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Koebe Distortion Theorem

Official: Let f(2) be a univalent (holomorphic injective) function on
D={2e€C:|z| <1}. If f(0) =0 and f(0) =1, then for |z| < 1,

Sullivan:




Sullivan ICM 1986: proposed the use of Teichmiiller space for the
convergence of renormalization.

Want contraction on W*(F')
d(R"f,R"g) — 0

Schwarz-Pick Theorem. If f : D — D holomorphic, then

dp(f(2), f(y)) < dp(z,y). non-expanding

Ro den-Gardiner Theorem. If [
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This talk:

Parabolic/near-parabolic renormalization

study bifurcation of parabolic fixed point
linearization, Siegel disks, Cremer points

(satellite renormalization for MLC???)

a prior1 bounds and renormalization horseshoe

difference from polynomial-like renormalization: @

unbounded geometry, no complex bounds as poly-like map
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Bifurcation of parabolic fixed point
(f(20) = 20, ['(20) = 1)

f1(2) = 2"+

4

perturb fc( ) _ Z N

OR

folz) =z + 2°

perturb




Parabolic Implosion (Douady-Hubbard-Lavaurs)

f/(o) — 627?2'04
« small

larga| < %

\ first return map
@ </ =xroks

»

Return map can be
understood via

1 the horn map E¥,
E; depends continuously on f SR and rotation number «

(after a suitable normalization)
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fo(z) =z+agz® + ...
CLQ#O

Parabolic Renormalization
Exp?(z) = e?™% : C/Z — C*

Parabolic Renormalization
Rofo = Exp? oEj, o (Exp?)~!

Normalization

Rofo(z) =2+ ...
A= AR S e D T AR == eey)




Near-parabolic Renormalization

Rf = Exp* oRf o (Exp®)~!
= EXpti oxfo o (Expﬁ)
= e2™By + O(2?)

1

where 0 = —— (mod Z)
Q

1

—1

(m € N)
& Rf=x°E;

ﬁrst return map

Exp
) Return map R f of perturbed
mapifila=edilde s
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For N € N, let Irraty be the set of irrational number of high type:

1
Irraty 2 o = =+ 1 where a; € N and a; > N,

CL1:|:

1
CL2:|:—

For a neighborhood V' of 0, define P(z) = 2(1 + 2)* and

s {f Slec 2(0) =0, ¢'(0) =1

¢ 'V — C is univalent (with qc extension) }




Applications

Theorem (Buff-Chéritat): 3a € R\ Q Area(J(e*™z + 2?)) > 0.

Theorem (S.): If f = e*™*h, h € Fy, a € Irraty and f is lineariz-
able at 0 (Brjuno condition), then the boundary of its Siegel disk is a
Jordan curve.

Theorem (S.): If f = e*™*h, h € Fi, a € Irraty and f is not lin-
earizable at 0, then there exists an invariant set Ay (maximal hedge-

hog) such that f is homeomorphic on As; Af contains 0 and a critical
0
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A Prior1 Bounds

Claim: The parabolic renormalization Ry is well-defined in F; and
the image is contained in Fj.

By the continuity of the horn map, the near-parabolic renormaliza-
tion Ry is well-defined as a self map of {*™*h : « € Irraty,h € F;}
for large V.

Idea of proof:

Why Po ¢ 17
Since the construction of Rojf involves the uniformization of the
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Basic checkerboard pattern for fo(z) = z + 2°
Fo(w) =w+ 14 o(1)




Truncated pattern induces a cubic-like covering

Rilli=e b

almost definition of F;

Rof e A WA N P(2) = 2(1 + 2)?
P < pattern (universal) ¢ <« shape of domain (depends on f)



Proof of Contraction

How to prove that K : J1 — J; is a contraction. (The proof for K, is similar.)
Don’t Recall the definition of Ry
f(z)=z+4+az*+... (ag #0)

black box operation

- But we can’t even compute (Rof)'(0), (Rof)"(0) etc.
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Proof of Contraction: part 2
W:.=C~\V 3 W:=C~V’" (both isomorphic to D* =D ~\ {0})

Teichmiiller space of W'
Teich(W) := { ((2)5= on W} / ~ (“same boundary value” for qc map)

