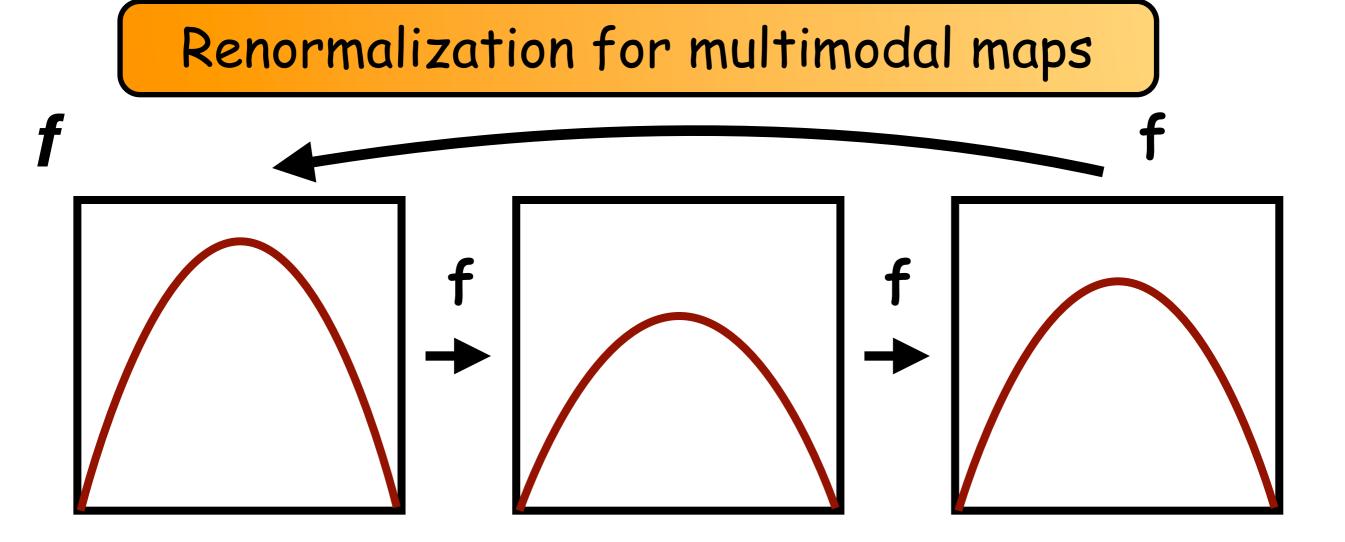
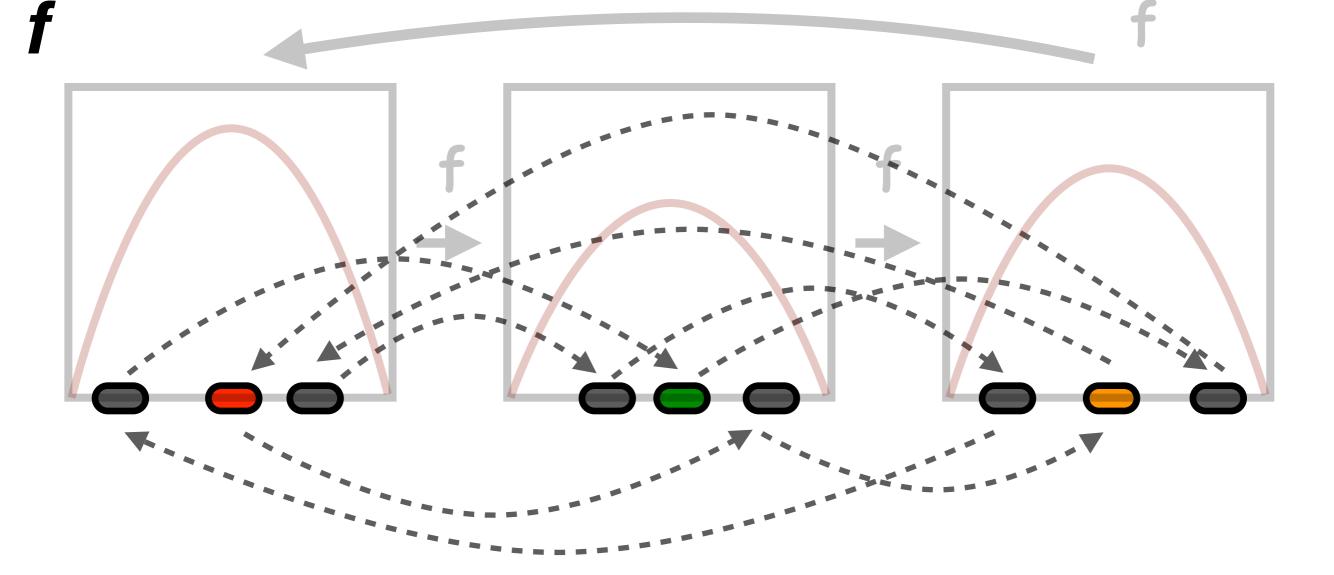
Renormalization operator for multimodal maps

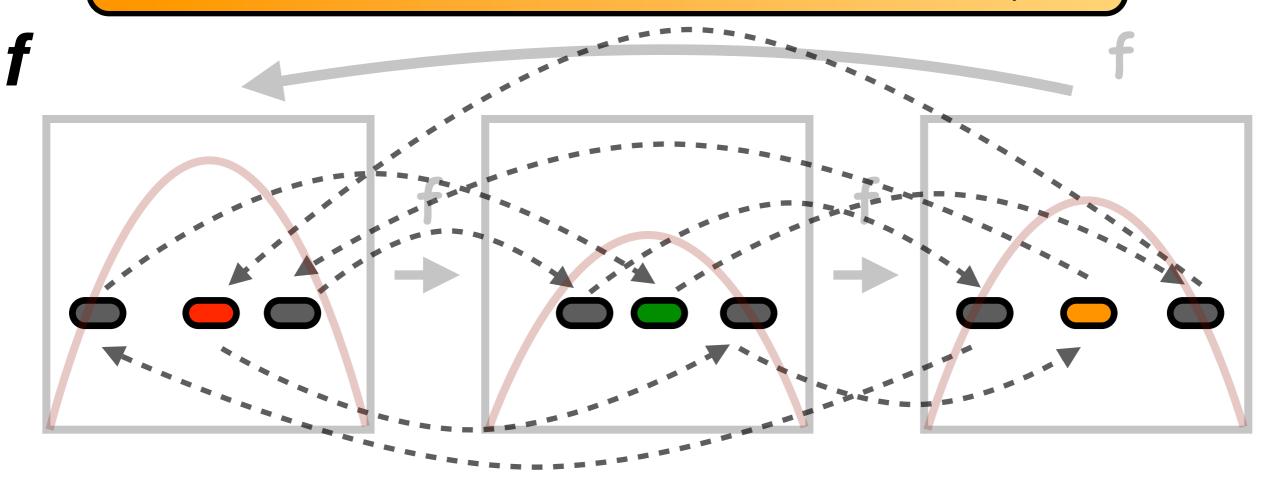
Daniel Smania ICMC-USP Brazil www.icmc.usp.br/~smania

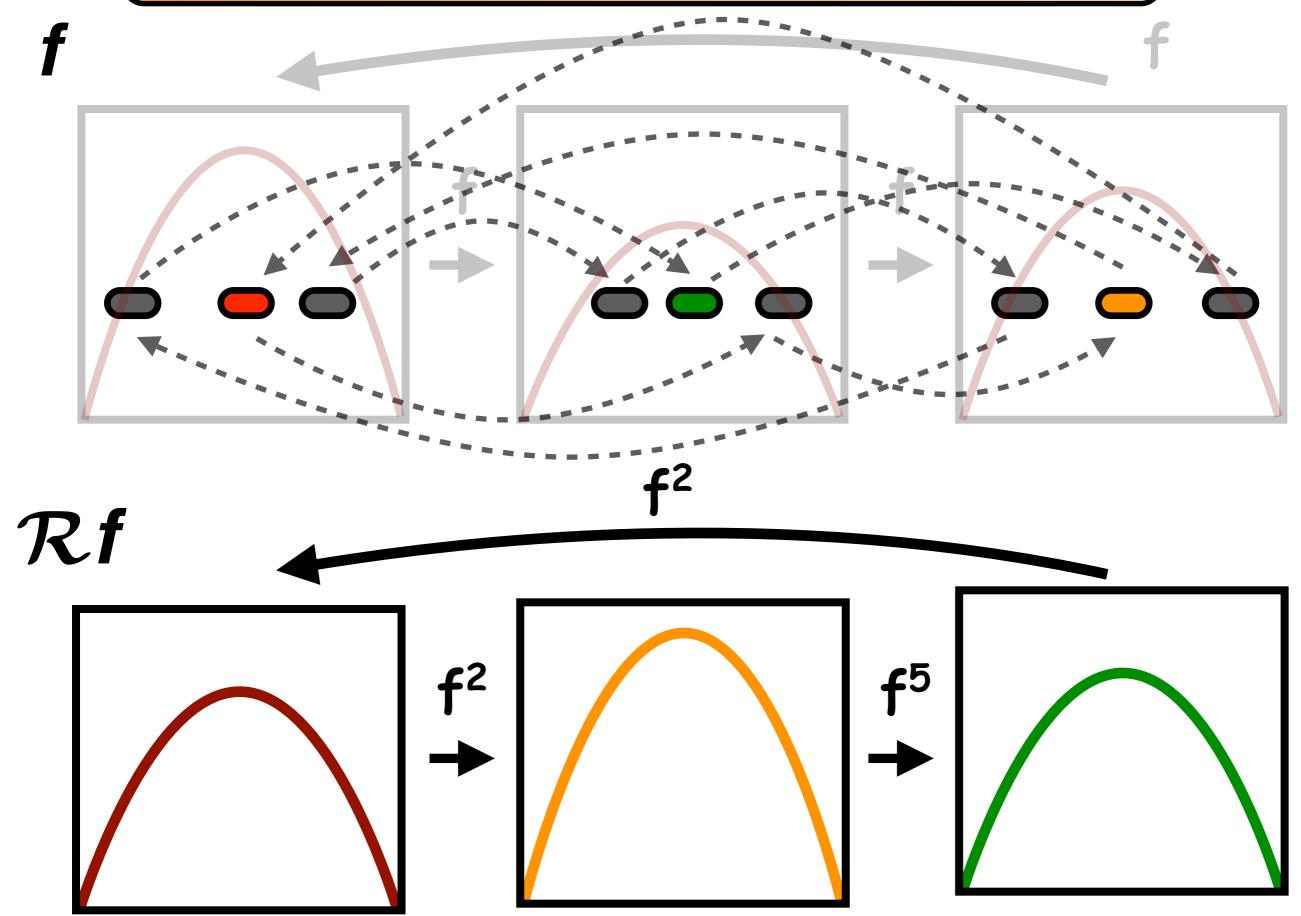


Renormalization for multimodal maps



Renormalization for multimodal maps



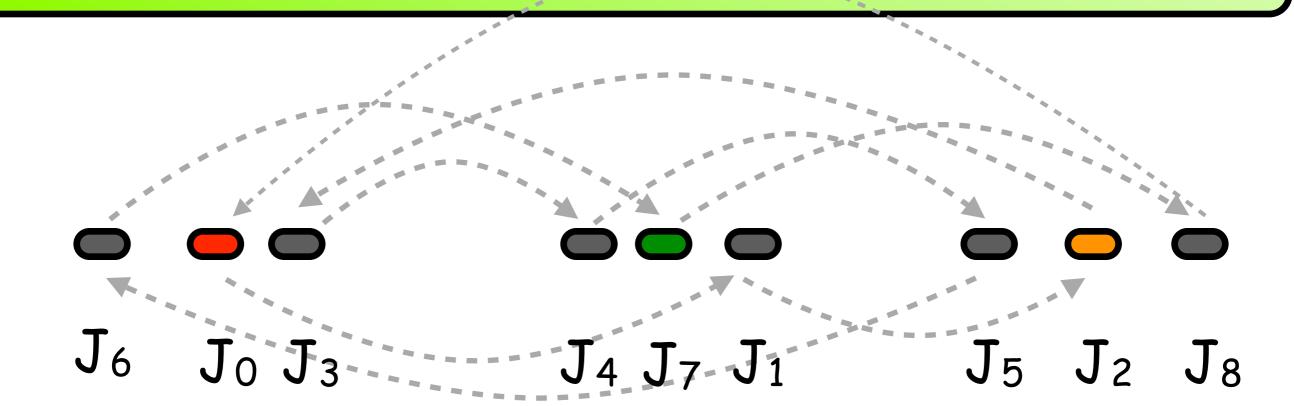


Cycles of intervals

 $J_0, \dots J_{p-1}$ is a cycle of intervals for f if

- -Interiors of J_i are pairwise disjoint.
- $-f(J_i) \subset J_{i+1} \mod p$
- $-f(\partial J_i) \subset \partial J_{i+1} \mod p$
- -All critical points of **f** belong to $\cup_i J_i$.

p is the period of the cycle.



Infinitely renormalizable maps

f is infinitely renormalizable if there exists a sequence of cycles

$$J_0^n,\ldots,J_{p_n}^n$$

with $p_n < p_{n+1}$ and

$$\bigcup_{i} J_{i}^{n+1} \subset \bigcup_{i} J_{i}^{n}$$

f has B-bounded combinatorics if moreover

$$\sup_{n}\frac{p_{n+1}}{p_n}\leq B$$

Main Theorem

Let f_{λ} be a finite-dimensional smooth family of real analytic multimodal maps and let Λ_B be the subset of parameters λ such that f_{λ} is infinitely renormalizable with **B**-bounded combinatorics.

For a generic finite-dimensional family f_t the set Λ_B has zero Lebesgue measure.

The meaning of generic

For a generic finite-dimensional family f_t the set Λ_B has zero Lebesgue measure.

- $f \in B_{\mathbb{R}}(U)$ iff f is continuous in \overline{U} ,
 - f is complex analytic in U and

$$-f(\overline{z})=f(z).$$

We mean generic C^k families $t \in [0, 1]^n \to B_{\mathbb{R}}(U)$, k > 1. and also generic C^{ω} families $t \in \overline{\mathbb{D}}^n \to B_{\mathbb{C}}(U)$, real in real parameters

Facts on the renormalization operator

Unimodal (Douady&Hubbard, Sullivan, McMullen, Lyubich) and multimodal (Hu, S. (2001,2005), + stuff in progress)

(Complex bounds) If f is infinitely renormalizable then $\{R^n f\}_n$ is precompact.

(Universality) The Omega-limit set Ω of R is a compact set. The dynamics of R on Ω is conjugate with a full shift with finitely many symbols.

There exists $\lambda \in (0, 1)$ s.t. if f is infinitely renormalizable then there exists $f_{\star} \in \Omega$ such that

 $|\mathbf{R}^n \mathbf{f} - \mathbf{R}^n \mathbf{f}_{\star}| \leq C_f \lambda^n.$

Steps of the proof

Complexification of R (Complex bounds).

The Omega limit set Ω of R is hyperbolic.

If a family f_{\dagger} is transversal to the stable lamination $W^{s}(\Omega)$ then Λ has zero Lebesgue measure.

(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

The result for generic families follows from step 3 using....Fubini's Theorem!!

Steps of the proof

Complexification of R (Complex bounds).

