KZ equation, corresponding to
Weyl groups, was considered by Cherednik, and this generalization led
to his proof of Macdonald’s conjectures and to the discovery of double
affine Hecke algebras, also called Cherednik algebras, which are in the
center of attention of representation theorists in the past 15 years.

Yet another generalization is the theory of elliptic quantum KZ equa-
tions (or quantum Knizhnik-Zamolodchikov-Bernard equations), which
was developed in the works of Etingof, Felder, Schiffmann, Tarasov, and
Varchenko.

1We note that q-deformation of some structures of conformal field theory, namely
the vertex operator construction of [FK80], was already considered in an earlier paper,
[FJ88].
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The paper [FR] also served as a motivation for Etingof, Schedler,
and Schiffmann in their consruction of explicit quantization of all non-
triangular Lie bialgebra structures on simple Lie algebras (classified by
Belavin and Drinfeld) and to Etingof and Kazhdan in their work on
quantization of Lie bialgebras associated to curves with punctures.

Finally, the ideas of this paper played an important role in the work of
Etingof and Kirillov Jr. on the connection between Macdonald polynomi-
als and quantum groups, and their definition of affine Macdonald polyno-
mials, and in a generalization of this work by Etingof and Varchenko (the
theory of traces of intertwining operators for quantum groups). These
structures and functions are now arising in algebraic geometry (e.g. the
work of A. Negut on integrals over affine Laumon spaces). Also, quan-
tum KZ equations and q-Casimir connections are expected to arise in the
study of quantum K-theory of quiver varieties.

3 Igor Frenkel’s ideas and work on double

loop groups

by Pavel Etingof

Around 1990, when the loop algebra/quantum group revolution of the
1980s and early 1990s had reached its culmination, Igor Frenkel suggested
that the next important problem was to develop a theory of double loop
algebras. More specifically, he proposed a philosophy of three levels in
Lie theory (and thereby in mathematics in general), illustrated by the
following diagram:

̂̂g Uq(ĝ) Eq,τ (g)

g

ĝ Uq(g)

In this diagram, the left downward arrows stand for affinization (tak-
ing loops), and the right downward arrows stand for quantization (q-
deformation). The first level represents “classical” Lie theory, i.e., the
structure and representation theory of complex semisimple Lie groups
and Lie algebras. The second level represents affine Lie algebras and
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quantum groups, i.e., structures arising in 2-dimensional conformal and
3-dimensional topological field theory. The connection between them,
depicted by the horizontal arrow, is the Drinfeld-Kohno theorem on the
monodromy of the KZ equations, which is a part of the Kazhdan-Lusztig
equivalence of categories. Finally, the third level is supposed to represent
double affine Lie algebras, quantum affine algebras, and double (or ellip-
tic) quantum groups. These three levels are supposed to correspond to
discrete subgroups of the complex plane of ranks 0,1,2, respectively, and
higher levels are not supposed to exist in the same sense because there
are no discrete subgroups of C of rank > 2. 2

At the time this philosophy was formulated, there wasn’t much known
about the third level of the diagram. Specifically, while quantum affine al-
gebras were being actively studied, and Igor Frenkel’s work with Reshetikhin
on quantum KZ equations (subsequently developed by Felder, Tarasov,
Varchenko, and others) shed a lot of light on what elliptic quantum groups
and the quantum Drinfeld-Kohno theorem should be, the left lower corner
of the diagram – the double loop algebras – remained mysterious. Yet,
Igor insisted that this corner is the most important one, and that the
study of double loops holds a key to the future of representation theory.

To develop the theory of double loop groups following the parallel
with ordinary loop groups, one has to start with central extensions. This
direction was taken up in our joint paper [EtF], where we constructed
the central extension of the group of maps from a Riemann surface to
a complex simple Lie group by the Jacobian of this surface (i.e., for
genus 1, by an elliptic curve), and showed that the coadjoint orbits of
this group correspond to principal G-bundles on the surface. This work
was continued in the paper [FrKh], which extends to the double loop
case the Mickelsson construction of the loop group extension by realizing
the circle as a boundary of a disk, and then realizing a union of two such
disks as a boundary of a ball. Namely, the circle is replaced by a complex
curve (Riemann surface), the disk by a complex surface, and the ball by a
complex threefold; then a similar formula exists, in the context of Leray’s
residue theory instead of De Rham theory. This work led to subsequent
work by Khesin and Rosly on polar homology, as well as to the work
of Frenkel and Todorov on a complex version of Chern-Simons theory,
[FTo]. In this latter work, they start to develop the complex version
of knot theory, in which the role of the 3-sphere is played by a Calabi-
Yau threefold, and the role of the circle is played by a complex curve.
In particular, these works led to a definition of the holomorphic linking
number between two complex curves in a Calabi-Yau threefold, which is a

2I must admit that initially I did not take this philosophy too seriously, and we
used the diagram in a Holiday party skit. However, with time it acquired quite a few
concrete mathematical incarnations, and, ironically, defined much of my own work.
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complex analog of the classical Gauss linking number, previously studied
by Atiyah in the case of CP1.

