Expanding Thurston maps

Mario Bonk
UCLA
May 31, 2011

Branched covering maps

Let S^{2} be a topological 2-sphere. A map $f: S^{2} \rightarrow S^{2}$ is a branched covering map iff
$d \in \mathbb{N}$, in suitable complex coordinates.

Branched covering maps

Let S^{2} be a topological 2-sphere. A map $f: S^{2} \rightarrow S^{2}$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^{2}$, it can be written in the form $z \mapsto z^{d}$, $d \in \mathbb{N}$, in suitable complex coordinates. Remark: Every rational map $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

Let S^{2} be a topological 2-sphere. A map $f: S^{2} \rightarrow S^{2}$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^{2}$, it can be written in the form $z \mapsto z^{d}$, $d \in \mathbb{N}$, in suitable complex coordinates.
$d=\operatorname{deg}_{f}(p)$ local degree of f at p.
$C_{f}=\left\{p \in S^{2}: \operatorname{deg}_{f}(p) \geq 2\right\}$ set of critical points of f
Remark: Every rational map $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

Let S^{2} be a topological 2-sphere. A map $f: S^{2} \rightarrow S^{2}$ is a branched covering map iff

- it is continuous and orientation-preserving,
- near each point $p \in S^{2}$, it can be written in the form $z \mapsto z^{d}$, $d \in \mathbb{N}$, in suitable complex coordinates.
$d=\operatorname{deg}_{f}(p)$ local degree of f at p.
$C_{f}=\left\{p \in S^{2}: \operatorname{deg}_{f}(p) \geq 2\right\}$ set of critical points of f.
Remark: Every rational map $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

If $f: S^{2} \rightarrow S^{2}$ is a branched covering map, then

$$
P_{f}=\bigcup_{n \in \mathbb{N}} f^{n}\left(C_{f}\right)
$$

is called the postcritical set of f. Here f^{n} is the n th-iterate of f.
Remarks: Points in P_{f} are obstructions to taking inverse branches of f^{n}. Each iterate f^{n} is a covering map over $S^{2} \backslash P_{f}$.

Thurston maps

A map $f: S^{2} \rightarrow S^{2}$ is called a Thurston map iff

- it is a branched covering map,
- it has a finite postcritical set P_{f}.

Different viewpoints on Thurston maps:

Thurston maps

A map $f: S^{2} \rightarrow S^{2}$ is called a Thurston map iff

- it is a branched covering map,
- it has a finite postcritical set P_{f}.

Different viewpoints on Thurston maps:
> f well-defined only up to isotopy relative to P_{f} (one studies dynamics on isotopy classes of curves etc.), or pointwise defined 'one studies pointwise dymamics under iteration etc.)

Thurston maps

A map $f: S^{2} \rightarrow S^{2}$ is called a Thurston map iff

- it is a branched covering map,
- it has a finite postcritical set P_{f}.

Different viewpoints on Thurston maps:

- f well-defined only up to isotopy relative to P_{f} (one studies dynamics on isotopy classes of curves etc.),
pointwise defined (one studies pointwise dynamics under iteration etc.)

Often one wants to find a "good representative" f in a given
isotopy class.

A map $f: S^{2} \rightarrow S^{2}$ is called a Thurston map iff

- it is a branched covering map,
- it has a finite postcritical set P_{f}.

Different viewpoints on Thurston maps:

- f well-defined only up to isotopy relative to P_{f} (one studies dynamics on isotopy classes of curves etc.), or
- f pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given
isotopy class.

A map $f: S^{2} \rightarrow S^{2}$ is called a Thurston map iff

- it is a branched covering map,
- it has a finite postcritical set P_{f}.

Different viewpoints on Thurston maps:

- f well-defined only up to isotopy relative to P_{f} (one studies dynamics on isotopy classes of curves etc.), or
- f pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given isotopy class.