The Omega limit set Ω of R is hyperbolic.

If a family f_{\dagger} is transversal to the stable lamination $W^{s}(\Omega)$ then Λ has zero Lebesgue measure.

(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

The result for generic families follows from step 3 using....Fubini's Theorem!!

Quasiconformal vector fields

The vector field $\alpha : \mathbb{C} \to \mathbb{C}$ is **quasiconformal** if it has distributional derivatives in L^2_{loc} and

$$|\partial \alpha|_{\infty} < \infty$$

$$\alpha(\mathbf{x} + i\mathbf{y}) = u(\mathbf{x}, \mathbf{y}) + i \cdot \mathbf{v}(\mathbf{x}, \mathbf{y})$$

$$\overline{\partial}\alpha = \frac{u_x - v_y}{2} + i \cdot \frac{v_x + u_y}{2}$$

Horizontal directions (Lyubich, 1999)

 $f: U \to V$ polynomial-like map. $v: U \to V$ is horizontal if there exists a quasiconformal vector field α , defined in a neighborhood of K(f) such that

$$\mathbf{v}(\mathbf{x}) = \alpha \circ f(\mathbf{x}) - Df(\mathbf{x}) \cdot \alpha(\mathbf{x})$$

Moreover $\overline{\partial}\alpha = 0$ on the filled-in Julia set K(f).

$E_f^h := \{v : v \text{ is horizontal for } f\}$

Horizontal directions (Lyubich, 1999)

 $f: U \to V$ polynomial-like map. $v: U \to V$ is horizontal if there exists a quasiconformal vector field α , defined in a neighborhood of K(f) such that

$$\mathbf{v}(\mathbf{x}) = \alpha \circ f(\mathbf{x}) - Df(\mathbf{x}) \cdot \alpha(\mathbf{x})$$

Moreover $\overline{\partial}\alpha = 0$ on the filled-in Julia set K(f).

automatic in our setting (no invariant line fields on J(f)), so don't pay too much attention to this...

 $E_f^h := \{v : v \text{ is horizontal for } f\}$

Facts on horizontal directions

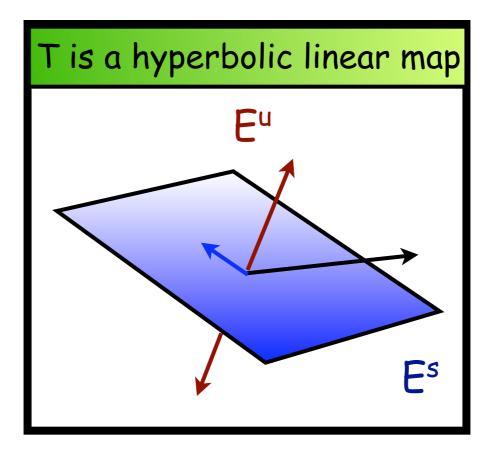
Unimodal(Lyubich, 1999) and multimodal(S., in progress)

(Continuity) The codimension of E_f^h is finite and it depends only on the number of unimodal components. Moreover $f \rightarrow E_f^h$ is continuous.

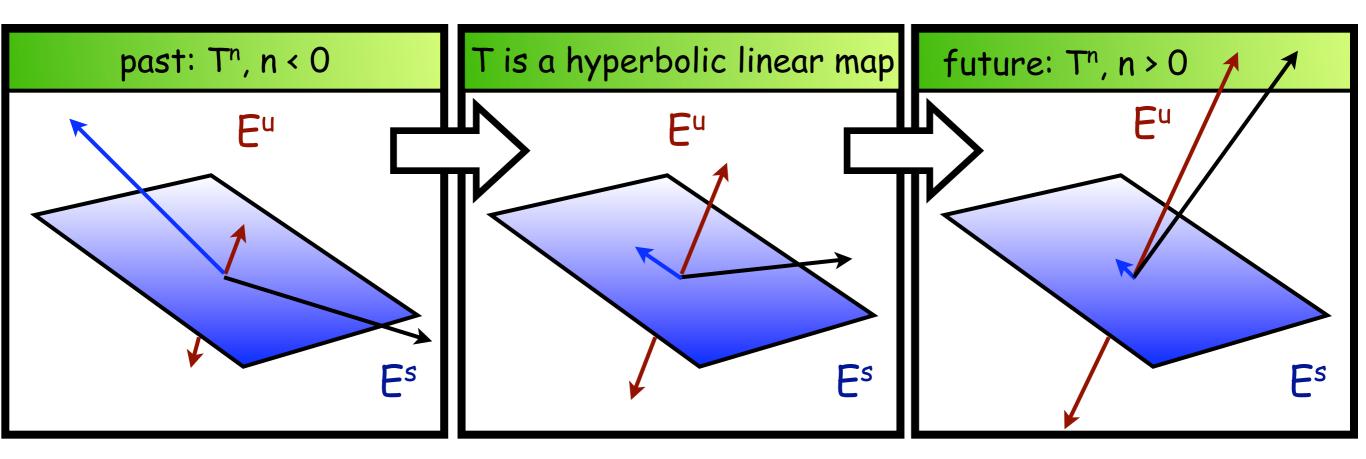
(Invariant vector bundle) if $v \in E^h$ then $DR_f \cdot v \in E^h_{\mathcal{R}f}$.

(Contraction) $|DR_f^n \cdot v| \leq C\lambda^n, \lambda < 1.$

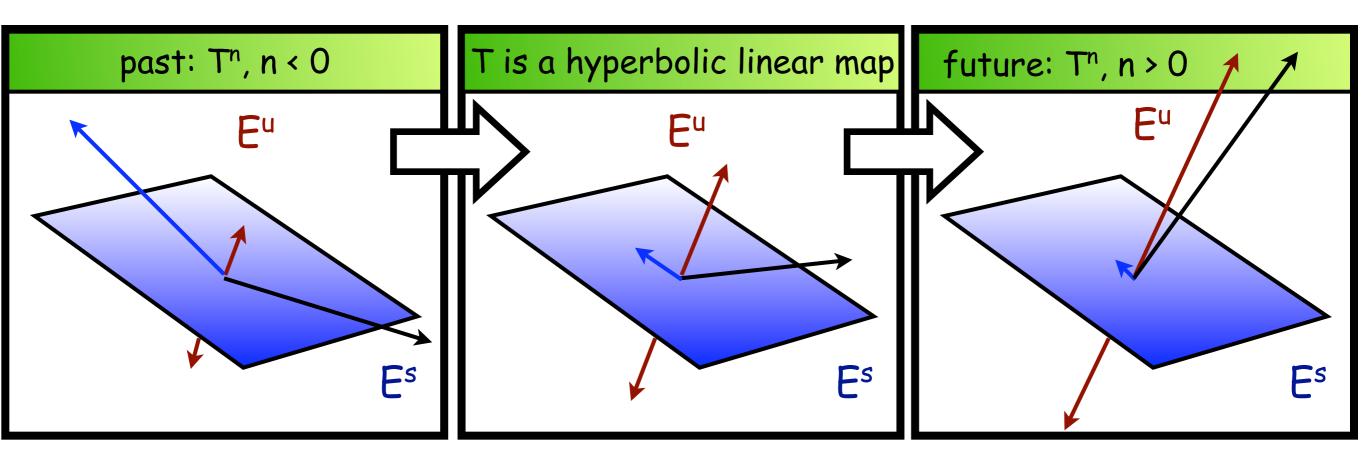
Detecting hyperbolicity Autonomous case

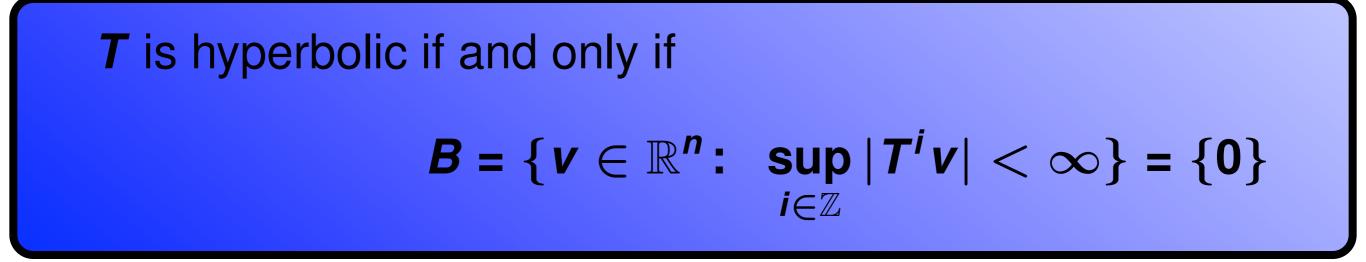


Detecting hyperbolicity Autonomous case



Detecting hyperbolicity Autonomous case





Detecting hyperbolicity Non-autonomous case (Sacker & Sell, 1974)

- X compact metric space.
 - $f: X \rightarrow X$ homeomorphism such that the minimal sets are dense in X.

$$A: X \rightarrow GL(n, \mathbb{R})$$
 continuous.

Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by

$$T(x, v) = (f(x), A(x) \cdot v)$$

Detecting hyperbolicity Non-autonomous case (Sacker & Sell, 1974)

$$\begin{array}{l} X \ \text{compact metric space.} \\ f: X \to X \ \text{homeomorphism such that the} \\ \text{minimal sets are dense in X.} \\ A: X \to GL(n, \mathbb{R}) \ \text{continuous.} \\ \text{Let } T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n \ \text{be the linear} \\ \text{cocycle defined by} \\ T(x, v) = (f(x), A(x) \cdot v) \end{array}$$

X compact metric space.

$$f: X \to X$$
 homeomorphism such that the minimal sets are dense in X.
 $A: X \to GL(n, \mathbb{R})$ continuous.
Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by
 $T(x, v) = (f(x), A(x) \cdot v)$

Define

$$B = \{(x, v) \ s.t. \ \sup_{i \in \mathbb{Z}} |\pi_2(T^i(x, v))| < \infty\}$$

$$\begin{array}{l} X \ \ \text{compact metric space.} \\ f\colon X \to X \ \ \text{homeomorphism such that the} \\ \text{minimal sets are dense in X.} \\ A\colon X \to GL(n,\mathbb{R}) \ \text{continuous.} \\ \text{Let } T\colon X \times \mathbb{R}^n \to X \times \mathbb{R}^n \ \text{be the linear} \\ \text{cocycle defined by} \\ T(x,v) = (f(x),A(x) \cdot v) \end{array}$$

Define

$$B = \{(x, v) \text{ s.t. sup } |\pi_2(T^i(x, v))| < \infty\}$$
$$\underset{i \in \mathbb{Z}}{i \in \mathbb{Z}} |\pi_2(T^i(x, v))| < \infty\}$$
T is a hyperbolic cocycle if and only if $B = X \times \{0\}$.

PS: Same result for vector bundles with same assumption on the base X

Back to renormalization

Considering the finite-dimensional vector bundle defined by

$$f \in \Omega o \mathbb{B} / E_f^h$$

and the cocycle

$$\tilde{D}_f[\mathbf{v}] = [D\mathcal{R}_f \cdot \mathbf{v}]$$

and using Sacker & Sell Theorem we can get:

If

$$B_f^+ = \{(f, v) \in \Omega \times \mathbb{B} \text{ s.t. } \sup_{i \ge 0} |D\mathcal{R}_f^i \cdot v| < \infty\} \subset E_f^h$$

for every $f \in \Omega$ then the renormalization operator is hyperbolic on Ω with
 $E_f^s = E_f^h$.

Key Lemma

If $f \in \Omega$ and

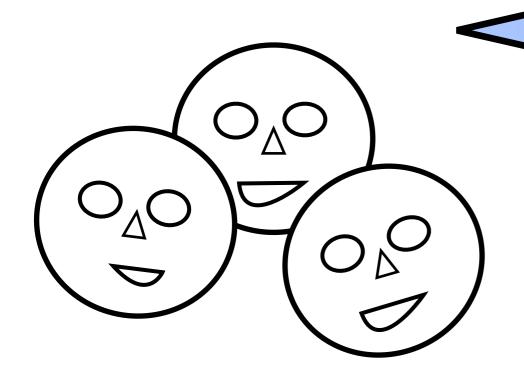
$$|D\mathcal{R}_f^i \cdot v| \leq C$$

for every $i \ge 0$ then there exists a quasiconformal vector field α defined in a neighborhood of K(f) = J(f) such that

$$\mathbf{v}(\mathbf{x}) = \alpha \circ f(\mathbf{x}) - Df(\mathbf{x}) \cdot \alpha(\mathbf{x}).$$

Infinitesimal pullback argument (Avila, Lyubich and de Melo, 2003)

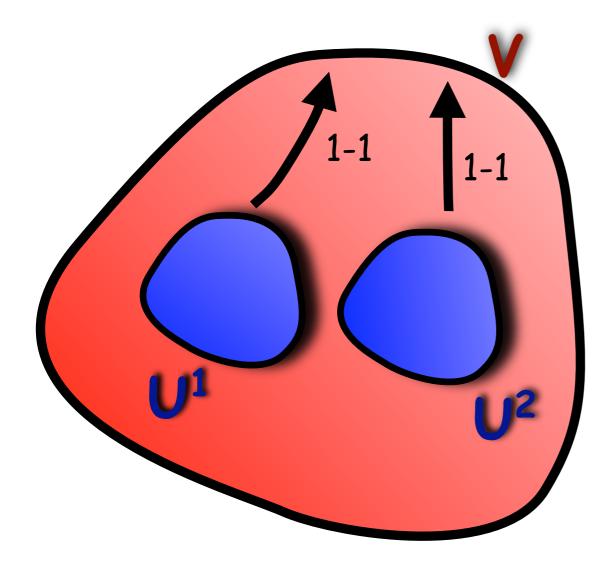
Infinitesimal pullback argument (Avila, Lyubich and de Melo, 2003)



To find a quasiconformal vector field solution to the t.c.e. we just need to find a quasiconformal vector field which is the solution on the boundary of the domain and the postcritical set. Easy case: Conformal iterated function systems (no critical points)

$$f: U^1 \cup U^2 \to V$$

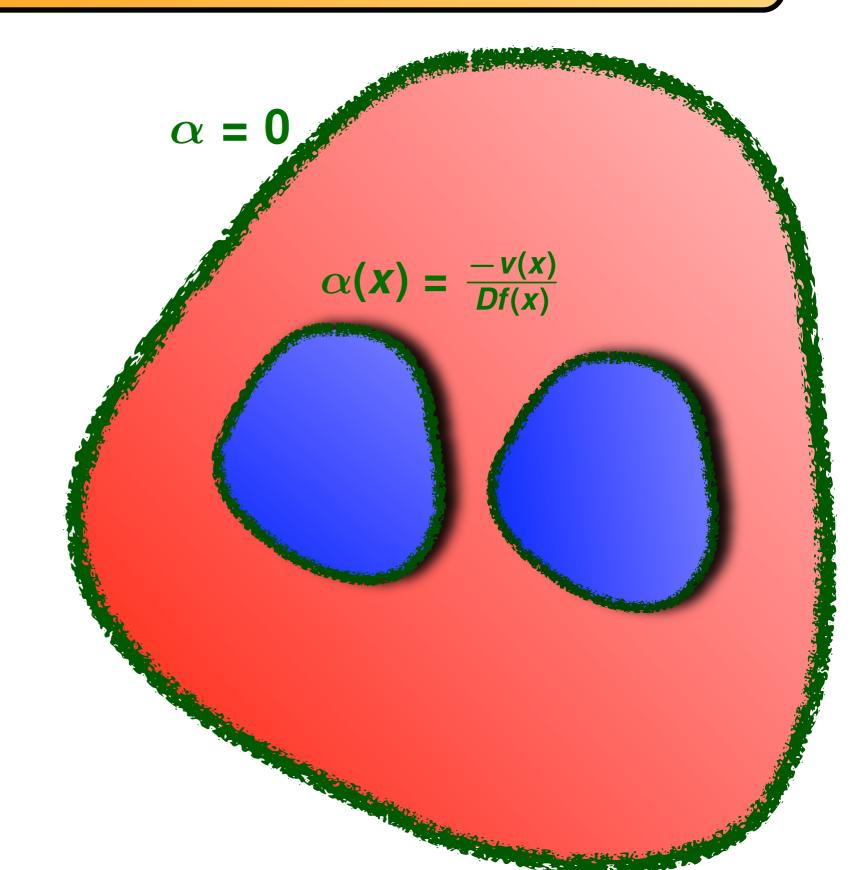
 $f: U^i \rightarrow V$ conformal and onto, i = 1, 2.