In spite of this progress, however, it is still not clear what the repre-
sentation theory of central extensions of double loop groups should be
like. Perhaps we don’t yet have enough imagination to understand what
kind of representations (or maybe analogous but more sophisticated ob-
jects) we should consider, and this is a problem for future generations of
mathematicians.

4 Igor Frenkel’s work on Vertex Operator

Algebras

by John Duncan

The (normalised) elliptic modular invariant, denoted J(τ), is the unique
SL2(Z)-invariant holomorphic function on the upper-half plane H with
the property that J(τ) = q−1 + O(q) for q = e2πiτ . In the late 1970’s
McKay and Thompson made stunning observations relating the coeffi-
cients of the Fourier expansion

J(τ) = q−1 +
∑

n>0

c(n)qn (1)

of J(τ) to the dimensions of the irreducible representations of the (then
conjectural) Monster sporadic simple group. This led to the conjecture
[Tho79b] that there is a naturally defined infinite-dimensional represen-
tation

V = V−1 ⊕ V1 ⊕ V2 ⊕ · · · (2)

for the Monster group with the property that dimVn = c(n). Considera-
tion [Tho79a] of the functions Tg(τ) obtained by replacing dimVn = tr|Vne
with tr|Vng for g in the Monster led to the birth of monstrous moonshine
and the monstrous game of Conway–Norton [CN79]. Thus, for the elu-
cidation of monstrous moonshine, it became an important problem to
construct such a representation—a moonshine module for the monster—
explicitly. Igor Frenkel’s pioneering work on vertex representations of
affine Lie algebras, such as appears in [FK80, Fre81, Fre85, FF85], fur-
nished important foundations for the work [FLM84, FLM85, FLM88]
that would eventually realise this goal.

In [Gri82] Griess constructed the Monster group explicitly as the auto-
morphism group of a certain commutative non-associative finite-dimensional
algebra, thereby establishing its existence. The great insight of Frenkel–
Lepowsky–Meurman was to recognise this algebra as a natural analogue
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of a simple finite dimensional complex Lie algebra g, viewed as a subalge-
bra of its affinization ĝ. Identifying Griess’s algebra with (a quotient of)
V1 they attached vertex operators to the elements of this space and used
them in [FLM84, FLM85] (see also [FLM88]) to recover the Griess alge-
bra structure. In this way the non-associativity of the finite-dimensional
Griess algebra was replaced with the associativity property of vertex op-
erators.

The Frenkel–Lepowsky–Meurman construction [FLM84, FLM85] of
the moonshine module V utilised the Leech lattice in much the same
way as the root lattice of a Lie algebra of ADE type had been used to
construct its basic representation in [FK80], but an important twisting
procedure was needed in order to ensure the vanishing of the subspace V0

in (2). This procedure (realised in full detail in [FLM88]) turned out to
be the first rigorously constructed example of an orbifold conformal field
theory and thus represented a significant development for mathematical
physics.

Building upon the work of [FLM84, FLM85], Borcherds discovered a
natural way to attach vertex operators to all elements of V , and several
other examples, in [Bor86] and used this to define the notion of ver-
tex algebra, which has subsequently met many important applications
in mathematics and mathematical physics. The closely related notion
of vertex operator algebra (VOA) was introduced in [FLM88]. A VOA
comes equipped with a representation of the Virasoro algebra, and this
hints at the importance of VOAs in conformal field theory. The central
charge of the Virasoro representation attached to a VOA is called its rank,
and a VOA is called self-dual if it has no irreducible modules other than
itself. According to [FLM88] the Monster group can be characterised
(conjecturally) as the automorphism group of the (conjecturally unique)
self-dual VOA V $ =

⊕
n∈Z

V $
n of rank 24 satisfying V $

n = 0 for n < −1,

V $
−1 ' C and V $

0 = 0.
Important axiomatic foundations for the study of VOAs appeared in

[FHL93] and in [FZ92] Frenkel–Zhu established the importance of VOAs
in the representation theory of affine Lie algebras and the Virasoro al-
gebra, and the Wess–Zumino–Witten model of mathematical physics.
The notion of VOA was generalised and applied—simultaneously—to the
affine E8 Lie algebra and Chevalley’s exceptional 24-dimensional algebra
(arising from triality for D4) in [FFR91].

