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“SLE(4)”

The Volume as Multifractal Measure (“Burstiness”): 
How to Best Represent This Measure?



The Product Formula
• Theorem (F,K,P): A Borel probability measure μ on [0,1] 

has a unique representation as
∏(1 +  aI hI) , 

where the coefficients aI are in [-1,+1]. Conversely, if we 
choose any sequence of coefficients  aI in [-1,+1], the 
resulting product is a Borel probability measure on [0,1]. 

Note: For general positive measures, just multiply by a 
constant. Similar result on [0,1]d. (For d > 1 there are 
choices for the representations.)

Note: See “The Theory of Weights and the Dirichlet Problem for Elliptic Equations” by R. 
Fefferman, C. Kenig, and J.Pipher (Annals of Math., 1991)



Some Haar-like functions on [0,1]
“The Theory of Weights and the Dirichlet Problem for Elliptic 

Equations” by R. Fefferman, C. Kenig, and J.Pipher (Annals of 
Math., 1991). We first define the “L∞ normalized Haar function” hI
for an interval I of form [j2-n,(j+1)2-n] to be of form

hI = -1 on [j2-n,(j+1/2)2-n)    
and  

hI =  +1 on [(j+1/2)2-n,(j+1)2-n).

The only exception to this rule is if the right hand endpoint of I is 1. 
Then we define

hI (1) = +1.



Relative Measure
The coefficients aI are computed simply by 
computing  relative measure (“volume”) on the 
two halves of each interval I. Let L and R = left 
(resp. right) halves of I. Solve:

μ(R)  = ½ (1 +  aI) μ(I)
μ(L)  = ½ (1  - aI) μ(I)

Then -1 ≤ aI  ≤ +1 because μ is nonnegative. aI > 0 
⇒volume increasing, aI  < 0 ⇒ volume decreasing.



Topic 1: Telecommunications:
Joint Work With D. Bassu, L. Ness, V. Rokhlin

This is a simulated measure with coefficients 
chosen randomly from a particular PDF.



Coefficients give Information for 
Classification
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• Daily profile
– 182 

antennas
– 14 days

Volume from 
various antennae 
have had 
coefficients 
extracted, 
embedded by DG.



SLE

“Stochastic Loewner Evolution” or 
“Schramm – Loewner Evolution”

Oded Schramm ( 1961 – 2008)

Conformal Mappings from ℍ+ to ℍ+ :
∂tF(t,z) = -2/(F(t,z) – B(κt))

F(0,z) = z



Brownian Motion on the line …….



Gives an SLE Curve 
by solving a differential 
equation



A Limit Set Produced From A Special “Welding Map”. 
This method produces “random curves with a group law” (Bers’ Theorem 

for Kleinian groups).

Picture by J. Brock



A Theorem
(Work of K. Astala, PWJ, A. Kupiainen, E. 

Saksman to appear in Acta Mathematica)
Exponentiate a multiple of the Gaussian Free Field 
(= Massless Free Field) after subtracting 
infinity (Kahane’s Theorem). A.S. can multiply by 

constant to get derivative
of homeo(S1). (Here 0<t<2.)
Theorem (A,J,K,S): The homeo is (a.s.) a welding 

curve and associated to a curve, which is “rigid” 
(unique). 

One now understands how to get another method 
of producing SLE from this. (See work of S. 
Sheffield. The above procedure “must be done 
twice”.) 



The Gaussian Free Field
Σ = sum over all j >0 of   

Xj(ω) j-1/2cos(jθ) + X’j(ω) j-1/2sin(jθ) - 1/2j  

Here Xj , X’j = Const. times i.i.d. Brownian 
motion at time t corresponding to kappa)

Φ’(θ) = const(ω) eΣ

Then a.s. Φ is welding with uniqueness
for the welding curve (rigid).



J.P. Kahane’s Theorem
Inspired by Mandelbrot’s Work

Exponentiating the Gaussian Free Field
leads (a.s.) to a Borel measure μ on the 

circle,
with non zero and finite mass. (0 < t < 2)
Multiplying by a constant (normalize) gives
us a derivative of a homeomorphism of the
Circle.
A, J, K, S: “Enemy” for building a curve: We 

can’t let | aI |> 1- ε very often. Estimates!



• R: A Lipschitz function F on ℝd is differentiable 
almost everywhere. Say F maps ℝd to ℝm . The 
most interesting case today is when m = d.

• Is there a converse? Given E a Lebesgue null 
set, is there F: ℝd to ℝd such that F is not 
differentiable at all points of E? (Is Rademacher
“sharp”?)

• The statement is classical for d = 1.
• For all d > 1, examples show  this statement is 

false if m < d.