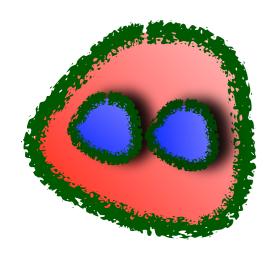


Problem: Given $v: U^1 \cup U^2 \to \mathbb{C},$ find a quasiconformal vector field $\alpha: V \to \mathbb{C}$ such that

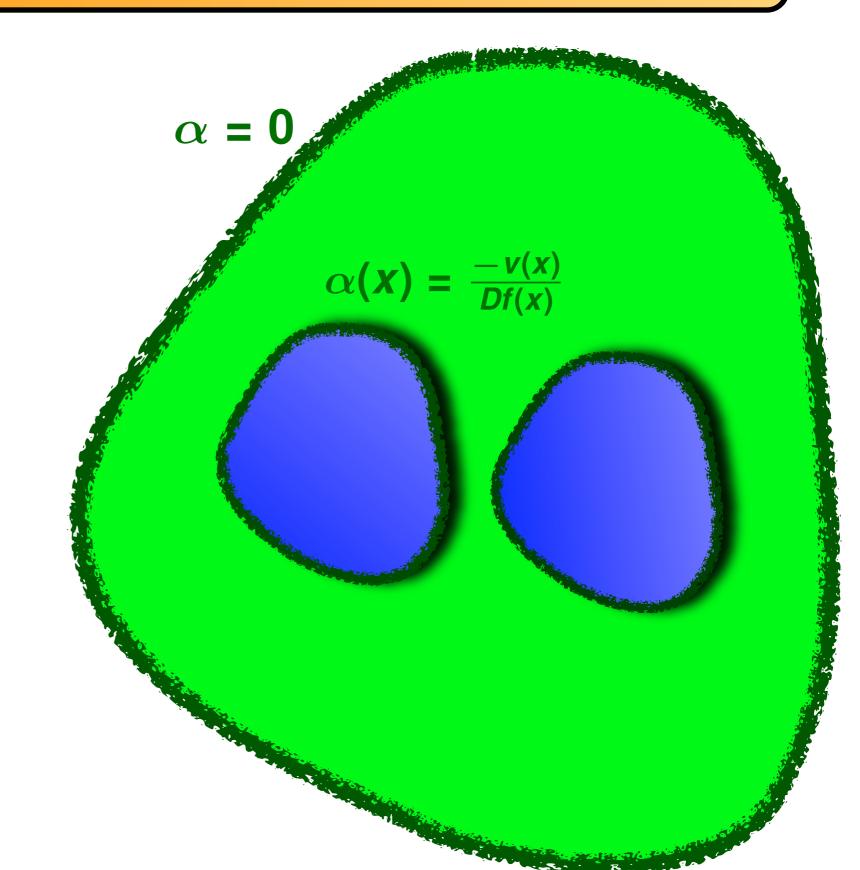
 $\mathbf{v}(\mathbf{x}) = \alpha(f(\mathbf{x})) - Df(\mathbf{x}) \cdot \alpha(\mathbf{x})$

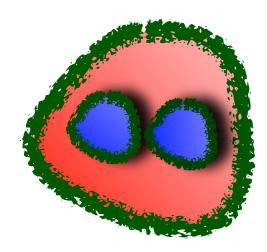




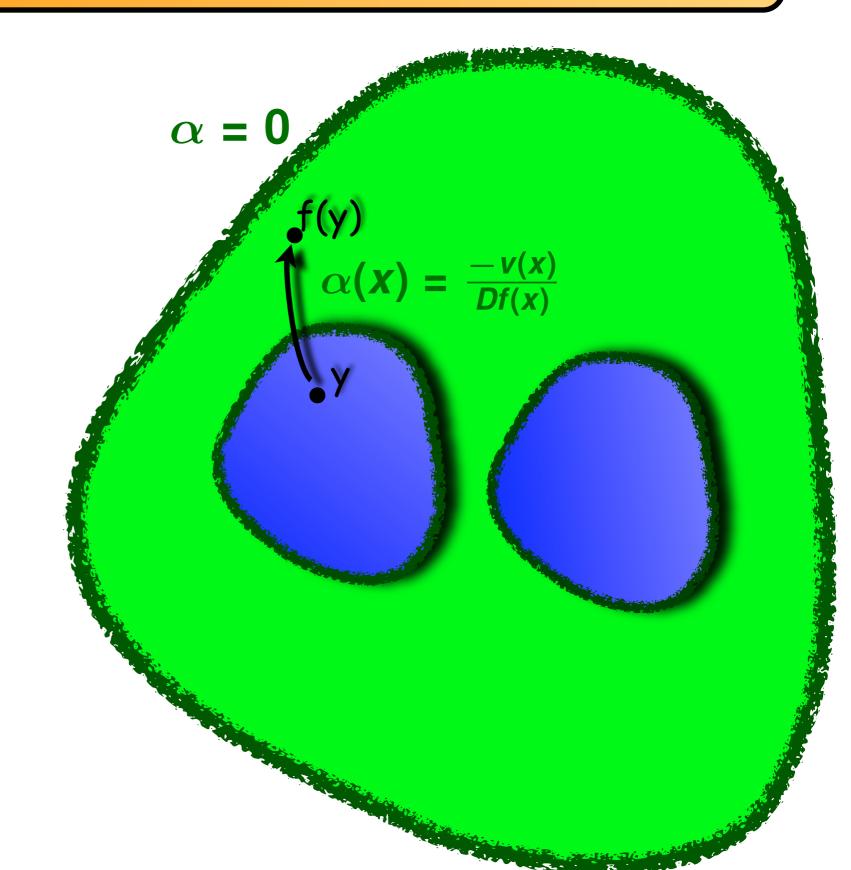


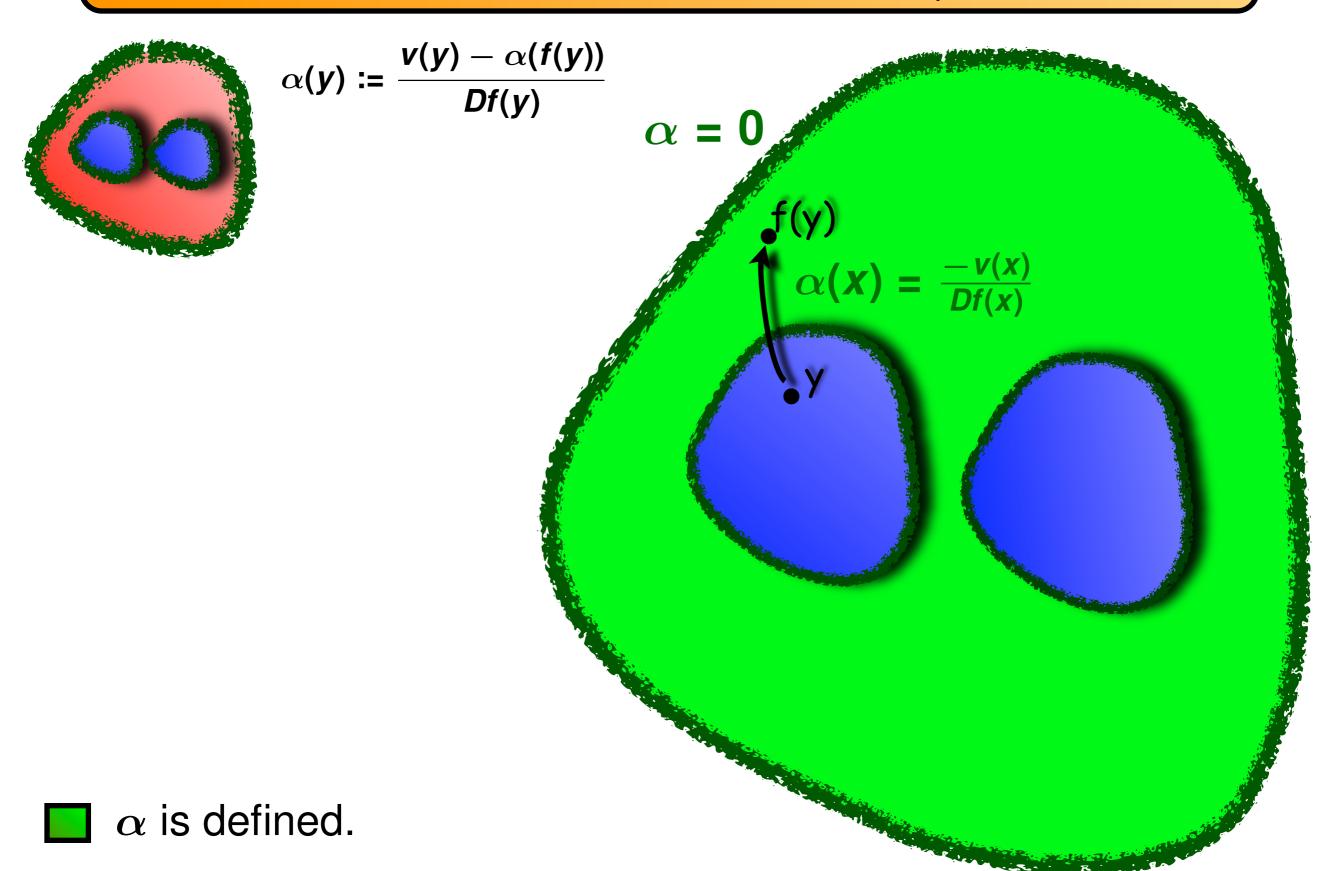
 α is defined.

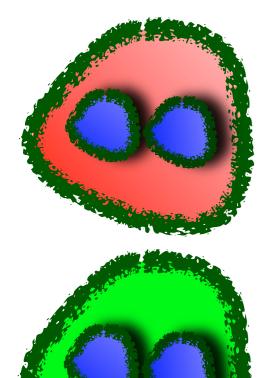




 α is defined.

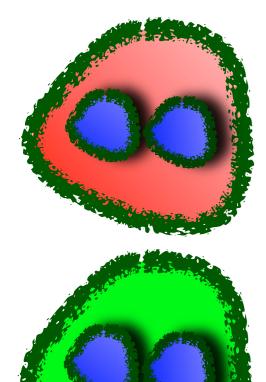






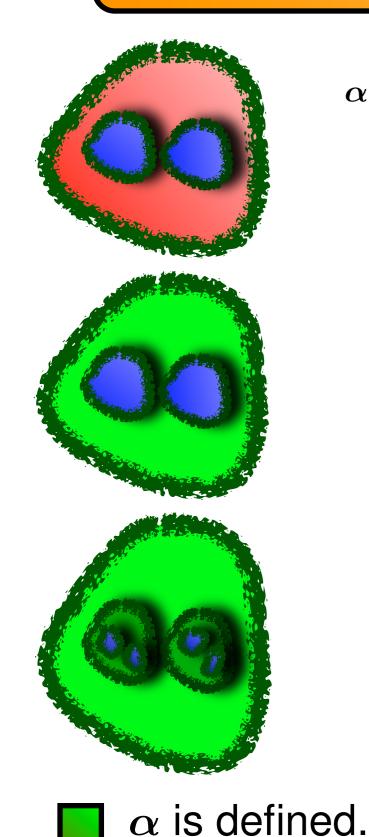
 α is defined.

$$\alpha(\mathbf{y}) \coloneqq \frac{\mathbf{v}(\mathbf{y}) - \alpha(f(\mathbf{y}))}{Df(\mathbf{y})}$$

