Mario Bonk

UCLA

May 31, 2011

Let S^2 be a topological 2-sphere. A map $f: S^2 \to S^2$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

 $d = \deg_f(p)$ local degree of f at p.

 $C_f = \{p \in S^2 : \deg_f(p) \ge 2\}$ set of *critical points* of f

Remark: Every rational map $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

Let S^2 be a topological 2-sphere. A map $f: S^2 \to S^2$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

 $d=\deg_f(p)$ local degree of f at p. $C_f=\{p\in S^2:\deg_f(p)\geq 2\}$ set of critical points of f

Remark: Every rational map $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

Let S^2 be a topological 2-sphere. A map $f: S^2 \to S^2$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

```
d=\deg_f(p) local degree of f at p.
C_f=\{p\in S^2:\deg_f(p)\geq 2\} set of critical points of f.
```

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

Let S^2 be a topological 2-sphere. A map $f: S^2 \to S^2$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

 $d = \deg_f(p)$ local degree of f at p.

 $C_f = \{p \in S^2 : \deg_f(p) \ge 2\}$ set of *critical points* of f.

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

The postcritical set

If $f: S^2 \to S^2$ is a branched covering map, then

$$P_f = \bigcup_{n \in \mathbb{N}} f^n(C_f)$$

is called the *postcritical set* of f. Here f^n is the nth-iterate of f.

Remarks: Points in P_f are obstructions to taking inverse branches of f^n . Each iterate f^n is a covering map over $S^2 \setminus P_f$.

A map $f: S^2 \to S^2$ is called a *Thurston map* iff

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps

- f well-defined only up to isotopy relative to P_f (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

A map $f: S^2 \to S^2$ is called a *Thurston map* iff

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- f well-defined only up to isotopy relative to P_f (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

A map $f: S^2 \to S^2$ is called a *Thurston map* iff

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- f well-defined only up to isotopy relative to P_f (one studies dynamics on isotopy classes of curves etc.), or
- f pointwise defined (one studies pointwise dynamics under iteration etc.).

A map $f: S^2 \to S^2$ is called a *Thurston map* iff

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

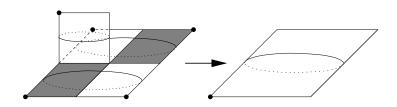
- f well-defined only up to isotopy relative to P_f (one studies dynamics on isotopy classes of curves etc.), or
- f pointwise defined (one studies pointwise dynamics under iteration etc.).

A map $f: S^2 \to S^2$ is called a *Thurston map* iff

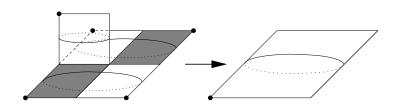
- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

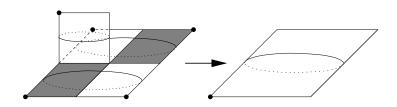
- f well-defined only up to isotopy relative to P_f (one studies dynamics on isotopy classes of curves etc.), or
- f pointwise defined (one studies pointwise dynamics under iteration etc.).



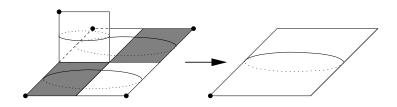
- $\#C_f = 6$
- $\#P_f = 4$,
- Subdivision rule: Combinatorial data specifying how the two level-0 tiles are subdivided by 6 and 4 level-1 tiles, respectively.



- $\#C_f = 6$,
- $\#P_f = 4$,
- Subdivision rule: Combinatorial data specifying how the two level-0 tiles are subdivided by 6 and 4 level-1 tiles, respectively.



- $\#C_f = 6$,
- $\#P_f = 4$,
- Subdivision rule: Combinatorial data specifying how the two level-0 tiles are subdivided by 6 and 4 level-1 tiles, respectively.



- $\#C_f = 6$,
- $\#P_f = 4$,
- Subdivision rule: Combinatorial data specifying how the two level-0 tiles are subdivided by 6 and 4 level-1 tiles, respectively.

A basic problem

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi\colon S^2\to\widehat{\mathbb{C}}$ and a rational map $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ s.t.

$$\begin{array}{ccc}
S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \\
\downarrow f & & \downarrow R \\
S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}}
\end{array}$$

Remark: The map f in the previous example is not conjugate to a rational map.

A basic problem

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi\colon S^2\to\widehat{\mathbb{C}}$ and a rational map $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ s.t.

$$\begin{array}{ccc}
S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \\
\downarrow f & & \downarrow R \\
S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}}
\end{array}$$

Remark: The map f in the previous example is not conjugate to a rational map.

Tiles

Let $n \in \mathbb{N}_0$, $f: S^2 \to S^2$ be a Thurston map, and $J \subseteq S^2$ be a Jordan curve with $P_f \subseteq J$. Then a *tile of level n* or *n-tile* is the closure of a complementary component of $f^{-n}(J)$.

- tiles are topological 2-cells (=closed Jordan regions)
- ullet tiles of a given level n form a cell decomposition \mathcal{D}^n of S^2 .
- the cell decompositions \mathcal{D}^n for different levels n are usually not compatible (only if J is invariant, i.e., $f(J) \subseteq J$ equiv. $J \subseteq f^{-1}(J)$).