Work with M. Csörnyei: 
Tangent Fields and Sharpness of 

Rademacher’s Theorem



A Theorem in Dimension 2
Theorem (G. Alberti , M. Csörnyei, D. Preiss): In 

dimension 2, for any set E of Lebesgue measure 
zero, there is a Lipshitz function F from ℝ2 to ℝ2

to such that F is nowhere differentiable on E.

The proof uses two ingredients. One is 
dependent on dimension 2 (combinatorics), the 
other is not (real variables).

Today: Marianna Csörnyei, PWJ:  d Dimensional 
Version.

This requires a notion from geometric measure
theory: Tangent Fields and Cones for Sets.



Tangent Fields in Dimension d
Now let E be a set of Lebesgue measure ε
> 0, and let x be a point in E. Then x has a
“good” tangent cone for E of angle π - δ if any 
Lipschitz curve Γ (with respect to the axis of
the cone) has

Length(E ∩ Γ) ≤ C(δ) ε-δ +1/d.
This means E hits Γ in a “small set” with a certain 

control. (This estimate is supposed to be sharp: use a 
BOX as E. There δ = 0.)

For null sets, demand Length(E ∩ Γ) = 0



What is a tangent field here?

• If G is a differentiable function then at 
each point x (in the corresponding surface) 
we have a tangent PLANE to the surface. 
Another way of saying this is that at x, for 
a double sided cone oriented in the correct 
direction, of opening π - δ, the cone 
intersects the surface “in a very small set”, 
i.e. only close to x.



Tangent Plane and Cone

The usual picture from elementary geometry of surfaces: 
The cone misses the surface locally.



Lipschitz Curve Inside “Tangent 
Cone”: |F(x) – F(x’)| ≤ M|x-x’|

Tangent 
cone has 
vertex at 
z, a point 
in E.

The curve misses the 
blue set E in small length
except for small length.



The curve intersects a box of measure 
ε in length ~ ε1/d = sidelenght of box.

This should be 
the “worst 
case”: E = box.



Some Combinatorics
There is a combinatorial problem whose solution 
would make part of the proof much easier.

Corollary to Erdös-Szekeres Theorem (1930’s): In 
D = 2, a set of N points contains at least N1/2

points lying on a good Lipschitz curve.
Open Problem: In D > 2 can we have 
N(D-1)/D points lying on a good Lipschitz surface? (It 

can’t be exactly correct.)
C,J  prove a local, measure theoretic version of E-

S in higher dimensions.



(“Old” + New)Tangent Field Results
• G. Alberti , M. Csörnyei, D. Preiss (ACP, to 

appear)
• Thm: (ACP): Existence of tangent field implies 

existence of ℝd to ℝd Lipschitz function 
nowhere diff. on set a Lebesgue null set E.

• Thm (A,C,P): Every measurable set of finite 
measure has a tangent field in dim = 2. (Implies 
Rademacher is sharp in dimension 2.)

• Thm 1: (M. Csörnyei, PWJ): Any measurable set 
of finite measure has a “narrow” cone tangent 
field (for any dim d). (Split E into a controlled 
number of subsets, allow narrow cones.)

• Thm 2: (M. Csörnyei, PWJ): Any Lebesgue null 
set has a tangent field (for any dim d).

• Cor. (From {M.Csörnyei, PWJ} + {A,C,P})  In any 
dimension Rademacher is sharp.



Some Ideas of the Proof
N.B. We prove a “local” theorem, about subsets of the unit cube. 

This localization is required by the form of our proof, and we 
don’t know if it is necessary. But null sets are just null sets. 
(Local implies global.)

For simplification, we outline the proof in dim = 2. 
Let Q be a dyadic square, Q = I x J, where I, J 
are intervals of the same size. For an interval I  
let L, R denote the left, right halves of J. 
Construct the product for μ = ε-1 1E(x) =
∏(1 +  1QaI hI(x)) ∏(1 +  1QaL hL(y)) (1 +  1QaR hR(y))

= ∏1 times ∏2 = ε-1 on E.



Model Case

E is a subset of [0,1]x[0,1], of measure = ε.
Then
1E(x,y) = ε ∏1 times ∏2 .
Therefore for each z = (x,y) in E, either
∏1(z) ≥ ε-1/2 or ∏2(z) ≥ ε-1/2 .
This divides E into Ex, Ey according to
whether the first case happens or not. 
Assume the first case.



Look at Ex
If we integrate on a horizontal line L,

∫ ∏1(x,y) dx = 1,
L 

because on L, ∏1is just a product
corresponding to some probability measure.
Since
∏1(z) ≥ ε -1/2 on Ex, 

length(Ex ∩ L) ≤ ε1/2 .



Now Perturb
• By perturbing the Haar functions we can 

control integrals on lines with small slope. 
Here we must throw away a small piece of 
Ex.