Teichmiiller infinitesimal (Finsler) metric
q(2)dz* integrable holomorphic quadratic}

G’LC % d d
[l Teien SUP{ / / ) differential with / / |g(2)|dz dy = 1
%74
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Proof of Contraction: part 3

= : Teich(W') — Teich(W)
@ on W’
0 on W~ W

ffgou(W’) lq(2)|dx dy
ffgpu(w) |q(2)|dz dy

induced by pu+— ' = {

| DuE|| reich = sup {

q(z)dz* integrable holomorphic
quadratic differential on ¢, (W)

—
et

laim: ||D, oh < A= exp(—2mmod(W ~ W')).
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Another Application of Teichmiiller contraction: Rigidity

Theorem (Lyublch Gracyk-Swiatek): Suppose that f = f. and
f="f:(c,éel-2, 1]) are combinatorially equivalent (or topologlcally
conjugate) and that they are infinitely renormalizable. Then f and f
are quasi-symmetrically conjugate on their postcritical sets.

Consequences:

gs-conj. on their postcrit. set =— quasiconf-conj. on C =—
conformally-conj on C = c=¢

Hyperbolic parameters are dense among real quadratic polynomials.



I st reduction to one step renormalization

By the Complex Bounds (Levin-van Strien, Lyubich-Yampolsky, Graczk-
Swiatek, Sands) the rigidity theorem reduces to:

Theorem For any m > 0, there exists K > 1 such thatif f : U — U /
and f : U — U’ are real (symmetric) quadratic-like mapping with
mod(U" ~ U) mod(U’ ~ U) > m and if they are (once) renormal-
izable with the same type and period > 2, then there exists a K-
quasiconformal partial conjugacy (defined later).

Here K depends only on m and is independent of the combinatorics
(e.g. period).

partial conjugacy: o : U’ — U’, such that po f = fow on U~ W,
where W is a puzzle piece containg 0 such that fP: W — fP(W) is a
renormalization.
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2nd reduction to a critical piece

Theorem: Vm, dK for f and f as before, AW, W critical puzzle pieces
for f and f such that

(a) fP: W — fP(W) is a renormalization;

(b) 3o : W — W K-qc preserving the canonical marking on the

boundary.
, \

Given ¢ on W, first construct a map on each piece of a fixed level
to its counter part preserving the marking. Then refine these maps
by pulling-back these maps by the dynamics. There are three kind of
points: eventually land on W, eventually land on U’ ~\ U and the rest.
The 1st kind will have the same bound K as the above theorem; the
2nd kind also have a bound by Ky(m); the 3rd kind has measure 0.

In general, the boundary of W can be very complicated!



Interpretation in the universal Teichmiiller space
Take any qc-extension ¢g : W — W of the canonical marking. (K(go) large!)
Teich(W) ={¢ : W — (W) quasiconformal}/~
= {ty, = g—z Beltrami differential} / ~

© ~ 1 <= Fh: (W) — (W) conformal such that h =1 o p~! on dp(W)

Want: d(|po], [¢d]) = d(|1p,], [0]) < C(depending only on m).




2nd refinement: pull-back construction within W

|44
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Vo, 22k V; = W (i >0) good annuli coverine, Apn(0)
worse than K(pg)  K(g) Ky(m) Ky(m)
escape to U' \ U rest (measure 0)

Ko(m)

For real maps, N = 2 and the base annulus A% (0) has a K;(m)-qc
map respecting the boundary marking. This induces Ki(m)-qc maps
on good annuli.

By combinatorial a priori bound,

Z mod(A) >m' =m'(m) (i=0,1,...).

A : good annulus surrounding V;

(o] = [p1] in Teich(W)



@© good annuli

Define © : Teich(W) — Teich(W) by
oty = [0 oV >0 (v S W)
Uy on the rest (including V)

Then © is well-defined and we have:

(2) O[kgo]) = l1or] = Lo s

(b) d(©(|0]), [0]) < C'(depending only on m);

(c) d(O(l¢]), O(v])) < Ad(|p], [¢]), where A < 1 depends only on m.
V]| Teicn = sup{Re ff qv - ff lq| = 1}

Modulus-area inequality holds for the area form defined by |q].

Hence d(O([p0]), [0]) < 7% (depending only on m).



- Happy
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Birthday, Dennis!