Tiles

Let $n \in \mathbb{N}_0$, $f: S^2 \to S^2$ be a Thurston map, and $J \subseteq S^2$ be a Jordan curve with $P_f \subseteq J$. Then a *tile of level n* or *n-tile* is the closure of a complementary component of $f^{-n}(J)$.

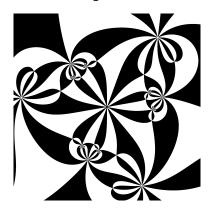
- tiles are topological 2-cells (=closed Jordan regions),
- tiles of a given level n form a cell decomposition \mathcal{D}^n of S^2 .
- the cell decompositions \mathcal{D}^n for different levels n are usually not compatible (only if J is invariant, i.e., $f(J) \subseteq J$ equiv. $J \subseteq f^{-1}(J)$).

$$f(z) = 1 + \frac{\omega - 1}{z^3}, \qquad \omega = e^{4\pi i/3}.$$

 $C_f = \{0, \infty\}$. Orbits of critical points: $0 \mapsto \infty \mapsto 1 \mapsto \omega \mapsto \omega$. $P_f = \{1, \omega, \infty\}$, $J = \text{line through } 1, \omega, \infty$.

$$f(z) = 1 + \frac{\omega - 1}{z^3}, \qquad \omega = e^{4\pi i/3}.$$

 $C_f = \{0, \infty\}$. Orbits of critical points: $0 \mapsto \infty \mapsto 1 \mapsto \omega \mapsto \omega$. $P_f = \{1, \omega, \infty\}$, $J = \text{line through } 1, \omega, \infty$.



A Thurston map $f: S^2 \to S^2$ is *expanding* if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

$$\lim_{n\to\infty}\max_{n-\mathsf{tile}\,X^n}\mathsf{diam}(X^n)=0.$$

This is:

- independent of Jordan curve J,
- ullet independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

A Thurston map $f: S^2 \to S^2$ is *expanding* if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

$$\lim_{n\to\infty}\max_{n\text{-tile }X^n}\operatorname{diam}(X^n)=0.$$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

A Thurston map $f: S^2 \to S^2$ is *expanding* if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

$$\lim_{n\to\infty}\max_{n\text{-tile }X^n}\operatorname{diam}(X^n)=0.$$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $\mathcal{C} \subseteq S^2$ with $P_f = P_{f^n} \subseteq \mathcal{C}$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle \mathcal{C} isotopic to J rel. P_f s.t. $f^n(\mathcal{C}) \subseteq \mathcal{C}$.

Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $\mathcal{C} \subseteq S^2$ with $P_f = P_{f^n} \subseteq \mathcal{C}$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle \mathcal{C} isotopic to J rel. P_f s.t. $f^n(\mathcal{C}) \subseteq \mathcal{C}$.

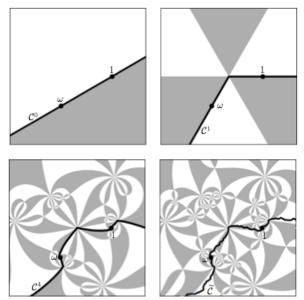
Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $\mathcal{C} \subseteq S^2$ with $P_f = P_{f^n} \subseteq \mathcal{C}$.

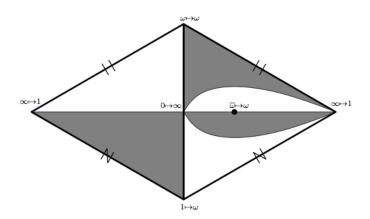
Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle \mathcal{C} isotopic to J rel. P_f s.t. $f^n(\mathcal{C}) \subseteq \mathcal{C}$.

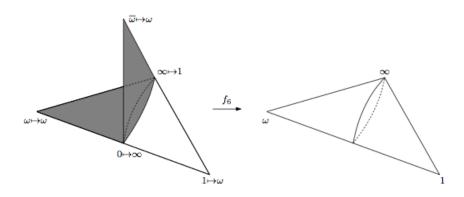
Iterative construction of invariant curves



Example of subdivision rule I



Example of subdivision rule II



The metric gauge of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^2 unique up to snowflake equivalence s.t. for all n-tiles X^n ,

$$d$$
-diam $(X^n) \simeq \Lambda^{-n}$,

where $\Lambda > 1$.

Two metrics d_1 and d_2 are snowflake equivalent iff there ex. $\alpha > 0$ s.t.

$$d_1 \simeq d_2^{\alpha}$$

Remark: This snowflake gauge of *visual metrics* is independent of the choice of the Jordan curve J.

The metric gauge of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^2 unique up to snowflake equivalence s.t. for all n-tiles X^n ,

$$d$$
-diam $(X^n) \simeq \Lambda^{-n}$,

where $\Lambda > 1$.

Two metrics d_1 and d_2 are snowflake equivalent iff there ex. $\alpha > 0$ s.t.

$$d_1 \simeq d_2^{\alpha}$$
.

Remark: This snowflake gauge of *visual metrics* is independent of the choice of the Jordan curve J.