• Working much harder, perturb and control 
integrals over Lipschitz perturbations of 
horizontal curves. (Strangely, the problem, 
which is deterministic, becomes “random” 
because the space of Lipschitz curves is 
infinite dimensional.)

• Now work harder for the full theorem. Lots of 
estimates. Today we outline how to control 
cones with very small angle, not π - δ.



Technical Tools
1. A1 weights
2. BMO
3. Fourier Magic (Special Kernels, 

“Holomorphy”)
4. “Off Diagonal” estimates from Cauchy 

Integrals on Lipschitz Curves and the 
estimates from TSP

5. Hoeffding’s Inequality and Martingale 
Square Functions



The product ∏ Redefined
Let be the collection of all possible translations of
the standard dyadic grid in ℝd. (Only cubes of 
length ≤ 1.) This gives a probability space of
grids. For each such grid G, form the product ∏G
as before. 
Then ∏G (x) ~ ε-1 on E. We now define ∏
by the geometric mean:

∏ = exp{EG(log(∏G (x) )},
where EG is the expectation over the grids.   

Then ∏(x) ~ ε-1 on E.



A Technical Adjustment: A1 weights
Instead of the characteristic function of E, use 
w(x) = (M(1E)(x))1-δ for some small δ. (M = H.L.
Maximal function)Then by Coifman-Rochberg, 
w(x) is an A1 Weight, with norm bounded by C(δ). 

Forming the product as before (but with 
the new probability measure (||w||1)-1 w(x),We get
∏(x) ~ ε-1+δ on E. Splitting as before we obtain:

∏1(z) ≥ ε-1/2 +δ/2 on Ex.
And we have (due to the A1 weight’s bound)

L∞ bounds on pieces of the log. 



Directionality and Scales
As before we write ∏G = ∏1,G times ∏2,G (x,y)
(Haar functions), so ∏1,G “sees” the x direction. 
Again we divide E into Ex, Ey according

to which product is large. Now 
log(∏1,G(x)) = ∑n log(∏1,G,n(x)),

Where the expectation (= EG,n)uses
only cubes of scale 2-n, i.e. 

log(∏1,G,n(x)) = EG,n(log(∏1,G,n (x) )
Then EG(log(∏1,G,n (x) )}, is a nice Lipschitz
function, or so we would like. (A1 used here!)



Philosophy and Obstacles
1. The log of any subproduct is a BMO(ℝd) 

function of bounded norm. 
2. John-Nirenberg thus gives pointwise bounds 

except on a set of very small measure. 
3. But this log(subproduct) is completely out of 

control on  a curve and is not even integrable
there. 

4. We can perturb our initial product so that it’s 
log is better behaved on curves. 

5. But even this will have problems related to 
#3.  (We need finer estimates.)



Reasons to be Perturbed
1. We form a new product where we replace Haar

functions h with perturbations h~. The functions h~

have integral = 0 on lines in a small cone and 
decay rapidly. Only “small changes” from the 
original product. (J.-N.)

2. A Lipschitz curve is well approximated in an L2

sense by lines. (“Beta numbers”)
3. While log(subproduct) is still not very good on the 

curve, it is “mostly under control” on E intersect 
the curve. (Local Hoeffding replaces J.-N.)

4. So we can still work with subproducts on pieces 
of the curve.



Products and Ratios

We build three different products:
1. ∏1 is built directly from E using Haar

functions “in the x direction”. (As before)
2. ∏~ is built by replacing Haar functions 

from step 1 with special perturbed “Haar-
like” functions.

3. ∏Γ (ONLY DEFINED ON Γ) replaces Haar
functions in ℝd with Haar functions respecting 
grids of dyadic intervals on a Lipschitz curve Γ. 



Philosophy: Integrate after throwing 
away a very small piece of E on Γ
∫ ∏1(x,y) dx

EΓ ∩Γ

=    ∫ (∏1/ ∏~(z)(∏~/∏Γ )∏Γ dx
EΓ ∩Γ

~  ∫ ∏Γ dx ≤ ∫ ∏Γ dx = 1
EΓ ∩Γ

This gives us the correct estimate.



Estimates for ∏1/ ∏~
Log (∏1/ ∏~) = (Sum over scales = 2-n )=

∑n∑Q EG,Q(log(1 + aQ’(hQ’(x)/(1 + aQ’(h~
Q’(x ))

Where the expectation EG,Q is over Q’ 
having center in Q, a STANDARD dyadic 
cube. Now the log in the sum is = 
aQ’(hQ’(x)- (h~

Q’(x )) +
O(|aQ’|2|hQ’(x)- h~

Q’(x )|(|hQ’(x)|+|(h~
Q’(x )|)

The first term is a BMO(ℝd) function, the 
second a square function.