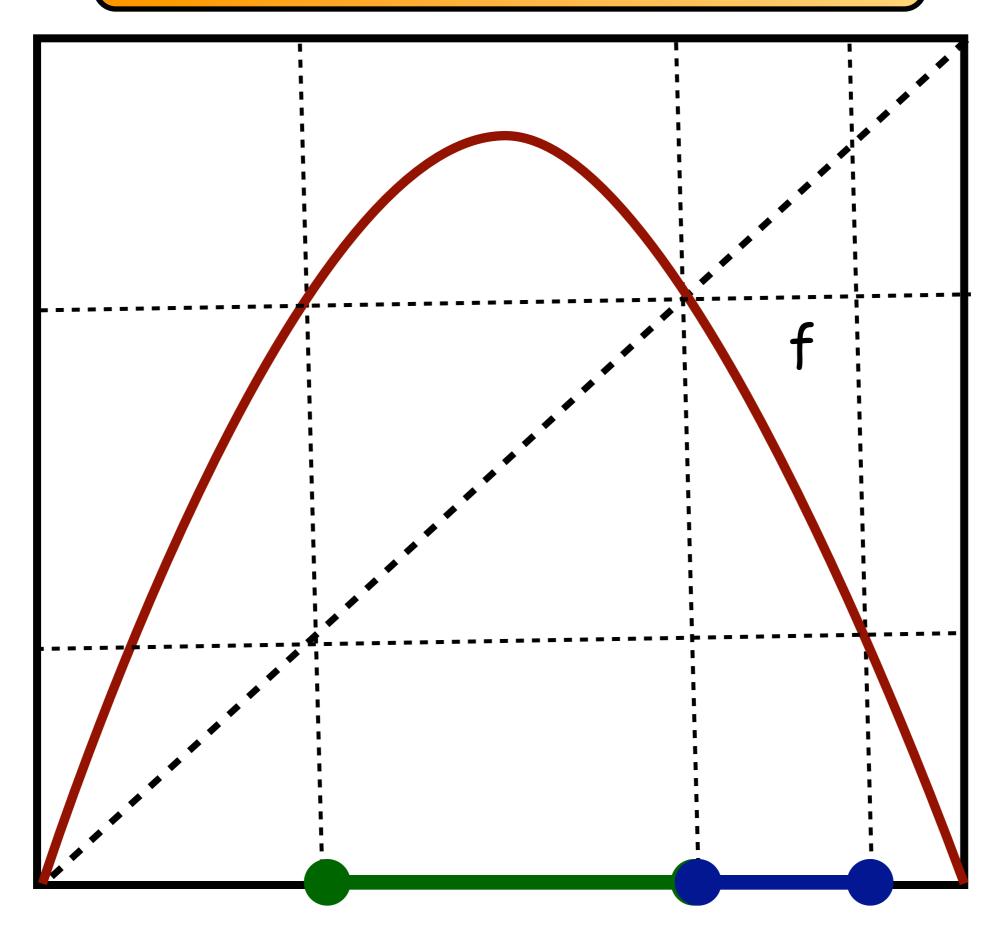


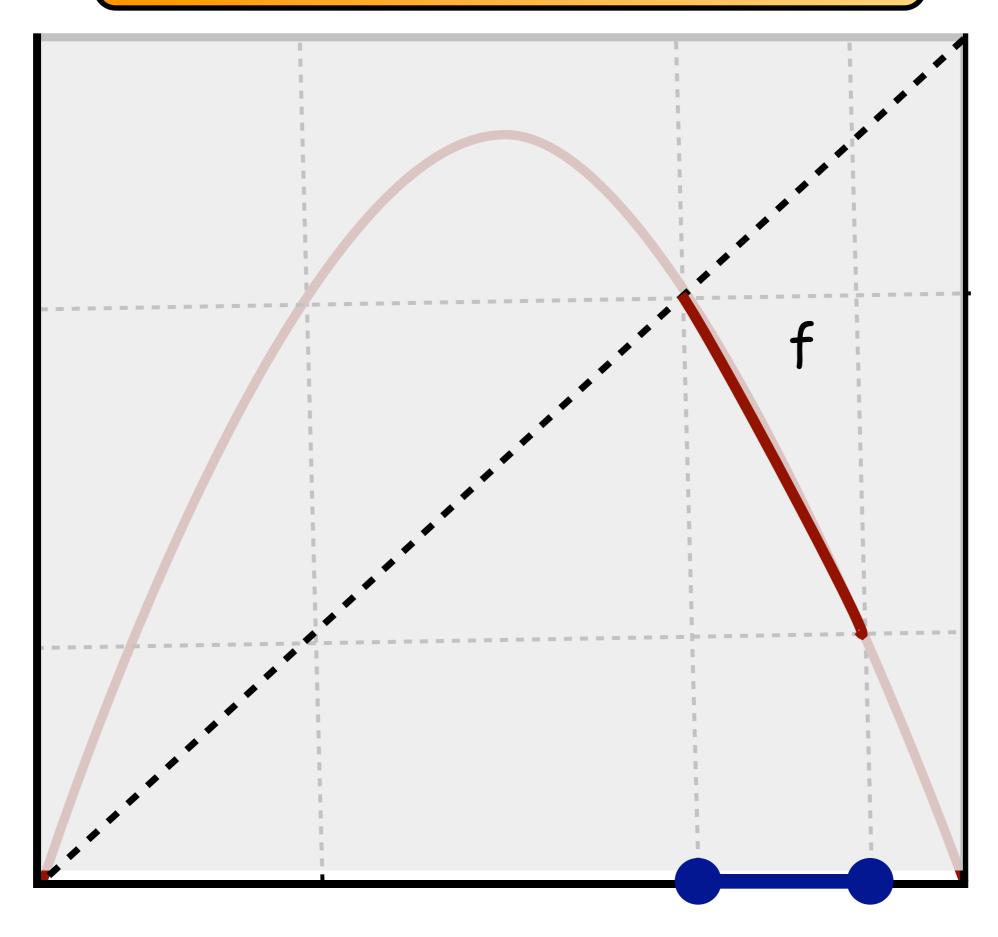
 α is defined.

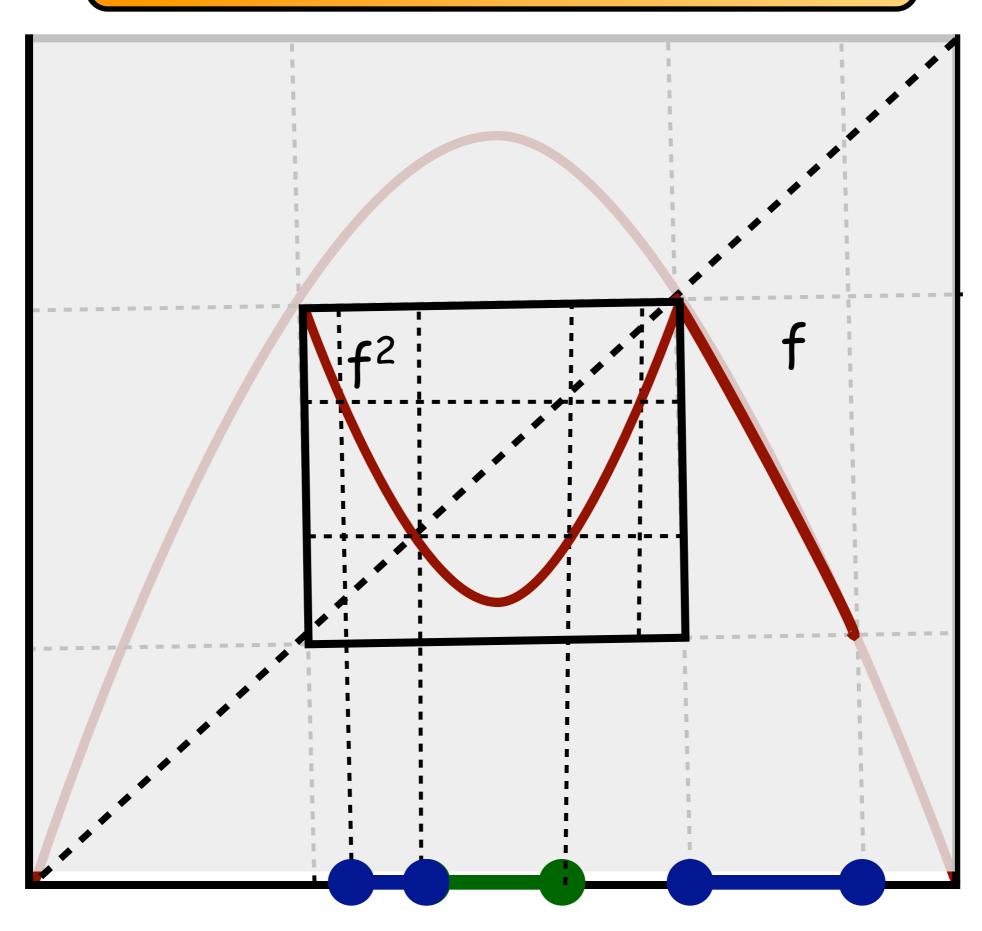
$$\alpha(\mathbf{y}) \coloneqq \frac{\mathbf{v}(\mathbf{y}) - \alpha(f(\mathbf{y}))}{Df(\mathbf{y})}$$

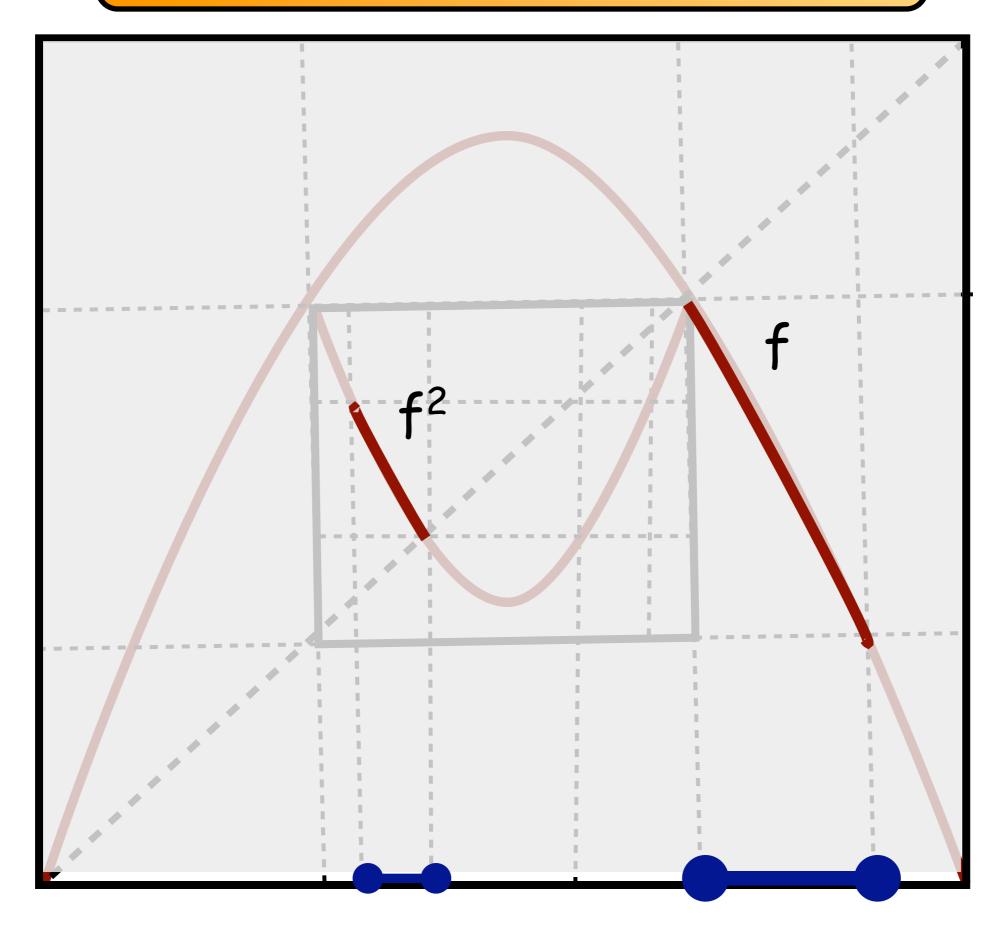


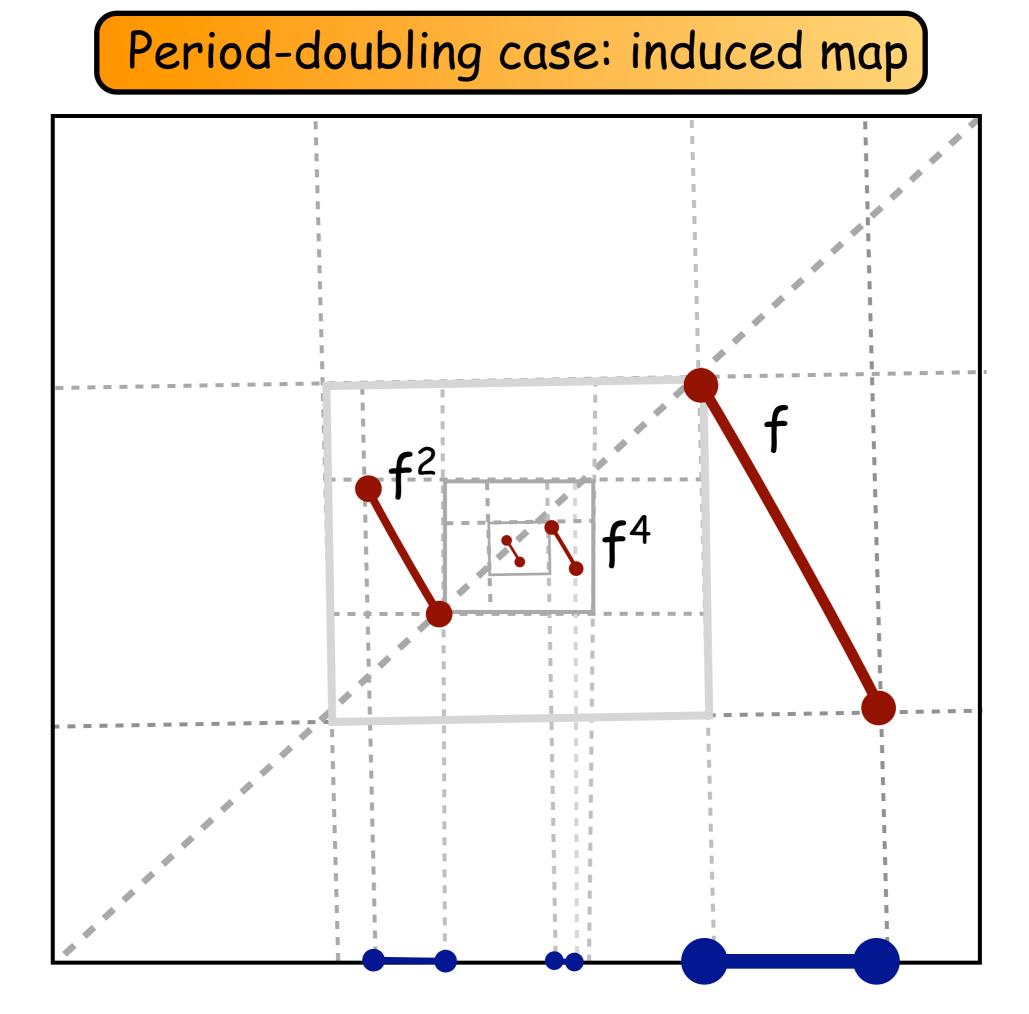
$$\alpha(\mathbf{y}) \coloneqq \frac{\mathbf{v}(\mathbf{y}) - \alpha(f(\mathbf{y}))}{Df(\mathbf{y})}$$