The metric gauge of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^2 unique up to snowflake equivalence s.t. for all n-tiles X^n ,

$$d$$
-diam $(X^n) \simeq \Lambda^{-n}$,

where $\Lambda > 1$.

Two metrics d_1 and d_2 are snowflake equivalent iff there ex. $\alpha > 0$ s.t.

$$d_1 \simeq d_2^{\alpha}$$
.

Remark: This snowflake gauge of *visual metrics* is independent of the choice of the Jordan curve J.

Characterization of rational Thurston maps

Theorem. (B.-Meyer, Pilgrim-Haïssinsky)

Let $f: S^2 \to S^2$ be an expanding Thurston map, and d a metric in the canonical snowflake gauge.

Then f is conjugate to a rational map if and only if f has no periodic crititical points and (S^2, d) is quasisymmetrically equivalent to the standard sphere \mathbb{S}^2 .

Quasisymmetric maps

A homeomorphism $f: X \to Y$ between metric spaces is *(weakly-)* quasisymmetric (=qs) if there exists $H \ge 1$ s.t.

$$|x-y| \le |x-z| \Rightarrow |f(x)-f(y)| \le H|f(x)-f(z)|$$

for all $x, y, z \in X$.

- f is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry global version of quasiconformality.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- In \mathbb{R}^n , $n \ge 2$: qs \Leftrightarrow qc. Also true for "Loewner spaces" (Heinonen-Koskela)

Quasisymmetric maps

A homeomorphism $f: X \to Y$ between metric spaces is *(weakly-)* quasisymmetric (=qs) if there exists $H \ge 1$ s.t.

$$|x-y| \le |x-z| \Rightarrow |f(x)-f(y)| \le H|f(x)-f(z)|$$

for all $x, y, z \in X$.

- f is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry global version of quasiconformality.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- In \mathbb{R}^n , $n \ge 2$: qs \Leftrightarrow qc. Also true for "Loewner spaces" (Heinonen-Koskela).

Cannon's conjecture

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then G admits an action on hyperbolic 3-space \mathbb{H}^3 that is discrete, cocompact, and isometric.

If true, the conjecture would give a characterization of fundamental groups $\pi_1(M)$ of closed hyperbolic 3-orbifolds M from the point of view of geometric group theory.

Cannon's conjecture

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then G admits an action on hyperbolic 3-space \mathbb{H}^3 that is discrete, cocompact, and isometric.

This is equivalent to:

Version II: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then $\partial_{\infty}G$ is qs-equivalent to \mathbb{S}^2 .

If true, the conjecture would give a characterization of fundamental groups $\pi_1(M)$ of closed hyperbolic 3-orbifolds M from the point of view of geometric group theory.

The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y?

- Precise meaning of "standard" metric space depends on context.
- ullet Examples: $Y=\mathbb{R}^n$, \mathbb{S}^n , standard 1/3-Cantor set C, etc.
- Case $Y = \mathbb{S}^2$ particularly interesting in view of Cannon's conjecture and the characterization of rational Thurston maps.

The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y?

- Precise meaning of "standard" metric space depends on context.
- Examples: $Y = \mathbb{R}^n$, \mathbb{S}^n , standard 1/3-Cantor set C, etc.
- Case $Y = \mathbb{S}^2$ particularly interesting in view of Cannon's conjecture and the characterization of rational Thurston maps.

Linear local contractibility

A metric space X is *linearly locally contractible* iff there exists a constant $L \ge 1$ s.t. the inclusion map

$$B(a,R) \hookrightarrow B(a,LR)$$

is homotopic to a constant map whenever $a \in X$ and $R \leq \text{diam}(X)/L$.

Rules out cusps!

Linear local contractibility is a qs-invariant.

Ahlfors regularity

A metric space X is called *Ahlfors Q-regular*, Q > 0, if

$$\mathcal{H}^Q(\overline{B}(a,R)) \simeq R^Q$$

for all closed balls $\overline{B}(a,R) \subseteq X$ with $R \leq \operatorname{diam}(X)$.

 \mathcal{H}^Q is Q-dimensional Hausdorff measure.

A Q-regular space has Hausdorff dimension Q.

Qs-parametrization of 2-spheres

Theorem. (B., Kleiner 2002) Let S be a metric 2-sphere. If S is Ahlfors 2-regular and linearly locally contractible, then S is qs-equivalent to \mathbb{S}^2 .

Qs-parametrization of 2-spheres

Theorem. (B., Kleiner 2002) Let S be a metric 2-sphere. If S is Ahlfors 2-regular and linearly locally contractible, then S is qs-equivalent to \mathbb{S}^2 .

Remark: This has recently been applied to find a "combinatorial characterization" of Lattès maps (Qian Yin, Ph.D. thesis, 2011).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f . Does there always exist an invariant graph $G \supseteq P_f$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f . Does there always exist an invariant graph $G \supseteq P_f$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f . Does there always exist an invariant graph $G \supseteq P_f$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f . Does there always exist an invariant graph $G \supseteq P_f$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f . Does there always exist an invariant graph $G \supseteq P_f$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).