Example of a Thurston map I

Example of a Thurston map I

- $\# C_{f}=6$,
- Subdivision rule: Combinatorial data specifying how the two level- 0 tiles are subdivided by 6 and 4 level- 1 tiles,
respectively.

Example of a Thurston map I

- $\# C_{f}=6$,
- $\# P_{f}=4$,
- Subdivision rule: Combinatorial data specifying how the two level- 0 tiles are subdivided by 6 and 4 level- 1 tiles,
respectively.

Example of a Thurston map I

- $\# C_{f}=6$,
- $\# P_{f}=4$,
- Subdivision rule: Combinatorial data specifying how the two level- 0 tiles are subdivided by 6 and 4 level- 1 tiles, respectively.

A basic problem

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi: S^{2} \rightarrow \widehat{\mathbb{C}}$ and a rational map $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ s.t.

Remark: The map f in the previous example is not conjugate to a

A basic problem

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi: S^{2} \rightarrow \widehat{\mathbb{C}}$ and a rational map $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ s.t.

Remark: The map f in the previous example is not conjugate to a rational map.

Let $n \in \mathbb{N}_{0}, f: S^{2} \rightarrow S^{2}$ be a Thurston map, and $J \subseteq S^{2}$ be a Jordan curve with $P_{f} \subseteq J$. Then a tile of level n or n-tile is the closure of a complementary component of $f^{-n}(J)$.

Let $n \in \mathbb{N}_{0}, f: S^{2} \rightarrow S^{2}$ be a Thurston map, and $J \subseteq S^{2}$ be a Jordan curve with $P_{f} \subseteq J$. Then a tile of level n or n-tile is the closure of a complementary component of $f^{-n}(J)$.

- tiles are topological 2-cells (=closed Jordan regions),
- tiles of a given level n form a cell decomposition \mathcal{D}^{n} of S^{2}.
- the cell decompositions \mathcal{D}^{n} for different levels n are usually not compatible (only if J is invariant, i.e., $f(J) \subseteq J$ equiv.

$$
\left.J \subseteq f^{-1}(J)\right)
$$

Example of a Thurston map II

$$
f(z)=1+\frac{\omega-1}{z^{3}}, \quad \omega=e^{4 \pi i / 3}
$$

$C_{f}=\{0, \infty\}$. Orbits of critical points: $0 \mapsto \infty \mapsto 1 \mapsto \omega \mapsto \omega$. $P_{f}=\{1, \omega, \infty\}, J=$ line through $1, \omega, \infty$.

$$
f(z)=1+\frac{\omega-1}{z^{3}}, \quad \omega=e^{4 \pi i / 3}
$$

$C_{f}=\{0, \infty\}$. Orbits of critical points: $0 \mapsto \infty \mapsto 1 \mapsto \omega \mapsto \omega$.
$P_{f}=\{1, \omega, \infty\}, J=$ line through $1, \omega, \infty$.

Tiles of level 4

Expanding Thurston maps

A Thurston map $f: S^{2} \rightarrow S^{2}$ is expanding if the size of n-tiles goes to 0 uniformly as $n \rightarrow \infty$; so we require

$$
\lim _{n \rightarrow \infty} \max _{n \text {-tile } X^{n}} \operatorname{diam}\left(X^{n}\right)=0
$$

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R)=\widehat{\mathbb{C}}$ for its Julia set.

Expanding Thurston maps

A Thurston map $f: S^{2} \rightarrow S^{2}$ is expanding if the size of n-tiles goes to 0 uniformly as $n \rightarrow \infty$; so we require

$$
\lim _{n \rightarrow \infty} \max _{n \text {-tile } X^{n}} \operatorname{diam}\left(X^{n}\right)=0
$$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^{2}.

Expanding Thurston maps

A Thurston map $f: S^{2} \rightarrow S^{2}$ is expanding if the size of n-tiles goes to 0 uniformly as $n \rightarrow \infty$; so we require

$$
\lim _{n \rightarrow \infty} \max _{n \text {-tile } X^{n}} \operatorname{diam}\left(X^{n}\right)=0
$$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^{2}.