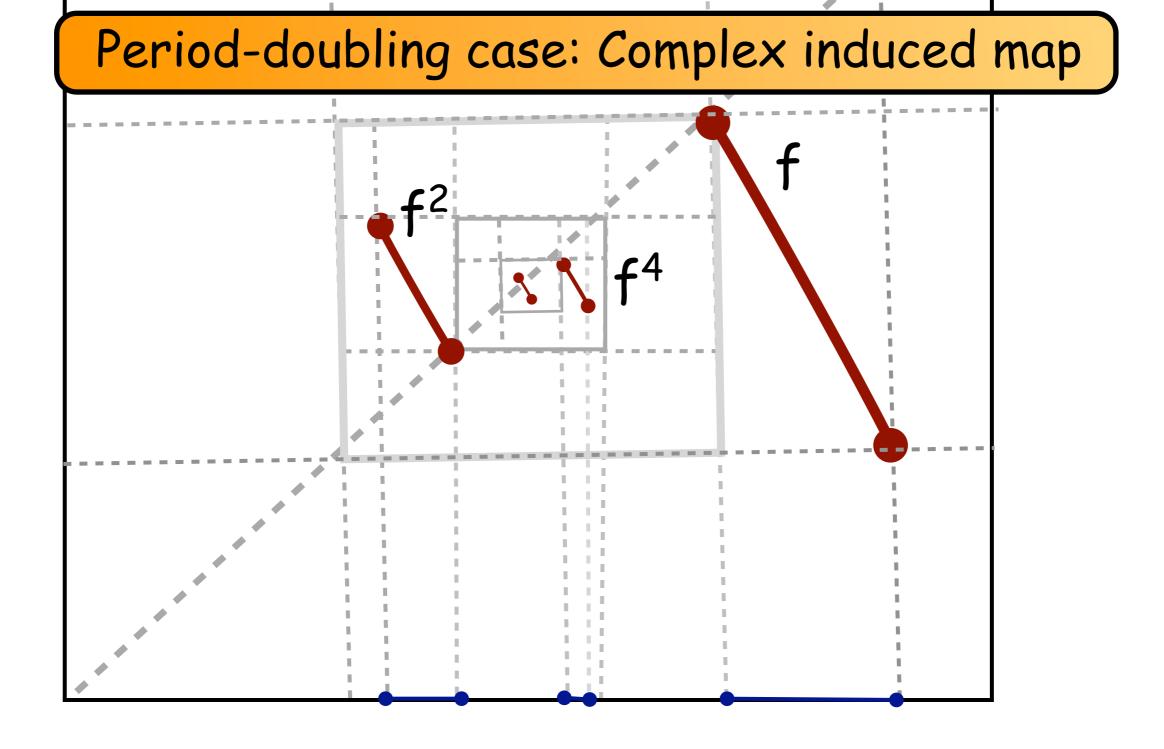


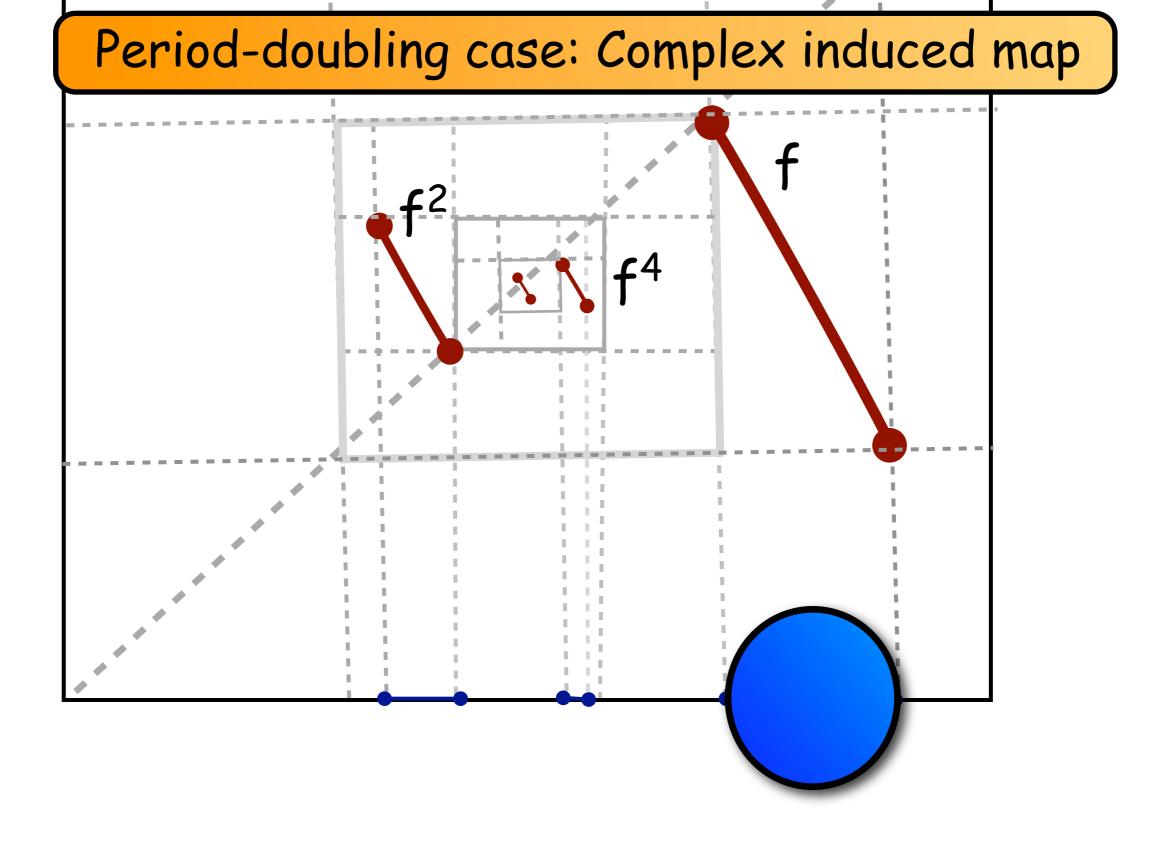


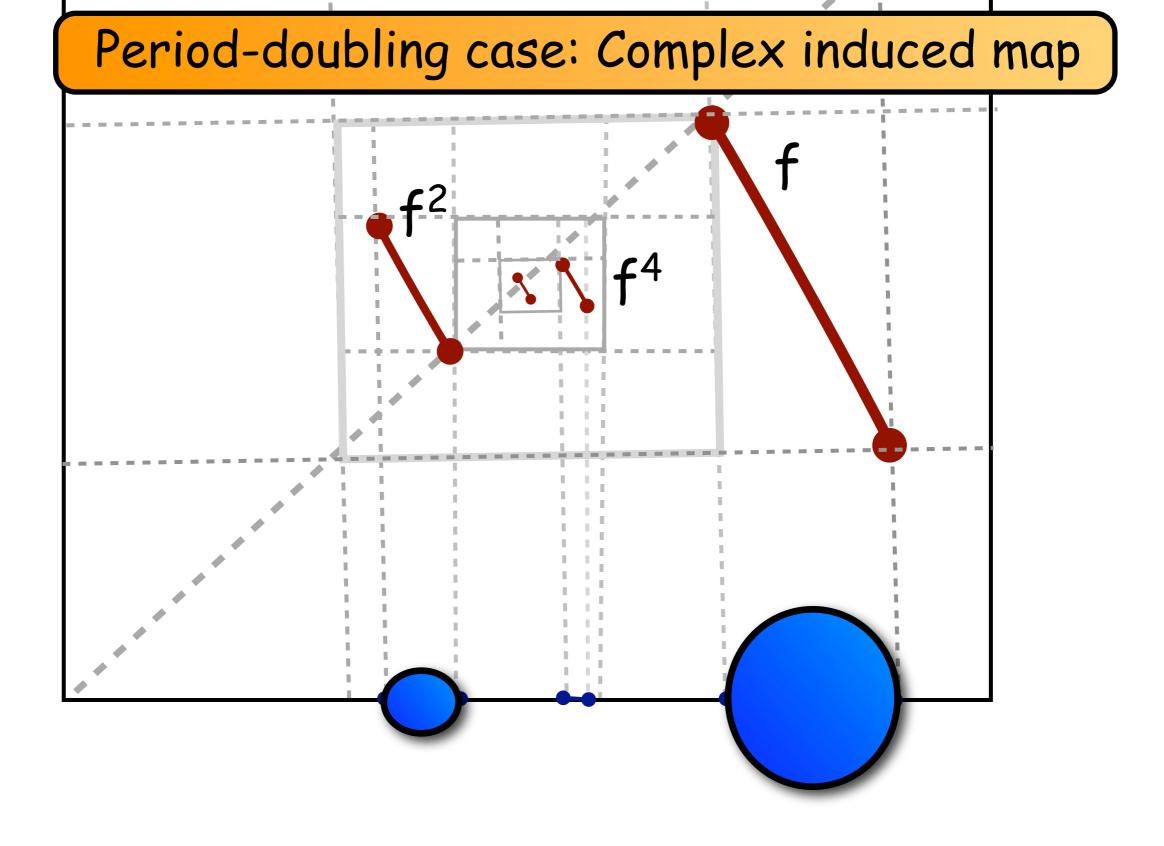


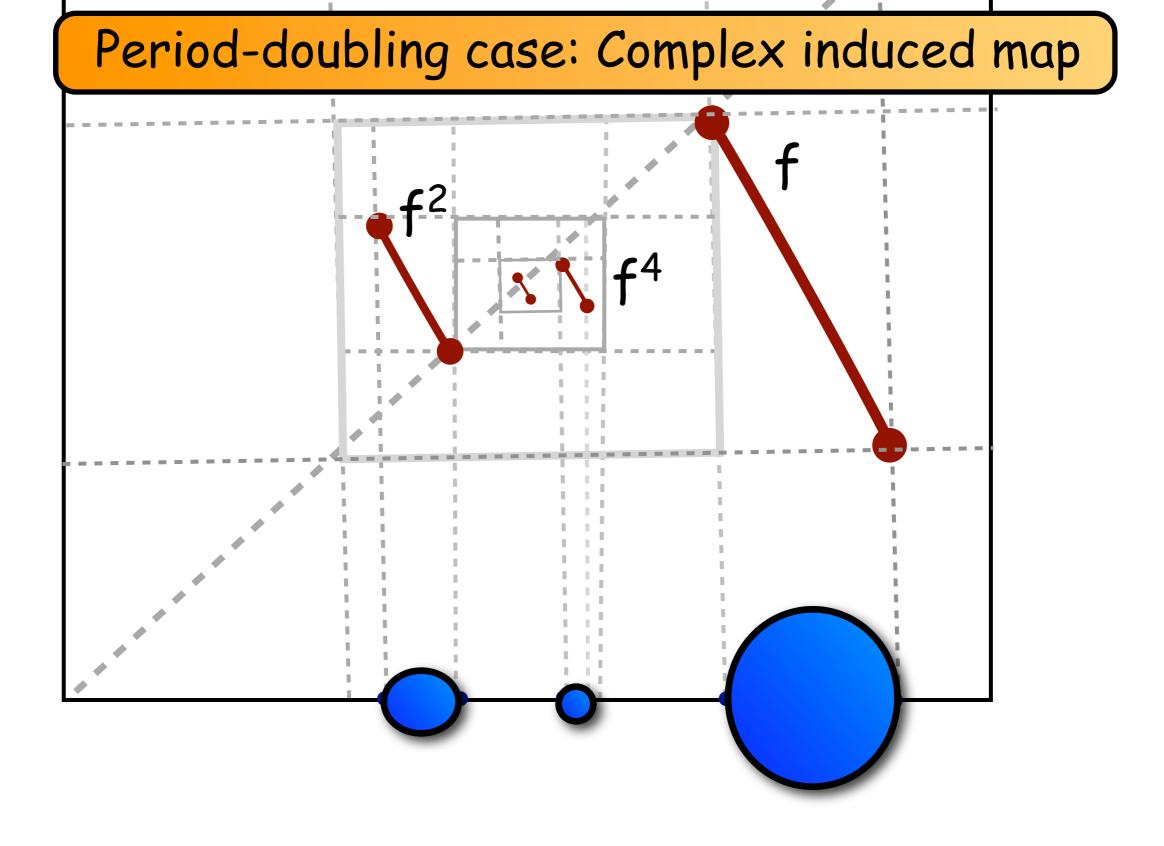


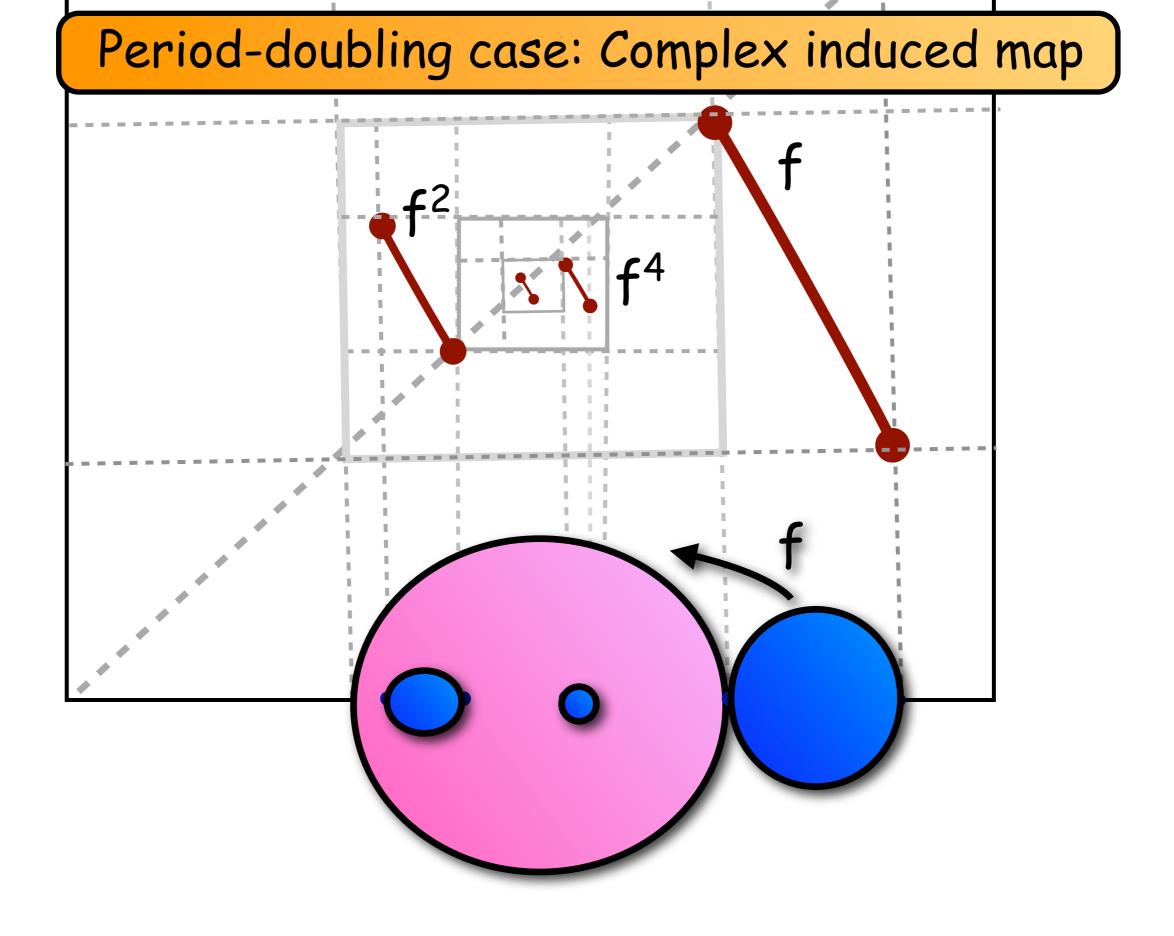


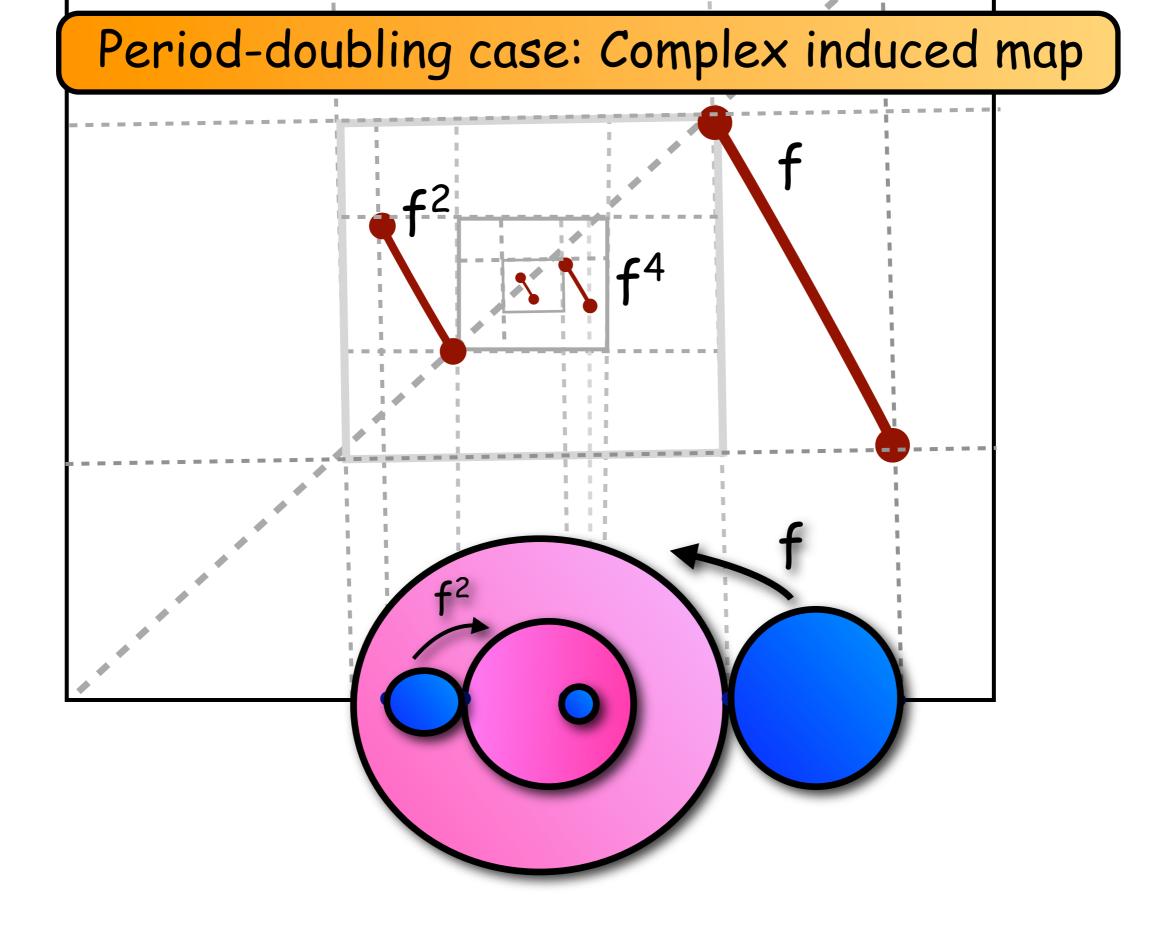


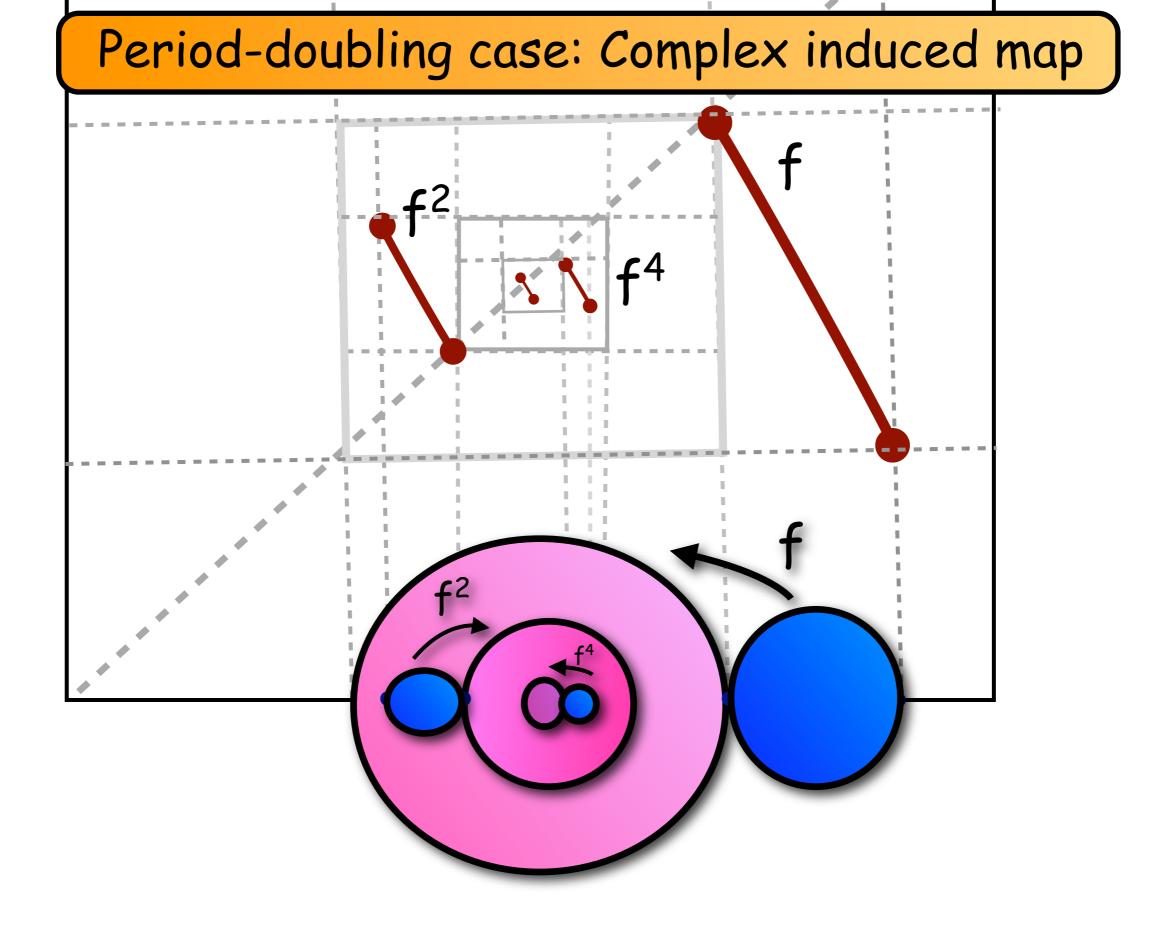






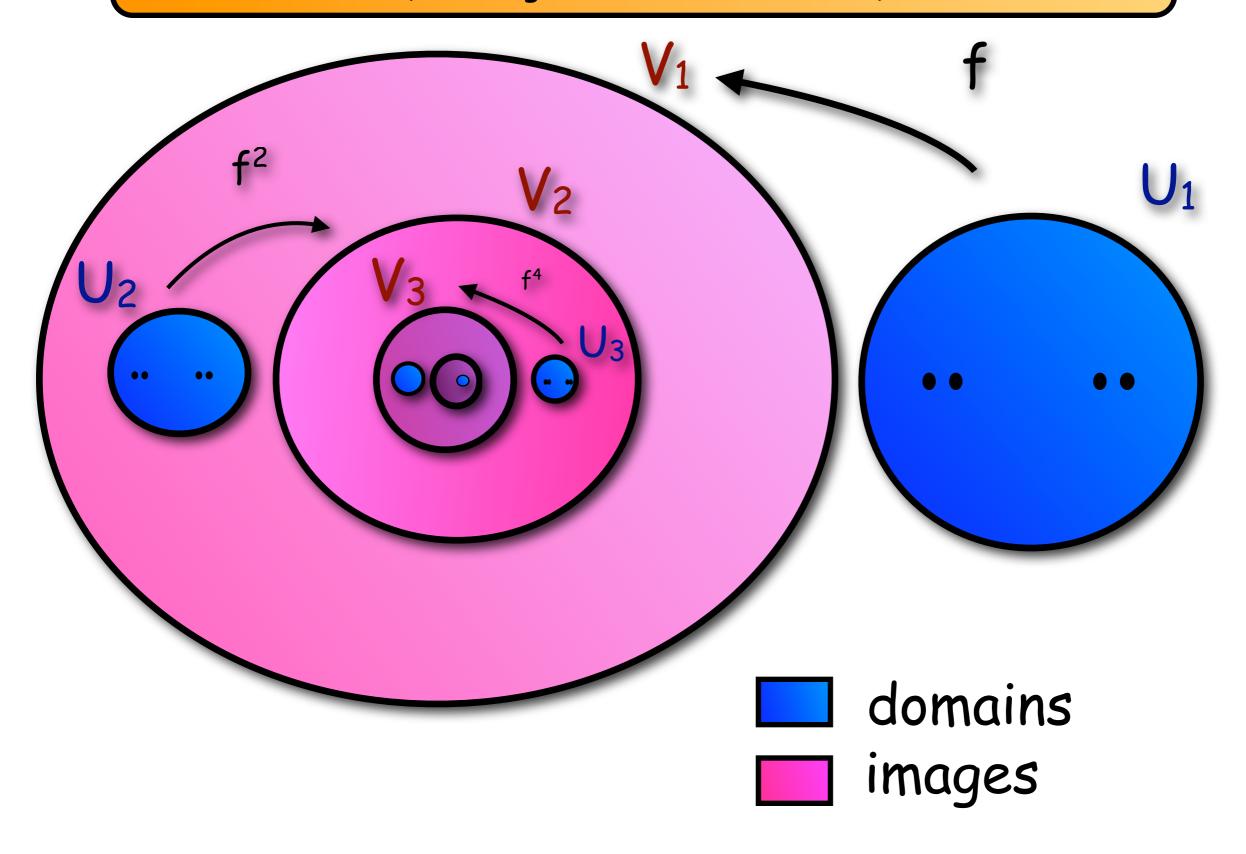


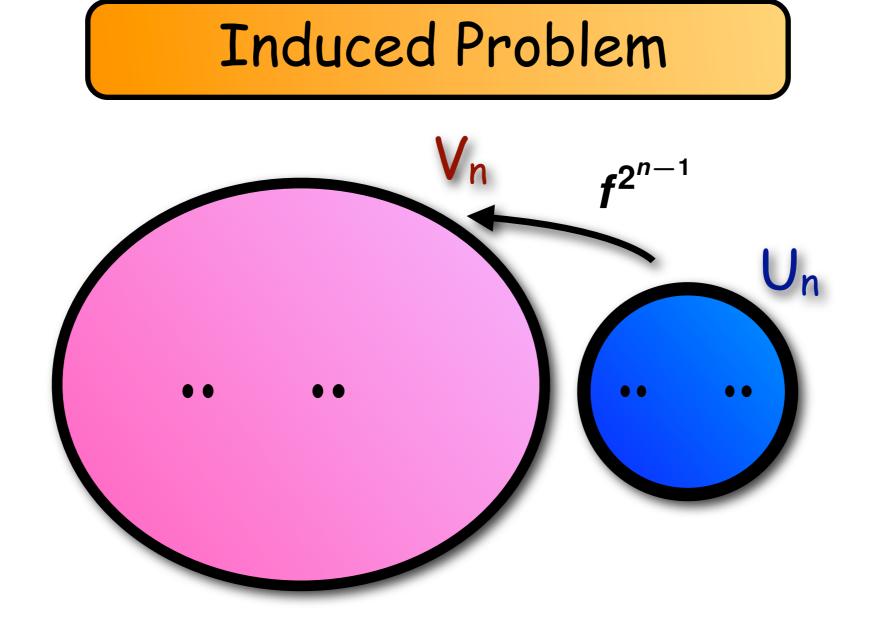




Period-doubling case: Complex induced map

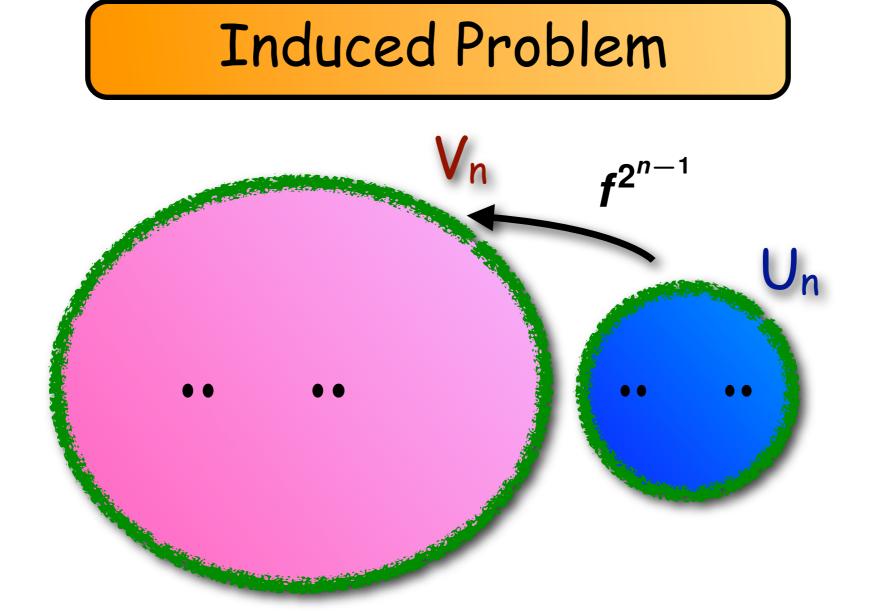
(reducing the domain a little bit)





Finding a quasiconformal vector field α such that $\partial_t (f + tv)^{2^{n-1}}|_{t=0}(x) = \alpha(f^{2^{n-1}}(x)) - Df^{2^{n-1}}(x) \cdot \alpha(x)$

for every $\mathbf{x} \in \partial U_n$ and for all \mathbf{n} .



Finding a quasiconformal vector field lpha such that $\partial_t (f + tv)^{2^{n-1}}|_{t=0}(x) = \alpha(f^{2^{n-1}}(x)) - Df^{2^{n-1}}(x) \cdot \alpha(x)$

for every $\mathbf{x} \in \partial U_n$ and for all \mathbf{n} .

More information on $\partial_t (f + tv)^{2^n}|_{t=0}(y)$

$$\partial_t (f + tv)^{2^n}|_{t=0}(y) = p_{n,0} \cdot (D\mathcal{R}_t^n \cdot v)(\frac{y}{p_{n,0}})$$

$+\partial_x f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$

More information on $\partial_t (f + tv)^{2^n}|_{t=0}(y)$

$$\partial_t (f + tv)^{2^n}|_{t=0}(y) = p_{n,0} \cdot (D\mathcal{R}_t^n \cdot v)(\frac{y}{p_{n,0}})$$

nice!! since $|D\mathcal{R}^n \cdot v| \leq C$ for every n !!