The moonshine module V $ exemplifies a close connection between
VOAs and modular forms. Frenkel conjectured (cf. [Zhu96]) that the
graded dimensions of irreducible modules over a rational VOA (being a
VOA having finitely many irreducible modules up to isomorphism) should
span a representation of the modular group SL2(Z). Y. Zhu added an
important co-finiteness condition and subsequently proved the modular-

8



ity conjecture for VOAs in his Ph.D. thesis [Zhu90] which was written
under the supervision of Igor Frenkel. The subsequent article [Zhu96]
remains one of the most influential works in the VOA literature.

Frenkel–Jing–Wang gave a completely new VOA construction of the
affine Lie algebras of ADE type via the McKay correspondence in [FJW00b]
and they derived a quantum version of this construction in [FJW00a].
These works also furnish vertex operator representations for classical
and quantum toroidal algebras; related work appears in [FJ88, FW01,
FJW02].

The semi-infinite cohomology of infinite dimensional Lie algebras is an
area of research with important applications in string theory. In [FGZ]
Frenkel–Garland–Zuckerman established a profound connection between
the semi-infinite cohomology of the Virasoro algebra, introduced by Fei-
gin [Fei84], and free bosonic string theories. Later, Frenkel–Styrkas es-
tablished VOA structures on the modified regular representations of the
Virasoro algebra and the affine Lie algebra of type Â1 and computed
their semi-infinite cohomology. Their work was extended to arbitrary
affine Lie algebras by M. Zhu in her Ph.D. thesis (see [Zhu08]) using the
Knizhnik–Zamolodchikov equations, and she also related this to earlier
work [GMS01, AG02] on chiral differential operators. VOA structures
on modified regular representations of the Virasoro algebra have been
studied further using the Belavin–Polyakov–Zamolodchikov equations in
[FZ12]. Braided VOA structures were used to recover the full quantum
group SLq(2) from the semi-infinite cohomology of the Virasoro algebra
with values in a suitably constructed module in [FZ10]. Beyond further
demonstration of the importance of vertex operators in mathematics and
mathematical physics this work promises deep consequences for the geo-
metric and string theoretic understanding of quantum groups.

5 Igor Frenkel’s work on Three Dimensional

Quantum Gravity

by John Duncan

The most powerful feature of monstrous moonshine is the fact that each
McKay–Thompson series Tg(τ) =

∑
n(tr|V !

n
g)qn for g in the Monster

group (where V $ =
⊕

n V $
n is the moonshine module VOA) has the fol-

lowing genus zero property: that if Γg < PSL2(R) is the invariance group
of Tg then Tg is a generator for the field of Γg-invariant holomorphic func-
tions on the upper-half plane H. This result was proven by Borcherds
in [Bor92] but a conceptual explanation of the phenomenon is yet to be
fully elucidated.

In [Wit07] Witten considered the genus one partition function of pure
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quantum gravity in three dimensions and investigated possible connec-
tions with the Monster group, and related work in [MW10] suggested that
the genus one partition function of such a theory might be expressible
as a sum over certain solid torus geometries (which had appeared earlier
in a string-theoretic setting [MS98, DMMV00]). Frenkel observed that
the partition function of a chiral version of this (conjectural) quantum
gravity theory (such as was considered in [LSS08]) should coincide with
a Poincaré series-like expression—called a Rademacher sum—for the el-
liptic modular invariant J(τ) which was derived by Rademacher [Rad39]
in 1939. He saw the potential for this as a mechanism for explaining the
genus zero property of monstrous moonshine, and substantial progress
towards this goal was achieved in [DF11] where it was established that
the Rademacher sum RΓ(τ) attached to a discrete group Γ < PSL2(R)
has the genus zero property—i.e. is a generator for the field of Γ-invariant
functions on H—if and only if it is itself Γ-invariant. This result indi-
cates a strong connection between 3-dimensional quantum gravity and
monstrous moonshine, for it demonstrates than in the context of quan-
tum gravity, the modular invariance of (twisted) partition functions, nec-
essary for physical consistency, implies that they have the fundamental
genus zero property.

The reformulation of the genus zero property obtained in [DF11] has
already found important applications in related areas. In particular, it
was applied in [CD11] to the moonshine-like phenomena observed by
Eguchi–Oogui–Tachikawa [EOT] relating the largest Mathieu group M24

to the elliptic genus of a K3 surface and used there to obtain a uniform
construction of the McKay–Thompson series attached to M24 in terms of
Rademacher sums. The very fact of this construction elucidates the cor-
rect formulation of the genus zero property in the M24 case: The graded
trace functions arising from the conjectural M24-module underlying the
M24/K3 observation should coincide with the Rademacher sums attached
to their variance groups. In addition to this the result of [CD11] indi-
cates an important rôle for quantum gravity in the M24/K3 story. More
applications of the approach developed in [DF11] to moonshine both
monstrous and otherwise can be expected.