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R)=\widehat{\mathbb{C}}$ for its Julia set.

Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^{n} there exists a (forward-) invariant quasicircle $\mathcal{C} \subseteq S^{2}$ with $P_{f}=P_{f^{n}} \subseteq \mathcal{C}$.

Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^{n} there exists a (forward-) invariant quasicircle $\mathcal{C} \subseteq S^{2}$ with $P_{f}=P_{f^{n}} \subseteq \mathcal{C}$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^{n} is described by a subdivision rule.

Theorem. (B.-Meyer) Let f be an expanding Thurston map.
Then for each sufficiently high iterate f^{n} there exists a (forward-) invariant quasicircle $\mathcal{C} \subseteq S^{2}$ with $P_{f}=P_{f^{n}} \subseteq \mathcal{C}$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^{n} is described by a subdivision rule.

Remark: If $J \subseteq S^{2}$ is an arbitrary Jordan curve with $P_{f} \subseteq J$, then there exists n, and a quasicircle \mathcal{C} isotopic to J rel. P_{f} s.t. $f^{n}(\mathcal{C}) \subseteq \mathcal{C}$.

Example of subdivision rule I

Example of subdivision rule II

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^{2} unique up to snowflake equivalence s.t. for all n-tiles X^{n},

$$
d-\operatorname{diam}\left(X^{n}\right) \simeq \Lambda^{-n}
$$

where $\Lambda>1$.

Remark: This snowflake gauge of visual metrics is independent of

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^{2} unique up to snowflake equivalence s.t. for all n-tiles X^{n},

$$
d-\operatorname{diam}\left(X^{n}\right) \simeq \Lambda^{-n}
$$

where $\Lambda>1$.
Two metrics d_{1} and d_{2} are snowflake equivalent iff there ex. $\alpha>0$ s.t.

$$
d_{1} \simeq d_{2}^{\alpha}
$$

Remark: This snowflake gauge of visual metrics is independent of the choice of the Jordan curve J.

Proposition. Let f be an expanding Thurston map. Then there exists a metric d on S^{2} unique up to snowflake equivalence s.t. for all n-tiles X^{n},

$$
d-\operatorname{diam}\left(X^{n}\right) \simeq \Lambda^{-n}
$$

where $\Lambda>1$.
Two metrics d_{1} and d_{2} are snowflake equivalent iff there ex. $\alpha>0$ s.t.

$$
d_{1} \simeq d_{2}^{\alpha} .
$$

Remark: This snowflake gauge of visual metrics is independent of the choice of the Jordan curve J.

Characterization of rational Thurston maps

Theorem. (B.-Meyer, Pilgrim-Haissinsky)
Let $f: S^{2} \rightarrow S^{2}$ be an expanding Thurston map, and d a metric in the canonical snowflake gauge.
Then f is conjugate to a rational map if and only if f has no periodic crititical points and $\left(S^{2}, d\right)$ is quasisymmetrically equivalent to the standard sphere \mathbb{S}^{2}.

Quasisymmetric maps

A homeomorphism $f: X \rightarrow Y$ between metric spaces is (weakly-) quasisymmetric ($=\mathrm{qs}$) if there exists $H \geq 1$ s.t.

$$
|x-y| \leq|x-z| \Rightarrow|f(x)-f(y)| \leq H|f(x)-f(z)|
$$

for all $x, y, z \in X$.

Quasisymmetric maps

A homeomorphism $f: X \rightarrow Y$ between metric spaces is (weakly-) quasisymmetric ($=\mathrm{qs}$) if there exists $H \geq 1$ s.t.

$$
|x-y| \leq|x-z| \Rightarrow|f(x)-f(y)| \leq H|f(x)-f(z)|
$$

for all $x, y, z \in X$.