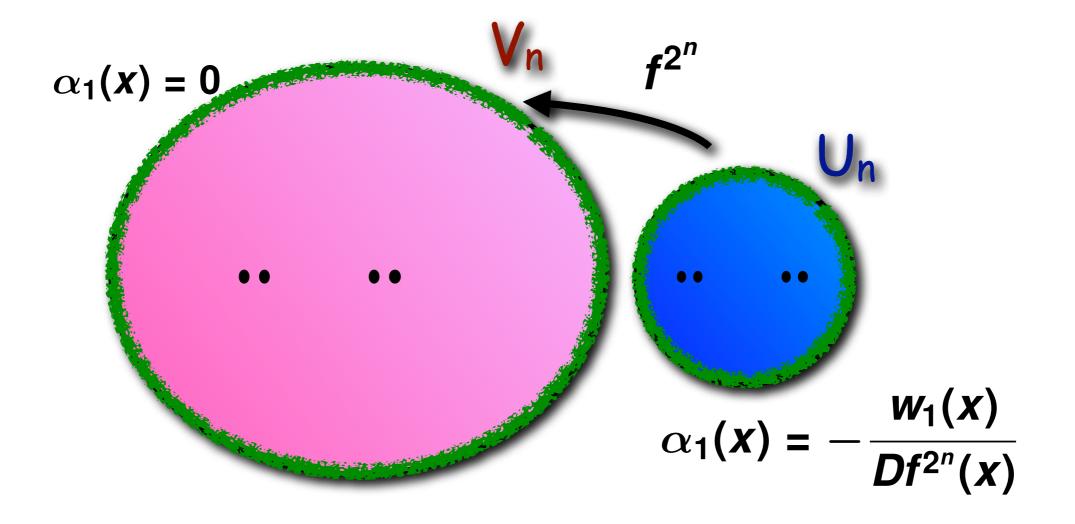
$$+\partial_x f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$$

More information on $\partial_t (f + tv)^{2^n}|_{t=0}(y)$

 $\partial_t (f + tv)^{2^n}|_{t=0}(y) = p_{n,0} \cdot (D\mathcal{R}_t^n \cdot v)(\frac{y}{p_{n,0}})$

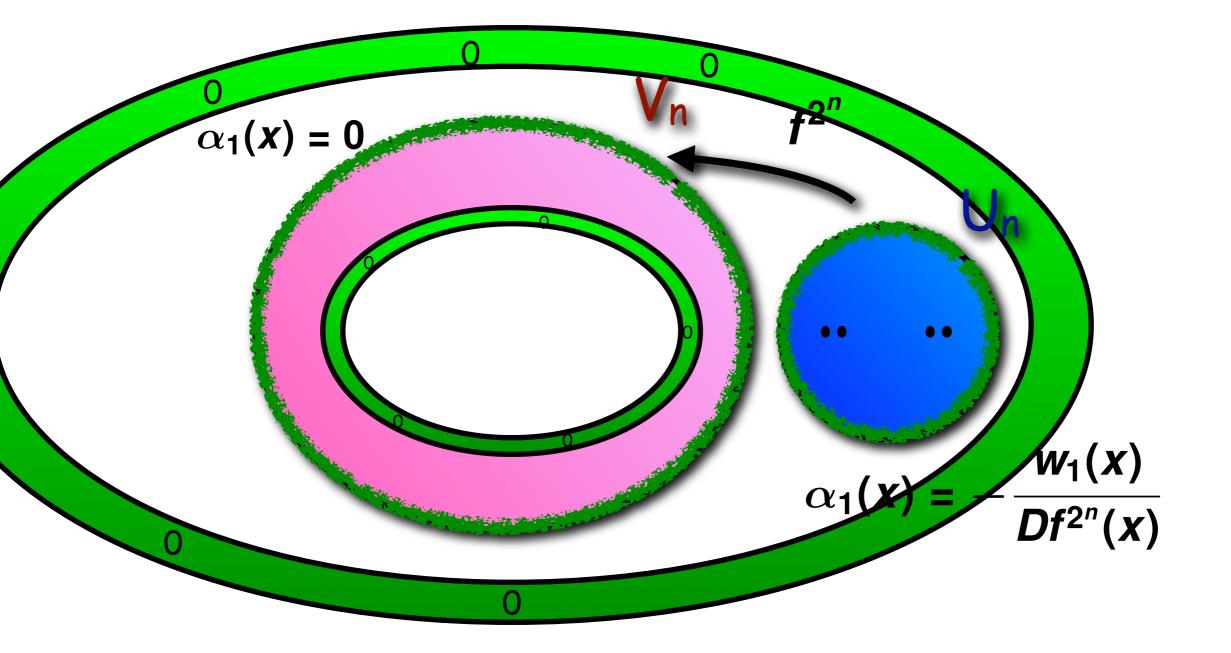
nice!! since $|D\mathcal{R}^n \cdot v| \leq C$ for every n!!

 $\partial_x f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$ **W**₂ where $\beta_n(y) = \frac{\partial_t p_{n,t}}{p_{n,t}} y$



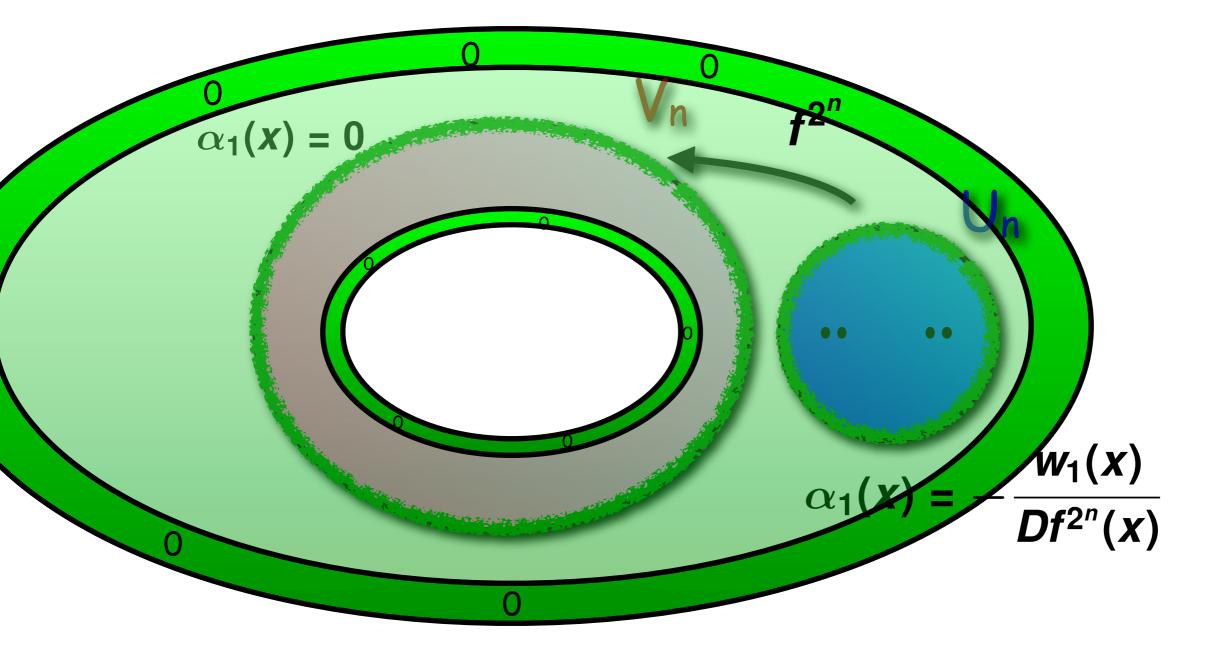
$$W_1(\boldsymbol{x}) = \alpha_1(f^{2^n}(\boldsymbol{x})) - Df^{2^n}(\boldsymbol{x}) \cdot \alpha_1(\boldsymbol{x})$$

Solution of induced problem for w₁



 $W_1(\boldsymbol{x}) = \alpha_1(f^{2^n}(\boldsymbol{x})) - Df^{2^n}(\boldsymbol{x}) \cdot \alpha_1(\boldsymbol{x})$

Solution of induced problem for w₁



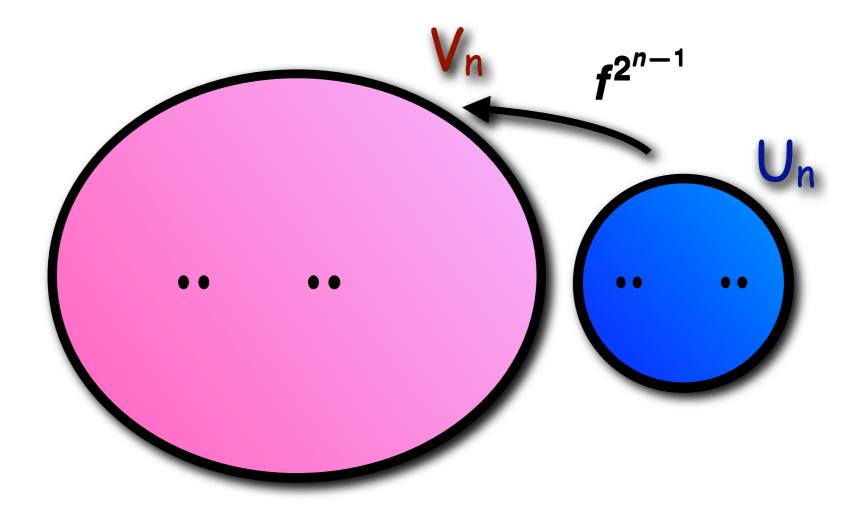
 $W_1(\mathbf{X}) = \alpha_1(f^{2^n}(\mathbf{X})) - Df^{2^n}(\mathbf{X}) \cdot \alpha_1(\mathbf{X})$

$$w_2(x) = Df^{2^n}(x) \cdot \beta_n(x) - \beta_n(f^{2^n}(x))$$
$$\beta_n(x) = \frac{\partial p_{n,t}}{p_{n,0}} \cdot x = c_n \cdot x$$

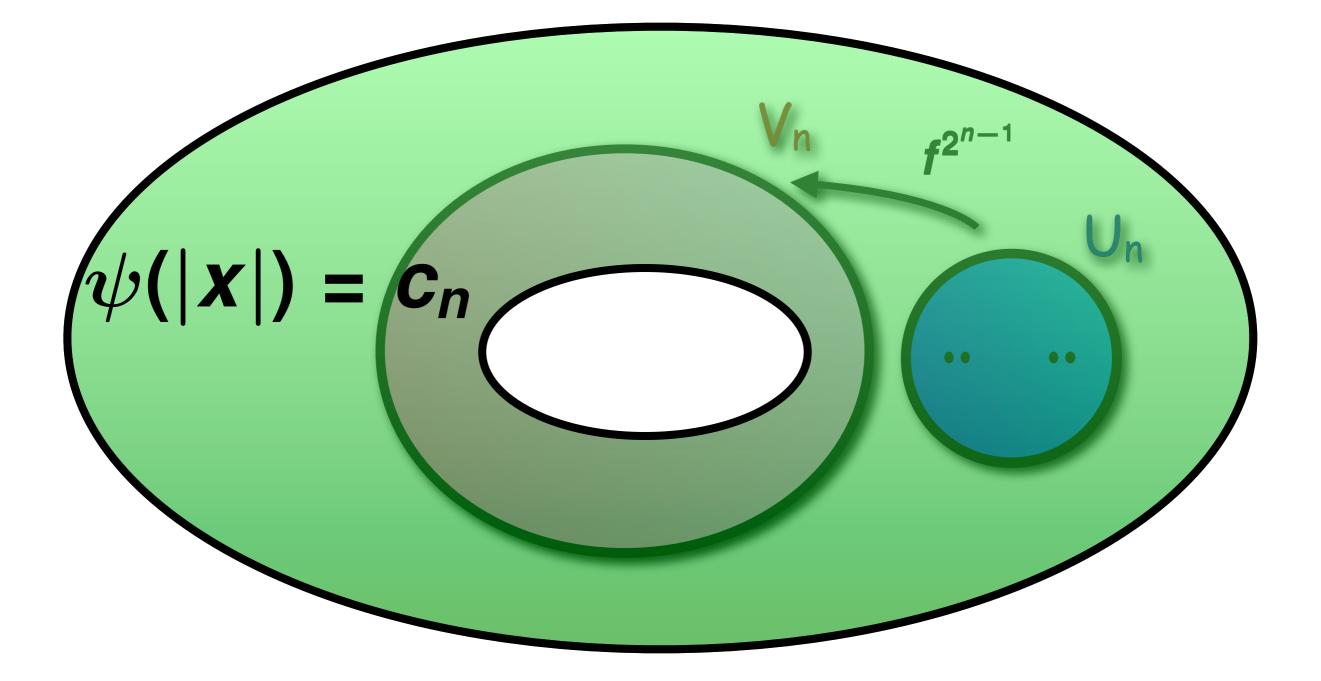
Because
$$|D\mathcal{R}_f^n \cdot v| < C$$
 it follows that