Finer properties of the Rademacher sums RΓ(τ) were used to give a
quantum gravity partition function based characterisation (reformulated
from [CMS04]) of the functions of monstrous moonshine in [DF11], and
observations were also made relating the Rademacher sum construction
to certain generalised Kac–Moody Lie algebras closely related to those
utilised by Borcherds in his proof of the moonshine conjectures in [Bor92].
Motivated by this conjectures were formulated in [DF11] which identify
the Monster as the symmetry group of a certain distinguished chiral 3-
dimensional quantum gravity and specify the rôle of Rademacher sums
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in recovering the twisted partition functions of this theory and its second
quantisation. Beyond monstrous moonshine, the further elucidation of
this conjectural quantum gravity theory remains a fertile area for research
that promises deep applications in algebra, geometry and mathematical
physics.

6 Igor Frenkel’s Contribution to Quater-

nionic Analysis

by Matvei Libine

The history of quaternionic analysis began on 16 October 1843 when
an Irish physicist and mathematician William Rowan Hamilton (1805-
1865) discovered the algebra of quaternions H = R1 ⊕ Ri ⊕ Rj ⊕ Rk.
He was so excited by that discovery that he carved the defining relations
on a stone of Dublin’s Brougham Bridge. After that W. R. Hamilton
devoted the remaining years of his life developing the new theory which
he believed would have profound applications in physics. But one had to
wait another 90 years before von Rudolf Fueter [F1, F2] produced a key
result of quaternionic analysis, an exact quaternionic counterpart of the
Cauchy integral formula

f(w) =
1

2πi

∮
f(z) dz

z − w
.

Since then quaternionic analysis has generated a lot of interest among
mathematicians and physicists, many results were extended from com-
plex analysis to quaternionic analysis. For example, there is a quater-
nionic analogue of the Poisson formula for harmonic functions on H. The
spaces of harmonic and (left or right) regular functions are invariant un-
der the conformal (fractional linear) action of the group SL(2, H). There
is a notion of the quaternionic cross-ratio which is very similar to the
complex cross-ratio. See, for example, [Su] for a contemporary review
of quaternionic analysis. There were also found many applications to
physics (see, for instance, [GT]).

Unfortunately, this promising parallel between complex and quater-
nionic analysis essentially ends here. The difficulty seems to be in the
non-commutative nature of quaternions. As a consequence, unlike the
complex analytic case, the product or composition of two quaternionic
regular functions is almost never regular. Such difficulties have discour-
aged mathematicians from working with quaternionic regular functions
and developing a satisfactory theory of functions of quaternionic variable.

Igor Frenkel’s groundbreaking idea was to approach quaternionic anal-
ysis from the point of view of representation theory of the conformal
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group SL(2, H) and its Lie algebra sl(2, H). While some aspects of rep-
resentation theory of compact groups were used in quaternionic analysis
before, using representation theory of non-compact reductive Lie groups
is entirely new. This approach has been proven very fruitful and resulted
in a series of fundamental papers [FL1, FL2, FL3] pushing further the
parallel with complex analysis. In the course of developing this rich and
beautiful theory Igor Frenkel found some very striking connections be-
tween quaternionic analysis and some of the most fundamental objects
of the four dimensional classical and quantum field theories.

To give an example of such a connection between quaternionic analysis
and physics, let us recall that Feynman diagrams are a pictorial way of
describing integrals predicting possible outcomes of interactions of sub-
atomic particles in the context of quantum field physics. As the number
of variables which are being integrated out increases, the integrals be-
come more and more difficult to compute. But in the cases when the
integrals can be computed, the accuracy of their prediction is amazing.
Many of these diagrams corresponding to real-world scenarios result in
integrals that are divergent in the mathematical sense. Physicists have a
collection of competing techniques called “renormalization” of Feynman
integrals which “cancel out the infinities” coming from different parts
of the diagrams. After renormalization, calculations using Feynman di-
agrams match experimental results with very high accuracy. However,
these regularization techniques appear very suspicious to mathematicians
(do you get the same result if you apply a different technique?) and at-
tract criticism from physicists as well. Thus it is highly desirable to find
an intrinsic mathematical meaning of Feynman diagrams, most likely in
the context of representation theory.