- f is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry global version of quasiconformality.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- $\ln \mathbb{R}^{n}, n \geq 2$: $\mathrm{qs} \Leftrightarrow \mathrm{qc}$.

Also true for "Loewner spaces" (Heinonen-Koskela).

Cannon's conjecture

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty} G \approx \mathbb{S}^{2}$. Then G admits an action on hyperbolic 3-space \mathbb{H}^{3} that is discrete, cocompact, and isometric.

If true, the conjecture would give a characterization of fundamental groups $\pi_{1}(M)$ of closed hyperbolic 3-orbifolds M from the point of view of geometric group theory.

Cannon's conjecture

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty} G \approx \mathbb{S}^{2}$. Then G admits an action on hyperbolic 3-space \mathbb{H}^{3} that is discrete, cocompact, and isometric.

This is equivalent to:

Version II: Suppose G is a Gromov hyperbolic group with $\partial_{\infty} G \approx \mathbb{S}^{2}$. Then $\partial_{\infty} G$ is qs-equivalent to \mathbb{S}^{2}.

If true, the conjecture would give a characterization of fundamental groups $\pi_{1}(M)$ of closed hyperbolic 3-orbifolds M from the point of view of geometric group theory.

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y ?

The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y ?

- Precise meaning of "standard" metric space depends on context.
- Examples: $Y=\mathbb{R}^{n}, \mathbb{S}^{n}$, standard $1 / 3$-Cantor set C, etc.
- Case $Y=\mathbb{S}^{2}$ particularly interesting in view of Cannon's conjecture and the characterization of rational Thurston maps.

Linear local contractibility

A metric space X is linearly locally contractible iff there exists a constant $L \geq 1$ s.t. the inclusion map

$$
B(a, R) \hookrightarrow B(a, L R)
$$

is homotopic to a constant map whenever $a \in X$ and $R \leq \operatorname{diam}(X) / L$.

Rules out cusps!
Linear local contractibility is a qs-invariant.

Ahlfors regularity

A metric space X is called Ahlfors Q-regular, $Q>0$, if

$$
\mathcal{H}^{Q}(\bar{B}(a, R)) \simeq R^{Q}
$$

for all closed balls $\bar{B}(a, R) \subseteq X$ with $R \leq \operatorname{diam}(X)$.
\mathcal{H}^{Q} is Q-dimensional Hausdorff measure.
A Q-regular space has Hausdorff dimension Q.

Qs-parametrization of 2-spheres

Theorem. (B., Kleiner 2002) Let S be a metric 2 -sphere. If S is Ahlfors 2-regular and linearly locally contractible, then S is qs-equivalent to \mathbb{S}^{2}.

Qs-parametrization of 2-spheres

Theorem. (B., Kleiner 2002) Let S be a metric 2 -sphere. If S is Ahlfors 2-regular and linearly locally contractible, then S is qs-equivalent to \mathbb{S}^{2}.

Remark: This has recently been applied to find a "combinatorial characterization" of Lattès maps (Qian Yin, Ph.D. thesis, 2011).

[^0]
Further directions

- What are the special properties of subdivison rules associated with rational Thurston maps?

Can one reprove Thurston's characterization of rational maps
using the combinatorial approach?
An expanding Thurston map need not have an invariant
Jordan curve containing the postcritical set P_{f}. Does there
always exist an invariant graph $G \supseteq P_{f}$?

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?

- Can one extend the theory of expanding Thurston maps to Thurston mans that are only exnandino on their " Iulia sets"? (Analog of subhyperbolic rational maps)
- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_{f}. Does there always exist an invariant graph $G \supseteq P_{f}$?

Can one extend the theory of expanding
Thurston maps that are only expanding
(Analog of subhyperbolic rational maps)

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_{f}. Does there always exist an invariant graph $G \supseteq P_{f}$?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

[^0]: －What are the special properties of subdivison rules associated with rational Thurston maps？
 －Can one reprove Thurston＇s characterization of rational maps using the combinatorial approach？