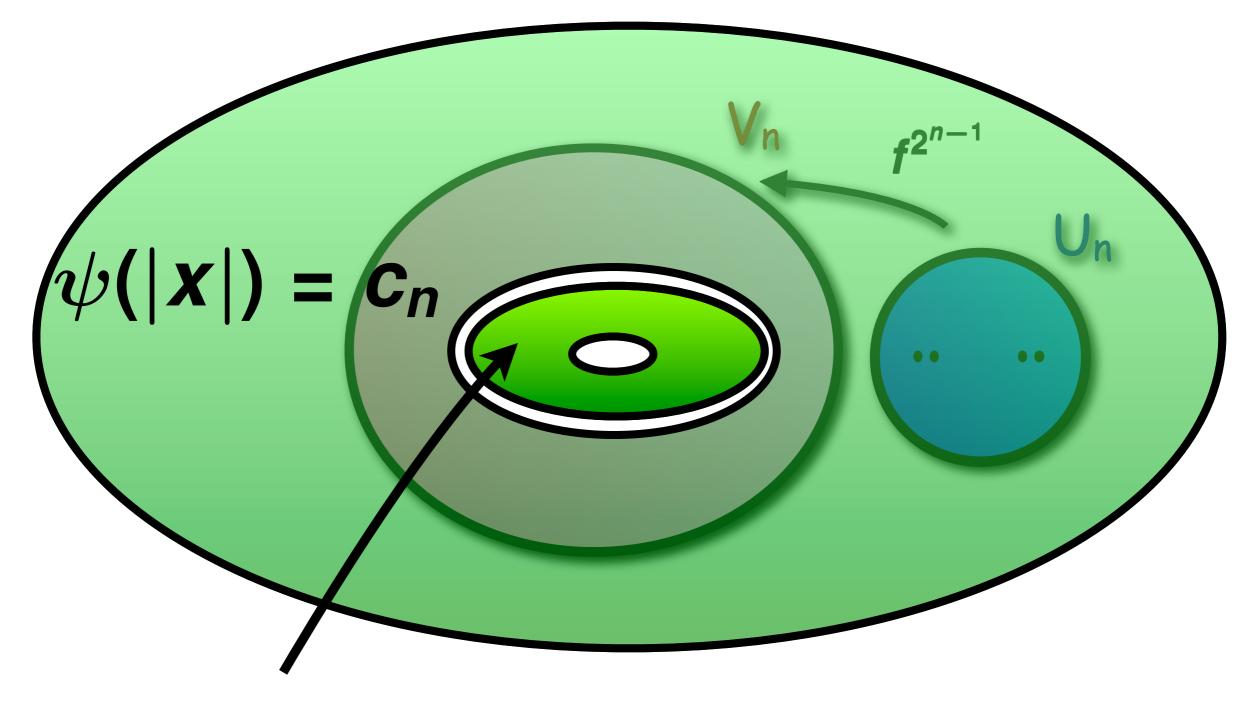
$$|c_{n+1} - c_n| < C$$

Define $\alpha_2(\mathbf{x}) = \psi(|\mathbf{x}|) \cdot \mathbf{x}$

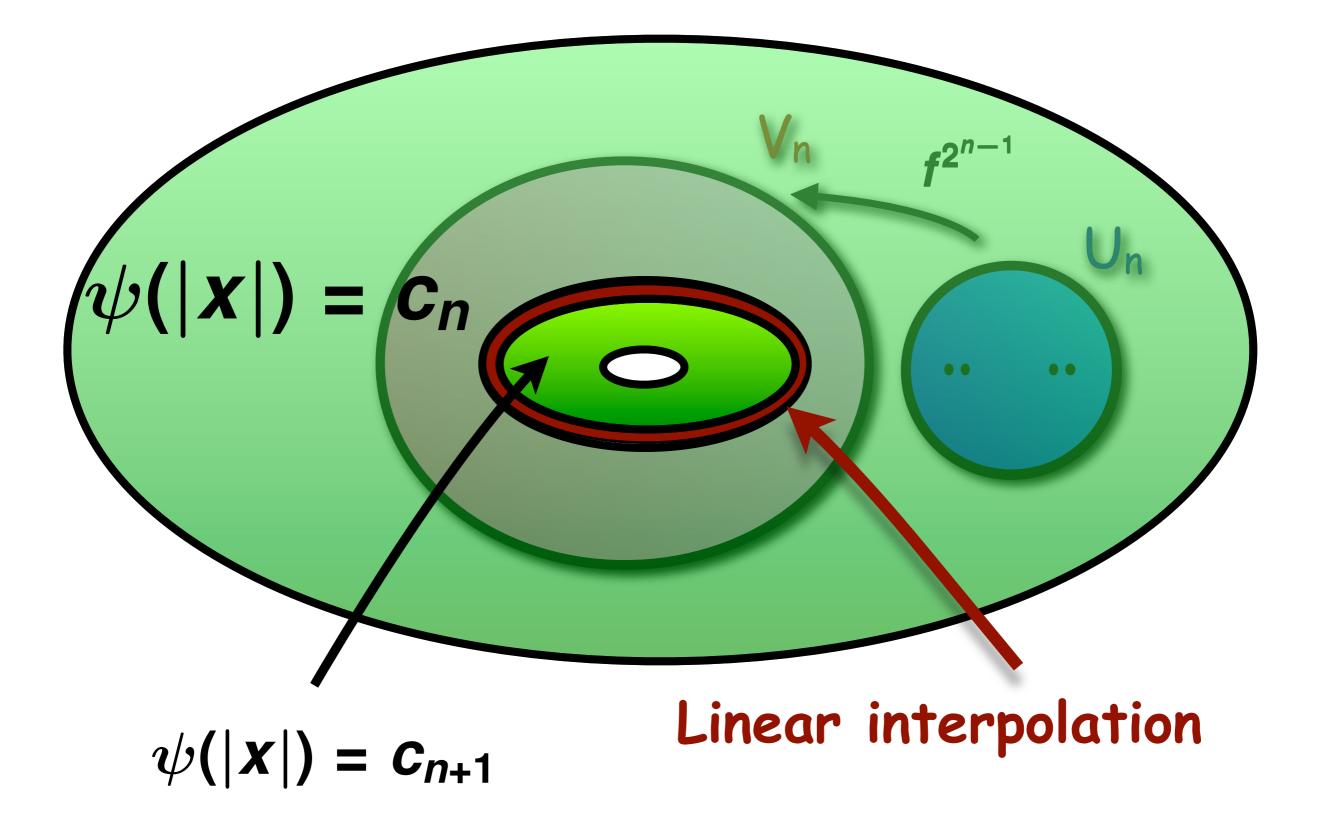


Solution of induced problem for w₂

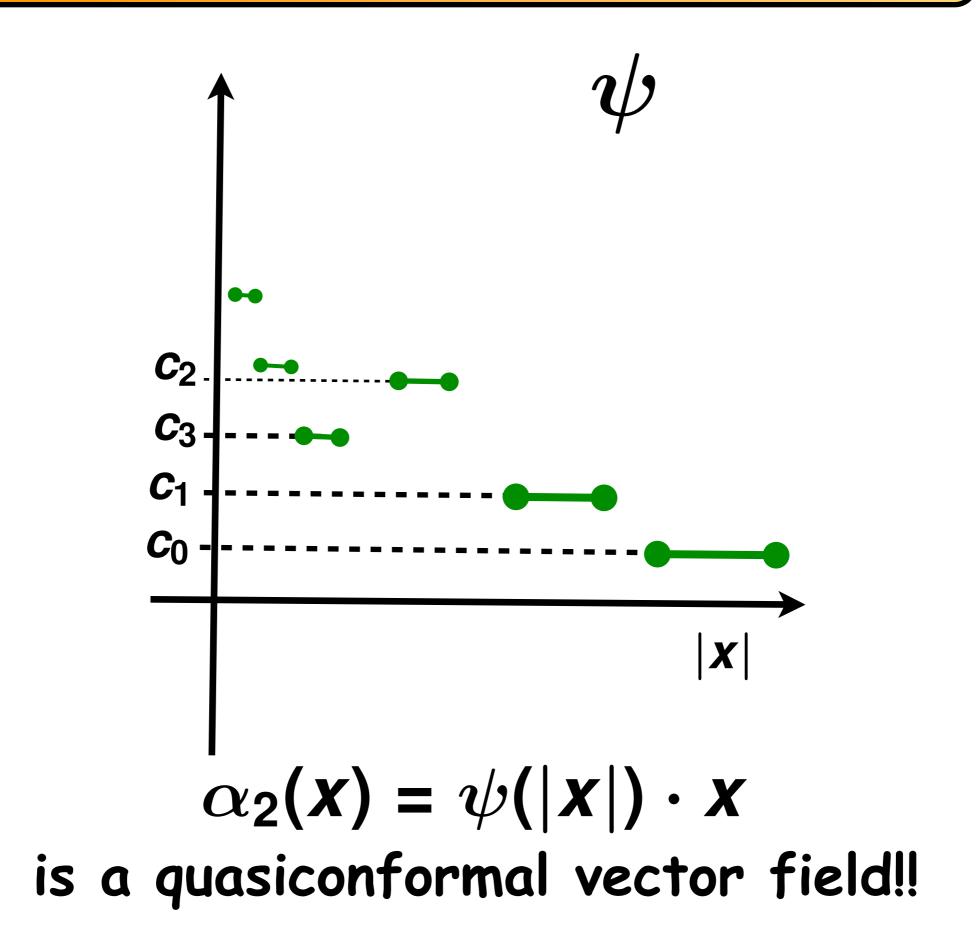


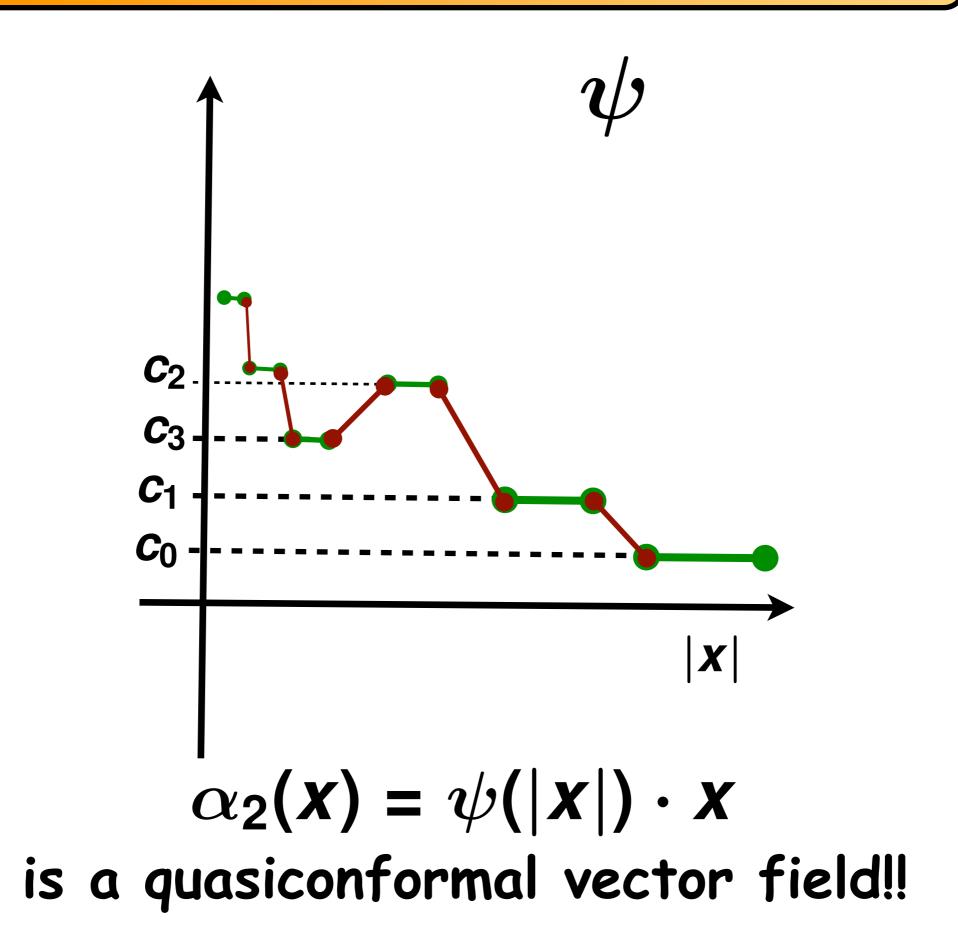


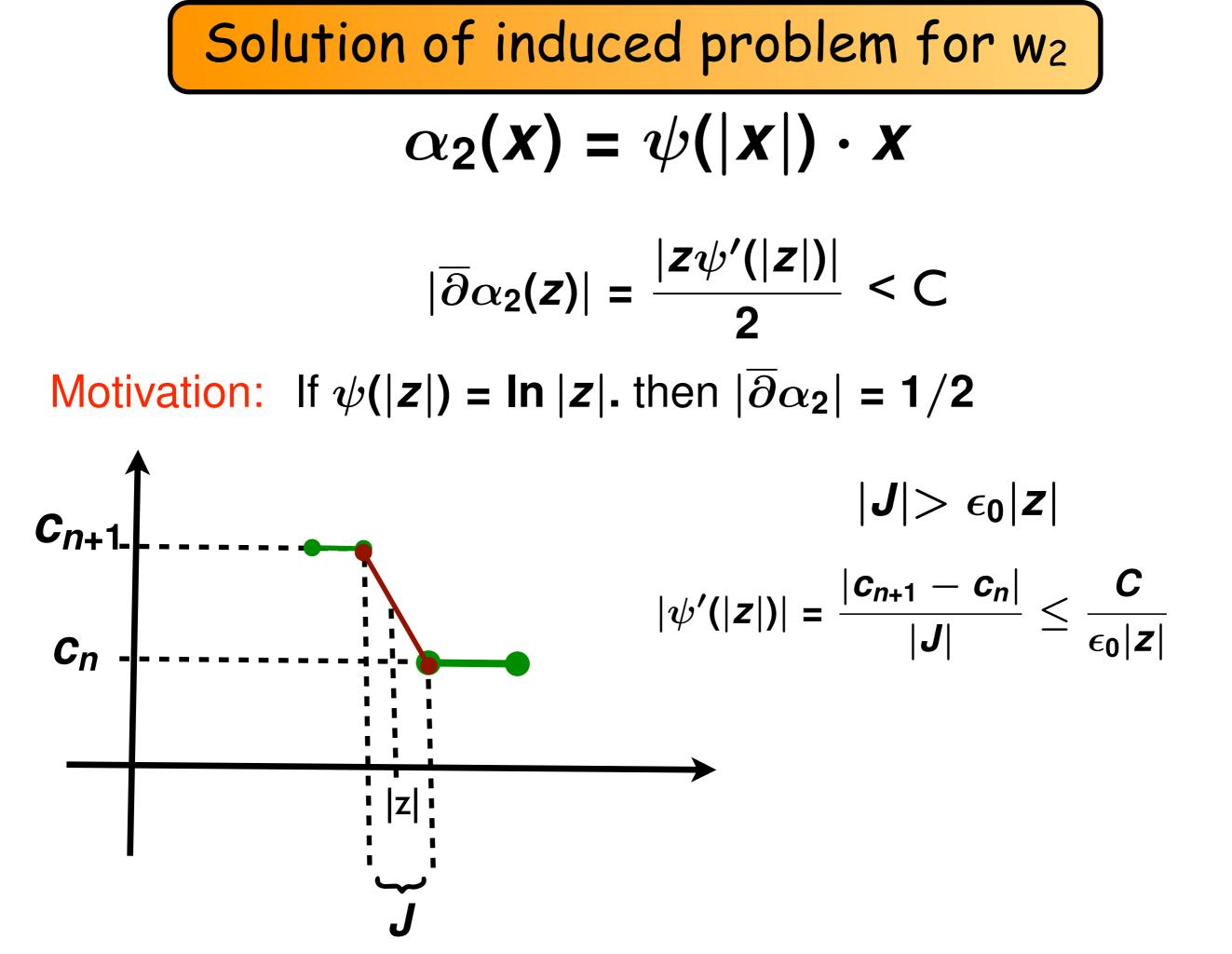
 $\psi(|\mathbf{X}|) = \mathbf{C}_{n+1}$



Solution of induced problem for w₂







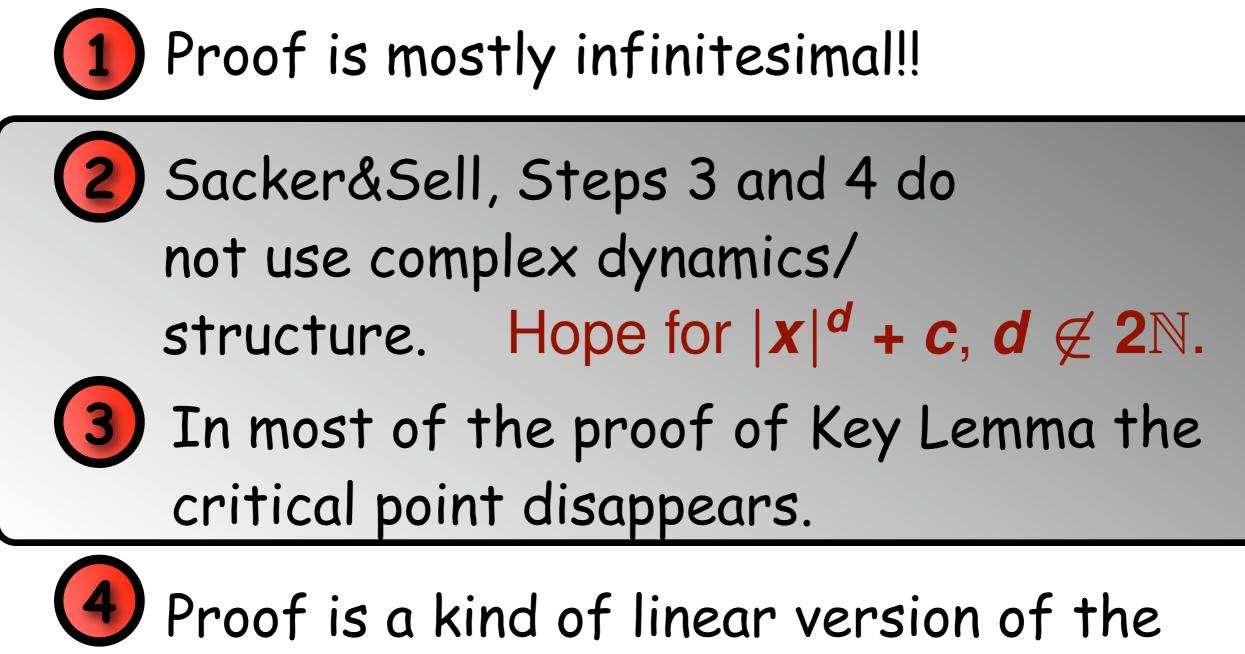
Why is this proof nice? :-)

2 Sacker&Sell, Steps 3 and 4 do not use complex dynamics/ structure.

(3) In most of the proof of Key Lemma the critical point disappears.

Proof is a kind of linear version of the original Lyubich(1999) argument.

Why is this proof nice? :-)



original Lyubich(1999) argument.