Feynman diagrams

In [FL1] Igor Frenkel found surprising representation-theoretic inter-
pretations of some of the two most fundamental Feynman diagrams. The
left figure shows the Feynman diagram for vacuum polarization which is
responsible for the electric charge renormalization. This diagram appears
in the quaternionic analogue of the Cauchy formula for the second order
pole, which in turn can be related to the Maxwell equations for the gauge
potential:

−→
∇ ·

−→
B = 0

−→
∇ ·

−→
E = 0

−→
∇ ×

−→
B = ∂

−→
E
∂t

−→
∇ ×

−→
E = −∂

−→
B
∂t ,

where
−→
B and

−→
E are three-dimensional vector functions on R4 (called
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respectively the magnetic and electric fields) and
−→
∇ =

(
∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

)
, as

usual.
The right figure shows the one-loop Feynman diagram which expresses

the hyperbolic volume of an ideal tetrahedron, and is given by the dilog-
arithm function. This diagram was identified with a projector onto the
first irreducible component of a certain representation H⊗H of SU(2, 2).

Ladder diagrams

Furthermore, Igor Frenkel has made a conjecture (which is still open)
that the so-called “ladder diagrams” correspond to projectors onto the
other irreducible components of that representation H ⊗ H of SU(2, 2)
(see [FL1] for details). Finding the relationship between ladder diagrams
and representations would indicate how the rest of Feynman diagrams
relate to representation theory and be a significant progress in four di-
mensional quantum field theory.

7 Emergence of a new area – elliptic hy-

pergeometric series

by Michael Schlosser

Many special functions which appear in (real-world) applications, such as
the trigonometric functions, the logarithm, and Bessel functions, can be
expressed in terms of hypergeometric functions. While early occurrences
of hypergeometric series already date back to the work of Isaac New-
ton (who in 1669 discovered the sum for an infinite binomial series), the
systematic study of the hypergeometric function (nowadays commonly
known as the 2F1 series), was commenced by Carl Friedrich Gauß by
the end of the 18th century. The theory of “generalized hypergeometric
series” thence gradually developed. In 1840 Eduard Heine extended the
hypergeometric function to the basic (or q-)hypergeometric function. The
latter originally did not receive so much attention, the focus of special
functions at that time (and in particular in Germany) being laid on Carl
Gustav Jacob Jacobi’s theory of elliptic functions. Basic hypergeometric
series attracted wider interest only in the 20th century, due to impor-
tant pioneering work done on the British isles (by Rogers, Ramanujan,
Jackson, Bailey, and Watson, among others). Basic hypergeometric se-
ries have various applications in number theory, combinatorics, statistical
and mathematical physics.
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The next important step was to extend the basic (or “trigonomet-
ric”) case to the modular or elliptic case. Building on (1987) work
of the Japanese statistical physicists Date, Jimbo, Kuniba, Miwa and
Okado [DJKMO] on the Yang–Baxter equation –elliptic hypergeometric
series first appeared there, as elliptic 6j symbols, the elliptic solutions
of the Yang–Baxter equation– Igor B. Frenkel and his coauthor Vladimir
G. Turaev [FT] were in 1997 the first to actually study elliptic 6j-symbols
as elliptic generalizations of q-hypergeometric series and to find transfor-
mation and summation formulae satisfied by such series. In particular,
by exploiting the tetrahedral symmetry of the elliptic 6j symbols, Frenkel
and Turaev came across the (now-called) 12V11 transformation (which is
an elliptic extension of Bailey’s very-well-poised 10φ9 transformation) and
by specialization obtained the (now-called) 10V9 summation. These re-
sults, involving series satisfying modular invariance, are deep and elegant
and, from a higher point of view, lead to a much better understanding
(of various phenomena such as “well-poised” and “balanced” series) of
the simpler basic case. The new theory beautifully combines the theories
of theta (or abelian) functions with the theory of basic hypergeometric
series.

The findings of Frenkel and Turaev had big impact and truly initi-
ated an avalanche of further research in the area. Various researchers,
first V. Spiridonov and A. Zhedanov, then S.O. Warnaar and others
(J.F. van Diejen, H. Rosengren, E. Rains, etc.) joined their forces to
build up a yet expanding theory of elliptic hypergeometric series. The
importance of this subject is reflected in the fact that already the 2004
second edition of Gasper and Rahman’s (already classic) textbook [GR]
on basic hypergeometric series devotes a full chapter to elliptic hyper-
geometric series. Moreover, at several occasions (special functions guru)
Richard Askey has suggested that elliptic hypergeometric functions will
be the special functions of the 21st century.