BMO(ℝd) Estimates
∑n∑Q EG,Q(aQ’(hQ’(x)- (h~

Q’(x ) =
∑n∑Q (ΨQ -Ψ~

Q) = ∑n(Ψn -Ψ~
n ).

Easy estimate:
||∑nΨn ||BMO ≤ C        (Here BMO(ℝd))
With more work:
||∑n(Ψn -Ψ~

n )||BMO ≤ C Υ (Ditto)
John Nirenberg on the “Bad Set”:
|{x: |∑n(Ψn -Ψ~

n )|> C’ Υ log(1/ε)}| << ε
Let E’ be the subset of E that is not “bad“.



Life on E’x∩ Γ

Here |∏1/ ∏~|  ≤ ε-δ .
We would Like to have:
||log(∏~/∏Γ) ||BMO(Γ) ≤ C Υ.  
Note this is BMO on the curve Υ.
 BUT IT IS NOT. 

Closer analysis needed.
.



Hoeffding’s Inequality on Γ
On Γ, represent the ratio as a Haar series (on Γ)!
log(∏~/∏Γ)(x) = ∑I  αI hI(x),   
Where we sum over all “dyadic intervals” 
I in the curve Γ. (Badly divergent!)
Careful calculation: most x in E’x are ok:
∑I∋x |αI |2 ≤ C’ Υ log(1/ε).
Hoeffding’s inequality:
|{x∈ E’x :|log(∏~/∏Γ)(x)|> C’’Υ log(1/ε)}| << ε
So we can throw out a “garbage set” on Γ. 



Hoeffding’s Inequality
Hoeffding’s theorem states that on [0,1], a
function given by a Haar series,

F(x) = ∑ αI hI(x) ,
where 

∑I∋x |αI |2 ≤ 1 for all x, 
satisfies
|{x:|F(x)|≥ λ}| ≤ 2 exp{- λ2/2}. 
“Proof”: 

cosh(x) ≤ exp{x2/2}



Integrating over Γ: The idea
ε-1/2 |E’x∩ Γ| ≤ ∫ ∏1(x,y) dx (+ ε+power ) 

EΓ ∩Γ

= ∫ (∏1/ ∏~(z)(∏~/∏Γ )∏Γ dx
EΓ ∩Γ

≤ ε-2δ ∫∏Γ dx ≤ ε-2δ ∫∏Γ dx = ε-2δ

EΓ ∩Γ Γ
So |E’x ∩ Γ| ≤ 2 ε1/2 - 2δ (If Ratios ≤ ε-δ )

So we must estimate ratios.



(Baron) Charles Jean de la Vallée Poussin

The ℝd de la Vallée Poussin
kernel has L1 norm > 1 and is 
not Schwarz class. But easy 
variants are Schwartz class, 
have L1 norm < 1 +δ, and
have Fourier Transform ≡ 1 
near 0, ≡ 0 near infinity.



Kernels, Perturbation, and Hoeffding
Let K be a nice kernel with:
K^ = 0 for |x| < α
K^ = 0 for |x|, |y| > 1/α
Definition of perturbation: h~ = K* h

Then ∫ h~(x,y) dx = 0 
L

if we integrate over lines L of slope less
than α2. (Fourier Transform vanishes in
a cone.) This is the crucial requirement.



Estimates, Also for Kernels K in L1

Let ΨQ, ΨQ’ be a functions of mean value 
zero, supported on 3Q, 3Q’. Then if L(Q) =
2-n, L(Q’) = 2-(n+j), standard arguments show

|∫ ΨQ(x) ΨQ’(x) dx | ≤
C2-j ||13Q’(x) 2-n∇ΨQ ||2 || ΨQ’ ||2

Corollary of this is:
|<Ψn,Ψn+j>| ≤ C’2-j || 2-n∇Ψn ||2 || Ψn+j ||2

Here Ψm is the sum of terms ΨQ* where
L(Q*) = 2-m, and we assume all cubes on
that scale have finite overlap. Same for K*Ψn.



“Off Diagonal” Corollaries (by C.S.)
1. |<∑nΨn, ∑j ≥ k Ψn+j>| ≤ 

C2-k || ∑n (2-n∇Ψn) ||2 || ∑n Ψn ||2

2.   We need later: Let Fn = Ψn – Ψ~
n  or 

good L1 kernels Kn convolved with that.
∑n|< Fn,∑j ≥ k Fn+j >| 

≤  C2-k (∑n (||2-n∇ Fn||2)2 )1/2

times    (∑n(|| Fn ||2)2 )1/2

≤ C’2-k ∑n (||2-n∇ Fn||2)2
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