For further references, see the bibliography of elliptic hypergeometric functions on

Hjalmar Rosengren’s website http://www.math.chalmers.ser/~hjalmar/bibliography.html

8 Igor Frenkel’s contributions to the rep-

resentation theory of split real quantum

groups and modular doubles

by Ivan Ip

The quantum group Uq(g) defined in 1985 by Drinfeld and Jimbo for a
real q can be considered a quantum counterpart of the compact real form
gc ⊂ g. In particular, its representation theory is in complete parallel
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with the classical theory. The finite dimensional representations form a
braided tensor category which leads for example to certain topological
quantum field theories and categorifications.

It is natural to consider other real forms of g, most notably the split
real form gR ⊂ g, and to address the question about the q-deformation
of its representations, which makes sense only when |q| = 1. The start-
ing point comes from Faddeev’s notion of modular doubles [Fa], which
are objects generated by pairs of commuting quantum tori {u, v}, {ũ, ṽ}
acting on L2(R) which are related by certain transcendental relations. In
the case when |q| = 1, the representation theory of the quantum plane, a
single pair of quantum tori represented by positive self-adjoint operators,
is closely related to a remarkable function called the quantum dilogarithm
gb(x). Using this function, in the work with Hyun Kyu Kim [FK], Igor
Frenkel showed that the quantum Teichmüller space and also its univer-
sal version, constructed recently by Kashaev [Ka], and independently by
Fock and Chekhov [Fo, CheF], originate from a tensor category of the
representations of the modular double of the quantum plane.

In the case for gR = sl(2, R), J. Teschner et al. [PT] have studied
a very special q-deformation of principal series of representations of the
quantum group using the modular double, and showed that a class of
representations, represented by positive operators, is closed under tak-
ing the tensor product. This has profound importance in conformal field
theories in physics, and in particular a new kind of topological invari-
ants is expected to be constructed from the tensor category structure.
Igor Frenkel has always been emphasizing the analogy between the rep-
resentation theory of compact and split real quantum group, and the
relationship between their classical counterpart. In a recent joint work
with Ivan Ip [FI], Igor Frenkel generalized this special class of represen-
tations, which we called the positive principal series representations, to
higher rank Uq(sl(n, R)), and later was further generalized to arbitrary
quantum groups of all types [Ip1, Ip2]. This strongly indicates that all
the results for Uq(sl(2, R)) can be generalized and that one can envision
future perspectives for the positive representations of the split real quan-
tum groups comparable to the past developments related to the finite
dimensional representations of the quantum group initiated by Drinfeld
and Jimbo [F].

In particular, in the split real case, where the parameters are vary-
ing continuously, Igor Frenkel proposed certain notion of “continuous”
categorification and geometrization of the quantum groups and their
representations. In the past year physicists have observed a remark-
able relation between the Chern-Simons-Witten theory for the split real
group SL(2, R) and the N = 2 super-symmetric gauge theory on a three-
dimensional sphere [DGG, TY]. This work can be considered as a first
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step towards a geometrization of the category of positive representations
of the modular double, generalizing the geometric construction of the fi-
nite dimensional representations of Uq(g) discovered by Nakajima based
on the gauge theory [Na].

One can also discuss the split real version of Kazhdan-Lusztig equiva-
lence between the categories of highest weight representation of affine Lie
algebras and quantum groups. In the compact case the explicit construc-
tion can be simplified by considering an additional category of representa-
tions of W -algebra [Sty]. Although in the split real case it is still an open
problem to construct a principal series of representations of the affine
Lie algebra ĝR even for the case gR = sl(2, R), the work of Igor Frenkel
suggests that one can instead discuss the equivalence of categories of rep-
resentations of the modular double Uqeq(gR) and the W -algebra associated
to gR.

9 Igor Frenkel’s work on categorification

by Mikhail Khovanov

In 1994 Igor Frenkel and Louis Crane published the paper “Four dimen-
sional topological quantum field theory, Hopf categories, and the canon-
ical bases”, advancing the idea that various structures related to quan-
tum invariants of links and 3-manifolds should be just shadows of much
richer structures controlling quantum invariants of four-dimensional ob-
jects [CF]. They coined the term categorification to denote this structural
lifting and, in particular, conjectured that the quantum group Uq(sl(2))
admits such a lifting. After 1994 Igor Frenkel continued to extend these
ideas and observed that Grothendieck groups of suitable singular blocks
of highest weight categories of the Lie algebra sl(n) can be identified
with weight spaces of the n-th tensor power of the sl(2) fundamental
representation, where the generators E and F of sl(2) act as translation
functors. These insights resulted in the joint paper [BFK], where the
authors also constructed a commuting action of the Temperley-Lieb alge-
bra via Zuckerman functors and studied the Koszul dual framework, with
the categorification via the direct sum of maximal parabolic blocks and
the roles of projective and Zuckerman functors interchanged. Strongly
influenced by Igor’s revolutionary ideas about categorification and by our
joint work, at about the same time I categorified the Jones polynomial
into a bigraded link homology theory.

Several years later, Catharina Stroppel [St] proved the conjectures of
[BFK], establishing an amazing relation between highest weight cate-
gories and low-dimensional topology, via knot homology. Joshua Sussan,
Frenkel’s graduate student at the time, generalized these constructions
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from sl(2) to sl(k), showing that category O also controls some other link
homology theories and proving Lusztig’s positivity conjecture for tensor
products in the sl(n) case.

In the joint paper [FKS], Frenkel, Stroppel, and I extended some of the
constructions from [BFK] to arbitrary tensor products of sl(2) representa-
tions and revisited unpublished ideas of Igor Frenkel on categorification of
Lie algebra and quantum group representations via categories of Harish-
Chandra modules. More recently, Frenkel, Stroppel, and Sussan [FSS]
investigated categorifications of Jones-Wenzl projectors and 3j-symbols
in the context of category O, explaining categorification of rational func-
tions in the spin network formulas. The new viewpoint on highest weight
categories, originating from Igor Frenkel’s ideas and work, has become a
fruitful and exciting area of research, with important contributions made
by Brundan, Chuang, Kleshchev, Mazorchuk, Rouquier, Webster, Zheng,
and many others.

Link homology has also emerged from categories of matrix factor-
izations (Khovanov-Rozansky), from derived categories of sheaves on
quiver varieties and on convolution varieties of affine Grassmannians
(Kamnitzer-Cautis), and from Fukaya-Floer categories of quiver varieties
(Seidel-Smith, Manolescu). These appearances led to a series of conjec-
tures and results on the existence of equivalences between subcategories
of these categories, uncovering a remarkable unity and new connections
between various structures of representation theory, algebraic geometry
and symplectic topology. Even when the subject was in its infancy, this
unity was one of the fundamental goals emphasized by Igor in his con-
versations with students and colleagues.

Back in 1994, Crane and Frenkel conjectured [CF] that there exists
a categorification of quantum sl(2) at a root of unity, which should
control categorification of the Reshetikhin-Turaev-Witten invariants of
3-manifolds. Frenkel wrote notes (never published) on structural con-
straints in direct sum decompositions of functors in the desired categori-
fication of quantum sl(2). The problem remained open for several years;
the major breakthrough came from Chuang and Rouquier, who obtained
fundamental results on higher categorical structures of sl(2) representa-
tions. These were extended by Lauda to a categorification of the Lusztig’s
idempotented version of quantum sl(2) at generic q via a beautiful planar
diagrammatical calculus. Categorifications of quantum groups for other
simple Lie algebras were developed by Lauda, Khovanov, and Rouquier,
while categorification of quantum sl(2) at a root of unity remains an
open problem. Ben Webster, in spectacular work related to quantum
group categorifications, categorified Reshetikhin-Turaev link and tangle
invariants for arbitrary simple Lie algebras and their irreducible repre-
sentations.
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In the late 90’s Igor Frenkel proposed a bold conjecture that the en-
tire conformal field theory and vertex operator algebra theory can be
categorified. He suggested to start by categorifying boson-fermion corre-
spondence and related vertex operators. A couple of years later, Frenkel,
Anton Malkin, and I spent several months discussing this project, with
modest success encapsulated in our unpublished notes. The question
of how to categorify vertex operators had a strong background pres-
ence in the series of papers by Frenkel, Naihuan Jing, and Weiqiang
Wang [FJW00a, FJW00b, FJW02], and in [FW01]. A very recent pa-
per [CL] of Cautis and Licata is a major advancement in this direc-
tion, realizing components of vertex operators as functors acting in 2-
representations of categorified Heisenberg algebras and giving yet an-
other confirmation of visionary and predictive power of Igor Frenkel’s
mathematical genius.

Multiple discussions with Igor Frenkel and his remarkable results,
ideas, and thoughts on categorification strongly influenced current re-
searchers in the area. Several former graduate students of Frenkel do
full-time research in categorification and related fields: Anthony Licata,
Alistair Savage, Joshua Sussan, and myself. Categorification has become
a dynamic and exciting field, every year boasting more and more connec-
tions to various areas and structures in mathematics and mathematical
physics. Its practitioners are grateful to Igor Frenkel for his vision which
created the subject.

10 Igor Frenkel’s work on geometric repre-

sentation theory

by Anthony Licata

Many of Igor Frenkel’s contributions to mathematics have come in the
form of foundational ideas introduced at the beginning of a new sub-
ject. In contrast, Frenkel’s work in geometric representation theory be-
gan when the subject was already well developed. As a result, these
contributions give some insight into both his ability to understand the
deepest parts of others’ mathematics in his own terms and also his gift
for seeing the implications of this work for future mathematics. Strik-
ingly, some of Frenkel’s most important ideas in geometric representation
theory remain unpublished by him.

The seminal work of Beilinson-Bernstein and Brylinski-Kashiwara prov-
ing the Kazhdan-Lusztig conjectures gave a geometric interpretation of
many of the fundamental structures of Lie theory. By the late 1980s
and early 1990s, subsequent work of numerous mathematicians produced
explicit geometric constructions of representations. In addition to the
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work of Beilinson-Berstein-Brylinski-Kashiwara, several of these later
constructions, including Lusztig’s geometric construction of canonical ba-
sis and Nakajima’s quiver variety constructions, had a profound impact
on Frenkel’s perspective on representation theory.

When Frenkel began working in the subject in the mid 1990s, he
brought a perspective which advocated the geometrization of all impor-
tant structures in representation theory: the more fundamental the struc-
ture, the more beautiful its geometric realization. Moreover, and perhaps
more importantly, he proposed that geometric constructions be seen as
source for new mathematics, via the principle that these constructions
lead to categorifications. In his proposal, vector spaces of geometric ori-
gin – like cohomology or K-theory – would be upgraded to categories of
sheaves. Once realized geometrically, the symmetries of a vector space
should lift to symmetries at the level of categories of sheaves. This idea
has had a tremendous influence on the development of categorification in
representation theory, breathing new life into the foundational geometric
constructions in the subject. Indeed, much of the past decade’s work on
categorification can be viewed as carrying out the details of this broad
vision.

Frenkel’s published work made direct contributions to geometric repre-
sentation theory as well. In collaboration with Kirillov Jr. and Varchenko
[FKV], he gave a geometric interpretation of the Lusztig-Kashiwara canon-
ical basis for tensor products of sl(2)-representations in terms of the ho-
mology of local systems on configuration spaces of points in a punctured
disk. This construction is a geometric analog of his work with Khovanov
[FKh] on a graphical calculus for the representation theory of sl(2), work
which later influenced Khovanov’s categorification of the Jones polyno-
mial. He also wrote several articles on quiver varieties, including joint
papers with Malkin and Vybornov [FMV1, FMV2] and with Savage [FS].
He worked with Jardim on quantum instantons [FJ], and with Khovanov
and Schiffmann [FKS] on homological realizations of Nakajima quiver va-
rieties. He also contributed to geometric constructions of non-integrable
representations in the paper [FFFR].

Quiver varieties of affine type play a prominent role in many of Frenkel’s
papers from this period. These are distinguished within quiver varieties
by their independent appearance as instanton moduli spaces in gauge
theory. Frenkel’s emphasis on quiver varieties of affine type in geometric
representation theory is a legacy of his early foundational work in the rep-
resentation theory of affine Lie algebras, and the gauge-theoretic origin of
affine type quiver varieties was an important motivation for his interest in
the subject. More precisely, let g be a finite-dimensional simple simply-
laced complex Lie algebra and let ĝ denote its affinization. Nakajima’s
construction produces integrable highest weight representations of ĝ from
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moduli spaces of U(k)-instantons on the resolution of C2/Γ, where Γ is
a finite subgroup of SL2(C) related to g by the McKay correspondence.
In this construction, the algebra is determined by the finite group Γ; the
level of the action is determined by the rank of the group U(k), but oth-
erwise this instanton group has no direct connection with the affine Lie
algebra ĝ. Frenkel realized, however, that there should also be a dual pic-
ture in which the representations of ĝ are realized directly by G-instanton
moduli spaces, where G the compact group whose complexification has
Lie algebra g. When both G = U(k) and Γ = Zn are type A, all the
moduli spaces involved in these constructions are Nakajima quiver vari-
eties, and Frenkel’s dual picture relates to the Nakajima construction via
level-rank duality in affine type A. (In fact, as is mentioned in the affine
Lie algebras section of this text, Frenkel discovered level-rank duality in
an algebraic setting nearly twenty years earlier.) As with many of his
important ideas in geometric representation theory, Frenkel did not pub-
lish anything himself about the relationships between representations of
ĝ and G-instanton moduli spaces. However, his suggestion was both the
core of my own thesis [L] and an essential part of the subsequent work
of Braverman-Finkelberg on the affine version of the geometric Satake
correspondence [BF].

The scope of Frenkel’s vision of geometric representation theory, which
includes ideas about current algebras and other fantastic mathematical
objects, has yet to be fully realized. We sincerely hope that it brings as
much to the next stage of the subject as it has to its development thus
far.
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